Fix pmd_populate.
[linux-2.6/linux-mips.git] / fs / dcache.c
blob210f8d1fb65fd02966411e0fca8ad0c8066644ce
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/smp_lock.h>
24 #include <linux/cache.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
28 #include <asm/uaccess.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
32 #define DCACHE_PARANOIA 1
33 /* #define DCACHE_DEBUG 1 */
35 spinlock_t dcache_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
36 seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
38 static kmem_cache_t *dentry_cache;
41 * This is the single most critical data structure when it comes
42 * to the dcache: the hashtable for lookups. Somebody should try
43 * to make this good - I've just made it work.
45 * This hash-function tries to avoid losing too many bits of hash
46 * information, yet avoid using a prime hash-size or similar.
48 #define D_HASHBITS d_hash_shift
49 #define D_HASHMASK d_hash_mask
51 static unsigned int d_hash_mask;
52 static unsigned int d_hash_shift;
53 static struct hlist_head *dentry_hashtable;
54 static LIST_HEAD(dentry_unused);
56 /* Statistics gathering. */
57 struct dentry_stat_t dentry_stat = {
58 .age_limit = 45,
61 static void d_callback(void *arg)
63 struct dentry * dentry = (struct dentry *)arg;
65 if (dname_external(dentry)) {
66 kfree(dentry->d_qstr);
68 kmem_cache_free(dentry_cache, dentry);
72 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
73 * inside dcache_lock.
75 static void d_free(struct dentry *dentry)
77 if (dentry->d_op && dentry->d_op->d_release)
78 dentry->d_op->d_release(dentry);
79 call_rcu(&dentry->d_rcu, d_callback, dentry);
83 * Release the dentry's inode, using the filesystem
84 * d_iput() operation if defined.
85 * Called with dcache_lock held, drops it.
87 static inline void dentry_iput(struct dentry * dentry)
89 struct inode *inode = dentry->d_inode;
90 if (inode) {
91 dentry->d_inode = NULL;
92 list_del_init(&dentry->d_alias);
93 spin_unlock(&dcache_lock);
94 if (dentry->d_op && dentry->d_op->d_iput)
95 dentry->d_op->d_iput(dentry, inode);
96 else
97 iput(inode);
98 } else
99 spin_unlock(&dcache_lock);
103 * This is dput
105 * This is complicated by the fact that we do not want to put
106 * dentries that are no longer on any hash chain on the unused
107 * list: we'd much rather just get rid of them immediately.
109 * However, that implies that we have to traverse the dentry
110 * tree upwards to the parents which might _also_ now be
111 * scheduled for deletion (it may have been only waiting for
112 * its last child to go away).
114 * This tail recursion is done by hand as we don't want to depend
115 * on the compiler to always get this right (gcc generally doesn't).
116 * Real recursion would eat up our stack space.
120 * dput - release a dentry
121 * @dentry: dentry to release
123 * Release a dentry. This will drop the usage count and if appropriate
124 * call the dentry unlink method as well as removing it from the queues and
125 * releasing its resources. If the parent dentries were scheduled for release
126 * they too may now get deleted.
128 * no dcache lock, please.
131 void dput(struct dentry *dentry)
133 if (!dentry)
134 return;
136 repeat:
137 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
138 return;
140 spin_lock(&dentry->d_lock);
141 if (atomic_read(&dentry->d_count)) {
142 spin_unlock(&dentry->d_lock);
143 spin_unlock(&dcache_lock);
144 return;
148 * AV: ->d_delete() is _NOT_ allowed to block now.
150 if (dentry->d_op && dentry->d_op->d_delete) {
151 if (dentry->d_op->d_delete(dentry))
152 goto unhash_it;
154 /* Unreachable? Get rid of it */
155 if (d_unhashed(dentry))
156 goto kill_it;
157 if (list_empty(&dentry->d_lru)) {
158 dentry->d_vfs_flags |= DCACHE_REFERENCED;
159 list_add(&dentry->d_lru, &dentry_unused);
160 dentry_stat.nr_unused++;
162 spin_unlock(&dentry->d_lock);
163 spin_unlock(&dcache_lock);
164 return;
166 unhash_it:
167 __d_drop(dentry);
169 kill_it: {
170 struct dentry *parent;
172 /* If dentry was on d_lru list
173 * delete it from there
175 if (!list_empty(&dentry->d_lru)) {
176 list_del(&dentry->d_lru);
177 dentry_stat.nr_unused--;
179 list_del(&dentry->d_child);
180 spin_unlock(&dentry->d_lock);
181 dentry_stat.nr_dentry--; /* For d_free, below */
182 /* drops the lock, at that point nobody can reach this dentry */
183 dentry_iput(dentry);
184 parent = dentry->d_parent;
185 d_free(dentry);
186 if (dentry == parent)
187 return;
188 dentry = parent;
189 goto repeat;
194 * d_invalidate - invalidate a dentry
195 * @dentry: dentry to invalidate
197 * Try to invalidate the dentry if it turns out to be
198 * possible. If there are other dentries that can be
199 * reached through this one we can't delete it and we
200 * return -EBUSY. On success we return 0.
202 * no dcache lock.
205 int d_invalidate(struct dentry * dentry)
208 * If it's already been dropped, return OK.
210 spin_lock(&dcache_lock);
211 if (d_unhashed(dentry)) {
212 spin_unlock(&dcache_lock);
213 return 0;
216 * Check whether to do a partial shrink_dcache
217 * to get rid of unused child entries.
219 if (!list_empty(&dentry->d_subdirs)) {
220 spin_unlock(&dcache_lock);
221 shrink_dcache_parent(dentry);
222 spin_lock(&dcache_lock);
226 * Somebody else still using it?
228 * If it's a directory, we can't drop it
229 * for fear of somebody re-populating it
230 * with children (even though dropping it
231 * would make it unreachable from the root,
232 * we might still populate it if it was a
233 * working directory or similar).
235 if (atomic_read(&dentry->d_count) > 1) {
236 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
237 spin_unlock(&dcache_lock);
238 return -EBUSY;
242 __d_drop(dentry);
243 spin_unlock(&dcache_lock);
244 return 0;
247 /* This should be called _only_ with dcache_lock held */
249 static inline struct dentry * __dget_locked(struct dentry *dentry)
251 atomic_inc(&dentry->d_count);
252 if (atomic_read(&dentry->d_count) == 1) {
253 dentry_stat.nr_unused--;
254 list_del_init(&dentry->d_lru);
256 return dentry;
259 struct dentry * dget_locked(struct dentry *dentry)
261 return __dget_locked(dentry);
265 * d_find_alias - grab a hashed alias of inode
266 * @inode: inode in question
268 * If inode has a hashed alias - acquire the reference to alias and
269 * return it. Otherwise return NULL. Notice that if inode is a directory
270 * there can be only one alias and it can be unhashed only if it has
271 * no children.
273 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
274 * any other hashed alias over that one.
277 struct dentry * d_find_alias(struct inode *inode)
279 struct list_head *head, *next, *tmp;
280 struct dentry *alias, *discon_alias=NULL;
282 spin_lock(&dcache_lock);
283 head = &inode->i_dentry;
284 next = inode->i_dentry.next;
285 while (next != head) {
286 tmp = next;
287 next = tmp->next;
288 prefetch(next);
289 alias = list_entry(tmp, struct dentry, d_alias);
290 if (!d_unhashed(alias)) {
291 if (alias->d_flags & DCACHE_DISCONNECTED)
292 discon_alias = alias;
293 else {
294 __dget_locked(alias);
295 spin_unlock(&dcache_lock);
296 return alias;
300 if (discon_alias)
301 __dget_locked(discon_alias);
302 spin_unlock(&dcache_lock);
303 return discon_alias;
307 * Try to kill dentries associated with this inode.
308 * WARNING: you must own a reference to inode.
310 void d_prune_aliases(struct inode *inode)
312 struct list_head *tmp, *head = &inode->i_dentry;
313 restart:
314 spin_lock(&dcache_lock);
315 tmp = head;
316 while ((tmp = tmp->next) != head) {
317 struct dentry *dentry = list_entry(tmp, struct dentry, d_alias);
318 if (!atomic_read(&dentry->d_count)) {
319 __dget_locked(dentry);
320 __d_drop(dentry);
321 spin_unlock(&dcache_lock);
322 dput(dentry);
323 goto restart;
326 spin_unlock(&dcache_lock);
330 * Throw away a dentry - free the inode, dput the parent.
331 * This requires that the LRU list has already been
332 * removed.
333 * Called with dcache_lock, drops it and then regains.
335 static inline void prune_one_dentry(struct dentry * dentry)
337 struct dentry * parent;
339 __d_drop(dentry);
340 list_del(&dentry->d_child);
341 spin_unlock(&dentry->d_lock);
342 dentry_stat.nr_dentry--; /* For d_free, below */
343 dentry_iput(dentry);
344 parent = dentry->d_parent;
345 d_free(dentry);
346 if (parent != dentry)
347 dput(parent);
348 spin_lock(&dcache_lock);
352 * prune_dcache - shrink the dcache
353 * @count: number of entries to try and free
355 * Shrink the dcache. This is done when we need
356 * more memory, or simply when we need to unmount
357 * something (at which point we need to unuse
358 * all dentries).
360 * This function may fail to free any resources if
361 * all the dentries are in use.
364 static void prune_dcache(int count)
366 spin_lock(&dcache_lock);
367 for (; count ; count--) {
368 struct dentry *dentry;
369 struct list_head *tmp;
371 tmp = dentry_unused.prev;
372 if (tmp == &dentry_unused)
373 break;
374 list_del_init(tmp);
375 prefetch(dentry_unused.prev);
376 dentry_stat.nr_unused--;
377 dentry = list_entry(tmp, struct dentry, d_lru);
379 spin_lock(&dentry->d_lock);
380 /* leave inuse dentries */
381 if (atomic_read(&dentry->d_count)) {
382 spin_unlock(&dentry->d_lock);
383 continue;
385 /* If the dentry was recently referenced, don't free it. */
386 if (dentry->d_vfs_flags & DCACHE_REFERENCED) {
387 dentry->d_vfs_flags &= ~DCACHE_REFERENCED;
388 list_add(&dentry->d_lru, &dentry_unused);
389 dentry_stat.nr_unused++;
390 spin_unlock(&dentry->d_lock);
391 continue;
393 prune_one_dentry(dentry);
395 spin_unlock(&dcache_lock);
399 * Shrink the dcache for the specified super block.
400 * This allows us to unmount a device without disturbing
401 * the dcache for the other devices.
403 * This implementation makes just two traversals of the
404 * unused list. On the first pass we move the selected
405 * dentries to the most recent end, and on the second
406 * pass we free them. The second pass must restart after
407 * each dput(), but since the target dentries are all at
408 * the end, it's really just a single traversal.
412 * shrink_dcache_sb - shrink dcache for a superblock
413 * @sb: superblock
415 * Shrink the dcache for the specified super block. This
416 * is used to free the dcache before unmounting a file
417 * system
420 void shrink_dcache_sb(struct super_block * sb)
422 struct list_head *tmp, *next;
423 struct dentry *dentry;
426 * Pass one ... move the dentries for the specified
427 * superblock to the most recent end of the unused list.
429 spin_lock(&dcache_lock);
430 next = dentry_unused.next;
431 while (next != &dentry_unused) {
432 tmp = next;
433 next = tmp->next;
434 dentry = list_entry(tmp, struct dentry, d_lru);
435 if (dentry->d_sb != sb)
436 continue;
437 list_del(tmp);
438 list_add(tmp, &dentry_unused);
442 * Pass two ... free the dentries for this superblock.
444 repeat:
445 next = dentry_unused.next;
446 while (next != &dentry_unused) {
447 tmp = next;
448 next = tmp->next;
449 dentry = list_entry(tmp, struct dentry, d_lru);
450 if (dentry->d_sb != sb)
451 continue;
452 dentry_stat.nr_unused--;
453 list_del_init(tmp);
454 spin_lock(&dentry->d_lock);
455 if (atomic_read(&dentry->d_count)) {
456 spin_unlock(&dentry->d_lock);
457 continue;
459 prune_one_dentry(dentry);
460 goto repeat;
462 spin_unlock(&dcache_lock);
466 * Search for at least 1 mount point in the dentry's subdirs.
467 * We descend to the next level whenever the d_subdirs
468 * list is non-empty and continue searching.
472 * have_submounts - check for mounts over a dentry
473 * @parent: dentry to check.
475 * Return true if the parent or its subdirectories contain
476 * a mount point
479 int have_submounts(struct dentry *parent)
481 struct dentry *this_parent = parent;
482 struct list_head *next;
484 spin_lock(&dcache_lock);
485 if (d_mountpoint(parent))
486 goto positive;
487 repeat:
488 next = this_parent->d_subdirs.next;
489 resume:
490 while (next != &this_parent->d_subdirs) {
491 struct list_head *tmp = next;
492 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
493 next = tmp->next;
494 /* Have we found a mount point ? */
495 if (d_mountpoint(dentry))
496 goto positive;
497 if (!list_empty(&dentry->d_subdirs)) {
498 this_parent = dentry;
499 goto repeat;
503 * All done at this level ... ascend and resume the search.
505 if (this_parent != parent) {
506 next = this_parent->d_child.next;
507 this_parent = this_parent->d_parent;
508 goto resume;
510 spin_unlock(&dcache_lock);
511 return 0; /* No mount points found in tree */
512 positive:
513 spin_unlock(&dcache_lock);
514 return 1;
518 * Search the dentry child list for the specified parent,
519 * and move any unused dentries to the end of the unused
520 * list for prune_dcache(). We descend to the next level
521 * whenever the d_subdirs list is non-empty and continue
522 * searching.
524 static int select_parent(struct dentry * parent)
526 struct dentry *this_parent = parent;
527 struct list_head *next;
528 int found = 0;
530 spin_lock(&dcache_lock);
531 repeat:
532 next = this_parent->d_subdirs.next;
533 resume:
534 while (next != &this_parent->d_subdirs) {
535 struct list_head *tmp = next;
536 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
537 next = tmp->next;
539 if (!list_empty(&dentry->d_lru)) {
540 dentry_stat.nr_unused--;
541 list_del_init(&dentry->d_lru);
544 * move only zero ref count dentries to the end
545 * of the unused list for prune_dcache
547 if (!atomic_read(&dentry->d_count)) {
548 list_add(&dentry->d_lru, dentry_unused.prev);
549 dentry_stat.nr_unused++;
550 found++;
553 * Descend a level if the d_subdirs list is non-empty.
555 if (!list_empty(&dentry->d_subdirs)) {
556 this_parent = dentry;
557 #ifdef DCACHE_DEBUG
558 printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
559 dentry->d_parent->d_name.name, dentry->d_name.name, found);
560 #endif
561 goto repeat;
565 * All done at this level ... ascend and resume the search.
567 if (this_parent != parent) {
568 next = this_parent->d_child.next;
569 this_parent = this_parent->d_parent;
570 #ifdef DCACHE_DEBUG
571 printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
572 this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
573 #endif
574 goto resume;
576 spin_unlock(&dcache_lock);
577 return found;
581 * shrink_dcache_parent - prune dcache
582 * @parent: parent of entries to prune
584 * Prune the dcache to remove unused children of the parent dentry.
587 void shrink_dcache_parent(struct dentry * parent)
589 int found;
591 while ((found = select_parent(parent)) != 0)
592 prune_dcache(found);
596 * shrink_dcache_anon - further prune the cache
597 * @head: head of d_hash list of dentries to prune
599 * Prune the dentries that are anonymous
601 * parsing d_hash list does not read_barrier_depends() as it
602 * done under dcache_lock.
605 void shrink_dcache_anon(struct hlist_head *head)
607 struct hlist_node *lp;
608 int found;
609 do {
610 found = 0;
611 spin_lock(&dcache_lock);
612 hlist_for_each(lp, head) {
613 struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
614 if (!list_empty(&this->d_lru)) {
615 dentry_stat.nr_unused--;
616 list_del(&this->d_lru);
620 * move only zero ref count dentries to the end
621 * of the unused list for prune_dcache
623 if (!atomic_read(&this->d_count)) {
624 list_add_tail(&this->d_lru, &dentry_unused);
625 dentry_stat.nr_unused++;
626 found++;
629 spin_unlock(&dcache_lock);
630 prune_dcache(found);
631 } while(found);
635 * This is called from kswapd when we think we need some more memory.
637 * We don't want the VM to steal _all_ unused dcache. Because that leads to
638 * the VM stealing all unused inodes, which shoots down recently-used
639 * pagecache. So what we do is to tell fibs to the VM about how many reapable
640 * objects there are in this cache. If the number of unused dentries is
641 * less than half of the total dentry count then return zero. The net effect
642 * is that the number of unused dentries will be, at a minimum, equal to the
643 * number of used ones.
645 * If unused_ratio is set to 5, the number of unused dentries will not fall
646 * below 5* the number of used ones.
648 static int shrink_dcache_memory(int nr, unsigned int gfp_mask)
650 int nr_used;
651 int nr_unused;
652 const int unused_ratio = 1;
654 if (nr) {
656 * Nasty deadlock avoidance.
658 * ext2_new_block->getblk->GFP->shrink_dcache_memory->
659 * prune_dcache->prune_one_dentry->dput->dentry_iput->iput->
660 * inode->i_sb->s_op->put_inode->ext2_discard_prealloc->
661 * ext2_free_blocks->lock_super->DEADLOCK.
663 * We should make sure we don't hold the superblock lock over
664 * block allocations, but for now:
666 if (gfp_mask & __GFP_FS)
667 prune_dcache(nr);
669 nr_unused = dentry_stat.nr_unused;
670 nr_used = dentry_stat.nr_dentry - nr_unused;
671 if (nr_unused < nr_used * unused_ratio)
672 return 0;
673 return nr_unused - nr_used * unused_ratio;
676 #define NAME_ALLOC_LEN(len) ((len+16) & ~15)
679 * d_alloc - allocate a dcache entry
680 * @parent: parent of entry to allocate
681 * @name: qstr of the name
683 * Allocates a dentry. It returns %NULL if there is insufficient memory
684 * available. On a success the dentry is returned. The name passed in is
685 * copied and the copy passed in may be reused after this call.
688 struct dentry * d_alloc(struct dentry * parent, const struct qstr *name)
690 char * str;
691 struct dentry *dentry;
692 struct qstr * qstr;
694 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
695 if (!dentry)
696 return NULL;
698 if (name->len > DNAME_INLINE_LEN-1) {
699 qstr = kmalloc(sizeof(*qstr) + NAME_ALLOC_LEN(name->len),
700 GFP_KERNEL);
701 if (!qstr) {
702 kmem_cache_free(dentry_cache, dentry);
703 return NULL;
705 qstr->name = qstr->name_str;
706 qstr->len = name->len;
707 qstr->hash = name->hash;
708 dentry->d_qstr = qstr;
709 str = qstr->name_str;
710 } else {
711 dentry->d_qstr = &dentry->d_name;
712 str = dentry->d_iname;
715 memcpy(str, name->name, name->len);
716 str[name->len] = 0;
718 atomic_set(&dentry->d_count, 1);
719 dentry->d_vfs_flags = DCACHE_UNHASHED;
720 dentry->d_lock = SPIN_LOCK_UNLOCKED;
721 dentry->d_flags = 0;
722 dentry->d_inode = NULL;
723 dentry->d_parent = NULL;
724 dentry->d_move_count = 0;
725 dentry->d_sb = NULL;
726 dentry->d_name.name = str;
727 dentry->d_name.len = name->len;
728 dentry->d_name.hash = name->hash;
729 dentry->d_op = NULL;
730 dentry->d_fsdata = NULL;
731 dentry->d_mounted = 0;
732 dentry->d_cookie = NULL;
733 dentry->d_bucket = NULL;
734 INIT_HLIST_NODE(&dentry->d_hash);
735 INIT_LIST_HEAD(&dentry->d_lru);
736 INIT_LIST_HEAD(&dentry->d_subdirs);
737 INIT_LIST_HEAD(&dentry->d_alias);
739 if (parent) {
740 dentry->d_parent = dget(parent);
741 dentry->d_sb = parent->d_sb;
742 } else {
743 INIT_LIST_HEAD(&dentry->d_child);
746 spin_lock(&dcache_lock);
747 if (parent)
748 list_add(&dentry->d_child, &parent->d_subdirs);
749 dentry_stat.nr_dentry++;
750 spin_unlock(&dcache_lock);
752 return dentry;
756 * d_instantiate - fill in inode information for a dentry
757 * @entry: dentry to complete
758 * @inode: inode to attach to this dentry
760 * Fill in inode information in the entry.
762 * This turns negative dentries into productive full members
763 * of society.
765 * NOTE! This assumes that the inode count has been incremented
766 * (or otherwise set) by the caller to indicate that it is now
767 * in use by the dcache.
770 void d_instantiate(struct dentry *entry, struct inode * inode)
772 if (!list_empty(&entry->d_alias)) BUG();
773 spin_lock(&dcache_lock);
774 if (inode)
775 list_add(&entry->d_alias, &inode->i_dentry);
776 entry->d_inode = inode;
777 spin_unlock(&dcache_lock);
778 security_d_instantiate(entry, inode);
782 * d_alloc_root - allocate root dentry
783 * @root_inode: inode to allocate the root for
785 * Allocate a root ("/") dentry for the inode given. The inode is
786 * instantiated and returned. %NULL is returned if there is insufficient
787 * memory or the inode passed is %NULL.
790 struct dentry * d_alloc_root(struct inode * root_inode)
792 struct dentry *res = NULL;
794 if (root_inode) {
795 static const struct qstr name = { .name = "/", .len = 1, .hash = 0 };
796 res = d_alloc(NULL, &name);
797 if (res) {
798 res->d_sb = root_inode->i_sb;
799 res->d_parent = res;
800 d_instantiate(res, root_inode);
803 return res;
806 static inline struct hlist_head * d_hash(struct dentry * parent, unsigned long hash)
808 hash += (unsigned long) parent / L1_CACHE_BYTES;
809 hash = hash ^ (hash >> D_HASHBITS);
810 return dentry_hashtable + (hash & D_HASHMASK);
814 * d_alloc_anon - allocate an anonymous dentry
815 * @inode: inode to allocate the dentry for
817 * This is similar to d_alloc_root. It is used by filesystems when
818 * creating a dentry for a given inode, often in the process of
819 * mapping a filehandle to a dentry. The returned dentry may be
820 * anonymous, or may have a full name (if the inode was already
821 * in the cache). The file system may need to make further
822 * efforts to connect this dentry into the dcache properly.
824 * When called on a directory inode, we must ensure that
825 * the inode only ever has one dentry. If a dentry is
826 * found, that is returned instead of allocating a new one.
828 * On successful return, the reference to the inode has been transferred
829 * to the dentry. If %NULL is returned (indicating kmalloc failure),
830 * the reference on the inode has not been released.
833 struct dentry * d_alloc_anon(struct inode *inode)
835 static const struct qstr anonstring = { "", 0, 0};
836 struct dentry *tmp;
837 struct dentry *res;
839 if ((res = d_find_alias(inode))) {
840 iput(inode);
841 return res;
844 tmp = d_alloc(NULL, &anonstring);
845 if (!tmp)
846 return NULL;
848 tmp->d_parent = tmp; /* make sure dput doesn't croak */
850 spin_lock(&dcache_lock);
851 if (S_ISDIR(inode->i_mode) && !list_empty(&inode->i_dentry)) {
852 /* A directory can only have one dentry.
853 * This (now) has one, so use it.
855 res = list_entry(inode->i_dentry.next, struct dentry, d_alias);
856 __dget_locked(res);
857 } else {
858 /* attach a disconnected dentry */
859 res = tmp;
860 tmp = NULL;
861 if (res) {
862 spin_lock(&res->d_lock);
863 res->d_sb = inode->i_sb;
864 res->d_parent = res;
865 res->d_inode = inode;
866 res->d_bucket = d_hash(res, res->d_name.hash);
867 res->d_flags |= DCACHE_DISCONNECTED;
868 res->d_vfs_flags &= ~DCACHE_UNHASHED;
869 list_add(&res->d_alias, &inode->i_dentry);
870 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
871 spin_unlock(&res->d_lock);
873 inode = NULL; /* don't drop reference */
875 spin_unlock(&dcache_lock);
877 if (inode)
878 iput(inode);
879 if (tmp)
880 dput(tmp);
881 return res;
886 * d_splice_alias - splice a disconnected dentry into the tree if one exists
887 * @inode: the inode which may have a disconnected dentry
888 * @dentry: a negative dentry which we want to point to the inode.
890 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
891 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
892 * and return it, else simply d_add the inode to the dentry and return NULL.
894 * This is (will be) needed in the lookup routine of any filesystem that is exportable
895 * (via knfsd) so that we can build dcache paths to directories effectively.
897 * If a dentry was found and moved, then it is returned. Otherwise NULL
898 * is returned. This matches the expected return value of ->lookup.
901 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
903 struct dentry *new = NULL;
905 if (inode && S_ISDIR(inode->i_mode)) {
906 spin_lock(&dcache_lock);
907 if (!list_empty(&inode->i_dentry)) {
908 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
909 __dget_locked(new);
910 spin_unlock(&dcache_lock);
911 security_d_instantiate(dentry, inode);
912 d_rehash(dentry);
913 d_move(new, dentry);
914 iput(inode);
915 } else {
916 /* d_instantiate takes dcache_lock, so we do it by hand */
917 list_add(&dentry->d_alias, &inode->i_dentry);
918 dentry->d_inode = inode;
919 spin_unlock(&dcache_lock);
920 security_d_instantiate(dentry, inode);
921 d_rehash(dentry);
923 } else
924 d_add(dentry, inode);
925 return new;
930 * d_lookup - search for a dentry
931 * @parent: parent dentry
932 * @name: qstr of name we wish to find
934 * Searches the children of the parent dentry for the name in question. If
935 * the dentry is found its reference count is incremented and the dentry
936 * is returned. The caller must use d_put to free the entry when it has
937 * finished using it. %NULL is returned on failure.
939 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
940 * Memory barriers are used while updating and doing lockless traversal.
941 * To avoid races with d_move while rename is happening, d_move_count is
942 * used.
944 * Overflows in memcmp(), while d_move, are avoided by keeping the length
945 * and name pointer in one structure pointed by d_qstr.
947 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
948 * lookup is going on.
950 * d_lru list is not updated, which can leave non-zero d_count dentries
951 * around in d_lru list.
953 * d_lookup() is protected against the concurrent renames in some unrelated
954 * directory using the seqlockt_t rename_lock.
957 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
959 struct dentry * dentry = NULL;
960 unsigned long seq;
962 do {
963 seq = read_seqbegin(&rename_lock);
964 dentry = __d_lookup(parent, name);
965 if (dentry)
966 break;
967 } while (read_seqretry(&rename_lock, seq));
968 return dentry;
971 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
973 unsigned int len = name->len;
974 unsigned int hash = name->hash;
975 const unsigned char *str = name->name;
976 struct hlist_head *head = d_hash(parent,hash);
977 struct dentry *found = NULL;
978 struct hlist_node *node;
980 rcu_read_lock();
982 hlist_for_each (node, head) {
983 struct dentry *dentry;
984 unsigned long move_count;
985 struct qstr * qstr;
987 smp_read_barrier_depends();
988 dentry = hlist_entry(node, struct dentry, d_hash);
990 /* if lookup ends up in a different bucket
991 * due to concurrent rename, fail it
993 if (unlikely(dentry->d_bucket != head))
994 break;
997 * We must take a snapshot of d_move_count followed by
998 * read memory barrier before any search key comparison
1000 move_count = dentry->d_move_count;
1001 smp_rmb();
1003 if (dentry->d_name.hash != hash)
1004 continue;
1005 if (dentry->d_parent != parent)
1006 continue;
1008 qstr = dentry->d_qstr;
1009 smp_read_barrier_depends();
1010 if (parent->d_op && parent->d_op->d_compare) {
1011 if (parent->d_op->d_compare(parent, qstr, name))
1012 continue;
1013 } else {
1014 if (qstr->len != len)
1015 continue;
1016 if (memcmp(qstr->name, str, len))
1017 continue;
1019 spin_lock(&dentry->d_lock);
1021 * If dentry is moved, fail the lookup
1023 if (likely(move_count == dentry->d_move_count)) {
1024 if (!d_unhashed(dentry)) {
1025 atomic_inc(&dentry->d_count);
1026 found = dentry;
1029 spin_unlock(&dentry->d_lock);
1030 break;
1032 rcu_read_unlock();
1034 return found;
1038 * d_validate - verify dentry provided from insecure source
1039 * @dentry: The dentry alleged to be valid child of @dparent
1040 * @dparent: The parent dentry (known to be valid)
1041 * @hash: Hash of the dentry
1042 * @len: Length of the name
1044 * An insecure source has sent us a dentry, here we verify it and dget() it.
1045 * This is used by ncpfs in its readdir implementation.
1046 * Zero is returned in the dentry is invalid.
1049 int d_validate(struct dentry *dentry, struct dentry *dparent)
1051 unsigned long dent_addr = (unsigned long) dentry;
1052 unsigned long min_addr = PAGE_OFFSET;
1053 unsigned long align_mask = 0x0F;
1054 struct hlist_head *base;
1055 struct hlist_node *lhp;
1057 if (dent_addr < min_addr)
1058 goto out;
1059 if (dent_addr > (unsigned long)high_memory - sizeof(struct dentry))
1060 goto out;
1061 if (dent_addr & align_mask)
1062 goto out;
1063 if ((!kern_addr_valid(dent_addr)) || (!kern_addr_valid(dent_addr -1 +
1064 sizeof(struct dentry))))
1065 goto out;
1067 if (dentry->d_parent != dparent)
1068 goto out;
1070 spin_lock(&dcache_lock);
1071 base = d_hash(dparent, dentry->d_name.hash);
1072 hlist_for_each(lhp,base) {
1073 /* read_barrier_depends() not required for d_hash list
1074 * as it is parsed under dcache_lock
1076 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1077 __dget_locked(dentry);
1078 spin_unlock(&dcache_lock);
1079 return 1;
1082 spin_unlock(&dcache_lock);
1083 out:
1084 return 0;
1088 * When a file is deleted, we have two options:
1089 * - turn this dentry into a negative dentry
1090 * - unhash this dentry and free it.
1092 * Usually, we want to just turn this into
1093 * a negative dentry, but if anybody else is
1094 * currently using the dentry or the inode
1095 * we can't do that and we fall back on removing
1096 * it from the hash queues and waiting for
1097 * it to be deleted later when it has no users
1101 * d_delete - delete a dentry
1102 * @dentry: The dentry to delete
1104 * Turn the dentry into a negative dentry if possible, otherwise
1105 * remove it from the hash queues so it can be deleted later
1108 void d_delete(struct dentry * dentry)
1111 * Are we the only user?
1113 spin_lock(&dcache_lock);
1114 spin_lock(&dentry->d_lock);
1115 if (atomic_read(&dentry->d_count) == 1) {
1116 spin_unlock(&dentry->d_lock);
1117 dentry_iput(dentry);
1118 return;
1121 if (!d_unhashed(dentry))
1122 __d_drop(dentry);
1124 spin_unlock(&dentry->d_lock);
1125 spin_unlock(&dcache_lock);
1129 * d_rehash - add an entry back to the hash
1130 * @entry: dentry to add to the hash
1132 * Adds a dentry to the hash according to its name.
1135 void d_rehash(struct dentry * entry)
1137 struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1138 spin_lock(&dcache_lock);
1139 entry->d_vfs_flags &= ~DCACHE_UNHASHED;
1140 entry->d_bucket = list;
1141 hlist_add_head_rcu(&entry->d_hash, list);
1142 spin_unlock(&dcache_lock);
1145 #define do_switch(x,y) do { \
1146 __typeof__ (x) __tmp = x; \
1147 x = y; y = __tmp; } while (0)
1150 * When switching names, the actual string doesn't strictly have to
1151 * be preserved in the target - because we're dropping the target
1152 * anyway. As such, we can just do a simple memcpy() to copy over
1153 * the new name before we switch.
1155 * Note that we have to be a lot more careful about getting the hash
1156 * switched - we have to switch the hash value properly even if it
1157 * then no longer matches the actual (corrupted) string of the target.
1158 * The hash value has to match the hash queue that the dentry is on..
1160 static inline void switch_names(struct dentry * dentry, struct dentry * target)
1162 const unsigned char *old_name, *new_name;
1163 struct qstr *old_qstr, *new_qstr;
1165 memcpy(dentry->d_iname, target->d_iname, DNAME_INLINE_LEN);
1166 old_qstr = target->d_qstr;
1167 old_name = target->d_name.name;
1168 new_qstr = dentry->d_qstr;
1169 new_name = dentry->d_name.name;
1170 if (old_name == target->d_iname) {
1171 old_name = dentry->d_iname;
1172 old_qstr = &dentry->d_name;
1174 if (new_name == dentry->d_iname) {
1175 new_name = target->d_iname;
1176 new_qstr = &target->d_name;
1178 target->d_name.name = new_name;
1179 dentry->d_name.name = old_name;
1180 target->d_qstr = new_qstr;
1181 dentry->d_qstr = old_qstr;
1185 * We cannibalize "target" when moving dentry on top of it,
1186 * because it's going to be thrown away anyway. We could be more
1187 * polite about it, though.
1189 * This forceful removal will result in ugly /proc output if
1190 * somebody holds a file open that got deleted due to a rename.
1191 * We could be nicer about the deleted file, and let it show
1192 * up under the name it got deleted rather than the name that
1193 * deleted it.
1197 * d_move - move a dentry
1198 * @dentry: entry to move
1199 * @target: new dentry
1201 * Update the dcache to reflect the move of a file name. Negative
1202 * dcache entries should not be moved in this way.
1205 void d_move(struct dentry * dentry, struct dentry * target)
1207 if (!dentry->d_inode)
1208 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1210 spin_lock(&dcache_lock);
1211 write_seqlock(&rename_lock);
1213 * XXXX: do we really need to take target->d_lock?
1215 if (target < dentry) {
1216 spin_lock(&target->d_lock);
1217 spin_lock(&dentry->d_lock);
1218 } else {
1219 spin_lock(&dentry->d_lock);
1220 spin_lock(&target->d_lock);
1223 /* Move the dentry to the target hash queue, if on different bucket */
1224 if (dentry->d_vfs_flags & DCACHE_UNHASHED)
1225 goto already_unhashed;
1226 if (dentry->d_bucket != target->d_bucket) {
1227 hlist_del_rcu(&dentry->d_hash);
1228 already_unhashed:
1229 dentry->d_bucket = target->d_bucket;
1230 hlist_add_head_rcu(&dentry->d_hash, target->d_bucket);
1231 dentry->d_vfs_flags &= ~DCACHE_UNHASHED;
1234 /* Unhash the target: dput() will then get rid of it */
1235 __d_drop(target);
1237 list_del(&dentry->d_child);
1238 list_del(&target->d_child);
1240 /* Switch the names.. */
1241 switch_names(dentry, target);
1242 smp_wmb();
1243 do_switch(dentry->d_name.len, target->d_name.len);
1244 do_switch(dentry->d_name.hash, target->d_name.hash);
1246 /* ... and switch the parents */
1247 if (IS_ROOT(dentry)) {
1248 dentry->d_parent = target->d_parent;
1249 target->d_parent = target;
1250 INIT_LIST_HEAD(&target->d_child);
1251 } else {
1252 do_switch(dentry->d_parent, target->d_parent);
1254 /* And add them back to the (new) parent lists */
1255 list_add(&target->d_child, &target->d_parent->d_subdirs);
1258 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
1259 dentry->d_move_count++;
1260 spin_unlock(&target->d_lock);
1261 spin_unlock(&dentry->d_lock);
1262 write_sequnlock(&rename_lock);
1263 spin_unlock(&dcache_lock);
1267 * d_path - return the path of a dentry
1268 * @dentry: dentry to report
1269 * @vfsmnt: vfsmnt to which the dentry belongs
1270 * @root: root dentry
1271 * @rootmnt: vfsmnt to which the root dentry belongs
1272 * @buffer: buffer to return value in
1273 * @buflen: buffer length
1275 * Convert a dentry into an ASCII path name. If the entry has been deleted
1276 * the string " (deleted)" is appended. Note that this is ambiguous.
1278 * Returns the buffer or an error code if the path was too long.
1280 * "buflen" should be positive. Caller holds the dcache_lock.
1282 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1283 struct dentry *root, struct vfsmount *rootmnt,
1284 char *buffer, int buflen)
1286 char * end = buffer+buflen;
1287 char * retval;
1288 int namelen;
1290 *--end = '\0';
1291 buflen--;
1292 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1293 buflen -= 10;
1294 end -= 10;
1295 if (buflen < 0)
1296 goto Elong;
1297 memcpy(end, " (deleted)", 10);
1300 if (buflen < 1)
1301 goto Elong;
1302 /* Get '/' right */
1303 retval = end-1;
1304 *retval = '/';
1306 for (;;) {
1307 struct dentry * parent;
1309 if (dentry == root && vfsmnt == rootmnt)
1310 break;
1311 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1312 /* Global root? */
1313 if (vfsmnt->mnt_parent == vfsmnt)
1314 goto global_root;
1315 dentry = vfsmnt->mnt_mountpoint;
1316 vfsmnt = vfsmnt->mnt_parent;
1317 continue;
1319 parent = dentry->d_parent;
1320 prefetch(parent);
1321 namelen = dentry->d_name.len;
1322 buflen -= namelen + 1;
1323 if (buflen < 0)
1324 goto Elong;
1325 end -= namelen;
1326 memcpy(end, dentry->d_name.name, namelen);
1327 *--end = '/';
1328 retval = end;
1329 dentry = parent;
1332 return retval;
1334 global_root:
1335 namelen = dentry->d_name.len;
1336 buflen -= namelen;
1337 if (buflen < 0)
1338 goto Elong;
1339 retval -= namelen-1; /* hit the slash */
1340 memcpy(retval, dentry->d_name.name, namelen);
1341 return retval;
1342 Elong:
1343 return ERR_PTR(-ENAMETOOLONG);
1346 /* write full pathname into buffer and return start of pathname */
1347 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1348 char *buf, int buflen)
1350 char *res;
1351 struct vfsmount *rootmnt;
1352 struct dentry *root;
1353 read_lock(&current->fs->lock);
1354 rootmnt = mntget(current->fs->rootmnt);
1355 root = dget(current->fs->root);
1356 read_unlock(&current->fs->lock);
1357 spin_lock(&dcache_lock);
1358 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1359 spin_unlock(&dcache_lock);
1360 dput(root);
1361 mntput(rootmnt);
1362 return res;
1366 * NOTE! The user-level library version returns a
1367 * character pointer. The kernel system call just
1368 * returns the length of the buffer filled (which
1369 * includes the ending '\0' character), or a negative
1370 * error value. So libc would do something like
1372 * char *getcwd(char * buf, size_t size)
1374 * int retval;
1376 * retval = sys_getcwd(buf, size);
1377 * if (retval >= 0)
1378 * return buf;
1379 * errno = -retval;
1380 * return NULL;
1383 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1385 int error;
1386 struct vfsmount *pwdmnt, *rootmnt;
1387 struct dentry *pwd, *root;
1388 char *page = (char *) __get_free_page(GFP_USER);
1390 if (!page)
1391 return -ENOMEM;
1393 read_lock(&current->fs->lock);
1394 pwdmnt = mntget(current->fs->pwdmnt);
1395 pwd = dget(current->fs->pwd);
1396 rootmnt = mntget(current->fs->rootmnt);
1397 root = dget(current->fs->root);
1398 read_unlock(&current->fs->lock);
1400 error = -ENOENT;
1401 /* Has the current directory has been unlinked? */
1402 spin_lock(&dcache_lock);
1403 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1404 unsigned long len;
1405 char * cwd;
1407 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1408 spin_unlock(&dcache_lock);
1410 error = PTR_ERR(cwd);
1411 if (IS_ERR(cwd))
1412 goto out;
1414 error = -ERANGE;
1415 len = PAGE_SIZE + page - cwd;
1416 if (len <= size) {
1417 error = len;
1418 if (copy_to_user(buf, cwd, len))
1419 error = -EFAULT;
1421 } else
1422 spin_unlock(&dcache_lock);
1424 out:
1425 dput(pwd);
1426 mntput(pwdmnt);
1427 dput(root);
1428 mntput(rootmnt);
1429 free_page((unsigned long) page);
1430 return error;
1434 * Test whether new_dentry is a subdirectory of old_dentry.
1436 * Trivially implemented using the dcache structure
1440 * is_subdir - is new dentry a subdirectory of old_dentry
1441 * @new_dentry: new dentry
1442 * @old_dentry: old dentry
1444 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1445 * Returns 0 otherwise.
1448 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1450 int result;
1452 result = 0;
1453 for (;;) {
1454 if (new_dentry != old_dentry) {
1455 struct dentry * parent = new_dentry->d_parent;
1456 if (parent == new_dentry)
1457 break;
1458 new_dentry = parent;
1459 continue;
1461 result = 1;
1462 break;
1464 return result;
1467 void d_genocide(struct dentry *root)
1469 struct dentry *this_parent = root;
1470 struct list_head *next;
1472 spin_lock(&dcache_lock);
1473 repeat:
1474 next = this_parent->d_subdirs.next;
1475 resume:
1476 while (next != &this_parent->d_subdirs) {
1477 struct list_head *tmp = next;
1478 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1479 next = tmp->next;
1480 if (d_unhashed(dentry)||!dentry->d_inode)
1481 continue;
1482 if (!list_empty(&dentry->d_subdirs)) {
1483 this_parent = dentry;
1484 goto repeat;
1486 atomic_dec(&dentry->d_count);
1488 if (this_parent != root) {
1489 next = this_parent->d_child.next;
1490 atomic_dec(&this_parent->d_count);
1491 this_parent = this_parent->d_parent;
1492 goto resume;
1494 spin_unlock(&dcache_lock);
1498 * find_inode_number - check for dentry with name
1499 * @dir: directory to check
1500 * @name: Name to find.
1502 * Check whether a dentry already exists for the given name,
1503 * and return the inode number if it has an inode. Otherwise
1504 * 0 is returned.
1506 * This routine is used to post-process directory listings for
1507 * filesystems using synthetic inode numbers, and is necessary
1508 * to keep getcwd() working.
1511 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1513 struct dentry * dentry;
1514 ino_t ino = 0;
1517 * Check for a fs-specific hash function. Note that we must
1518 * calculate the standard hash first, as the d_op->d_hash()
1519 * routine may choose to leave the hash value unchanged.
1521 name->hash = full_name_hash(name->name, name->len);
1522 if (dir->d_op && dir->d_op->d_hash)
1524 if (dir->d_op->d_hash(dir, name) != 0)
1525 goto out;
1528 dentry = d_lookup(dir, name);
1529 if (dentry)
1531 if (dentry->d_inode)
1532 ino = dentry->d_inode->i_ino;
1533 dput(dentry);
1535 out:
1536 return ino;
1539 static void __init dcache_init(unsigned long mempages)
1541 struct hlist_head *d;
1542 unsigned long order;
1543 unsigned int nr_hash;
1544 int i;
1547 * A constructor could be added for stable state like the lists,
1548 * but it is probably not worth it because of the cache nature
1549 * of the dcache.
1550 * If fragmentation is too bad then the SLAB_HWCACHE_ALIGN
1551 * flag could be removed here, to hint to the allocator that
1552 * it should not try to get multiple page regions.
1554 dentry_cache = kmem_cache_create("dentry_cache",
1555 sizeof(struct dentry),
1557 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
1558 NULL, NULL);
1559 if (!dentry_cache)
1560 panic("Cannot create dentry cache");
1562 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1564 #if PAGE_SHIFT < 13
1565 mempages >>= (13 - PAGE_SHIFT);
1566 #endif
1567 mempages *= sizeof(struct hlist_head);
1568 for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++)
1571 do {
1572 unsigned long tmp;
1574 nr_hash = (1UL << order) * PAGE_SIZE /
1575 sizeof(struct hlist_head);
1576 d_hash_mask = (nr_hash - 1);
1578 tmp = nr_hash;
1579 d_hash_shift = 0;
1580 while ((tmp >>= 1UL) != 0UL)
1581 d_hash_shift++;
1583 dentry_hashtable = (struct hlist_head *)
1584 __get_free_pages(GFP_ATOMIC, order);
1585 } while (dentry_hashtable == NULL && --order >= 0);
1587 printk(KERN_INFO "Dentry cache hash table entries: %d (order: %ld, %ld bytes)\n",
1588 nr_hash, order, (PAGE_SIZE << order));
1590 if (!dentry_hashtable)
1591 panic("Failed to allocate dcache hash table\n");
1593 d = dentry_hashtable;
1594 i = nr_hash;
1595 do {
1596 INIT_HLIST_HEAD(d);
1597 d++;
1598 i--;
1599 } while (i);
1602 /* SLAB cache for __getname() consumers */
1603 kmem_cache_t *names_cachep;
1605 /* SLAB cache for file structures */
1606 kmem_cache_t *filp_cachep;
1608 EXPORT_SYMBOL(d_genocide);
1610 extern void bdev_cache_init(void);
1611 extern void chrdev_init(void);
1613 void __init vfs_caches_init(unsigned long mempages)
1615 names_cachep = kmem_cache_create("names_cache",
1616 PATH_MAX, 0,
1617 SLAB_HWCACHE_ALIGN, NULL, NULL);
1618 if (!names_cachep)
1619 panic("Cannot create names SLAB cache");
1621 filp_cachep = kmem_cache_create("filp",
1622 sizeof(struct file), 0,
1623 SLAB_HWCACHE_ALIGN, filp_ctor, filp_dtor);
1624 if(!filp_cachep)
1625 panic("Cannot create filp SLAB cache");
1627 dcache_init(mempages);
1628 inode_init(mempages);
1629 files_init(mempages);
1630 mnt_init(mempages);
1631 bdev_cache_init();
1632 chrdev_init();