Fix initialization. Unbreak the wait-for-completion loops. Code cleanup.
[linux-2.6/linux-mips.git] / drivers / block / pktcdvd.c
bloba280e679b1cad14b256db0b7b5d747bd2b76662d
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9 * DVD-RAM devices.
11 * Theory of operation:
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
44 *************************************************************************/
46 #define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
48 #include <linux/pktcdvd.h>
49 #include <linux/config.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/kthread.h>
54 #include <linux/errno.h>
55 #include <linux/spinlock.h>
56 #include <linux/file.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/miscdevice.h>
60 #include <linux/suspend.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_ioctl.h>
64 #include <asm/uaccess.h>
66 #if PACKET_DEBUG
67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
68 #else
69 #define DPRINTK(fmt, args...)
70 #endif
72 #if PACKET_DEBUG > 1
73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define VPRINTK(fmt, args...)
76 #endif
78 #define MAX_SPEED 0xffff
80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
82 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
83 static struct proc_dir_entry *pkt_proc;
84 static int pkt_major;
85 static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
86 static mempool_t *psd_pool;
89 static void pkt_bio_finished(struct pktcdvd_device *pd)
91 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
92 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
93 VPRINTK("pktcdvd: queue empty\n");
94 atomic_set(&pd->iosched.attention, 1);
95 wake_up(&pd->wqueue);
99 static void pkt_bio_destructor(struct bio *bio)
101 kfree(bio->bi_io_vec);
102 kfree(bio);
105 static struct bio *pkt_bio_alloc(int nr_iovecs)
107 struct bio_vec *bvl = NULL;
108 struct bio *bio;
110 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
111 if (!bio)
112 goto no_bio;
113 bio_init(bio);
115 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
116 if (!bvl)
117 goto no_bvl;
119 bio->bi_max_vecs = nr_iovecs;
120 bio->bi_io_vec = bvl;
121 bio->bi_destructor = pkt_bio_destructor;
123 return bio;
125 no_bvl:
126 kfree(bio);
127 no_bio:
128 return NULL;
132 * Allocate a packet_data struct
134 static struct packet_data *pkt_alloc_packet_data(void)
136 int i;
137 struct packet_data *pkt;
139 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
140 if (!pkt)
141 goto no_pkt;
143 pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
144 if (!pkt->w_bio)
145 goto no_bio;
147 for (i = 0; i < PAGES_PER_PACKET; i++) {
148 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
149 if (!pkt->pages[i])
150 goto no_page;
153 spin_lock_init(&pkt->lock);
155 for (i = 0; i < PACKET_MAX_SIZE; i++) {
156 struct bio *bio = pkt_bio_alloc(1);
157 if (!bio)
158 goto no_rd_bio;
159 pkt->r_bios[i] = bio;
162 return pkt;
164 no_rd_bio:
165 for (i = 0; i < PACKET_MAX_SIZE; i++) {
166 struct bio *bio = pkt->r_bios[i];
167 if (bio)
168 bio_put(bio);
171 no_page:
172 for (i = 0; i < PAGES_PER_PACKET; i++)
173 if (pkt->pages[i])
174 __free_page(pkt->pages[i]);
175 bio_put(pkt->w_bio);
176 no_bio:
177 kfree(pkt);
178 no_pkt:
179 return NULL;
183 * Free a packet_data struct
185 static void pkt_free_packet_data(struct packet_data *pkt)
187 int i;
189 for (i = 0; i < PACKET_MAX_SIZE; i++) {
190 struct bio *bio = pkt->r_bios[i];
191 if (bio)
192 bio_put(bio);
194 for (i = 0; i < PAGES_PER_PACKET; i++)
195 __free_page(pkt->pages[i]);
196 bio_put(pkt->w_bio);
197 kfree(pkt);
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
202 struct packet_data *pkt, *next;
204 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
206 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207 pkt_free_packet_data(pkt);
211 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
213 struct packet_data *pkt;
215 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
216 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
217 spin_lock_init(&pd->cdrw.active_list_lock);
218 while (nr_packets > 0) {
219 pkt = pkt_alloc_packet_data();
220 if (!pkt) {
221 pkt_shrink_pktlist(pd);
222 return 0;
224 pkt->id = nr_packets;
225 pkt->pd = pd;
226 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
227 nr_packets--;
229 return 1;
232 static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
234 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
237 static void pkt_rb_free(void *ptr, void *data)
239 kfree(ptr);
242 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
244 struct rb_node *n = rb_next(&node->rb_node);
245 if (!n)
246 return NULL;
247 return rb_entry(n, struct pkt_rb_node, rb_node);
250 static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
252 rb_erase(&node->rb_node, &pd->bio_queue);
253 mempool_free(node, pd->rb_pool);
254 pd->bio_queue_size--;
255 BUG_ON(pd->bio_queue_size < 0);
259 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
261 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
263 struct rb_node *n = pd->bio_queue.rb_node;
264 struct rb_node *next;
265 struct pkt_rb_node *tmp;
267 if (!n) {
268 BUG_ON(pd->bio_queue_size > 0);
269 return NULL;
272 for (;;) {
273 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
274 if (s <= tmp->bio->bi_sector)
275 next = n->rb_left;
276 else
277 next = n->rb_right;
278 if (!next)
279 break;
280 n = next;
283 if (s > tmp->bio->bi_sector) {
284 tmp = pkt_rbtree_next(tmp);
285 if (!tmp)
286 return NULL;
288 BUG_ON(s > tmp->bio->bi_sector);
289 return tmp;
293 * Insert a node into the pd->bio_queue rb tree.
295 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
297 struct rb_node **p = &pd->bio_queue.rb_node;
298 struct rb_node *parent = NULL;
299 sector_t s = node->bio->bi_sector;
300 struct pkt_rb_node *tmp;
302 while (*p) {
303 parent = *p;
304 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
305 if (s < tmp->bio->bi_sector)
306 p = &(*p)->rb_left;
307 else
308 p = &(*p)->rb_right;
310 rb_link_node(&node->rb_node, parent, p);
311 rb_insert_color(&node->rb_node, &pd->bio_queue);
312 pd->bio_queue_size++;
316 * Add a bio to a single linked list defined by its head and tail pointers.
318 static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
320 bio->bi_next = NULL;
321 if (*list_tail) {
322 BUG_ON((*list_head) == NULL);
323 (*list_tail)->bi_next = bio;
324 (*list_tail) = bio;
325 } else {
326 BUG_ON((*list_head) != NULL);
327 (*list_head) = bio;
328 (*list_tail) = bio;
333 * Remove and return the first bio from a single linked list defined by its
334 * head and tail pointers.
336 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
338 struct bio *bio;
340 if (*list_head == NULL)
341 return NULL;
343 bio = *list_head;
344 *list_head = bio->bi_next;
345 if (*list_head == NULL)
346 *list_tail = NULL;
348 bio->bi_next = NULL;
349 return bio;
353 * Send a packet_command to the underlying block device and
354 * wait for completion.
356 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
358 char sense[SCSI_SENSE_BUFFERSIZE];
359 request_queue_t *q;
360 struct request *rq;
361 DECLARE_COMPLETION(wait);
362 int err = 0;
364 q = bdev_get_queue(pd->bdev);
366 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
367 __GFP_WAIT);
368 rq->errors = 0;
369 rq->rq_disk = pd->bdev->bd_disk;
370 rq->bio = NULL;
371 rq->buffer = NULL;
372 rq->timeout = 60*HZ;
373 rq->data = cgc->buffer;
374 rq->data_len = cgc->buflen;
375 rq->sense = sense;
376 memset(sense, 0, sizeof(sense));
377 rq->sense_len = 0;
378 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
379 if (cgc->quiet)
380 rq->flags |= REQ_QUIET;
381 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
382 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
383 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
385 rq->ref_count++;
386 rq->flags |= REQ_NOMERGE;
387 rq->waiting = &wait;
388 rq->end_io = blk_end_sync_rq;
389 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
390 generic_unplug_device(q);
391 wait_for_completion(&wait);
393 if (rq->errors)
394 err = -EIO;
396 blk_put_request(rq);
397 return err;
401 * A generic sense dump / resolve mechanism should be implemented across
402 * all ATAPI + SCSI devices.
404 static void pkt_dump_sense(struct packet_command *cgc)
406 static char *info[9] = { "No sense", "Recovered error", "Not ready",
407 "Medium error", "Hardware error", "Illegal request",
408 "Unit attention", "Data protect", "Blank check" };
409 int i;
410 struct request_sense *sense = cgc->sense;
412 printk("pktcdvd:");
413 for (i = 0; i < CDROM_PACKET_SIZE; i++)
414 printk(" %02x", cgc->cmd[i]);
415 printk(" - ");
417 if (sense == NULL) {
418 printk("no sense\n");
419 return;
422 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
424 if (sense->sense_key > 8) {
425 printk(" (INVALID)\n");
426 return;
429 printk(" (%s)\n", info[sense->sense_key]);
433 * flush the drive cache to media
435 static int pkt_flush_cache(struct pktcdvd_device *pd)
437 struct packet_command cgc;
439 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
440 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
441 cgc.quiet = 1;
444 * the IMMED bit -- we default to not setting it, although that
445 * would allow a much faster close, this is safer
447 #if 0
448 cgc.cmd[1] = 1 << 1;
449 #endif
450 return pkt_generic_packet(pd, &cgc);
454 * speed is given as the normal factor, e.g. 4 for 4x
456 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
458 struct packet_command cgc;
459 struct request_sense sense;
460 int ret;
462 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
463 cgc.sense = &sense;
464 cgc.cmd[0] = GPCMD_SET_SPEED;
465 cgc.cmd[2] = (read_speed >> 8) & 0xff;
466 cgc.cmd[3] = read_speed & 0xff;
467 cgc.cmd[4] = (write_speed >> 8) & 0xff;
468 cgc.cmd[5] = write_speed & 0xff;
470 if ((ret = pkt_generic_packet(pd, &cgc)))
471 pkt_dump_sense(&cgc);
473 return ret;
477 * Queue a bio for processing by the low-level CD device. Must be called
478 * from process context.
480 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
482 spin_lock(&pd->iosched.lock);
483 if (bio_data_dir(bio) == READ) {
484 pkt_add_list_last(bio, &pd->iosched.read_queue,
485 &pd->iosched.read_queue_tail);
486 } else {
487 pkt_add_list_last(bio, &pd->iosched.write_queue,
488 &pd->iosched.write_queue_tail);
490 spin_unlock(&pd->iosched.lock);
492 atomic_set(&pd->iosched.attention, 1);
493 wake_up(&pd->wqueue);
497 * Process the queued read/write requests. This function handles special
498 * requirements for CDRW drives:
499 * - A cache flush command must be inserted before a read request if the
500 * previous request was a write.
501 * - Switching between reading and writing is slow, so don't do it more often
502 * than necessary.
503 * - Optimize for throughput at the expense of latency. This means that streaming
504 * writes will never be interrupted by a read, but if the drive has to seek
505 * before the next write, switch to reading instead if there are any pending
506 * read requests.
507 * - Set the read speed according to current usage pattern. When only reading
508 * from the device, it's best to use the highest possible read speed, but
509 * when switching often between reading and writing, it's better to have the
510 * same read and write speeds.
512 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
514 request_queue_t *q;
516 if (atomic_read(&pd->iosched.attention) == 0)
517 return;
518 atomic_set(&pd->iosched.attention, 0);
520 q = bdev_get_queue(pd->bdev);
522 for (;;) {
523 struct bio *bio;
524 int reads_queued, writes_queued;
526 spin_lock(&pd->iosched.lock);
527 reads_queued = (pd->iosched.read_queue != NULL);
528 writes_queued = (pd->iosched.write_queue != NULL);
529 spin_unlock(&pd->iosched.lock);
531 if (!reads_queued && !writes_queued)
532 break;
534 if (pd->iosched.writing) {
535 int need_write_seek = 1;
536 spin_lock(&pd->iosched.lock);
537 bio = pd->iosched.write_queue;
538 spin_unlock(&pd->iosched.lock);
539 if (bio && (bio->bi_sector == pd->iosched.last_write))
540 need_write_seek = 0;
541 if (need_write_seek && reads_queued) {
542 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
543 VPRINTK("pktcdvd: write, waiting\n");
544 break;
546 pkt_flush_cache(pd);
547 pd->iosched.writing = 0;
549 } else {
550 if (!reads_queued && writes_queued) {
551 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
552 VPRINTK("pktcdvd: read, waiting\n");
553 break;
555 pd->iosched.writing = 1;
559 spin_lock(&pd->iosched.lock);
560 if (pd->iosched.writing) {
561 bio = pkt_get_list_first(&pd->iosched.write_queue,
562 &pd->iosched.write_queue_tail);
563 } else {
564 bio = pkt_get_list_first(&pd->iosched.read_queue,
565 &pd->iosched.read_queue_tail);
567 spin_unlock(&pd->iosched.lock);
569 if (!bio)
570 continue;
572 if (bio_data_dir(bio) == READ)
573 pd->iosched.successive_reads += bio->bi_size >> 10;
574 else {
575 pd->iosched.successive_reads = 0;
576 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
578 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
579 if (pd->read_speed == pd->write_speed) {
580 pd->read_speed = MAX_SPEED;
581 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
583 } else {
584 if (pd->read_speed != pd->write_speed) {
585 pd->read_speed = pd->write_speed;
586 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
590 atomic_inc(&pd->cdrw.pending_bios);
591 generic_make_request(bio);
596 * Special care is needed if the underlying block device has a small
597 * max_phys_segments value.
599 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
601 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
603 * The cdrom device can handle one segment/frame
605 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
606 return 0;
607 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
609 * We can handle this case at the expense of some extra memory
610 * copies during write operations
612 set_bit(PACKET_MERGE_SEGS, &pd->flags);
613 return 0;
614 } else {
615 printk("pktcdvd: cdrom max_phys_segments too small\n");
616 return -EIO;
621 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
623 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
625 unsigned int copy_size = CD_FRAMESIZE;
627 while (copy_size > 0) {
628 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
629 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
630 src_bvl->bv_offset + offs;
631 void *vto = page_address(dst_page) + dst_offs;
632 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
634 BUG_ON(len < 0);
635 memcpy(vto, vfrom, len);
636 kunmap_atomic(vfrom, KM_USER0);
638 seg++;
639 offs = 0;
640 dst_offs += len;
641 copy_size -= len;
646 * Copy all data for this packet to pkt->pages[], so that
647 * a) The number of required segments for the write bio is minimized, which
648 * is necessary for some scsi controllers.
649 * b) The data can be used as cache to avoid read requests if we receive a
650 * new write request for the same zone.
652 static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
654 int f, p, offs;
656 /* Copy all data to pkt->pages[] */
657 p = 0;
658 offs = 0;
659 for (f = 0; f < pkt->frames; f++) {
660 if (pages[f] != pkt->pages[p]) {
661 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
662 void *vto = page_address(pkt->pages[p]) + offs;
663 memcpy(vto, vfrom, CD_FRAMESIZE);
664 kunmap_atomic(vfrom, KM_USER0);
665 pages[f] = pkt->pages[p];
666 offsets[f] = offs;
667 } else {
668 BUG_ON(offsets[f] != offs);
670 offs += CD_FRAMESIZE;
671 if (offs >= PAGE_SIZE) {
672 offs = 0;
673 p++;
678 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
680 struct packet_data *pkt = bio->bi_private;
681 struct pktcdvd_device *pd = pkt->pd;
682 BUG_ON(!pd);
684 if (bio->bi_size)
685 return 1;
687 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
688 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
690 if (err)
691 atomic_inc(&pkt->io_errors);
692 if (atomic_dec_and_test(&pkt->io_wait)) {
693 atomic_inc(&pkt->run_sm);
694 wake_up(&pd->wqueue);
696 pkt_bio_finished(pd);
698 return 0;
701 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
703 struct packet_data *pkt = bio->bi_private;
704 struct pktcdvd_device *pd = pkt->pd;
705 BUG_ON(!pd);
707 if (bio->bi_size)
708 return 1;
710 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
712 pd->stats.pkt_ended++;
714 pkt_bio_finished(pd);
715 atomic_dec(&pkt->io_wait);
716 atomic_inc(&pkt->run_sm);
717 wake_up(&pd->wqueue);
718 return 0;
722 * Schedule reads for the holes in a packet
724 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
726 int frames_read = 0;
727 struct bio *bio;
728 int f;
729 char written[PACKET_MAX_SIZE];
731 BUG_ON(!pkt->orig_bios);
733 atomic_set(&pkt->io_wait, 0);
734 atomic_set(&pkt->io_errors, 0);
737 * Figure out which frames we need to read before we can write.
739 memset(written, 0, sizeof(written));
740 spin_lock(&pkt->lock);
741 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
742 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
743 int num_frames = bio->bi_size / CD_FRAMESIZE;
744 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
745 BUG_ON(first_frame < 0);
746 BUG_ON(first_frame + num_frames > pkt->frames);
747 for (f = first_frame; f < first_frame + num_frames; f++)
748 written[f] = 1;
750 spin_unlock(&pkt->lock);
752 if (pkt->cache_valid) {
753 VPRINTK("pkt_gather_data: zone %llx cached\n",
754 (unsigned long long)pkt->sector);
755 goto out_account;
759 * Schedule reads for missing parts of the packet.
761 for (f = 0; f < pkt->frames; f++) {
762 int p, offset;
763 if (written[f])
764 continue;
765 bio = pkt->r_bios[f];
766 bio_init(bio);
767 bio->bi_max_vecs = 1;
768 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
769 bio->bi_bdev = pd->bdev;
770 bio->bi_end_io = pkt_end_io_read;
771 bio->bi_private = pkt;
773 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
774 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
775 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
776 f, pkt->pages[p], offset);
777 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
778 BUG();
780 atomic_inc(&pkt->io_wait);
781 bio->bi_rw = READ;
782 pkt_queue_bio(pd, bio);
783 frames_read++;
786 out_account:
787 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
788 frames_read, (unsigned long long)pkt->sector);
789 pd->stats.pkt_started++;
790 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
794 * Find a packet matching zone, or the least recently used packet if
795 * there is no match.
797 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
799 struct packet_data *pkt;
801 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
802 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
803 list_del_init(&pkt->list);
804 if (pkt->sector != zone)
805 pkt->cache_valid = 0;
806 return pkt;
809 BUG();
810 return NULL;
813 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
815 if (pkt->cache_valid) {
816 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
817 } else {
818 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
823 * recover a failed write, query for relocation if possible
825 * returns 1 if recovery is possible, or 0 if not
828 static int pkt_start_recovery(struct packet_data *pkt)
831 * FIXME. We need help from the file system to implement
832 * recovery handling.
834 return 0;
835 #if 0
836 struct request *rq = pkt->rq;
837 struct pktcdvd_device *pd = rq->rq_disk->private_data;
838 struct block_device *pkt_bdev;
839 struct super_block *sb = NULL;
840 unsigned long old_block, new_block;
841 sector_t new_sector;
843 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
844 if (pkt_bdev) {
845 sb = get_super(pkt_bdev);
846 bdput(pkt_bdev);
849 if (!sb)
850 return 0;
852 if (!sb->s_op || !sb->s_op->relocate_blocks)
853 goto out;
855 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
856 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
857 goto out;
859 new_sector = new_block * (CD_FRAMESIZE >> 9);
860 pkt->sector = new_sector;
862 pkt->bio->bi_sector = new_sector;
863 pkt->bio->bi_next = NULL;
864 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
865 pkt->bio->bi_idx = 0;
867 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
868 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
869 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
870 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
871 BUG_ON(pkt->bio->bi_private != pkt);
873 drop_super(sb);
874 return 1;
876 out:
877 drop_super(sb);
878 return 0;
879 #endif
882 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
884 #if PACKET_DEBUG > 1
885 static const char *state_name[] = {
886 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
888 enum packet_data_state old_state = pkt->state;
889 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
890 state_name[old_state], state_name[state]);
891 #endif
892 pkt->state = state;
896 * Scan the work queue to see if we can start a new packet.
897 * returns non-zero if any work was done.
899 static int pkt_handle_queue(struct pktcdvd_device *pd)
901 struct packet_data *pkt, *p;
902 struct bio *bio = NULL;
903 sector_t zone = 0; /* Suppress gcc warning */
904 struct pkt_rb_node *node, *first_node;
905 struct rb_node *n;
907 VPRINTK("handle_queue\n");
909 atomic_set(&pd->scan_queue, 0);
911 if (list_empty(&pd->cdrw.pkt_free_list)) {
912 VPRINTK("handle_queue: no pkt\n");
913 return 0;
917 * Try to find a zone we are not already working on.
919 spin_lock(&pd->lock);
920 first_node = pkt_rbtree_find(pd, pd->current_sector);
921 if (!first_node) {
922 n = rb_first(&pd->bio_queue);
923 if (n)
924 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
926 node = first_node;
927 while (node) {
928 bio = node->bio;
929 zone = ZONE(bio->bi_sector, pd);
930 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
931 if (p->sector == zone) {
932 bio = NULL;
933 goto try_next_bio;
936 break;
937 try_next_bio:
938 node = pkt_rbtree_next(node);
939 if (!node) {
940 n = rb_first(&pd->bio_queue);
941 if (n)
942 node = rb_entry(n, struct pkt_rb_node, rb_node);
944 if (node == first_node)
945 node = NULL;
947 spin_unlock(&pd->lock);
948 if (!bio) {
949 VPRINTK("handle_queue: no bio\n");
950 return 0;
953 pkt = pkt_get_packet_data(pd, zone);
955 pd->current_sector = zone + pd->settings.size;
956 pkt->sector = zone;
957 pkt->frames = pd->settings.size >> 2;
958 pkt->write_size = 0;
961 * Scan work queue for bios in the same zone and link them
962 * to this packet.
964 spin_lock(&pd->lock);
965 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
966 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
967 bio = node->bio;
968 VPRINTK("pkt_handle_queue: found zone=%llx\n",
969 (unsigned long long)ZONE(bio->bi_sector, pd));
970 if (ZONE(bio->bi_sector, pd) != zone)
971 break;
972 pkt_rbtree_erase(pd, node);
973 spin_lock(&pkt->lock);
974 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
975 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
976 spin_unlock(&pkt->lock);
978 spin_unlock(&pd->lock);
980 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
981 pkt_set_state(pkt, PACKET_WAITING_STATE);
982 atomic_set(&pkt->run_sm, 1);
984 spin_lock(&pd->cdrw.active_list_lock);
985 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
986 spin_unlock(&pd->cdrw.active_list_lock);
988 return 1;
992 * Assemble a bio to write one packet and queue the bio for processing
993 * by the underlying block device.
995 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
997 struct bio *bio;
998 struct page *pages[PACKET_MAX_SIZE];
999 int offsets[PACKET_MAX_SIZE];
1000 int f;
1001 int frames_write;
1003 for (f = 0; f < pkt->frames; f++) {
1004 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1005 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1009 * Fill-in pages[] and offsets[] with data from orig_bios.
1011 frames_write = 0;
1012 spin_lock(&pkt->lock);
1013 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1014 int segment = bio->bi_idx;
1015 int src_offs = 0;
1016 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1017 int num_frames = bio->bi_size / CD_FRAMESIZE;
1018 BUG_ON(first_frame < 0);
1019 BUG_ON(first_frame + num_frames > pkt->frames);
1020 for (f = first_frame; f < first_frame + num_frames; f++) {
1021 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1023 while (src_offs >= src_bvl->bv_len) {
1024 src_offs -= src_bvl->bv_len;
1025 segment++;
1026 BUG_ON(segment >= bio->bi_vcnt);
1027 src_bvl = bio_iovec_idx(bio, segment);
1030 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1031 pages[f] = src_bvl->bv_page;
1032 offsets[f] = src_bvl->bv_offset + src_offs;
1033 } else {
1034 pkt_copy_bio_data(bio, segment, src_offs,
1035 pages[f], offsets[f]);
1037 src_offs += CD_FRAMESIZE;
1038 frames_write++;
1041 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1042 spin_unlock(&pkt->lock);
1044 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1045 frames_write, (unsigned long long)pkt->sector);
1046 BUG_ON(frames_write != pkt->write_size);
1048 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1049 pkt_make_local_copy(pkt, pages, offsets);
1050 pkt->cache_valid = 1;
1051 } else {
1052 pkt->cache_valid = 0;
1055 /* Start the write request */
1056 bio_init(pkt->w_bio);
1057 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1058 pkt->w_bio->bi_sector = pkt->sector;
1059 pkt->w_bio->bi_bdev = pd->bdev;
1060 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1061 pkt->w_bio->bi_private = pkt;
1062 for (f = 0; f < pkt->frames; f++) {
1063 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1064 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1065 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1066 BUG();
1067 f++;
1068 } else {
1069 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1070 BUG();
1073 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1075 atomic_set(&pkt->io_wait, 1);
1076 pkt->w_bio->bi_rw = WRITE;
1077 pkt_queue_bio(pd, pkt->w_bio);
1080 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1082 struct bio *bio, *next;
1084 if (!uptodate)
1085 pkt->cache_valid = 0;
1087 /* Finish all bios corresponding to this packet */
1088 bio = pkt->orig_bios;
1089 while (bio) {
1090 next = bio->bi_next;
1091 bio->bi_next = NULL;
1092 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1093 bio = next;
1095 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1098 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1100 int uptodate;
1102 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1104 for (;;) {
1105 switch (pkt->state) {
1106 case PACKET_WAITING_STATE:
1107 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1108 return;
1110 pkt->sleep_time = 0;
1111 pkt_gather_data(pd, pkt);
1112 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1113 break;
1115 case PACKET_READ_WAIT_STATE:
1116 if (atomic_read(&pkt->io_wait) > 0)
1117 return;
1119 if (atomic_read(&pkt->io_errors) > 0) {
1120 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1121 } else {
1122 pkt_start_write(pd, pkt);
1124 break;
1126 case PACKET_WRITE_WAIT_STATE:
1127 if (atomic_read(&pkt->io_wait) > 0)
1128 return;
1130 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1131 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1132 } else {
1133 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1135 break;
1137 case PACKET_RECOVERY_STATE:
1138 if (pkt_start_recovery(pkt)) {
1139 pkt_start_write(pd, pkt);
1140 } else {
1141 VPRINTK("No recovery possible\n");
1142 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1144 break;
1146 case PACKET_FINISHED_STATE:
1147 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1148 pkt_finish_packet(pkt, uptodate);
1149 return;
1151 default:
1152 BUG();
1153 break;
1158 static void pkt_handle_packets(struct pktcdvd_device *pd)
1160 struct packet_data *pkt, *next;
1162 VPRINTK("pkt_handle_packets\n");
1165 * Run state machine for active packets
1167 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1168 if (atomic_read(&pkt->run_sm) > 0) {
1169 atomic_set(&pkt->run_sm, 0);
1170 pkt_run_state_machine(pd, pkt);
1175 * Move no longer active packets to the free list
1177 spin_lock(&pd->cdrw.active_list_lock);
1178 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1179 if (pkt->state == PACKET_FINISHED_STATE) {
1180 list_del(&pkt->list);
1181 pkt_put_packet_data(pd, pkt);
1182 pkt_set_state(pkt, PACKET_IDLE_STATE);
1183 atomic_set(&pd->scan_queue, 1);
1186 spin_unlock(&pd->cdrw.active_list_lock);
1189 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1191 struct packet_data *pkt;
1192 int i;
1194 for (i = 0; i <= PACKET_NUM_STATES; i++)
1195 states[i] = 0;
1197 spin_lock(&pd->cdrw.active_list_lock);
1198 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1199 states[pkt->state]++;
1201 spin_unlock(&pd->cdrw.active_list_lock);
1205 * kcdrwd is woken up when writes have been queued for one of our
1206 * registered devices
1208 static int kcdrwd(void *foobar)
1210 struct pktcdvd_device *pd = foobar;
1211 struct packet_data *pkt;
1212 long min_sleep_time, residue;
1214 set_user_nice(current, -20);
1216 for (;;) {
1217 DECLARE_WAITQUEUE(wait, current);
1220 * Wait until there is something to do
1222 add_wait_queue(&pd->wqueue, &wait);
1223 for (;;) {
1224 set_current_state(TASK_INTERRUPTIBLE);
1226 /* Check if we need to run pkt_handle_queue */
1227 if (atomic_read(&pd->scan_queue) > 0)
1228 goto work_to_do;
1230 /* Check if we need to run the state machine for some packet */
1231 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1232 if (atomic_read(&pkt->run_sm) > 0)
1233 goto work_to_do;
1236 /* Check if we need to process the iosched queues */
1237 if (atomic_read(&pd->iosched.attention) != 0)
1238 goto work_to_do;
1240 /* Otherwise, go to sleep */
1241 if (PACKET_DEBUG > 1) {
1242 int states[PACKET_NUM_STATES];
1243 pkt_count_states(pd, states);
1244 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1245 states[0], states[1], states[2], states[3],
1246 states[4], states[5]);
1249 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1250 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1251 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1252 min_sleep_time = pkt->sleep_time;
1255 generic_unplug_device(bdev_get_queue(pd->bdev));
1257 VPRINTK("kcdrwd: sleeping\n");
1258 residue = schedule_timeout(min_sleep_time);
1259 VPRINTK("kcdrwd: wake up\n");
1261 /* make swsusp happy with our thread */
1262 try_to_freeze();
1264 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1265 if (!pkt->sleep_time)
1266 continue;
1267 pkt->sleep_time -= min_sleep_time - residue;
1268 if (pkt->sleep_time <= 0) {
1269 pkt->sleep_time = 0;
1270 atomic_inc(&pkt->run_sm);
1274 if (signal_pending(current)) {
1275 flush_signals(current);
1277 if (kthread_should_stop())
1278 break;
1280 work_to_do:
1281 set_current_state(TASK_RUNNING);
1282 remove_wait_queue(&pd->wqueue, &wait);
1284 if (kthread_should_stop())
1285 break;
1288 * if pkt_handle_queue returns true, we can queue
1289 * another request.
1291 while (pkt_handle_queue(pd))
1295 * Handle packet state machine
1297 pkt_handle_packets(pd);
1300 * Handle iosched queues
1302 pkt_iosched_process_queue(pd);
1305 return 0;
1308 static void pkt_print_settings(struct pktcdvd_device *pd)
1310 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1311 printk("%u blocks, ", pd->settings.size >> 2);
1312 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1315 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1317 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1319 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1320 cgc->cmd[2] = page_code | (page_control << 6);
1321 cgc->cmd[7] = cgc->buflen >> 8;
1322 cgc->cmd[8] = cgc->buflen & 0xff;
1323 cgc->data_direction = CGC_DATA_READ;
1324 return pkt_generic_packet(pd, cgc);
1327 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1329 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1330 memset(cgc->buffer, 0, 2);
1331 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1332 cgc->cmd[1] = 0x10; /* PF */
1333 cgc->cmd[7] = cgc->buflen >> 8;
1334 cgc->cmd[8] = cgc->buflen & 0xff;
1335 cgc->data_direction = CGC_DATA_WRITE;
1336 return pkt_generic_packet(pd, cgc);
1339 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1341 struct packet_command cgc;
1342 int ret;
1344 /* set up command and get the disc info */
1345 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1346 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1347 cgc.cmd[8] = cgc.buflen = 2;
1348 cgc.quiet = 1;
1350 if ((ret = pkt_generic_packet(pd, &cgc)))
1351 return ret;
1353 /* not all drives have the same disc_info length, so requeue
1354 * packet with the length the drive tells us it can supply
1356 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1357 sizeof(di->disc_information_length);
1359 if (cgc.buflen > sizeof(disc_information))
1360 cgc.buflen = sizeof(disc_information);
1362 cgc.cmd[8] = cgc.buflen;
1363 return pkt_generic_packet(pd, &cgc);
1366 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1368 struct packet_command cgc;
1369 int ret;
1371 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1372 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1373 cgc.cmd[1] = type & 3;
1374 cgc.cmd[4] = (track & 0xff00) >> 8;
1375 cgc.cmd[5] = track & 0xff;
1376 cgc.cmd[8] = 8;
1377 cgc.quiet = 1;
1379 if ((ret = pkt_generic_packet(pd, &cgc)))
1380 return ret;
1382 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1383 sizeof(ti->track_information_length);
1385 if (cgc.buflen > sizeof(track_information))
1386 cgc.buflen = sizeof(track_information);
1388 cgc.cmd[8] = cgc.buflen;
1389 return pkt_generic_packet(pd, &cgc);
1392 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1394 disc_information di;
1395 track_information ti;
1396 __u32 last_track;
1397 int ret = -1;
1399 if ((ret = pkt_get_disc_info(pd, &di)))
1400 return ret;
1402 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1403 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1404 return ret;
1406 /* if this track is blank, try the previous. */
1407 if (ti.blank) {
1408 last_track--;
1409 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1410 return ret;
1413 /* if last recorded field is valid, return it. */
1414 if (ti.lra_v) {
1415 *last_written = be32_to_cpu(ti.last_rec_address);
1416 } else {
1417 /* make it up instead */
1418 *last_written = be32_to_cpu(ti.track_start) +
1419 be32_to_cpu(ti.track_size);
1420 if (ti.free_blocks)
1421 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1423 return 0;
1427 * write mode select package based on pd->settings
1429 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1431 struct packet_command cgc;
1432 struct request_sense sense;
1433 write_param_page *wp;
1434 char buffer[128];
1435 int ret, size;
1437 /* doesn't apply to DVD+RW or DVD-RAM */
1438 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1439 return 0;
1441 memset(buffer, 0, sizeof(buffer));
1442 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1443 cgc.sense = &sense;
1444 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1445 pkt_dump_sense(&cgc);
1446 return ret;
1449 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1450 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1451 if (size > sizeof(buffer))
1452 size = sizeof(buffer);
1455 * now get it all
1457 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1458 cgc.sense = &sense;
1459 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1460 pkt_dump_sense(&cgc);
1461 return ret;
1465 * write page is offset header + block descriptor length
1467 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1469 wp->fp = pd->settings.fp;
1470 wp->track_mode = pd->settings.track_mode;
1471 wp->write_type = pd->settings.write_type;
1472 wp->data_block_type = pd->settings.block_mode;
1474 wp->multi_session = 0;
1476 #ifdef PACKET_USE_LS
1477 wp->link_size = 7;
1478 wp->ls_v = 1;
1479 #endif
1481 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1482 wp->session_format = 0;
1483 wp->subhdr2 = 0x20;
1484 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1485 wp->session_format = 0x20;
1486 wp->subhdr2 = 8;
1487 #if 0
1488 wp->mcn[0] = 0x80;
1489 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1490 #endif
1491 } else {
1493 * paranoia
1495 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1496 return 1;
1498 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1500 cgc.buflen = cgc.cmd[8] = size;
1501 if ((ret = pkt_mode_select(pd, &cgc))) {
1502 pkt_dump_sense(&cgc);
1503 return ret;
1506 pkt_print_settings(pd);
1507 return 0;
1511 * 0 -- we can write to this track, 1 -- we can't
1513 static int pkt_good_track(track_information *ti)
1516 * only good for CD-RW at the moment, not DVD-RW
1520 * FIXME: only for FP
1522 if (ti->fp == 0)
1523 return 0;
1526 * "good" settings as per Mt Fuji.
1528 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1529 return 0;
1531 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1532 return 0;
1534 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1535 return 0;
1537 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1538 return 1;
1542 * 0 -- we can write to this disc, 1 -- we can't
1544 static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1546 switch (pd->mmc3_profile) {
1547 case 0x0a: /* CD-RW */
1548 case 0xffff: /* MMC3 not supported */
1549 break;
1550 case 0x1a: /* DVD+RW */
1551 case 0x13: /* DVD-RW */
1552 case 0x12: /* DVD-RAM */
1553 return 0;
1554 default:
1555 printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1556 return 1;
1560 * for disc type 0xff we should probably reserve a new track.
1561 * but i'm not sure, should we leave this to user apps? probably.
1563 if (di->disc_type == 0xff) {
1564 printk("pktcdvd: Unknown disc. No track?\n");
1565 return 1;
1568 if (di->disc_type != 0x20 && di->disc_type != 0) {
1569 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1570 return 1;
1573 if (di->erasable == 0) {
1574 printk("pktcdvd: Disc not erasable\n");
1575 return 1;
1578 if (di->border_status == PACKET_SESSION_RESERVED) {
1579 printk("pktcdvd: Can't write to last track (reserved)\n");
1580 return 1;
1583 return 0;
1586 static int pkt_probe_settings(struct pktcdvd_device *pd)
1588 struct packet_command cgc;
1589 unsigned char buf[12];
1590 disc_information di;
1591 track_information ti;
1592 int ret, track;
1594 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1595 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1596 cgc.cmd[8] = 8;
1597 ret = pkt_generic_packet(pd, &cgc);
1598 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1600 memset(&di, 0, sizeof(disc_information));
1601 memset(&ti, 0, sizeof(track_information));
1603 if ((ret = pkt_get_disc_info(pd, &di))) {
1604 printk("failed get_disc\n");
1605 return ret;
1608 if (pkt_good_disc(pd, &di))
1609 return -ENXIO;
1611 switch (pd->mmc3_profile) {
1612 case 0x1a: /* DVD+RW */
1613 printk("pktcdvd: inserted media is DVD+RW\n");
1614 break;
1615 case 0x13: /* DVD-RW */
1616 printk("pktcdvd: inserted media is DVD-RW\n");
1617 break;
1618 case 0x12: /* DVD-RAM */
1619 printk("pktcdvd: inserted media is DVD-RAM\n");
1620 break;
1621 default:
1622 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1623 break;
1625 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1627 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1628 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1629 printk("pktcdvd: failed get_track\n");
1630 return ret;
1633 if (pkt_good_track(&ti)) {
1634 printk("pktcdvd: can't write to this track\n");
1635 return -ENXIO;
1639 * we keep packet size in 512 byte units, makes it easier to
1640 * deal with request calculations.
1642 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1643 if (pd->settings.size == 0) {
1644 printk("pktcdvd: detected zero packet size!\n");
1645 pd->settings.size = 128;
1647 if (pd->settings.size > PACKET_MAX_SECTORS) {
1648 printk("pktcdvd: packet size is too big\n");
1649 return -ENXIO;
1651 pd->settings.fp = ti.fp;
1652 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1654 if (ti.nwa_v) {
1655 pd->nwa = be32_to_cpu(ti.next_writable);
1656 set_bit(PACKET_NWA_VALID, &pd->flags);
1660 * in theory we could use lra on -RW media as well and just zero
1661 * blocks that haven't been written yet, but in practice that
1662 * is just a no-go. we'll use that for -R, naturally.
1664 if (ti.lra_v) {
1665 pd->lra = be32_to_cpu(ti.last_rec_address);
1666 set_bit(PACKET_LRA_VALID, &pd->flags);
1667 } else {
1668 pd->lra = 0xffffffff;
1669 set_bit(PACKET_LRA_VALID, &pd->flags);
1673 * fine for now
1675 pd->settings.link_loss = 7;
1676 pd->settings.write_type = 0; /* packet */
1677 pd->settings.track_mode = ti.track_mode;
1680 * mode1 or mode2 disc
1682 switch (ti.data_mode) {
1683 case PACKET_MODE1:
1684 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1685 break;
1686 case PACKET_MODE2:
1687 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1688 break;
1689 default:
1690 printk("pktcdvd: unknown data mode\n");
1691 return 1;
1693 return 0;
1697 * enable/disable write caching on drive
1699 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1701 struct packet_command cgc;
1702 struct request_sense sense;
1703 unsigned char buf[64];
1704 int ret;
1706 memset(buf, 0, sizeof(buf));
1707 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1708 cgc.sense = &sense;
1709 cgc.buflen = pd->mode_offset + 12;
1712 * caching mode page might not be there, so quiet this command
1714 cgc.quiet = 1;
1716 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1717 return ret;
1719 buf[pd->mode_offset + 10] |= (!!set << 2);
1721 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1722 ret = pkt_mode_select(pd, &cgc);
1723 if (ret) {
1724 printk("pktcdvd: write caching control failed\n");
1725 pkt_dump_sense(&cgc);
1726 } else if (!ret && set)
1727 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1728 return ret;
1731 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1733 struct packet_command cgc;
1735 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1736 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1737 cgc.cmd[4] = lockflag ? 1 : 0;
1738 return pkt_generic_packet(pd, &cgc);
1742 * Returns drive maximum write speed
1744 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1746 struct packet_command cgc;
1747 struct request_sense sense;
1748 unsigned char buf[256+18];
1749 unsigned char *cap_buf;
1750 int ret, offset;
1752 memset(buf, 0, sizeof(buf));
1753 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1754 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1755 cgc.sense = &sense;
1757 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1758 if (ret) {
1759 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1760 sizeof(struct mode_page_header);
1761 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1762 if (ret) {
1763 pkt_dump_sense(&cgc);
1764 return ret;
1768 offset = 20; /* Obsoleted field, used by older drives */
1769 if (cap_buf[1] >= 28)
1770 offset = 28; /* Current write speed selected */
1771 if (cap_buf[1] >= 30) {
1772 /* If the drive reports at least one "Logical Unit Write
1773 * Speed Performance Descriptor Block", use the information
1774 * in the first block. (contains the highest speed)
1776 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1777 if (num_spdb > 0)
1778 offset = 34;
1781 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1782 return 0;
1785 /* These tables from cdrecord - I don't have orange book */
1786 /* standard speed CD-RW (1-4x) */
1787 static char clv_to_speed[16] = {
1788 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1789 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1791 /* high speed CD-RW (-10x) */
1792 static char hs_clv_to_speed[16] = {
1793 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1794 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1796 /* ultra high speed CD-RW */
1797 static char us_clv_to_speed[16] = {
1798 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1799 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1803 * reads the maximum media speed from ATIP
1805 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1807 struct packet_command cgc;
1808 struct request_sense sense;
1809 unsigned char buf[64];
1810 unsigned int size, st, sp;
1811 int ret;
1813 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1814 cgc.sense = &sense;
1815 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1816 cgc.cmd[1] = 2;
1817 cgc.cmd[2] = 4; /* READ ATIP */
1818 cgc.cmd[8] = 2;
1819 ret = pkt_generic_packet(pd, &cgc);
1820 if (ret) {
1821 pkt_dump_sense(&cgc);
1822 return ret;
1824 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1825 if (size > sizeof(buf))
1826 size = sizeof(buf);
1828 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1829 cgc.sense = &sense;
1830 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1831 cgc.cmd[1] = 2;
1832 cgc.cmd[2] = 4;
1833 cgc.cmd[8] = size;
1834 ret = pkt_generic_packet(pd, &cgc);
1835 if (ret) {
1836 pkt_dump_sense(&cgc);
1837 return ret;
1840 if (!buf[6] & 0x40) {
1841 printk("pktcdvd: Disc type is not CD-RW\n");
1842 return 1;
1844 if (!buf[6] & 0x4) {
1845 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1846 return 1;
1849 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1851 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1853 /* Info from cdrecord */
1854 switch (st) {
1855 case 0: /* standard speed */
1856 *speed = clv_to_speed[sp];
1857 break;
1858 case 1: /* high speed */
1859 *speed = hs_clv_to_speed[sp];
1860 break;
1861 case 2: /* ultra high speed */
1862 *speed = us_clv_to_speed[sp];
1863 break;
1864 default:
1865 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1866 return 1;
1868 if (*speed) {
1869 printk("pktcdvd: Max. media speed: %d\n",*speed);
1870 return 0;
1871 } else {
1872 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1873 return 1;
1877 static int pkt_perform_opc(struct pktcdvd_device *pd)
1879 struct packet_command cgc;
1880 struct request_sense sense;
1881 int ret;
1883 VPRINTK("pktcdvd: Performing OPC\n");
1885 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1886 cgc.sense = &sense;
1887 cgc.timeout = 60*HZ;
1888 cgc.cmd[0] = GPCMD_SEND_OPC;
1889 cgc.cmd[1] = 1;
1890 if ((ret = pkt_generic_packet(pd, &cgc)))
1891 pkt_dump_sense(&cgc);
1892 return ret;
1895 static int pkt_open_write(struct pktcdvd_device *pd)
1897 int ret;
1898 unsigned int write_speed, media_write_speed, read_speed;
1900 if ((ret = pkt_probe_settings(pd))) {
1901 DPRINTK("pktcdvd: %s failed probe\n", pd->name);
1902 return -EIO;
1905 if ((ret = pkt_set_write_settings(pd))) {
1906 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1907 return -EIO;
1910 pkt_write_caching(pd, USE_WCACHING);
1912 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1913 write_speed = 16 * 177;
1914 switch (pd->mmc3_profile) {
1915 case 0x13: /* DVD-RW */
1916 case 0x1a: /* DVD+RW */
1917 case 0x12: /* DVD-RAM */
1918 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1919 break;
1920 default:
1921 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1922 media_write_speed = 16;
1923 write_speed = min(write_speed, media_write_speed * 177);
1924 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1925 break;
1927 read_speed = write_speed;
1929 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1930 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1931 return -EIO;
1933 pd->write_speed = write_speed;
1934 pd->read_speed = read_speed;
1936 if ((ret = pkt_perform_opc(pd))) {
1937 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1940 return 0;
1944 * called at open time.
1946 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1948 int ret;
1949 long lba;
1950 request_queue_t *q;
1953 * We need to re-open the cdrom device without O_NONBLOCK to be able
1954 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1955 * so bdget() can't fail.
1957 bdget(pd->bdev->bd_dev);
1958 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1959 goto out;
1961 if ((ret = pkt_get_last_written(pd, &lba))) {
1962 printk("pktcdvd: pkt_get_last_written failed\n");
1963 goto out_putdev;
1966 set_capacity(pd->disk, lba << 2);
1967 set_capacity(pd->bdev->bd_disk, lba << 2);
1968 bd_set_size(pd->bdev, (loff_t)lba << 11);
1970 q = bdev_get_queue(pd->bdev);
1971 if (write) {
1972 if ((ret = pkt_open_write(pd)))
1973 goto out_putdev;
1975 * Some CDRW drives can not handle writes larger than one packet,
1976 * even if the size is a multiple of the packet size.
1978 spin_lock_irq(q->queue_lock);
1979 blk_queue_max_sectors(q, pd->settings.size);
1980 spin_unlock_irq(q->queue_lock);
1981 set_bit(PACKET_WRITABLE, &pd->flags);
1982 } else {
1983 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1984 clear_bit(PACKET_WRITABLE, &pd->flags);
1987 if ((ret = pkt_set_segment_merging(pd, q)))
1988 goto out_putdev;
1990 if (write)
1991 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1993 return 0;
1995 out_putdev:
1996 blkdev_put(pd->bdev);
1997 out:
1998 return ret;
2002 * called when the device is closed. makes sure that the device flushes
2003 * the internal cache before we close.
2005 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2007 if (flush && pkt_flush_cache(pd))
2008 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2010 pkt_lock_door(pd, 0);
2012 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2013 blkdev_put(pd->bdev);
2016 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2018 if (dev_minor >= MAX_WRITERS)
2019 return NULL;
2020 return pkt_devs[dev_minor];
2023 static int pkt_open(struct inode *inode, struct file *file)
2025 struct pktcdvd_device *pd = NULL;
2026 int ret;
2028 VPRINTK("pktcdvd: entering open\n");
2030 down(&ctl_mutex);
2031 pd = pkt_find_dev_from_minor(iminor(inode));
2032 if (!pd) {
2033 ret = -ENODEV;
2034 goto out;
2036 BUG_ON(pd->refcnt < 0);
2038 pd->refcnt++;
2039 if (pd->refcnt > 1) {
2040 if ((file->f_mode & FMODE_WRITE) &&
2041 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2042 ret = -EBUSY;
2043 goto out_dec;
2045 } else {
2046 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2047 ret = -EIO;
2048 goto out_dec;
2051 * needed here as well, since ext2 (among others) may change
2052 * the blocksize at mount time
2054 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2057 up(&ctl_mutex);
2058 return 0;
2060 out_dec:
2061 pd->refcnt--;
2062 out:
2063 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2064 up(&ctl_mutex);
2065 return ret;
2068 static int pkt_close(struct inode *inode, struct file *file)
2070 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2071 int ret = 0;
2073 down(&ctl_mutex);
2074 pd->refcnt--;
2075 BUG_ON(pd->refcnt < 0);
2076 if (pd->refcnt == 0) {
2077 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2078 pkt_release_dev(pd, flush);
2080 up(&ctl_mutex);
2081 return ret;
2085 static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
2087 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2090 static void psd_pool_free(void *ptr, void *data)
2092 kfree(ptr);
2095 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2097 struct packet_stacked_data *psd = bio->bi_private;
2098 struct pktcdvd_device *pd = psd->pd;
2100 if (bio->bi_size)
2101 return 1;
2103 bio_put(bio);
2104 bio_endio(psd->bio, psd->bio->bi_size, err);
2105 mempool_free(psd, psd_pool);
2106 pkt_bio_finished(pd);
2107 return 0;
2110 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2112 struct pktcdvd_device *pd;
2113 char b[BDEVNAME_SIZE];
2114 sector_t zone;
2115 struct packet_data *pkt;
2116 int was_empty, blocked_bio;
2117 struct pkt_rb_node *node;
2119 pd = q->queuedata;
2120 if (!pd) {
2121 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2122 goto end_io;
2126 * Clone READ bios so we can have our own bi_end_io callback.
2128 if (bio_data_dir(bio) == READ) {
2129 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2130 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2132 psd->pd = pd;
2133 psd->bio = bio;
2134 cloned_bio->bi_bdev = pd->bdev;
2135 cloned_bio->bi_private = psd;
2136 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2137 pd->stats.secs_r += bio->bi_size >> 9;
2138 pkt_queue_bio(pd, cloned_bio);
2139 return 0;
2142 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2143 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2144 pd->name, (unsigned long long)bio->bi_sector);
2145 goto end_io;
2148 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2149 printk("pktcdvd: wrong bio size\n");
2150 goto end_io;
2153 blk_queue_bounce(q, &bio);
2155 zone = ZONE(bio->bi_sector, pd);
2156 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2157 (unsigned long long)bio->bi_sector,
2158 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2160 /* Check if we have to split the bio */
2162 struct bio_pair *bp;
2163 sector_t last_zone;
2164 int first_sectors;
2166 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2167 if (last_zone != zone) {
2168 BUG_ON(last_zone != zone + pd->settings.size);
2169 first_sectors = last_zone - bio->bi_sector;
2170 bp = bio_split(bio, bio_split_pool, first_sectors);
2171 BUG_ON(!bp);
2172 pkt_make_request(q, &bp->bio1);
2173 pkt_make_request(q, &bp->bio2);
2174 bio_pair_release(bp);
2175 return 0;
2180 * If we find a matching packet in state WAITING or READ_WAIT, we can
2181 * just append this bio to that packet.
2183 spin_lock(&pd->cdrw.active_list_lock);
2184 blocked_bio = 0;
2185 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2186 if (pkt->sector == zone) {
2187 spin_lock(&pkt->lock);
2188 if ((pkt->state == PACKET_WAITING_STATE) ||
2189 (pkt->state == PACKET_READ_WAIT_STATE)) {
2190 pkt_add_list_last(bio, &pkt->orig_bios,
2191 &pkt->orig_bios_tail);
2192 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2193 if ((pkt->write_size >= pkt->frames) &&
2194 (pkt->state == PACKET_WAITING_STATE)) {
2195 atomic_inc(&pkt->run_sm);
2196 wake_up(&pd->wqueue);
2198 spin_unlock(&pkt->lock);
2199 spin_unlock(&pd->cdrw.active_list_lock);
2200 return 0;
2201 } else {
2202 blocked_bio = 1;
2204 spin_unlock(&pkt->lock);
2207 spin_unlock(&pd->cdrw.active_list_lock);
2210 * No matching packet found. Store the bio in the work queue.
2212 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2213 node->bio = bio;
2214 spin_lock(&pd->lock);
2215 BUG_ON(pd->bio_queue_size < 0);
2216 was_empty = (pd->bio_queue_size == 0);
2217 pkt_rbtree_insert(pd, node);
2218 spin_unlock(&pd->lock);
2221 * Wake up the worker thread.
2223 atomic_set(&pd->scan_queue, 1);
2224 if (was_empty) {
2225 /* This wake_up is required for correct operation */
2226 wake_up(&pd->wqueue);
2227 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2229 * This wake up is not required for correct operation,
2230 * but improves performance in some cases.
2232 wake_up(&pd->wqueue);
2234 return 0;
2235 end_io:
2236 bio_io_error(bio, bio->bi_size);
2237 return 0;
2242 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2244 struct pktcdvd_device *pd = q->queuedata;
2245 sector_t zone = ZONE(bio->bi_sector, pd);
2246 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2247 int remaining = (pd->settings.size << 9) - used;
2248 int remaining2;
2251 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2252 * boundary, pkt_make_request() will split the bio.
2254 remaining2 = PAGE_SIZE - bio->bi_size;
2255 remaining = max(remaining, remaining2);
2257 BUG_ON(remaining < 0);
2258 return remaining;
2261 static void pkt_init_queue(struct pktcdvd_device *pd)
2263 request_queue_t *q = pd->disk->queue;
2265 blk_queue_make_request(q, pkt_make_request);
2266 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2267 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2268 blk_queue_merge_bvec(q, pkt_merge_bvec);
2269 q->queuedata = pd;
2272 static int pkt_seq_show(struct seq_file *m, void *p)
2274 struct pktcdvd_device *pd = m->private;
2275 char *msg;
2276 char bdev_buf[BDEVNAME_SIZE];
2277 int states[PACKET_NUM_STATES];
2279 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2280 bdevname(pd->bdev, bdev_buf));
2282 seq_printf(m, "\nSettings:\n");
2283 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2285 if (pd->settings.write_type == 0)
2286 msg = "Packet";
2287 else
2288 msg = "Unknown";
2289 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2291 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2292 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2294 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2296 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2297 msg = "Mode 1";
2298 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2299 msg = "Mode 2";
2300 else
2301 msg = "Unknown";
2302 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2304 seq_printf(m, "\nStatistics:\n");
2305 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2306 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2307 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2308 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2309 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2311 seq_printf(m, "\nMisc:\n");
2312 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2313 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2314 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2315 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2316 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2317 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2319 seq_printf(m, "\nQueue state:\n");
2320 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2321 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2322 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2324 pkt_count_states(pd, states);
2325 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2326 states[0], states[1], states[2], states[3], states[4], states[5]);
2328 return 0;
2331 static int pkt_seq_open(struct inode *inode, struct file *file)
2333 return single_open(file, pkt_seq_show, PDE(inode)->data);
2336 static struct file_operations pkt_proc_fops = {
2337 .open = pkt_seq_open,
2338 .read = seq_read,
2339 .llseek = seq_lseek,
2340 .release = single_release
2343 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2345 int i;
2346 int ret = 0;
2347 char b[BDEVNAME_SIZE];
2348 struct proc_dir_entry *proc;
2349 struct block_device *bdev;
2351 if (pd->pkt_dev == dev) {
2352 printk("pktcdvd: Recursive setup not allowed\n");
2353 return -EBUSY;
2355 for (i = 0; i < MAX_WRITERS; i++) {
2356 struct pktcdvd_device *pd2 = pkt_devs[i];
2357 if (!pd2)
2358 continue;
2359 if (pd2->bdev->bd_dev == dev) {
2360 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2361 return -EBUSY;
2363 if (pd2->pkt_dev == dev) {
2364 printk("pktcdvd: Can't chain pktcdvd devices\n");
2365 return -EBUSY;
2369 bdev = bdget(dev);
2370 if (!bdev)
2371 return -ENOMEM;
2372 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2373 if (ret)
2374 return ret;
2376 /* This is safe, since we have a reference from open(). */
2377 __module_get(THIS_MODULE);
2379 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2380 printk("pktcdvd: not enough memory for buffers\n");
2381 ret = -ENOMEM;
2382 goto out_mem;
2385 pd->bdev = bdev;
2386 set_blocksize(bdev, CD_FRAMESIZE);
2388 pkt_init_queue(pd);
2390 atomic_set(&pd->cdrw.pending_bios, 0);
2391 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2392 if (IS_ERR(pd->cdrw.thread)) {
2393 printk("pktcdvd: can't start kernel thread\n");
2394 ret = -ENOMEM;
2395 goto out_thread;
2398 proc = create_proc_entry(pd->name, 0, pkt_proc);
2399 if (proc) {
2400 proc->data = pd;
2401 proc->proc_fops = &pkt_proc_fops;
2403 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2404 return 0;
2406 out_thread:
2407 pkt_shrink_pktlist(pd);
2408 out_mem:
2409 blkdev_put(bdev);
2410 /* This is safe: open() is still holding a reference. */
2411 module_put(THIS_MODULE);
2412 return ret;
2415 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2417 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2419 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2421 switch (cmd) {
2423 * forward selected CDROM ioctls to CD-ROM, for UDF
2425 case CDROMMULTISESSION:
2426 case CDROMREADTOCENTRY:
2427 case CDROM_LAST_WRITTEN:
2428 case CDROM_SEND_PACKET:
2429 case SCSI_IOCTL_SEND_COMMAND:
2430 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2432 case CDROMEJECT:
2434 * The door gets locked when the device is opened, so we
2435 * have to unlock it or else the eject command fails.
2437 pkt_lock_door(pd, 0);
2438 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2440 default:
2441 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2442 return -ENOTTY;
2445 return 0;
2448 static int pkt_media_changed(struct gendisk *disk)
2450 struct pktcdvd_device *pd = disk->private_data;
2451 struct gendisk *attached_disk;
2453 if (!pd)
2454 return 0;
2455 if (!pd->bdev)
2456 return 0;
2457 attached_disk = pd->bdev->bd_disk;
2458 if (!attached_disk)
2459 return 0;
2460 return attached_disk->fops->media_changed(attached_disk);
2463 static struct block_device_operations pktcdvd_ops = {
2464 .owner = THIS_MODULE,
2465 .open = pkt_open,
2466 .release = pkt_close,
2467 .ioctl = pkt_ioctl,
2468 .media_changed = pkt_media_changed,
2472 * Set up mapping from pktcdvd device to CD-ROM device.
2474 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2476 int idx;
2477 int ret = -ENOMEM;
2478 struct pktcdvd_device *pd;
2479 struct gendisk *disk;
2480 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2482 for (idx = 0; idx < MAX_WRITERS; idx++)
2483 if (!pkt_devs[idx])
2484 break;
2485 if (idx == MAX_WRITERS) {
2486 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2487 return -EBUSY;
2490 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2491 if (!pd)
2492 return ret;
2494 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2495 if (!pd->rb_pool)
2496 goto out_mem;
2498 disk = alloc_disk(1);
2499 if (!disk)
2500 goto out_mem;
2501 pd->disk = disk;
2503 spin_lock_init(&pd->lock);
2504 spin_lock_init(&pd->iosched.lock);
2505 sprintf(pd->name, "pktcdvd%d", idx);
2506 init_waitqueue_head(&pd->wqueue);
2507 pd->bio_queue = RB_ROOT;
2509 disk->major = pkt_major;
2510 disk->first_minor = idx;
2511 disk->fops = &pktcdvd_ops;
2512 disk->flags = GENHD_FL_REMOVABLE;
2513 sprintf(disk->disk_name, "pktcdvd%d", idx);
2514 disk->private_data = pd;
2515 disk->queue = blk_alloc_queue(GFP_KERNEL);
2516 if (!disk->queue)
2517 goto out_mem2;
2519 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2520 ret = pkt_new_dev(pd, dev);
2521 if (ret)
2522 goto out_new_dev;
2524 add_disk(disk);
2525 pkt_devs[idx] = pd;
2526 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2527 return 0;
2529 out_new_dev:
2530 blk_put_queue(disk->queue);
2531 out_mem2:
2532 put_disk(disk);
2533 out_mem:
2534 if (pd->rb_pool)
2535 mempool_destroy(pd->rb_pool);
2536 kfree(pd);
2537 return ret;
2541 * Tear down mapping from pktcdvd device to CD-ROM device.
2543 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2545 struct pktcdvd_device *pd;
2546 int idx;
2547 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2549 for (idx = 0; idx < MAX_WRITERS; idx++) {
2550 pd = pkt_devs[idx];
2551 if (pd && (pd->pkt_dev == pkt_dev))
2552 break;
2554 if (idx == MAX_WRITERS) {
2555 DPRINTK("pktcdvd: dev not setup\n");
2556 return -ENXIO;
2559 if (pd->refcnt > 0)
2560 return -EBUSY;
2562 if (!IS_ERR(pd->cdrw.thread))
2563 kthread_stop(pd->cdrw.thread);
2565 blkdev_put(pd->bdev);
2567 pkt_shrink_pktlist(pd);
2569 remove_proc_entry(pd->name, pkt_proc);
2570 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2572 del_gendisk(pd->disk);
2573 blk_put_queue(pd->disk->queue);
2574 put_disk(pd->disk);
2576 pkt_devs[idx] = NULL;
2577 mempool_destroy(pd->rb_pool);
2578 kfree(pd);
2580 /* This is safe: open() is still holding a reference. */
2581 module_put(THIS_MODULE);
2582 return 0;
2585 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2587 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2588 if (pd) {
2589 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2590 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2591 } else {
2592 ctrl_cmd->dev = 0;
2593 ctrl_cmd->pkt_dev = 0;
2595 ctrl_cmd->num_devices = MAX_WRITERS;
2598 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2600 void __user *argp = (void __user *)arg;
2601 struct pkt_ctrl_command ctrl_cmd;
2602 int ret = 0;
2604 if (cmd != PACKET_CTRL_CMD)
2605 return -ENOTTY;
2607 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2608 return -EFAULT;
2610 switch (ctrl_cmd.command) {
2611 case PKT_CTRL_CMD_SETUP:
2612 if (!capable(CAP_SYS_ADMIN))
2613 return -EPERM;
2614 down(&ctl_mutex);
2615 ret = pkt_setup_dev(&ctrl_cmd);
2616 up(&ctl_mutex);
2617 break;
2618 case PKT_CTRL_CMD_TEARDOWN:
2619 if (!capable(CAP_SYS_ADMIN))
2620 return -EPERM;
2621 down(&ctl_mutex);
2622 ret = pkt_remove_dev(&ctrl_cmd);
2623 up(&ctl_mutex);
2624 break;
2625 case PKT_CTRL_CMD_STATUS:
2626 down(&ctl_mutex);
2627 pkt_get_status(&ctrl_cmd);
2628 up(&ctl_mutex);
2629 break;
2630 default:
2631 return -ENOTTY;
2634 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2635 return -EFAULT;
2636 return ret;
2640 static struct file_operations pkt_ctl_fops = {
2641 .ioctl = pkt_ctl_ioctl,
2642 .owner = THIS_MODULE,
2645 static struct miscdevice pkt_misc = {
2646 .minor = MISC_DYNAMIC_MINOR,
2647 .name = "pktcdvd",
2648 .devfs_name = "pktcdvd/control",
2649 .fops = &pkt_ctl_fops
2652 static int __init pkt_init(void)
2654 int ret;
2656 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2657 if (!psd_pool)
2658 return -ENOMEM;
2660 ret = register_blkdev(pkt_major, "pktcdvd");
2661 if (ret < 0) {
2662 printk("pktcdvd: Unable to register block device\n");
2663 goto out2;
2665 if (!pkt_major)
2666 pkt_major = ret;
2668 ret = misc_register(&pkt_misc);
2669 if (ret) {
2670 printk("pktcdvd: Unable to register misc device\n");
2671 goto out;
2674 init_MUTEX(&ctl_mutex);
2676 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2678 DPRINTK("pktcdvd: %s\n", VERSION_CODE);
2679 return 0;
2681 out:
2682 unregister_blkdev(pkt_major, "pktcdvd");
2683 out2:
2684 mempool_destroy(psd_pool);
2685 return ret;
2688 static void __exit pkt_exit(void)
2690 remove_proc_entry("pktcdvd", proc_root_driver);
2691 misc_deregister(&pkt_misc);
2692 unregister_blkdev(pkt_major, "pktcdvd");
2693 mempool_destroy(psd_pool);
2696 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2697 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2698 MODULE_LICENSE("GPL");
2700 module_init(pkt_init);
2701 module_exit(pkt_exit);