4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
39 #include <asm/tlbflush.h>
40 #include <asm/div64.h>
42 #include <linux/swapops.h>
47 /* Incremented by the number of inactive pages that were scanned */
48 unsigned long nr_scanned
;
50 /* This context's GFP mask */
55 /* Can pages be swapped as part of reclaim? */
58 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
59 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
60 * In this context, it doesn't matter that we scan the
61 * whole list at once. */
66 int all_unreclaimable
;
70 * The list of shrinker callbacks used by to apply pressure to
75 struct list_head list
;
76 int seeks
; /* seeks to recreate an obj */
77 long nr
; /* objs pending delete */
80 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
82 #ifdef ARCH_HAS_PREFETCH
83 #define prefetch_prev_lru_page(_page, _base, _field) \
85 if ((_page)->lru.prev != _base) { \
88 prev = lru_to_page(&(_page->lru)); \
89 prefetch(&prev->_field); \
93 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
96 #ifdef ARCH_HAS_PREFETCHW
97 #define prefetchw_prev_lru_page(_page, _base, _field) \
99 if ((_page)->lru.prev != _base) { \
102 prev = lru_to_page(&(_page->lru)); \
103 prefetchw(&prev->_field); \
107 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111 * From 0 .. 100. Higher means more swappy.
113 int vm_swappiness
= 60;
114 long vm_total_pages
; /* The total number of pages which the VM controls */
116 static LIST_HEAD(shrinker_list
);
117 static DECLARE_RWSEM(shrinker_rwsem
);
120 * Add a shrinker callback to be called from the vm
122 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
124 struct shrinker
*shrinker
;
126 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
128 shrinker
->shrinker
= theshrinker
;
129 shrinker
->seeks
= seeks
;
131 down_write(&shrinker_rwsem
);
132 list_add_tail(&shrinker
->list
, &shrinker_list
);
133 up_write(&shrinker_rwsem
);
137 EXPORT_SYMBOL(set_shrinker
);
142 void remove_shrinker(struct shrinker
*shrinker
)
144 down_write(&shrinker_rwsem
);
145 list_del(&shrinker
->list
);
146 up_write(&shrinker_rwsem
);
149 EXPORT_SYMBOL(remove_shrinker
);
151 #define SHRINK_BATCH 128
153 * Call the shrink functions to age shrinkable caches
155 * Here we assume it costs one seek to replace a lru page and that it also
156 * takes a seek to recreate a cache object. With this in mind we age equal
157 * percentages of the lru and ageable caches. This should balance the seeks
158 * generated by these structures.
160 * If the vm encounted mapped pages on the LRU it increase the pressure on
161 * slab to avoid swapping.
163 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 * `lru_pages' represents the number of on-LRU pages in all the zones which
166 * are eligible for the caller's allocation attempt. It is used for balancing
167 * slab reclaim versus page reclaim.
169 * Returns the number of slab objects which we shrunk.
171 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
172 unsigned long lru_pages
)
174 struct shrinker
*shrinker
;
175 unsigned long ret
= 0;
178 scanned
= SWAP_CLUSTER_MAX
;
180 if (!down_read_trylock(&shrinker_rwsem
))
181 return 1; /* Assume we'll be able to shrink next time */
183 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
184 unsigned long long delta
;
185 unsigned long total_scan
;
186 unsigned long max_pass
= (*shrinker
->shrinker
)(0, gfp_mask
);
188 delta
= (4 * scanned
) / shrinker
->seeks
;
190 do_div(delta
, lru_pages
+ 1);
191 shrinker
->nr
+= delta
;
192 if (shrinker
->nr
< 0) {
193 printk(KERN_ERR
"%s: nr=%ld\n",
194 __FUNCTION__
, shrinker
->nr
);
195 shrinker
->nr
= max_pass
;
199 * Avoid risking looping forever due to too large nr value:
200 * never try to free more than twice the estimate number of
203 if (shrinker
->nr
> max_pass
* 2)
204 shrinker
->nr
= max_pass
* 2;
206 total_scan
= shrinker
->nr
;
209 while (total_scan
>= SHRINK_BATCH
) {
210 long this_scan
= SHRINK_BATCH
;
214 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
215 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
216 if (shrink_ret
== -1)
218 if (shrink_ret
< nr_before
)
219 ret
+= nr_before
- shrink_ret
;
220 count_vm_events(SLABS_SCANNED
, this_scan
);
221 total_scan
-= this_scan
;
226 shrinker
->nr
+= total_scan
;
228 up_read(&shrinker_rwsem
);
232 /* Called without lock on whether page is mapped, so answer is unstable */
233 static inline int page_mapping_inuse(struct page
*page
)
235 struct address_space
*mapping
;
237 /* Page is in somebody's page tables. */
238 if (page_mapped(page
))
241 /* Be more reluctant to reclaim swapcache than pagecache */
242 if (PageSwapCache(page
))
245 mapping
= page_mapping(page
);
249 /* File is mmap'd by somebody? */
250 return mapping_mapped(mapping
);
253 static inline int is_page_cache_freeable(struct page
*page
)
255 return page_count(page
) - !!PagePrivate(page
) == 2;
258 static int may_write_to_queue(struct backing_dev_info
*bdi
)
260 if (current
->flags
& PF_SWAPWRITE
)
262 if (!bdi_write_congested(bdi
))
264 if (bdi
== current
->backing_dev_info
)
270 * We detected a synchronous write error writing a page out. Probably
271 * -ENOSPC. We need to propagate that into the address_space for a subsequent
272 * fsync(), msync() or close().
274 * The tricky part is that after writepage we cannot touch the mapping: nothing
275 * prevents it from being freed up. But we have a ref on the page and once
276 * that page is locked, the mapping is pinned.
278 * We're allowed to run sleeping lock_page() here because we know the caller has
281 static void handle_write_error(struct address_space
*mapping
,
282 struct page
*page
, int error
)
285 if (page_mapping(page
) == mapping
) {
286 if (error
== -ENOSPC
)
287 set_bit(AS_ENOSPC
, &mapping
->flags
);
289 set_bit(AS_EIO
, &mapping
->flags
);
294 /* possible outcome of pageout() */
296 /* failed to write page out, page is locked */
298 /* move page to the active list, page is locked */
300 /* page has been sent to the disk successfully, page is unlocked */
302 /* page is clean and locked */
307 * pageout is called by shrink_page_list() for each dirty page.
308 * Calls ->writepage().
310 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
313 * If the page is dirty, only perform writeback if that write
314 * will be non-blocking. To prevent this allocation from being
315 * stalled by pagecache activity. But note that there may be
316 * stalls if we need to run get_block(). We could test
317 * PagePrivate for that.
319 * If this process is currently in generic_file_write() against
320 * this page's queue, we can perform writeback even if that
323 * If the page is swapcache, write it back even if that would
324 * block, for some throttling. This happens by accident, because
325 * swap_backing_dev_info is bust: it doesn't reflect the
326 * congestion state of the swapdevs. Easy to fix, if needed.
327 * See swapfile.c:page_queue_congested().
329 if (!is_page_cache_freeable(page
))
333 * Some data journaling orphaned pages can have
334 * page->mapping == NULL while being dirty with clean buffers.
336 if (PagePrivate(page
)) {
337 if (try_to_free_buffers(page
)) {
338 ClearPageDirty(page
);
339 printk("%s: orphaned page\n", __FUNCTION__
);
345 if (mapping
->a_ops
->writepage
== NULL
)
346 return PAGE_ACTIVATE
;
347 if (!may_write_to_queue(mapping
->backing_dev_info
))
350 if (clear_page_dirty_for_io(page
)) {
352 struct writeback_control wbc
= {
353 .sync_mode
= WB_SYNC_NONE
,
354 .nr_to_write
= SWAP_CLUSTER_MAX
,
356 .range_end
= LLONG_MAX
,
361 SetPageReclaim(page
);
362 res
= mapping
->a_ops
->writepage(page
, &wbc
);
364 handle_write_error(mapping
, page
, res
);
365 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
366 ClearPageReclaim(page
);
367 return PAGE_ACTIVATE
;
369 if (!PageWriteback(page
)) {
370 /* synchronous write or broken a_ops? */
371 ClearPageReclaim(page
);
380 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
382 BUG_ON(!PageLocked(page
));
383 BUG_ON(mapping
!= page_mapping(page
));
385 write_lock_irq(&mapping
->tree_lock
);
388 * The non-racy check for busy page. It is critical to check
389 * PageDirty _after_ making sure that the page is freeable and
390 * not in use by anybody. (pagecache + us == 2)
392 if (unlikely(page_count(page
) != 2))
395 if (unlikely(PageDirty(page
)))
398 if (PageSwapCache(page
)) {
399 swp_entry_t swap
= { .val
= page_private(page
) };
400 __delete_from_swap_cache(page
);
401 write_unlock_irq(&mapping
->tree_lock
);
403 __put_page(page
); /* The pagecache ref */
407 __remove_from_page_cache(page
);
408 write_unlock_irq(&mapping
->tree_lock
);
413 write_unlock_irq(&mapping
->tree_lock
);
418 * shrink_page_list() returns the number of reclaimed pages
420 static unsigned long shrink_page_list(struct list_head
*page_list
,
421 struct scan_control
*sc
)
423 LIST_HEAD(ret_pages
);
424 struct pagevec freed_pvec
;
426 unsigned long nr_reclaimed
= 0;
430 pagevec_init(&freed_pvec
, 1);
431 while (!list_empty(page_list
)) {
432 struct address_space
*mapping
;
439 page
= lru_to_page(page_list
);
440 list_del(&page
->lru
);
442 if (TestSetPageLocked(page
))
445 VM_BUG_ON(PageActive(page
));
449 if (!sc
->may_swap
&& page_mapped(page
))
452 /* Double the slab pressure for mapped and swapcache pages */
453 if (page_mapped(page
) || PageSwapCache(page
))
456 if (PageWriteback(page
))
459 referenced
= page_referenced(page
, 1);
460 /* In active use or really unfreeable? Activate it. */
461 if (referenced
&& page_mapping_inuse(page
))
462 goto activate_locked
;
466 * Anonymous process memory has backing store?
467 * Try to allocate it some swap space here.
469 if (PageAnon(page
) && !PageSwapCache(page
))
470 if (!add_to_swap(page
, GFP_ATOMIC
))
471 goto activate_locked
;
472 #endif /* CONFIG_SWAP */
474 mapping
= page_mapping(page
);
475 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
476 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
479 * The page is mapped into the page tables of one or more
480 * processes. Try to unmap it here.
482 if (page_mapped(page
) && mapping
) {
483 switch (try_to_unmap(page
, 0)) {
485 goto activate_locked
;
489 ; /* try to free the page below */
493 if (PageDirty(page
)) {
498 if (!sc
->may_writepage
)
501 /* Page is dirty, try to write it out here */
502 switch(pageout(page
, mapping
)) {
506 goto activate_locked
;
508 if (PageWriteback(page
) || PageDirty(page
))
511 * A synchronous write - probably a ramdisk. Go
512 * ahead and try to reclaim the page.
514 if (TestSetPageLocked(page
))
516 if (PageDirty(page
) || PageWriteback(page
))
518 mapping
= page_mapping(page
);
520 ; /* try to free the page below */
525 * If the page has buffers, try to free the buffer mappings
526 * associated with this page. If we succeed we try to free
529 * We do this even if the page is PageDirty().
530 * try_to_release_page() does not perform I/O, but it is
531 * possible for a page to have PageDirty set, but it is actually
532 * clean (all its buffers are clean). This happens if the
533 * buffers were written out directly, with submit_bh(). ext3
534 * will do this, as well as the blockdev mapping.
535 * try_to_release_page() will discover that cleanness and will
536 * drop the buffers and mark the page clean - it can be freed.
538 * Rarely, pages can have buffers and no ->mapping. These are
539 * the pages which were not successfully invalidated in
540 * truncate_complete_page(). We try to drop those buffers here
541 * and if that worked, and the page is no longer mapped into
542 * process address space (page_count == 1) it can be freed.
543 * Otherwise, leave the page on the LRU so it is swappable.
545 if (PagePrivate(page
)) {
546 if (!try_to_release_page(page
, sc
->gfp_mask
))
547 goto activate_locked
;
548 if (!mapping
&& page_count(page
) == 1)
552 if (!mapping
|| !remove_mapping(mapping
, page
))
558 if (!pagevec_add(&freed_pvec
, page
))
559 __pagevec_release_nonlru(&freed_pvec
);
568 list_add(&page
->lru
, &ret_pages
);
569 VM_BUG_ON(PageLRU(page
));
571 list_splice(&ret_pages
, page_list
);
572 if (pagevec_count(&freed_pvec
))
573 __pagevec_release_nonlru(&freed_pvec
);
574 count_vm_events(PGACTIVATE
, pgactivate
);
579 * zone->lru_lock is heavily contended. Some of the functions that
580 * shrink the lists perform better by taking out a batch of pages
581 * and working on them outside the LRU lock.
583 * For pagecache intensive workloads, this function is the hottest
584 * spot in the kernel (apart from copy_*_user functions).
586 * Appropriate locks must be held before calling this function.
588 * @nr_to_scan: The number of pages to look through on the list.
589 * @src: The LRU list to pull pages off.
590 * @dst: The temp list to put pages on to.
591 * @scanned: The number of pages that were scanned.
593 * returns how many pages were moved onto *@dst.
595 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
596 struct list_head
*src
, struct list_head
*dst
,
597 unsigned long *scanned
)
599 unsigned long nr_taken
= 0;
603 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
604 struct list_head
*target
;
605 page
= lru_to_page(src
);
606 prefetchw_prev_lru_page(page
, src
, flags
);
608 VM_BUG_ON(!PageLRU(page
));
610 list_del(&page
->lru
);
612 if (likely(get_page_unless_zero(page
))) {
614 * Be careful not to clear PageLRU until after we're
615 * sure the page is not being freed elsewhere -- the
616 * page release code relies on it.
621 } /* else it is being freed elsewhere */
623 list_add(&page
->lru
, target
);
631 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
634 static unsigned long shrink_inactive_list(unsigned long max_scan
,
635 struct zone
*zone
, struct scan_control
*sc
)
637 LIST_HEAD(page_list
);
639 unsigned long nr_scanned
= 0;
640 unsigned long nr_reclaimed
= 0;
642 pagevec_init(&pvec
, 1);
645 spin_lock_irq(&zone
->lru_lock
);
648 unsigned long nr_taken
;
649 unsigned long nr_scan
;
650 unsigned long nr_freed
;
652 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
653 &zone
->inactive_list
,
654 &page_list
, &nr_scan
);
655 zone
->nr_inactive
-= nr_taken
;
656 zone
->pages_scanned
+= nr_scan
;
657 spin_unlock_irq(&zone
->lru_lock
);
659 nr_scanned
+= nr_scan
;
660 nr_freed
= shrink_page_list(&page_list
, sc
);
661 nr_reclaimed
+= nr_freed
;
663 if (current_is_kswapd()) {
664 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
665 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
667 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
668 __count_vm_events(PGACTIVATE
, nr_freed
);
673 spin_lock(&zone
->lru_lock
);
675 * Put back any unfreeable pages.
677 while (!list_empty(&page_list
)) {
678 page
= lru_to_page(&page_list
);
679 VM_BUG_ON(PageLRU(page
));
681 list_del(&page
->lru
);
682 if (PageActive(page
))
683 add_page_to_active_list(zone
, page
);
685 add_page_to_inactive_list(zone
, page
);
686 if (!pagevec_add(&pvec
, page
)) {
687 spin_unlock_irq(&zone
->lru_lock
);
688 __pagevec_release(&pvec
);
689 spin_lock_irq(&zone
->lru_lock
);
692 } while (nr_scanned
< max_scan
);
693 spin_unlock(&zone
->lru_lock
);
696 pagevec_release(&pvec
);
700 static inline int zone_is_near_oom(struct zone
*zone
)
702 return zone
->pages_scanned
>= (zone
->nr_active
+ zone
->nr_inactive
)*3;
706 * This moves pages from the active list to the inactive list.
708 * We move them the other way if the page is referenced by one or more
709 * processes, from rmap.
711 * If the pages are mostly unmapped, the processing is fast and it is
712 * appropriate to hold zone->lru_lock across the whole operation. But if
713 * the pages are mapped, the processing is slow (page_referenced()) so we
714 * should drop zone->lru_lock around each page. It's impossible to balance
715 * this, so instead we remove the pages from the LRU while processing them.
716 * It is safe to rely on PG_active against the non-LRU pages in here because
717 * nobody will play with that bit on a non-LRU page.
719 * The downside is that we have to touch page->_count against each page.
720 * But we had to alter page->flags anyway.
722 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
723 struct scan_control
*sc
)
725 unsigned long pgmoved
;
726 int pgdeactivate
= 0;
727 unsigned long pgscanned
;
728 LIST_HEAD(l_hold
); /* The pages which were snipped off */
729 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
730 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
733 int reclaim_mapped
= 0;
740 if (zone_is_near_oom(zone
))
741 goto force_reclaim_mapped
;
744 * `distress' is a measure of how much trouble we're having
745 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
747 distress
= 100 >> zone
->prev_priority
;
750 * The point of this algorithm is to decide when to start
751 * reclaiming mapped memory instead of just pagecache. Work out
755 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
756 global_page_state(NR_ANON_PAGES
)) * 100) /
760 * Now decide how much we really want to unmap some pages. The
761 * mapped ratio is downgraded - just because there's a lot of
762 * mapped memory doesn't necessarily mean that page reclaim
765 * The distress ratio is important - we don't want to start
768 * A 100% value of vm_swappiness overrides this algorithm
771 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
774 * Now use this metric to decide whether to start moving mapped
775 * memory onto the inactive list.
777 if (swap_tendency
>= 100)
778 force_reclaim_mapped
:
783 spin_lock_irq(&zone
->lru_lock
);
784 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
785 &l_hold
, &pgscanned
);
786 zone
->pages_scanned
+= pgscanned
;
787 zone
->nr_active
-= pgmoved
;
788 spin_unlock_irq(&zone
->lru_lock
);
790 while (!list_empty(&l_hold
)) {
792 page
= lru_to_page(&l_hold
);
793 list_del(&page
->lru
);
794 if (page_mapped(page
)) {
795 if (!reclaim_mapped
||
796 (total_swap_pages
== 0 && PageAnon(page
)) ||
797 page_referenced(page
, 0)) {
798 list_add(&page
->lru
, &l_active
);
802 list_add(&page
->lru
, &l_inactive
);
805 pagevec_init(&pvec
, 1);
807 spin_lock_irq(&zone
->lru_lock
);
808 while (!list_empty(&l_inactive
)) {
809 page
= lru_to_page(&l_inactive
);
810 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
811 VM_BUG_ON(PageLRU(page
));
813 VM_BUG_ON(!PageActive(page
));
814 ClearPageActive(page
);
816 list_move(&page
->lru
, &zone
->inactive_list
);
818 if (!pagevec_add(&pvec
, page
)) {
819 zone
->nr_inactive
+= pgmoved
;
820 spin_unlock_irq(&zone
->lru_lock
);
821 pgdeactivate
+= pgmoved
;
823 if (buffer_heads_over_limit
)
824 pagevec_strip(&pvec
);
825 __pagevec_release(&pvec
);
826 spin_lock_irq(&zone
->lru_lock
);
829 zone
->nr_inactive
+= pgmoved
;
830 pgdeactivate
+= pgmoved
;
831 if (buffer_heads_over_limit
) {
832 spin_unlock_irq(&zone
->lru_lock
);
833 pagevec_strip(&pvec
);
834 spin_lock_irq(&zone
->lru_lock
);
838 while (!list_empty(&l_active
)) {
839 page
= lru_to_page(&l_active
);
840 prefetchw_prev_lru_page(page
, &l_active
, flags
);
841 VM_BUG_ON(PageLRU(page
));
843 VM_BUG_ON(!PageActive(page
));
844 list_move(&page
->lru
, &zone
->active_list
);
846 if (!pagevec_add(&pvec
, page
)) {
847 zone
->nr_active
+= pgmoved
;
849 spin_unlock_irq(&zone
->lru_lock
);
850 __pagevec_release(&pvec
);
851 spin_lock_irq(&zone
->lru_lock
);
854 zone
->nr_active
+= pgmoved
;
856 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
857 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
858 spin_unlock_irq(&zone
->lru_lock
);
860 pagevec_release(&pvec
);
864 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
866 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
867 struct scan_control
*sc
)
869 unsigned long nr_active
;
870 unsigned long nr_inactive
;
871 unsigned long nr_to_scan
;
872 unsigned long nr_reclaimed
= 0;
874 atomic_inc(&zone
->reclaim_in_progress
);
877 * Add one to `nr_to_scan' just to make sure that the kernel will
878 * slowly sift through the active list.
880 zone
->nr_scan_active
+= (zone
->nr_active
>> priority
) + 1;
881 nr_active
= zone
->nr_scan_active
;
882 if (nr_active
>= sc
->swap_cluster_max
)
883 zone
->nr_scan_active
= 0;
887 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> priority
) + 1;
888 nr_inactive
= zone
->nr_scan_inactive
;
889 if (nr_inactive
>= sc
->swap_cluster_max
)
890 zone
->nr_scan_inactive
= 0;
894 while (nr_active
|| nr_inactive
) {
896 nr_to_scan
= min(nr_active
,
897 (unsigned long)sc
->swap_cluster_max
);
898 nr_active
-= nr_to_scan
;
899 shrink_active_list(nr_to_scan
, zone
, sc
);
903 nr_to_scan
= min(nr_inactive
,
904 (unsigned long)sc
->swap_cluster_max
);
905 nr_inactive
-= nr_to_scan
;
906 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
911 throttle_vm_writeout();
913 atomic_dec(&zone
->reclaim_in_progress
);
918 * This is the direct reclaim path, for page-allocating processes. We only
919 * try to reclaim pages from zones which will satisfy the caller's allocation
922 * We reclaim from a zone even if that zone is over pages_high. Because:
923 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
925 * b) The zones may be over pages_high but they must go *over* pages_high to
926 * satisfy the `incremental min' zone defense algorithm.
928 * Returns the number of reclaimed pages.
930 * If a zone is deemed to be full of pinned pages then just give it a light
931 * scan then give up on it.
933 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
934 struct scan_control
*sc
)
936 unsigned long nr_reclaimed
= 0;
939 sc
->all_unreclaimable
= 1;
940 for (i
= 0; zones
[i
] != NULL
; i
++) {
941 struct zone
*zone
= zones
[i
];
943 if (!populated_zone(zone
))
946 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
949 zone
->temp_priority
= priority
;
950 if (zone
->prev_priority
> priority
)
951 zone
->prev_priority
= priority
;
953 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
954 continue; /* Let kswapd poll it */
956 sc
->all_unreclaimable
= 0;
958 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
964 * This is the main entry point to direct page reclaim.
966 * If a full scan of the inactive list fails to free enough memory then we
967 * are "out of memory" and something needs to be killed.
969 * If the caller is !__GFP_FS then the probability of a failure is reasonably
970 * high - the zone may be full of dirty or under-writeback pages, which this
971 * caller can't do much about. We kick pdflush and take explicit naps in the
972 * hope that some of these pages can be written. But if the allocating task
973 * holds filesystem locks which prevent writeout this might not work, and the
974 * allocation attempt will fail.
976 unsigned long try_to_free_pages(struct zone
**zones
, gfp_t gfp_mask
)
980 unsigned long total_scanned
= 0;
981 unsigned long nr_reclaimed
= 0;
982 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
983 unsigned long lru_pages
= 0;
985 struct scan_control sc
= {
986 .gfp_mask
= gfp_mask
,
987 .may_writepage
= !laptop_mode
,
988 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
990 .swappiness
= vm_swappiness
,
993 count_vm_event(ALLOCSTALL
);
995 for (i
= 0; zones
[i
] != NULL
; i
++) {
996 struct zone
*zone
= zones
[i
];
998 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
1001 zone
->temp_priority
= DEF_PRIORITY
;
1002 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1005 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1008 disable_swap_token();
1009 nr_reclaimed
+= shrink_zones(priority
, zones
, &sc
);
1010 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
1011 if (reclaim_state
) {
1012 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1013 reclaim_state
->reclaimed_slab
= 0;
1015 total_scanned
+= sc
.nr_scanned
;
1016 if (nr_reclaimed
>= sc
.swap_cluster_max
) {
1022 * Try to write back as many pages as we just scanned. This
1023 * tends to cause slow streaming writers to write data to the
1024 * disk smoothly, at the dirtying rate, which is nice. But
1025 * that's undesirable in laptop mode, where we *want* lumpy
1026 * writeout. So in laptop mode, write out the whole world.
1028 if (total_scanned
> sc
.swap_cluster_max
+
1029 sc
.swap_cluster_max
/ 2) {
1030 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1031 sc
.may_writepage
= 1;
1034 /* Take a nap, wait for some writeback to complete */
1035 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1036 blk_congestion_wait(WRITE
, HZ
/10);
1038 /* top priority shrink_caches still had more to do? don't OOM, then */
1039 if (!sc
.all_unreclaimable
)
1042 for (i
= 0; zones
[i
] != 0; i
++) {
1043 struct zone
*zone
= zones
[i
];
1045 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
1048 zone
->prev_priority
= zone
->temp_priority
;
1054 * For kswapd, balance_pgdat() will work across all this node's zones until
1055 * they are all at pages_high.
1057 * Returns the number of pages which were actually freed.
1059 * There is special handling here for zones which are full of pinned pages.
1060 * This can happen if the pages are all mlocked, or if they are all used by
1061 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1062 * What we do is to detect the case where all pages in the zone have been
1063 * scanned twice and there has been zero successful reclaim. Mark the zone as
1064 * dead and from now on, only perform a short scan. Basically we're polling
1065 * the zone for when the problem goes away.
1067 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1068 * zones which have free_pages > pages_high, but once a zone is found to have
1069 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1070 * of the number of free pages in the lower zones. This interoperates with
1071 * the page allocator fallback scheme to ensure that aging of pages is balanced
1074 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1079 unsigned long total_scanned
;
1080 unsigned long nr_reclaimed
;
1081 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1082 struct scan_control sc
= {
1083 .gfp_mask
= GFP_KERNEL
,
1085 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1086 .swappiness
= vm_swappiness
,
1092 sc
.may_writepage
= !laptop_mode
;
1093 count_vm_event(PAGEOUTRUN
);
1095 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1096 struct zone
*zone
= pgdat
->node_zones
+ i
;
1098 zone
->temp_priority
= DEF_PRIORITY
;
1101 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1102 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1103 unsigned long lru_pages
= 0;
1105 /* The swap token gets in the way of swapout... */
1107 disable_swap_token();
1112 * Scan in the highmem->dma direction for the highest
1113 * zone which needs scanning
1115 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1116 struct zone
*zone
= pgdat
->node_zones
+ i
;
1118 if (!populated_zone(zone
))
1121 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1124 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1132 for (i
= 0; i
<= end_zone
; i
++) {
1133 struct zone
*zone
= pgdat
->node_zones
+ i
;
1135 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1139 * Now scan the zone in the dma->highmem direction, stopping
1140 * at the last zone which needs scanning.
1142 * We do this because the page allocator works in the opposite
1143 * direction. This prevents the page allocator from allocating
1144 * pages behind kswapd's direction of progress, which would
1145 * cause too much scanning of the lower zones.
1147 for (i
= 0; i
<= end_zone
; i
++) {
1148 struct zone
*zone
= pgdat
->node_zones
+ i
;
1151 if (!populated_zone(zone
))
1154 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1157 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1160 zone
->temp_priority
= priority
;
1161 if (zone
->prev_priority
> priority
)
1162 zone
->prev_priority
= priority
;
1164 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1165 reclaim_state
->reclaimed_slab
= 0;
1166 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1168 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1169 total_scanned
+= sc
.nr_scanned
;
1170 if (zone
->all_unreclaimable
)
1172 if (nr_slab
== 0 && zone
->pages_scanned
>=
1173 (zone
->nr_active
+ zone
->nr_inactive
) * 6)
1174 zone
->all_unreclaimable
= 1;
1176 * If we've done a decent amount of scanning and
1177 * the reclaim ratio is low, start doing writepage
1178 * even in laptop mode
1180 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1181 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1182 sc
.may_writepage
= 1;
1185 break; /* kswapd: all done */
1187 * OK, kswapd is getting into trouble. Take a nap, then take
1188 * another pass across the zones.
1190 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1191 blk_congestion_wait(WRITE
, HZ
/10);
1194 * We do this so kswapd doesn't build up large priorities for
1195 * example when it is freeing in parallel with allocators. It
1196 * matches the direct reclaim path behaviour in terms of impact
1197 * on zone->*_priority.
1199 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1203 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1204 struct zone
*zone
= pgdat
->node_zones
+ i
;
1206 zone
->prev_priority
= zone
->temp_priority
;
1208 if (!all_zones_ok
) {
1213 return nr_reclaimed
;
1217 * The background pageout daemon, started as a kernel thread
1218 * from the init process.
1220 * This basically trickles out pages so that we have _some_
1221 * free memory available even if there is no other activity
1222 * that frees anything up. This is needed for things like routing
1223 * etc, where we otherwise might have all activity going on in
1224 * asynchronous contexts that cannot page things out.
1226 * If there are applications that are active memory-allocators
1227 * (most normal use), this basically shouldn't matter.
1229 static int kswapd(void *p
)
1231 unsigned long order
;
1232 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1233 struct task_struct
*tsk
= current
;
1235 struct reclaim_state reclaim_state
= {
1236 .reclaimed_slab
= 0,
1240 cpumask
= node_to_cpumask(pgdat
->node_id
);
1241 if (!cpus_empty(cpumask
))
1242 set_cpus_allowed(tsk
, cpumask
);
1243 current
->reclaim_state
= &reclaim_state
;
1246 * Tell the memory management that we're a "memory allocator",
1247 * and that if we need more memory we should get access to it
1248 * regardless (see "__alloc_pages()"). "kswapd" should
1249 * never get caught in the normal page freeing logic.
1251 * (Kswapd normally doesn't need memory anyway, but sometimes
1252 * you need a small amount of memory in order to be able to
1253 * page out something else, and this flag essentially protects
1254 * us from recursively trying to free more memory as we're
1255 * trying to free the first piece of memory in the first place).
1257 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1261 unsigned long new_order
;
1265 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1266 new_order
= pgdat
->kswapd_max_order
;
1267 pgdat
->kswapd_max_order
= 0;
1268 if (order
< new_order
) {
1270 * Don't sleep if someone wants a larger 'order'
1276 order
= pgdat
->kswapd_max_order
;
1278 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1280 balance_pgdat(pgdat
, order
);
1286 * A zone is low on free memory, so wake its kswapd task to service it.
1288 void wakeup_kswapd(struct zone
*zone
, int order
)
1292 if (!populated_zone(zone
))
1295 pgdat
= zone
->zone_pgdat
;
1296 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1298 if (pgdat
->kswapd_max_order
< order
)
1299 pgdat
->kswapd_max_order
= order
;
1300 if (!cpuset_zone_allowed(zone
, __GFP_HARDWALL
))
1302 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1304 wake_up_interruptible(&pgdat
->kswapd_wait
);
1309 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1310 * from LRU lists system-wide, for given pass and priority, and returns the
1311 * number of reclaimed pages
1313 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1315 static unsigned long shrink_all_zones(unsigned long nr_pages
, int pass
,
1316 int prio
, struct scan_control
*sc
)
1319 unsigned long nr_to_scan
, ret
= 0;
1321 for_each_zone(zone
) {
1323 if (!populated_zone(zone
))
1326 if (zone
->all_unreclaimable
&& prio
!= DEF_PRIORITY
)
1329 /* For pass = 0 we don't shrink the active list */
1331 zone
->nr_scan_active
+= (zone
->nr_active
>> prio
) + 1;
1332 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1333 zone
->nr_scan_active
= 0;
1334 nr_to_scan
= min(nr_pages
, zone
->nr_active
);
1335 shrink_active_list(nr_to_scan
, zone
, sc
);
1339 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> prio
) + 1;
1340 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1341 zone
->nr_scan_inactive
= 0;
1342 nr_to_scan
= min(nr_pages
, zone
->nr_inactive
);
1343 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1344 if (ret
>= nr_pages
)
1353 * Try to free `nr_pages' of memory, system-wide, and return the number of
1356 * Rather than trying to age LRUs the aim is to preserve the overall
1357 * LRU order by reclaiming preferentially
1358 * inactive > active > active referenced > active mapped
1360 unsigned long shrink_all_memory(unsigned long nr_pages
)
1362 unsigned long lru_pages
, nr_slab
;
1363 unsigned long ret
= 0;
1365 struct reclaim_state reclaim_state
;
1367 struct scan_control sc
= {
1368 .gfp_mask
= GFP_KERNEL
,
1370 .swap_cluster_max
= nr_pages
,
1372 .swappiness
= vm_swappiness
,
1375 current
->reclaim_state
= &reclaim_state
;
1379 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1381 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1382 /* If slab caches are huge, it's better to hit them first */
1383 while (nr_slab
>= lru_pages
) {
1384 reclaim_state
.reclaimed_slab
= 0;
1385 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1386 if (!reclaim_state
.reclaimed_slab
)
1389 ret
+= reclaim_state
.reclaimed_slab
;
1390 if (ret
>= nr_pages
)
1393 nr_slab
-= reclaim_state
.reclaimed_slab
;
1397 * We try to shrink LRUs in 5 passes:
1398 * 0 = Reclaim from inactive_list only
1399 * 1 = Reclaim from active list but don't reclaim mapped
1400 * 2 = 2nd pass of type 1
1401 * 3 = Reclaim mapped (normal reclaim)
1402 * 4 = 2nd pass of type 3
1404 for (pass
= 0; pass
< 5; pass
++) {
1407 /* Needed for shrinking slab caches later on */
1409 for_each_zone(zone
) {
1410 lru_pages
+= zone
->nr_active
;
1411 lru_pages
+= zone
->nr_inactive
;
1414 /* Force reclaiming mapped pages in the passes #3 and #4 */
1417 sc
.swappiness
= 100;
1420 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1421 unsigned long nr_to_scan
= nr_pages
- ret
;
1424 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1425 if (ret
>= nr_pages
)
1428 reclaim_state
.reclaimed_slab
= 0;
1429 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
, lru_pages
);
1430 ret
+= reclaim_state
.reclaimed_slab
;
1431 if (ret
>= nr_pages
)
1434 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1435 blk_congestion_wait(WRITE
, HZ
/ 10);
1442 * If ret = 0, we could not shrink LRUs, but there may be something
1447 reclaim_state
.reclaimed_slab
= 0;
1448 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1449 ret
+= reclaim_state
.reclaimed_slab
;
1450 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1453 current
->reclaim_state
= NULL
;
1459 #ifdef CONFIG_HOTPLUG_CPU
1460 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1461 not required for correctness. So if the last cpu in a node goes
1462 away, we get changed to run anywhere: as the first one comes back,
1463 restore their cpu bindings. */
1464 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1465 unsigned long action
, void *hcpu
)
1470 if (action
== CPU_ONLINE
) {
1471 for_each_online_pgdat(pgdat
) {
1472 mask
= node_to_cpumask(pgdat
->node_id
);
1473 if (any_online_cpu(mask
) != NR_CPUS
)
1474 /* One of our CPUs online: restore mask */
1475 set_cpus_allowed(pgdat
->kswapd
, mask
);
1480 #endif /* CONFIG_HOTPLUG_CPU */
1483 * This kswapd start function will be called by init and node-hot-add.
1484 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1486 int kswapd_run(int nid
)
1488 pg_data_t
*pgdat
= NODE_DATA(nid
);
1494 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1495 if (IS_ERR(pgdat
->kswapd
)) {
1496 /* failure at boot is fatal */
1497 BUG_ON(system_state
== SYSTEM_BOOTING
);
1498 printk("Failed to start kswapd on node %d\n",nid
);
1504 static int __init
kswapd_init(void)
1509 for_each_online_node(nid
)
1511 hotcpu_notifier(cpu_callback
, 0);
1515 module_init(kswapd_init
)
1521 * If non-zero call zone_reclaim when the number of free pages falls below
1524 int zone_reclaim_mode __read_mostly
;
1526 #define RECLAIM_OFF 0
1527 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1528 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1529 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1532 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1533 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1536 #define ZONE_RECLAIM_PRIORITY 4
1539 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1542 int sysctl_min_unmapped_ratio
= 1;
1545 * If the number of slab pages in a zone grows beyond this percentage then
1546 * slab reclaim needs to occur.
1548 int sysctl_min_slab_ratio
= 5;
1551 * Try to free up some pages from this zone through reclaim.
1553 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1555 /* Minimum pages needed in order to stay on node */
1556 const unsigned long nr_pages
= 1 << order
;
1557 struct task_struct
*p
= current
;
1558 struct reclaim_state reclaim_state
;
1560 unsigned long nr_reclaimed
= 0;
1561 struct scan_control sc
= {
1562 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1563 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1564 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1566 .gfp_mask
= gfp_mask
,
1567 .swappiness
= vm_swappiness
,
1569 unsigned long slab_reclaimable
;
1571 disable_swap_token();
1574 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1575 * and we also need to be able to write out pages for RECLAIM_WRITE
1578 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1579 reclaim_state
.reclaimed_slab
= 0;
1580 p
->reclaim_state
= &reclaim_state
;
1582 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1583 zone_page_state(zone
, NR_FILE_MAPPED
) >
1584 zone
->min_unmapped_pages
) {
1586 * Free memory by calling shrink zone with increasing
1587 * priorities until we have enough memory freed.
1589 priority
= ZONE_RECLAIM_PRIORITY
;
1591 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1593 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
1596 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1597 if (slab_reclaimable
> zone
->min_slab_pages
) {
1599 * shrink_slab() does not currently allow us to determine how
1600 * many pages were freed in this zone. So we take the current
1601 * number of slab pages and shake the slab until it is reduced
1602 * by the same nr_pages that we used for reclaiming unmapped
1605 * Note that shrink_slab will free memory on all zones and may
1608 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
1609 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
1610 slab_reclaimable
- nr_pages
)
1614 * Update nr_reclaimed by the number of slab pages we
1615 * reclaimed from this zone.
1617 nr_reclaimed
+= slab_reclaimable
-
1618 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1621 p
->reclaim_state
= NULL
;
1622 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
1623 return nr_reclaimed
>= nr_pages
;
1626 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1632 * Zone reclaim reclaims unmapped file backed pages and
1633 * slab pages if we are over the defined limits.
1635 * A small portion of unmapped file backed pages is needed for
1636 * file I/O otherwise pages read by file I/O will be immediately
1637 * thrown out if the zone is overallocated. So we do not reclaim
1638 * if less than a specified percentage of the zone is used by
1639 * unmapped file backed pages.
1641 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1642 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
1643 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
1644 <= zone
->min_slab_pages
)
1648 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1649 * not have reclaimable pages and if we should not delay the allocation
1652 if (!(gfp_mask
& __GFP_WAIT
) ||
1653 zone
->all_unreclaimable
||
1654 atomic_read(&zone
->reclaim_in_progress
) > 0 ||
1655 (current
->flags
& PF_MEMALLOC
))
1659 * Only run zone reclaim on the local zone or on zones that do not
1660 * have associated processors. This will favor the local processor
1661 * over remote processors and spread off node memory allocations
1662 * as wide as possible.
1664 node_id
= zone_to_nid(zone
);
1665 mask
= node_to_cpumask(node_id
);
1666 if (!cpus_empty(mask
) && node_id
!= numa_node_id())
1668 return __zone_reclaim(zone
, gfp_mask
, order
);