Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[linux-2.6/linux-mips.git] / drivers / char / vt_ioctl.c
blob3a5d301e783b062617f3e7043b42670e33ca2be2
1 /*
2 * linux/drivers/char/vt_ioctl.c
4 * Copyright (C) 1992 obz under the linux copyright
6 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
7 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
8 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
9 * Some code moved for less code duplication - Andi Kleen - Mar 1997
10 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
13 #include <linux/types.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/tty.h>
17 #include <linux/timer.h>
18 #include <linux/kernel.h>
19 #include <linux/kd.h>
20 #include <linux/vt.h>
21 #include <linux/string.h>
22 #include <linux/slab.h>
23 #include <linux/major.h>
24 #include <linux/fs.h>
25 #include <linux/console.h>
26 #include <linux/signal.h>
27 #include <linux/timex.h>
29 #include <asm/io.h>
30 #include <asm/uaccess.h>
32 #include <linux/kbd_kern.h>
33 #include <linux/vt_kern.h>
34 #include <linux/kbd_diacr.h>
35 #include <linux/selection.h>
37 static char vt_dont_switch;
38 extern struct tty_driver *console_driver;
40 #define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count)
41 #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
44 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
45 * experimentation and study of X386 SYSV handling.
47 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
48 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
49 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
50 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
51 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
52 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
53 * to the current console is done by the main ioctl code.
56 #ifdef CONFIG_X86
57 #include <linux/syscalls.h>
58 #endif
60 static void complete_change_console(struct vc_data *vc);
63 * these are the valid i/o ports we're allowed to change. they map all the
64 * video ports
66 #define GPFIRST 0x3b4
67 #define GPLAST 0x3df
68 #define GPNUM (GPLAST - GPFIRST + 1)
70 #define i (tmp.kb_index)
71 #define s (tmp.kb_table)
72 #define v (tmp.kb_value)
73 static inline int
74 do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd)
76 struct kbentry tmp;
77 ushort *key_map, val, ov;
79 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
80 return -EFAULT;
82 if (!capable(CAP_SYS_TTY_CONFIG))
83 perm = 0;
85 switch (cmd) {
86 case KDGKBENT:
87 key_map = key_maps[s];
88 if (key_map) {
89 val = U(key_map[i]);
90 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
91 val = K_HOLE;
92 } else
93 val = (i ? K_HOLE : K_NOSUCHMAP);
94 return put_user(val, &user_kbe->kb_value);
95 case KDSKBENT:
96 if (!perm)
97 return -EPERM;
98 if (!i && v == K_NOSUCHMAP) {
99 /* deallocate map */
100 key_map = key_maps[s];
101 if (s && key_map) {
102 key_maps[s] = NULL;
103 if (key_map[0] == U(K_ALLOCATED)) {
104 kfree(key_map);
105 keymap_count--;
108 break;
111 if (KTYP(v) < NR_TYPES) {
112 if (KVAL(v) > max_vals[KTYP(v)])
113 return -EINVAL;
114 } else
115 if (kbd->kbdmode != VC_UNICODE)
116 return -EINVAL;
118 /* ++Geert: non-PC keyboards may generate keycode zero */
119 #if !defined(__mc68000__) && !defined(__powerpc__)
120 /* assignment to entry 0 only tests validity of args */
121 if (!i)
122 break;
123 #endif
125 if (!(key_map = key_maps[s])) {
126 int j;
128 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
129 !capable(CAP_SYS_RESOURCE))
130 return -EPERM;
132 key_map = kmalloc(sizeof(plain_map),
133 GFP_KERNEL);
134 if (!key_map)
135 return -ENOMEM;
136 key_maps[s] = key_map;
137 key_map[0] = U(K_ALLOCATED);
138 for (j = 1; j < NR_KEYS; j++)
139 key_map[j] = U(K_HOLE);
140 keymap_count++;
142 ov = U(key_map[i]);
143 if (v == ov)
144 break; /* nothing to do */
146 * Attention Key.
148 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN))
149 return -EPERM;
150 key_map[i] = U(v);
151 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
152 compute_shiftstate();
153 break;
155 return 0;
157 #undef i
158 #undef s
159 #undef v
161 static inline int
162 do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm)
164 struct kbkeycode tmp;
165 int kc = 0;
167 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
168 return -EFAULT;
169 switch (cmd) {
170 case KDGETKEYCODE:
171 kc = getkeycode(tmp.scancode);
172 if (kc >= 0)
173 kc = put_user(kc, &user_kbkc->keycode);
174 break;
175 case KDSETKEYCODE:
176 if (!perm)
177 return -EPERM;
178 kc = setkeycode(tmp.scancode, tmp.keycode);
179 break;
181 return kc;
184 static inline int
185 do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
187 struct kbsentry *kbs;
188 char *p;
189 u_char *q;
190 u_char __user *up;
191 int sz;
192 int delta;
193 char *first_free, *fj, *fnw;
194 int i, j, k;
195 int ret;
197 if (!capable(CAP_SYS_TTY_CONFIG))
198 perm = 0;
200 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
201 if (!kbs) {
202 ret = -ENOMEM;
203 goto reterr;
206 /* we mostly copy too much here (512bytes), but who cares ;) */
207 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
208 ret = -EFAULT;
209 goto reterr;
211 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
212 i = kbs->kb_func;
214 switch (cmd) {
215 case KDGKBSENT:
216 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
217 a struct member */
218 up = user_kdgkb->kb_string;
219 p = func_table[i];
220 if(p)
221 for ( ; *p && sz; p++, sz--)
222 if (put_user(*p, up++)) {
223 ret = -EFAULT;
224 goto reterr;
226 if (put_user('\0', up)) {
227 ret = -EFAULT;
228 goto reterr;
230 kfree(kbs);
231 return ((p && *p) ? -EOVERFLOW : 0);
232 case KDSKBSENT:
233 if (!perm) {
234 ret = -EPERM;
235 goto reterr;
238 q = func_table[i];
239 first_free = funcbufptr + (funcbufsize - funcbufleft);
240 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
242 if (j < MAX_NR_FUNC)
243 fj = func_table[j];
244 else
245 fj = first_free;
247 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
248 if (delta <= funcbufleft) { /* it fits in current buf */
249 if (j < MAX_NR_FUNC) {
250 memmove(fj + delta, fj, first_free - fj);
251 for (k = j; k < MAX_NR_FUNC; k++)
252 if (func_table[k])
253 func_table[k] += delta;
255 if (!q)
256 func_table[i] = fj;
257 funcbufleft -= delta;
258 } else { /* allocate a larger buffer */
259 sz = 256;
260 while (sz < funcbufsize - funcbufleft + delta)
261 sz <<= 1;
262 fnw = kmalloc(sz, GFP_KERNEL);
263 if(!fnw) {
264 ret = -ENOMEM;
265 goto reterr;
268 if (!q)
269 func_table[i] = fj;
270 if (fj > funcbufptr)
271 memmove(fnw, funcbufptr, fj - funcbufptr);
272 for (k = 0; k < j; k++)
273 if (func_table[k])
274 func_table[k] = fnw + (func_table[k] - funcbufptr);
276 if (first_free > fj) {
277 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
278 for (k = j; k < MAX_NR_FUNC; k++)
279 if (func_table[k])
280 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
282 if (funcbufptr != func_buf)
283 kfree(funcbufptr);
284 funcbufptr = fnw;
285 funcbufleft = funcbufleft - delta + sz - funcbufsize;
286 funcbufsize = sz;
288 strcpy(func_table[i], kbs->kb_string);
289 break;
291 ret = 0;
292 reterr:
293 kfree(kbs);
294 return ret;
297 static inline int
298 do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
300 struct consolefontdesc cfdarg;
301 int i;
303 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
304 return -EFAULT;
306 switch (cmd) {
307 case PIO_FONTX:
308 if (!perm)
309 return -EPERM;
310 op->op = KD_FONT_OP_SET;
311 op->flags = KD_FONT_FLAG_OLD;
312 op->width = 8;
313 op->height = cfdarg.charheight;
314 op->charcount = cfdarg.charcount;
315 op->data = cfdarg.chardata;
316 return con_font_op(vc_cons[fg_console].d, op);
317 case GIO_FONTX: {
318 op->op = KD_FONT_OP_GET;
319 op->flags = KD_FONT_FLAG_OLD;
320 op->width = 8;
321 op->height = cfdarg.charheight;
322 op->charcount = cfdarg.charcount;
323 op->data = cfdarg.chardata;
324 i = con_font_op(vc_cons[fg_console].d, op);
325 if (i)
326 return i;
327 cfdarg.charheight = op->height;
328 cfdarg.charcount = op->charcount;
329 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
330 return -EFAULT;
331 return 0;
334 return -EINVAL;
337 static inline int
338 do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
340 struct unimapdesc tmp;
342 if (copy_from_user(&tmp, user_ud, sizeof tmp))
343 return -EFAULT;
344 if (tmp.entries)
345 if (!access_ok(VERIFY_WRITE, tmp.entries,
346 tmp.entry_ct*sizeof(struct unipair)))
347 return -EFAULT;
348 switch (cmd) {
349 case PIO_UNIMAP:
350 if (!perm)
351 return -EPERM;
352 return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
353 case GIO_UNIMAP:
354 if (!perm && fg_console != vc->vc_num)
355 return -EPERM;
356 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
358 return 0;
362 * We handle the console-specific ioctl's here. We allow the
363 * capability to modify any console, not just the fg_console.
365 int vt_ioctl(struct tty_struct *tty, struct file * file,
366 unsigned int cmd, unsigned long arg)
368 struct vc_data *vc = (struct vc_data *)tty->driver_data;
369 struct console_font_op op; /* used in multiple places here */
370 struct kbd_struct * kbd;
371 unsigned int console;
372 unsigned char ucval;
373 void __user *up = (void __user *)arg;
374 int i, perm;
376 console = vc->vc_num;
378 if (!vc_cons_allocated(console)) /* impossible? */
379 return -ENOIOCTLCMD;
382 * To have permissions to do most of the vt ioctls, we either have
383 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
385 perm = 0;
386 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
387 perm = 1;
389 kbd = kbd_table + console;
390 switch (cmd) {
391 case KIOCSOUND:
392 if (!perm)
393 return -EPERM;
394 if (arg)
395 arg = CLOCK_TICK_RATE / arg;
396 kd_mksound(arg, 0);
397 return 0;
399 case KDMKTONE:
400 if (!perm)
401 return -EPERM;
403 unsigned int ticks, count;
406 * Generate the tone for the appropriate number of ticks.
407 * If the time is zero, turn off sound ourselves.
409 ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
410 count = ticks ? (arg & 0xffff) : 0;
411 if (count)
412 count = CLOCK_TICK_RATE / count;
413 kd_mksound(count, ticks);
414 return 0;
417 case KDGKBTYPE:
419 * this is naive.
421 ucval = KB_101;
422 goto setchar;
425 * These cannot be implemented on any machine that implements
426 * ioperm() in user level (such as Alpha PCs) or not at all.
428 * XXX: you should never use these, just call ioperm directly..
430 #ifdef CONFIG_X86
431 case KDADDIO:
432 case KDDELIO:
434 * KDADDIO and KDDELIO may be able to add ports beyond what
435 * we reject here, but to be safe...
437 if (arg < GPFIRST || arg > GPLAST)
438 return -EINVAL;
439 return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
441 case KDENABIO:
442 case KDDISABIO:
443 return sys_ioperm(GPFIRST, GPNUM,
444 (cmd == KDENABIO)) ? -ENXIO : 0;
445 #endif
447 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
449 case KDKBDREP:
451 struct kbd_repeat kbrep;
452 int err;
454 if (!capable(CAP_SYS_TTY_CONFIG))
455 return -EPERM;
457 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat)))
458 return -EFAULT;
459 err = kbd_rate(&kbrep);
460 if (err)
461 return err;
462 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
463 return -EFAULT;
464 return 0;
467 case KDSETMODE:
469 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
470 * doesn't do a whole lot. i'm not sure if it should do any
471 * restoration of modes or what...
473 * XXX It should at least call into the driver, fbdev's definitely
474 * need to restore their engine state. --BenH
476 if (!perm)
477 return -EPERM;
478 switch (arg) {
479 case KD_GRAPHICS:
480 break;
481 case KD_TEXT0:
482 case KD_TEXT1:
483 arg = KD_TEXT;
484 case KD_TEXT:
485 break;
486 default:
487 return -EINVAL;
489 if (vc->vc_mode == (unsigned char) arg)
490 return 0;
491 vc->vc_mode = (unsigned char) arg;
492 if (console != fg_console)
493 return 0;
495 * explicitly blank/unblank the screen if switching modes
497 acquire_console_sem();
498 if (arg == KD_TEXT)
499 do_unblank_screen(1);
500 else
501 do_blank_screen(1);
502 release_console_sem();
503 return 0;
505 case KDGETMODE:
506 ucval = vc->vc_mode;
507 goto setint;
509 case KDMAPDISP:
510 case KDUNMAPDISP:
512 * these work like a combination of mmap and KDENABIO.
513 * this could be easily finished.
515 return -EINVAL;
517 case KDSKBMODE:
518 if (!perm)
519 return -EPERM;
520 switch(arg) {
521 case K_RAW:
522 kbd->kbdmode = VC_RAW;
523 break;
524 case K_MEDIUMRAW:
525 kbd->kbdmode = VC_MEDIUMRAW;
526 break;
527 case K_XLATE:
528 kbd->kbdmode = VC_XLATE;
529 compute_shiftstate();
530 break;
531 case K_UNICODE:
532 kbd->kbdmode = VC_UNICODE;
533 compute_shiftstate();
534 break;
535 default:
536 return -EINVAL;
538 tty_ldisc_flush(tty);
539 return 0;
541 case KDGKBMODE:
542 ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW :
543 (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW :
544 (kbd->kbdmode == VC_UNICODE) ? K_UNICODE :
545 K_XLATE);
546 goto setint;
548 /* this could be folded into KDSKBMODE, but for compatibility
549 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
550 case KDSKBMETA:
551 switch(arg) {
552 case K_METABIT:
553 clr_vc_kbd_mode(kbd, VC_META);
554 break;
555 case K_ESCPREFIX:
556 set_vc_kbd_mode(kbd, VC_META);
557 break;
558 default:
559 return -EINVAL;
561 return 0;
563 case KDGKBMETA:
564 ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT);
565 setint:
566 return put_user(ucval, (int __user *)arg);
568 case KDGETKEYCODE:
569 case KDSETKEYCODE:
570 if(!capable(CAP_SYS_TTY_CONFIG))
571 perm=0;
572 return do_kbkeycode_ioctl(cmd, up, perm);
574 case KDGKBENT:
575 case KDSKBENT:
576 return do_kdsk_ioctl(cmd, up, perm, kbd);
578 case KDGKBSENT:
579 case KDSKBSENT:
580 return do_kdgkb_ioctl(cmd, up, perm);
582 case KDGKBDIACR:
584 struct kbdiacrs __user *a = up;
586 if (put_user(accent_table_size, &a->kb_cnt))
587 return -EFAULT;
588 if (copy_to_user(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr)))
589 return -EFAULT;
590 return 0;
593 case KDSKBDIACR:
595 struct kbdiacrs __user *a = up;
596 unsigned int ct;
598 if (!perm)
599 return -EPERM;
600 if (get_user(ct,&a->kb_cnt))
601 return -EFAULT;
602 if (ct >= MAX_DIACR)
603 return -EINVAL;
604 accent_table_size = ct;
605 if (copy_from_user(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr)))
606 return -EFAULT;
607 return 0;
610 /* the ioctls below read/set the flags usually shown in the leds */
611 /* don't use them - they will go away without warning */
612 case KDGKBLED:
613 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
614 goto setchar;
616 case KDSKBLED:
617 if (!perm)
618 return -EPERM;
619 if (arg & ~0x77)
620 return -EINVAL;
621 kbd->ledflagstate = (arg & 7);
622 kbd->default_ledflagstate = ((arg >> 4) & 7);
623 set_leds();
624 return 0;
626 /* the ioctls below only set the lights, not the functions */
627 /* for those, see KDGKBLED and KDSKBLED above */
628 case KDGETLED:
629 ucval = getledstate();
630 setchar:
631 return put_user(ucval, (char __user *)arg);
633 case KDSETLED:
634 if (!perm)
635 return -EPERM;
636 setledstate(kbd, arg);
637 return 0;
640 * A process can indicate its willingness to accept signals
641 * generated by pressing an appropriate key combination.
642 * Thus, one can have a daemon that e.g. spawns a new console
643 * upon a keypress and then changes to it.
644 * See also the kbrequest field of inittab(5).
646 case KDSIGACCEPT:
648 if (!perm || !capable(CAP_KILL))
649 return -EPERM;
650 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
651 return -EINVAL;
653 spin_lock_irq(&vt_spawn_con.lock);
654 put_pid(vt_spawn_con.pid);
655 vt_spawn_con.pid = get_pid(task_pid(current));
656 vt_spawn_con.sig = arg;
657 spin_unlock_irq(&vt_spawn_con.lock);
658 return 0;
661 case VT_SETMODE:
663 struct vt_mode tmp;
665 if (!perm)
666 return -EPERM;
667 if (copy_from_user(&tmp, up, sizeof(struct vt_mode)))
668 return -EFAULT;
669 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS)
670 return -EINVAL;
671 acquire_console_sem();
672 vc->vt_mode = tmp;
673 /* the frsig is ignored, so we set it to 0 */
674 vc->vt_mode.frsig = 0;
675 put_pid(vc->vt_pid);
676 vc->vt_pid = get_pid(task_pid(current));
677 /* no switch is required -- saw@shade.msu.ru */
678 vc->vt_newvt = -1;
679 release_console_sem();
680 return 0;
683 case VT_GETMODE:
685 struct vt_mode tmp;
686 int rc;
688 acquire_console_sem();
689 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
690 release_console_sem();
692 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
693 return rc ? -EFAULT : 0;
697 * Returns global vt state. Note that VT 0 is always open, since
698 * it's an alias for the current VT, and people can't use it here.
699 * We cannot return state for more than 16 VTs, since v_state is short.
701 case VT_GETSTATE:
703 struct vt_stat __user *vtstat = up;
704 unsigned short state, mask;
706 if (put_user(fg_console + 1, &vtstat->v_active))
707 return -EFAULT;
708 state = 1; /* /dev/tty0 is always open */
709 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1)
710 if (VT_IS_IN_USE(i))
711 state |= mask;
712 return put_user(state, &vtstat->v_state);
716 * Returns the first available (non-opened) console.
718 case VT_OPENQRY:
719 for (i = 0; i < MAX_NR_CONSOLES; ++i)
720 if (! VT_IS_IN_USE(i))
721 break;
722 ucval = i < MAX_NR_CONSOLES ? (i+1) : -1;
723 goto setint;
726 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
727 * with num >= 1 (switches to vt 0, our console, are not allowed, just
728 * to preserve sanity).
730 case VT_ACTIVATE:
731 if (!perm)
732 return -EPERM;
733 if (arg == 0 || arg > MAX_NR_CONSOLES)
734 return -ENXIO;
735 arg--;
736 acquire_console_sem();
737 i = vc_allocate(arg);
738 release_console_sem();
739 if (i)
740 return i;
741 set_console(arg);
742 return 0;
745 * wait until the specified VT has been activated
747 case VT_WAITACTIVE:
748 if (!perm)
749 return -EPERM;
750 if (arg == 0 || arg > MAX_NR_CONSOLES)
751 return -ENXIO;
752 return vt_waitactive(arg-1);
755 * If a vt is under process control, the kernel will not switch to it
756 * immediately, but postpone the operation until the process calls this
757 * ioctl, allowing the switch to complete.
759 * According to the X sources this is the behavior:
760 * 0: pending switch-from not OK
761 * 1: pending switch-from OK
762 * 2: completed switch-to OK
764 case VT_RELDISP:
765 if (!perm)
766 return -EPERM;
767 if (vc->vt_mode.mode != VT_PROCESS)
768 return -EINVAL;
771 * Switching-from response
773 if (vc->vt_newvt >= 0) {
774 if (arg == 0)
776 * Switch disallowed, so forget we were trying
777 * to do it.
779 vc->vt_newvt = -1;
781 else {
783 * The current vt has been released, so
784 * complete the switch.
786 int newvt;
787 acquire_console_sem();
788 newvt = vc->vt_newvt;
789 vc->vt_newvt = -1;
790 i = vc_allocate(newvt);
791 if (i) {
792 release_console_sem();
793 return i;
796 * When we actually do the console switch,
797 * make sure we are atomic with respect to
798 * other console switches..
800 complete_change_console(vc_cons[newvt].d);
801 release_console_sem();
806 * Switched-to response
808 else
811 * If it's just an ACK, ignore it
813 if (arg != VT_ACKACQ)
814 return -EINVAL;
817 return 0;
820 * Disallocate memory associated to VT (but leave VT1)
822 case VT_DISALLOCATE:
823 if (arg > MAX_NR_CONSOLES)
824 return -ENXIO;
825 if (arg == 0) {
826 /* deallocate all unused consoles, but leave 0 */
827 acquire_console_sem();
828 for (i=1; i<MAX_NR_CONSOLES; i++)
829 if (! VT_BUSY(i))
830 vc_deallocate(i);
831 release_console_sem();
832 } else {
833 /* deallocate a single console, if possible */
834 arg--;
835 if (VT_BUSY(arg))
836 return -EBUSY;
837 if (arg) { /* leave 0 */
838 acquire_console_sem();
839 vc_deallocate(arg);
840 release_console_sem();
843 return 0;
845 case VT_RESIZE:
847 struct vt_sizes __user *vtsizes = up;
848 ushort ll,cc;
849 if (!perm)
850 return -EPERM;
851 if (get_user(ll, &vtsizes->v_rows) ||
852 get_user(cc, &vtsizes->v_cols))
853 return -EFAULT;
854 for (i = 0; i < MAX_NR_CONSOLES; i++)
855 vc_lock_resize(vc_cons[i].d, cc, ll);
856 return 0;
859 case VT_RESIZEX:
861 struct vt_consize __user *vtconsize = up;
862 ushort ll,cc,vlin,clin,vcol,ccol;
863 if (!perm)
864 return -EPERM;
865 if (!access_ok(VERIFY_READ, vtconsize,
866 sizeof(struct vt_consize)))
867 return -EFAULT;
868 __get_user(ll, &vtconsize->v_rows);
869 __get_user(cc, &vtconsize->v_cols);
870 __get_user(vlin, &vtconsize->v_vlin);
871 __get_user(clin, &vtconsize->v_clin);
872 __get_user(vcol, &vtconsize->v_vcol);
873 __get_user(ccol, &vtconsize->v_ccol);
874 vlin = vlin ? vlin : vc->vc_scan_lines;
875 if (clin) {
876 if (ll) {
877 if (ll != vlin/clin)
878 return -EINVAL; /* Parameters don't add up */
879 } else
880 ll = vlin/clin;
882 if (vcol && ccol) {
883 if (cc) {
884 if (cc != vcol/ccol)
885 return -EINVAL;
886 } else
887 cc = vcol/ccol;
890 if (clin > 32)
891 return -EINVAL;
893 for (i = 0; i < MAX_NR_CONSOLES; i++) {
894 if (!vc_cons[i].d)
895 continue;
896 acquire_console_sem();
897 if (vlin)
898 vc_cons[i].d->vc_scan_lines = vlin;
899 if (clin)
900 vc_cons[i].d->vc_font.height = clin;
901 vc_resize(vc_cons[i].d, cc, ll);
902 release_console_sem();
904 return 0;
907 case PIO_FONT: {
908 if (!perm)
909 return -EPERM;
910 op.op = KD_FONT_OP_SET;
911 op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */
912 op.width = 8;
913 op.height = 0;
914 op.charcount = 256;
915 op.data = up;
916 return con_font_op(vc_cons[fg_console].d, &op);
919 case GIO_FONT: {
920 op.op = KD_FONT_OP_GET;
921 op.flags = KD_FONT_FLAG_OLD;
922 op.width = 8;
923 op.height = 32;
924 op.charcount = 256;
925 op.data = up;
926 return con_font_op(vc_cons[fg_console].d, &op);
929 case PIO_CMAP:
930 if (!perm)
931 return -EPERM;
932 return con_set_cmap(up);
934 case GIO_CMAP:
935 return con_get_cmap(up);
937 case PIO_FONTX:
938 case GIO_FONTX:
939 return do_fontx_ioctl(cmd, up, perm, &op);
941 case PIO_FONTRESET:
943 if (!perm)
944 return -EPERM;
946 #ifdef BROKEN_GRAPHICS_PROGRAMS
947 /* With BROKEN_GRAPHICS_PROGRAMS defined, the default
948 font is not saved. */
949 return -ENOSYS;
950 #else
952 op.op = KD_FONT_OP_SET_DEFAULT;
953 op.data = NULL;
954 i = con_font_op(vc_cons[fg_console].d, &op);
955 if (i)
956 return i;
957 con_set_default_unimap(vc_cons[fg_console].d);
958 return 0;
960 #endif
963 case KDFONTOP: {
964 if (copy_from_user(&op, up, sizeof(op)))
965 return -EFAULT;
966 if (!perm && op.op != KD_FONT_OP_GET)
967 return -EPERM;
968 i = con_font_op(vc, &op);
969 if (i) return i;
970 if (copy_to_user(up, &op, sizeof(op)))
971 return -EFAULT;
972 return 0;
975 case PIO_SCRNMAP:
976 if (!perm)
977 return -EPERM;
978 return con_set_trans_old(up);
980 case GIO_SCRNMAP:
981 return con_get_trans_old(up);
983 case PIO_UNISCRNMAP:
984 if (!perm)
985 return -EPERM;
986 return con_set_trans_new(up);
988 case GIO_UNISCRNMAP:
989 return con_get_trans_new(up);
991 case PIO_UNIMAPCLR:
992 { struct unimapinit ui;
993 if (!perm)
994 return -EPERM;
995 i = copy_from_user(&ui, up, sizeof(struct unimapinit));
996 if (i) return -EFAULT;
997 con_clear_unimap(vc, &ui);
998 return 0;
1001 case PIO_UNIMAP:
1002 case GIO_UNIMAP:
1003 return do_unimap_ioctl(cmd, up, perm, vc);
1005 case VT_LOCKSWITCH:
1006 if (!capable(CAP_SYS_TTY_CONFIG))
1007 return -EPERM;
1008 vt_dont_switch = 1;
1009 return 0;
1010 case VT_UNLOCKSWITCH:
1011 if (!capable(CAP_SYS_TTY_CONFIG))
1012 return -EPERM;
1013 vt_dont_switch = 0;
1014 return 0;
1015 case VT_GETHIFONTMASK:
1016 return put_user(vc->vc_hi_font_mask, (unsigned short __user *)arg);
1017 default:
1018 return -ENOIOCTLCMD;
1023 * Sometimes we want to wait until a particular VT has been activated. We
1024 * do it in a very simple manner. Everybody waits on a single queue and
1025 * get woken up at once. Those that are satisfied go on with their business,
1026 * while those not ready go back to sleep. Seems overkill to add a wait
1027 * to each vt just for this - usually this does nothing!
1029 static DECLARE_WAIT_QUEUE_HEAD(vt_activate_queue);
1032 * Sleeps until a vt is activated, or the task is interrupted. Returns
1033 * 0 if activation, -EINTR if interrupted.
1035 int vt_waitactive(int vt)
1037 int retval;
1038 DECLARE_WAITQUEUE(wait, current);
1040 add_wait_queue(&vt_activate_queue, &wait);
1041 for (;;) {
1042 set_current_state(TASK_INTERRUPTIBLE);
1043 retval = 0;
1044 if (vt == fg_console)
1045 break;
1046 retval = -EINTR;
1047 if (signal_pending(current))
1048 break;
1049 schedule();
1051 remove_wait_queue(&vt_activate_queue, &wait);
1052 current->state = TASK_RUNNING;
1053 return retval;
1056 #define vt_wake_waitactive() wake_up(&vt_activate_queue)
1058 void reset_vc(struct vc_data *vc)
1060 vc->vc_mode = KD_TEXT;
1061 kbd_table[vc->vc_num].kbdmode = VC_XLATE;
1062 vc->vt_mode.mode = VT_AUTO;
1063 vc->vt_mode.waitv = 0;
1064 vc->vt_mode.relsig = 0;
1065 vc->vt_mode.acqsig = 0;
1066 vc->vt_mode.frsig = 0;
1067 put_pid(vc->vt_pid);
1068 vc->vt_pid = NULL;
1069 vc->vt_newvt = -1;
1070 if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */
1071 reset_palette(vc);
1074 void vc_SAK(struct work_struct *work)
1076 struct vc *vc_con =
1077 container_of(work, struct vc, SAK_work);
1078 struct vc_data *vc;
1079 struct tty_struct *tty;
1081 acquire_console_sem();
1082 vc = vc_con->d;
1083 if (vc) {
1084 tty = vc->vc_tty;
1086 * SAK should also work in all raw modes and reset
1087 * them properly.
1089 if (tty)
1090 __do_SAK(tty);
1091 reset_vc(vc);
1093 release_console_sem();
1097 * Performs the back end of a vt switch
1099 static void complete_change_console(struct vc_data *vc)
1101 unsigned char old_vc_mode;
1103 last_console = fg_console;
1106 * If we're switching, we could be going from KD_GRAPHICS to
1107 * KD_TEXT mode or vice versa, which means we need to blank or
1108 * unblank the screen later.
1110 old_vc_mode = vc_cons[fg_console].d->vc_mode;
1111 switch_screen(vc);
1114 * This can't appear below a successful kill_pid(). If it did,
1115 * then the *blank_screen operation could occur while X, having
1116 * received acqsig, is waking up on another processor. This
1117 * condition can lead to overlapping accesses to the VGA range
1118 * and the framebuffer (causing system lockups).
1120 * To account for this we duplicate this code below only if the
1121 * controlling process is gone and we've called reset_vc.
1123 if (old_vc_mode != vc->vc_mode) {
1124 if (vc->vc_mode == KD_TEXT)
1125 do_unblank_screen(1);
1126 else
1127 do_blank_screen(1);
1131 * If this new console is under process control, send it a signal
1132 * telling it that it has acquired. Also check if it has died and
1133 * clean up (similar to logic employed in change_console())
1135 if (vc->vt_mode.mode == VT_PROCESS) {
1137 * Send the signal as privileged - kill_pid() will
1138 * tell us if the process has gone or something else
1139 * is awry
1141 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1143 * The controlling process has died, so we revert back to
1144 * normal operation. In this case, we'll also change back
1145 * to KD_TEXT mode. I'm not sure if this is strictly correct
1146 * but it saves the agony when the X server dies and the screen
1147 * remains blanked due to KD_GRAPHICS! It would be nice to do
1148 * this outside of VT_PROCESS but there is no single process
1149 * to account for and tracking tty count may be undesirable.
1151 reset_vc(vc);
1153 if (old_vc_mode != vc->vc_mode) {
1154 if (vc->vc_mode == KD_TEXT)
1155 do_unblank_screen(1);
1156 else
1157 do_blank_screen(1);
1163 * Wake anyone waiting for their VT to activate
1165 vt_wake_waitactive();
1166 return;
1170 * Performs the front-end of a vt switch
1172 void change_console(struct vc_data *new_vc)
1174 struct vc_data *vc;
1176 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1177 return;
1180 * If this vt is in process mode, then we need to handshake with
1181 * that process before switching. Essentially, we store where that
1182 * vt wants to switch to and wait for it to tell us when it's done
1183 * (via VT_RELDISP ioctl).
1185 * We also check to see if the controlling process still exists.
1186 * If it doesn't, we reset this vt to auto mode and continue.
1187 * This is a cheap way to track process control. The worst thing
1188 * that can happen is: we send a signal to a process, it dies, and
1189 * the switch gets "lost" waiting for a response; hopefully, the
1190 * user will try again, we'll detect the process is gone (unless
1191 * the user waits just the right amount of time :-) and revert the
1192 * vt to auto control.
1194 vc = vc_cons[fg_console].d;
1195 if (vc->vt_mode.mode == VT_PROCESS) {
1197 * Send the signal as privileged - kill_pid() will
1198 * tell us if the process has gone or something else
1199 * is awry
1201 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1203 * It worked. Mark the vt to switch to and
1204 * return. The process needs to send us a
1205 * VT_RELDISP ioctl to complete the switch.
1207 vc->vt_newvt = new_vc->vc_num;
1208 return;
1212 * The controlling process has died, so we revert back to
1213 * normal operation. In this case, we'll also change back
1214 * to KD_TEXT mode. I'm not sure if this is strictly correct
1215 * but it saves the agony when the X server dies and the screen
1216 * remains blanked due to KD_GRAPHICS! It would be nice to do
1217 * this outside of VT_PROCESS but there is no single process
1218 * to account for and tracking tty count may be undesirable.
1220 reset_vc(vc);
1223 * Fall through to normal (VT_AUTO) handling of the switch...
1228 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1230 if (vc->vc_mode == KD_GRAPHICS)
1231 return;
1233 complete_change_console(new_vc);