Merge with Linux 2.5.74.
[linux-2.6/linux-mips.git] / mm / vmscan.c
blobde6889ae257a45ba492faae9309da9e488bd31b9
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/init.h>
20 #include <linux/highmem.h>
21 #include <linux/file.h>
22 #include <linux/writeback.h>
23 #include <linux/suspend.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap-locking.h>
31 #include <linux/topology.h>
33 #include <asm/pgalloc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/div64.h>
37 #include <linux/swapops.h>
40 * The "priority" of VM scanning is how much of the queues we will scan in one
41 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
42 * queues ("queue_length >> 12") during an aging round.
44 #define DEF_PRIORITY 12
47 * From 0 .. 100. Higher means more swappy.
49 int vm_swappiness = 60;
50 static long total_memory;
52 #ifdef ARCH_HAS_PREFETCH
53 #define prefetch_prev_lru_page(_page, _base, _field) \
54 do { \
55 if ((_page)->lru.prev != _base) { \
56 struct page *prev; \
58 prev = list_entry(_page->lru.prev, \
59 struct page, lru); \
60 prefetch(&prev->_field); \
61 } \
62 } while (0)
63 #else
64 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
65 #endif
67 #ifdef ARCH_HAS_PREFETCHW
68 #define prefetchw_prev_lru_page(_page, _base, _field) \
69 do { \
70 if ((_page)->lru.prev != _base) { \
71 struct page *prev; \
73 prev = list_entry(_page->lru.prev, \
74 struct page, lru); \
75 prefetchw(&prev->_field); \
76 } \
77 } while (0)
78 #else
79 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
80 #endif
83 * The list of shrinker callbacks used by to apply pressure to
84 * ageable caches.
86 struct shrinker {
87 shrinker_t shrinker;
88 struct list_head list;
89 int seeks; /* seeks to recreate an obj */
90 long nr; /* objs pending delete */
93 static LIST_HEAD(shrinker_list);
94 static DECLARE_MUTEX(shrinker_sem);
97 * Add a shrinker callback to be called from the vm
99 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
101 struct shrinker *shrinker;
103 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
104 if (shrinker) {
105 shrinker->shrinker = theshrinker;
106 shrinker->seeks = seeks;
107 shrinker->nr = 0;
108 down(&shrinker_sem);
109 list_add(&shrinker->list, &shrinker_list);
110 up(&shrinker_sem);
112 return shrinker;
116 * Remove one
118 void remove_shrinker(struct shrinker *shrinker)
120 down(&shrinker_sem);
121 list_del(&shrinker->list);
122 up(&shrinker_sem);
123 kfree(shrinker);
126 #define SHRINK_BATCH 128
128 * Call the shrink functions to age shrinkable caches
130 * Here we assume it costs one seek to replace a lru page and that it also
131 * takes a seek to recreate a cache object. With this in mind we age equal
132 * percentages of the lru and ageable caches. This should balance the seeks
133 * generated by these structures.
135 * If the vm encounted mapped pages on the LRU it increase the pressure on
136 * slab to avoid swapping.
138 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
140 static int shrink_slab(long scanned, unsigned int gfp_mask)
142 struct shrinker *shrinker;
143 long pages;
145 if (down_trylock(&shrinker_sem))
146 return 0;
148 pages = nr_used_zone_pages();
149 list_for_each_entry(shrinker, &shrinker_list, list) {
150 long long delta;
152 delta = scanned * shrinker->seeks;
153 delta *= (*shrinker->shrinker)(0, gfp_mask);
154 do_div(delta, pages + 1);
155 shrinker->nr += delta;
156 if (shrinker->nr > SHRINK_BATCH) {
157 long nr_to_scan = shrinker->nr;
159 shrinker->nr = 0;
160 while (nr_to_scan) {
161 long this_scan = nr_to_scan;
163 if (this_scan > 128)
164 this_scan = 128;
165 (*shrinker->shrinker)(this_scan, gfp_mask);
166 nr_to_scan -= this_scan;
167 cond_resched();
171 up(&shrinker_sem);
172 return 0;
175 /* Must be called with page's pte_chain_lock held. */
176 static inline int page_mapping_inuse(struct page *page)
178 struct address_space *mapping = page->mapping;
180 /* Page is in somebody's page tables. */
181 if (page_mapped(page))
182 return 1;
184 /* XXX: does this happen ? */
185 if (!mapping)
186 return 0;
188 /* Be more reluctant to reclaim swapcache than pagecache */
189 if (PageSwapCache(page))
190 return 1;
192 /* File is mmap'd by somebody. */
193 if (!list_empty(&mapping->i_mmap))
194 return 1;
195 if (!list_empty(&mapping->i_mmap_shared))
196 return 1;
198 return 0;
201 static inline int is_page_cache_freeable(struct page *page)
203 return page_count(page) - !!PagePrivate(page) == 2;
206 static int may_write_to_queue(struct backing_dev_info *bdi)
208 if (current_is_kswapd())
209 return 1;
210 if (current_is_pdflush()) /* This is unlikely, but why not... */
211 return 1;
212 if (!bdi_write_congested(bdi))
213 return 1;
214 if (bdi == current->backing_dev_info)
215 return 1;
216 return 0;
220 * shrink_list returns the number of reclaimed pages
222 static int
223 shrink_list(struct list_head *page_list, unsigned int gfp_mask,
224 int *max_scan, int *nr_mapped)
226 struct address_space *mapping;
227 LIST_HEAD(ret_pages);
228 struct pagevec freed_pvec;
229 int pgactivate = 0;
230 int ret = 0;
232 cond_resched();
234 pagevec_init(&freed_pvec, 1);
235 while (!list_empty(page_list)) {
236 struct page *page;
237 int may_enter_fs;
239 page = list_entry(page_list->prev, struct page, lru);
240 list_del(&page->lru);
242 if (TestSetPageLocked(page))
243 goto keep;
245 /* Double the slab pressure for mapped and swapcache pages */
246 if (page_mapped(page) || PageSwapCache(page))
247 (*nr_mapped)++;
249 BUG_ON(PageActive(page));
250 may_enter_fs = (gfp_mask & __GFP_FS) ||
251 (PageSwapCache(page) && (gfp_mask & __GFP_IO));
253 if (PageWriteback(page))
254 goto keep_locked;
256 pte_chain_lock(page);
257 if (page_referenced(page) && page_mapping_inuse(page)) {
258 /* In active use or really unfreeable. Activate it. */
259 pte_chain_unlock(page);
260 goto activate_locked;
263 mapping = page->mapping;
265 #ifdef CONFIG_SWAP
267 * Anonymous process memory without backing store. Try to
268 * allocate it some swap space here.
270 * XXX: implement swap clustering ?
272 if (page_mapped(page) && !mapping && !PagePrivate(page)) {
273 pte_chain_unlock(page);
274 if (!add_to_swap(page))
275 goto activate_locked;
276 pte_chain_lock(page);
277 mapping = page->mapping;
279 #endif /* CONFIG_SWAP */
282 * The page is mapped into the page tables of one or more
283 * processes. Try to unmap it here.
285 if (page_mapped(page) && mapping) {
286 switch (try_to_unmap(page)) {
287 case SWAP_FAIL:
288 pte_chain_unlock(page);
289 goto activate_locked;
290 case SWAP_AGAIN:
291 pte_chain_unlock(page);
292 goto keep_locked;
293 case SWAP_SUCCESS:
294 ; /* try to free the page below */
297 pte_chain_unlock(page);
300 * If the page is dirty, only perform writeback if that write
301 * will be non-blocking. To prevent this allocation from being
302 * stalled by pagecache activity. But note that there may be
303 * stalls if we need to run get_block(). We could test
304 * PagePrivate for that.
306 * If this process is currently in generic_file_write() against
307 * this page's queue, we can perform writeback even if that
308 * will block.
310 * If the page is swapcache, write it back even if that would
311 * block, for some throttling. This happens by accident, because
312 * swap_backing_dev_info is bust: it doesn't reflect the
313 * congestion state of the swapdevs. Easy to fix, if needed.
314 * See swapfile.c:page_queue_congested().
316 if (PageDirty(page)) {
317 if (!is_page_cache_freeable(page))
318 goto keep_locked;
319 if (!mapping)
320 goto keep_locked;
321 if (mapping->a_ops->writepage == NULL)
322 goto activate_locked;
323 if (!may_enter_fs)
324 goto keep_locked;
325 if (!may_write_to_queue(mapping->backing_dev_info))
326 goto keep_locked;
327 spin_lock(&mapping->page_lock);
328 if (test_clear_page_dirty(page)) {
329 int res;
330 struct writeback_control wbc = {
331 .sync_mode = WB_SYNC_NONE,
332 .nr_to_write = SWAP_CLUSTER_MAX,
333 .nonblocking = 1,
334 .for_reclaim = 1,
337 list_move(&page->list, &mapping->locked_pages);
338 spin_unlock(&mapping->page_lock);
340 SetPageReclaim(page);
341 res = mapping->a_ops->writepage(page, &wbc);
343 if (res == WRITEPAGE_ACTIVATE) {
344 ClearPageReclaim(page);
345 goto activate_locked;
347 if (!PageWriteback(page)) {
348 /* synchronous write or broken a_ops? */
349 ClearPageReclaim(page);
351 goto keep;
353 spin_unlock(&mapping->page_lock);
357 * If the page has buffers, try to free the buffer mappings
358 * associated with this page. If we succeed we try to free
359 * the page as well.
361 * We do this even if the page is PageDirty().
362 * try_to_release_page() does not perform I/O, but it is
363 * possible for a page to have PageDirty set, but it is actually
364 * clean (all its buffers are clean). This happens if the
365 * buffers were written out directly, with submit_bh(). ext3
366 * will do this, as well as the blockdev mapping.
367 * try_to_release_page() will discover that cleanness and will
368 * drop the buffers and mark the page clean - it can be freed.
370 * Rarely, pages can have buffers and no ->mapping. These are
371 * the pages which were not successfully invalidated in
372 * truncate_complete_page(). We try to drop those buffers here
373 * and if that worked, and the page is no longer mapped into
374 * process address space (page_count == 0) it can be freed.
375 * Otherwise, leave the page on the LRU so it is swappable.
377 if (PagePrivate(page)) {
378 if (!try_to_release_page(page, gfp_mask))
379 goto activate_locked;
380 if (!mapping && page_count(page) == 1)
381 goto free_it;
384 if (!mapping)
385 goto keep_locked; /* truncate got there first */
387 spin_lock(&mapping->page_lock);
390 * The non-racy check for busy page. It is critical to check
391 * PageDirty _after_ making sure that the page is freeable and
392 * not in use by anybody. (pagecache + us == 2)
394 if (page_count(page) != 2 || PageDirty(page)) {
395 spin_unlock(&mapping->page_lock);
396 goto keep_locked;
399 #ifdef CONFIG_SWAP
400 if (PageSwapCache(page)) {
401 swp_entry_t swap = { .val = page->index };
402 __delete_from_swap_cache(page);
403 spin_unlock(&mapping->page_lock);
404 swap_free(swap);
405 __put_page(page); /* The pagecache ref */
406 goto free_it;
408 #endif /* CONFIG_SWAP */
410 __remove_from_page_cache(page);
411 spin_unlock(&mapping->page_lock);
412 __put_page(page);
414 free_it:
415 unlock_page(page);
416 ret++;
417 if (!pagevec_add(&freed_pvec, page))
418 __pagevec_release_nonlru(&freed_pvec);
419 continue;
421 activate_locked:
422 SetPageActive(page);
423 pgactivate++;
424 keep_locked:
425 unlock_page(page);
426 keep:
427 list_add(&page->lru, &ret_pages);
428 BUG_ON(PageLRU(page));
430 list_splice(&ret_pages, page_list);
431 if (pagevec_count(&freed_pvec))
432 __pagevec_release_nonlru(&freed_pvec);
433 mod_page_state(pgsteal, ret);
434 if (current_is_kswapd())
435 mod_page_state(kswapd_steal, ret);
436 mod_page_state(pgactivate, pgactivate);
437 return ret;
441 * zone->lru_lock is heavily contented. We relieve it by quickly privatising
442 * a batch of pages and working on them outside the lock. Any pages which were
443 * not freed will be added back to the LRU.
445 * shrink_cache() is passed the number of pages to try to free, and returns
446 * the number of pages which were reclaimed.
448 * For pagecache intensive workloads, the first loop here is the hottest spot
449 * in the kernel (apart from the copy_*_user functions).
451 static int
452 shrink_cache(const int nr_pages, struct zone *zone,
453 unsigned int gfp_mask, int max_scan, int *nr_mapped)
455 LIST_HEAD(page_list);
456 struct pagevec pvec;
457 int nr_to_process;
458 int ret = 0;
461 * Try to ensure that we free `nr_pages' pages in one pass of the loop.
463 nr_to_process = nr_pages;
464 if (nr_to_process < SWAP_CLUSTER_MAX)
465 nr_to_process = SWAP_CLUSTER_MAX;
467 pagevec_init(&pvec, 1);
469 lru_add_drain();
470 spin_lock_irq(&zone->lru_lock);
471 while (max_scan > 0 && ret < nr_pages) {
472 struct page *page;
473 int nr_taken = 0;
474 int nr_scan = 0;
475 int nr_freed;
477 while (nr_scan++ < nr_to_process &&
478 !list_empty(&zone->inactive_list)) {
479 page = list_entry(zone->inactive_list.prev,
480 struct page, lru);
482 prefetchw_prev_lru_page(page,
483 &zone->inactive_list, flags);
485 if (!TestClearPageLRU(page))
486 BUG();
487 list_del(&page->lru);
488 if (page_count(page) == 0) {
489 /* It is currently in pagevec_release() */
490 SetPageLRU(page);
491 list_add(&page->lru, &zone->inactive_list);
492 continue;
494 list_add(&page->lru, &page_list);
495 page_cache_get(page);
496 nr_taken++;
498 zone->nr_inactive -= nr_taken;
499 zone->pages_scanned += nr_taken;
500 spin_unlock_irq(&zone->lru_lock);
502 if (nr_taken == 0)
503 goto done;
505 max_scan -= nr_scan;
506 mod_page_state(pgscan, nr_scan);
507 nr_freed = shrink_list(&page_list, gfp_mask,
508 &max_scan, nr_mapped);
509 ret += nr_freed;
510 if (nr_freed <= 0 && list_empty(&page_list))
511 goto done;
513 spin_lock_irq(&zone->lru_lock);
515 * Put back any unfreeable pages.
517 while (!list_empty(&page_list)) {
518 page = list_entry(page_list.prev, struct page, lru);
519 if (TestSetPageLRU(page))
520 BUG();
521 list_del(&page->lru);
522 if (PageActive(page))
523 add_page_to_active_list(zone, page);
524 else
525 add_page_to_inactive_list(zone, page);
526 if (!pagevec_add(&pvec, page)) {
527 spin_unlock_irq(&zone->lru_lock);
528 __pagevec_release(&pvec);
529 spin_lock_irq(&zone->lru_lock);
533 spin_unlock_irq(&zone->lru_lock);
534 done:
535 pagevec_release(&pvec);
536 return ret;
540 * This moves pages from the active list to the inactive list.
542 * We move them the other way if the page is referenced by one or more
543 * processes, from rmap.
545 * If the pages are mostly unmapped, the processing is fast and it is
546 * appropriate to hold zone->lru_lock across the whole operation. But if
547 * the pages are mapped, the processing is slow (page_referenced()) so we
548 * should drop zone->lru_lock around each page. It's impossible to balance
549 * this, so instead we remove the pages from the LRU while processing them.
550 * It is safe to rely on PG_active against the non-LRU pages in here because
551 * nobody will play with that bit on a non-LRU page.
553 * The downside is that we have to touch page->count against each page.
554 * But we had to alter page->flags anyway.
556 static void
557 refill_inactive_zone(struct zone *zone, const int nr_pages_in,
558 struct page_state *ps, int priority)
560 int pgmoved;
561 int pgdeactivate = 0;
562 int nr_pages = nr_pages_in;
563 LIST_HEAD(l_hold); /* The pages which were snipped off */
564 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
565 LIST_HEAD(l_active); /* Pages to go onto the active_list */
566 struct page *page;
567 struct pagevec pvec;
568 int reclaim_mapped = 0;
569 long mapped_ratio;
570 long distress;
571 long swap_tendency;
573 lru_add_drain();
574 pgmoved = 0;
575 spin_lock_irq(&zone->lru_lock);
576 while (nr_pages && !list_empty(&zone->active_list)) {
577 page = list_entry(zone->active_list.prev, struct page, lru);
578 prefetchw_prev_lru_page(page, &zone->active_list, flags);
579 if (!TestClearPageLRU(page))
580 BUG();
581 list_del(&page->lru);
582 if (page_count(page) == 0) {
583 /* It is currently in pagevec_release() */
584 SetPageLRU(page);
585 list_add(&page->lru, &zone->active_list);
586 } else {
587 page_cache_get(page);
588 list_add(&page->lru, &l_hold);
589 pgmoved++;
591 nr_pages--;
593 zone->nr_active -= pgmoved;
594 spin_unlock_irq(&zone->lru_lock);
597 * `distress' is a measure of how much trouble we're having reclaiming
598 * pages. 0 -> no problems. 100 -> great trouble.
600 distress = 100 >> priority;
603 * The point of this algorithm is to decide when to start reclaiming
604 * mapped memory instead of just pagecache. Work out how much memory
605 * is mapped.
607 mapped_ratio = (ps->nr_mapped * 100) / total_memory;
610 * Now decide how much we really want to unmap some pages. The mapped
611 * ratio is downgraded - just because there's a lot of mapped memory
612 * doesn't necessarily mean that page reclaim isn't succeeding.
614 * The distress ratio is important - we don't want to start going oom.
616 * A 100% value of vm_swappiness overrides this algorithm altogether.
618 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
621 * Now use this metric to decide whether to start moving mapped memory
622 * onto the inactive list.
624 if (swap_tendency >= 100)
625 reclaim_mapped = 1;
627 while (!list_empty(&l_hold)) {
628 page = list_entry(l_hold.prev, struct page, lru);
629 list_del(&page->lru);
630 if (page_mapped(page)) {
631 pte_chain_lock(page);
632 if (page_mapped(page) && page_referenced(page)) {
633 pte_chain_unlock(page);
634 list_add(&page->lru, &l_active);
635 continue;
637 pte_chain_unlock(page);
638 if (!reclaim_mapped) {
639 list_add(&page->lru, &l_active);
640 continue;
644 * FIXME: need to consider page_count(page) here if/when we
645 * reap orphaned pages via the LRU (Daniel's locking stuff)
647 if (total_swap_pages == 0 && !page->mapping &&
648 !PagePrivate(page)) {
649 list_add(&page->lru, &l_active);
650 continue;
652 list_add(&page->lru, &l_inactive);
655 pagevec_init(&pvec, 1);
656 pgmoved = 0;
657 spin_lock_irq(&zone->lru_lock);
658 while (!list_empty(&l_inactive)) {
659 page = list_entry(l_inactive.prev, struct page, lru);
660 prefetchw_prev_lru_page(page, &l_inactive, flags);
661 if (TestSetPageLRU(page))
662 BUG();
663 if (!TestClearPageActive(page))
664 BUG();
665 list_move(&page->lru, &zone->inactive_list);
666 pgmoved++;
667 if (!pagevec_add(&pvec, page)) {
668 zone->nr_inactive += pgmoved;
669 spin_unlock_irq(&zone->lru_lock);
670 pgdeactivate += pgmoved;
671 pgmoved = 0;
672 if (buffer_heads_over_limit)
673 pagevec_strip(&pvec);
674 __pagevec_release(&pvec);
675 spin_lock_irq(&zone->lru_lock);
678 zone->nr_inactive += pgmoved;
679 pgdeactivate += pgmoved;
680 if (buffer_heads_over_limit) {
681 spin_unlock_irq(&zone->lru_lock);
682 pagevec_strip(&pvec);
683 spin_lock_irq(&zone->lru_lock);
686 pgmoved = 0;
687 while (!list_empty(&l_active)) {
688 page = list_entry(l_active.prev, struct page, lru);
689 prefetchw_prev_lru_page(page, &l_active, flags);
690 if (TestSetPageLRU(page))
691 BUG();
692 BUG_ON(!PageActive(page));
693 list_move(&page->lru, &zone->active_list);
694 pgmoved++;
695 if (!pagevec_add(&pvec, page)) {
696 zone->nr_active += pgmoved;
697 pgmoved = 0;
698 spin_unlock_irq(&zone->lru_lock);
699 __pagevec_release(&pvec);
700 spin_lock_irq(&zone->lru_lock);
703 zone->nr_active += pgmoved;
704 spin_unlock_irq(&zone->lru_lock);
705 pagevec_release(&pvec);
707 mod_page_state(pgrefill, nr_pages_in - nr_pages);
708 mod_page_state(pgdeactivate, pgdeactivate);
712 * Try to reclaim `nr_pages' from this zone. Returns the number of reclaimed
713 * pages. This is a basic per-zone page freer. Used by both kswapd and
714 * direct reclaim.
716 static int
717 shrink_zone(struct zone *zone, int max_scan, unsigned int gfp_mask,
718 const int nr_pages, int *nr_mapped, struct page_state *ps, int priority)
720 unsigned long ratio;
723 * Try to keep the active list 2/3 of the size of the cache. And
724 * make sure that refill_inactive is given a decent number of pages.
726 * The "ratio+1" here is important. With pagecache-intensive workloads
727 * the inactive list is huge, and `ratio' evaluates to zero all the
728 * time. Which pins the active list memory. So we add one to `ratio'
729 * just to make sure that the kernel will slowly sift through the
730 * active list.
732 ratio = (unsigned long)nr_pages * zone->nr_active /
733 ((zone->nr_inactive | 1) * 2);
734 atomic_add(ratio+1, &zone->refill_counter);
735 if (atomic_read(&zone->refill_counter) > SWAP_CLUSTER_MAX) {
736 int count;
739 * Don't try to bring down too many pages in one attempt.
740 * If this fails, the caller will increase `priority' and
741 * we'll try again, with an increased chance of reclaiming
742 * mapped memory.
744 count = atomic_read(&zone->refill_counter);
745 if (count > SWAP_CLUSTER_MAX * 4)
746 count = SWAP_CLUSTER_MAX * 4;
747 atomic_sub(count, &zone->refill_counter);
748 refill_inactive_zone(zone, count, ps, priority);
750 return shrink_cache(nr_pages, zone, gfp_mask,
751 max_scan, nr_mapped);
755 * This is the direct reclaim path, for page-allocating processes. We only
756 * try to reclaim pages from zones which will satisfy the caller's allocation
757 * request.
759 * We reclaim from a zone even if that zone is over pages_high. Because:
760 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
761 * allocation or
762 * b) The zones may be over pages_high but they must go *over* pages_high to
763 * satisfy the `incremental min' zone defense algorithm.
765 * Returns the number of reclaimed pages.
767 * If a zone is deemed to be full of pinned pages then just give it a light
768 * scan then give up on it.
770 static int
771 shrink_caches(struct zone *classzone, int priority, int *total_scanned,
772 int gfp_mask, int nr_pages, struct page_state *ps)
774 struct zone *first_classzone;
775 struct zone *zone;
776 int ret = 0;
778 first_classzone = classzone->zone_pgdat->node_zones;
779 for (zone = classzone; zone >= first_classzone; zone--) {
780 int to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX);
781 int nr_mapped = 0;
782 int max_scan;
784 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
785 continue; /* Let kswapd poll it */
788 * If we cannot reclaim `nr_pages' pages by scanning twice
789 * that many pages then fall back to the next zone.
791 max_scan = zone->nr_inactive >> priority;
792 if (max_scan < to_reclaim * 2)
793 max_scan = to_reclaim * 2;
794 ret += shrink_zone(zone, max_scan, gfp_mask,
795 to_reclaim, &nr_mapped, ps, priority);
796 *total_scanned += max_scan + nr_mapped;
797 if (ret >= nr_pages)
798 break;
800 return ret;
804 * This is the main entry point to direct page reclaim.
806 * If a full scan of the inactive list fails to free enough memory then we
807 * are "out of memory" and something needs to be killed.
809 * If the caller is !__GFP_FS then the probability of a failure is reasonably
810 * high - the zone may be full of dirty or under-writeback pages, which this
811 * caller can't do much about. So for !__GFP_FS callers, we just perform a
812 * small LRU walk and if that didn't work out, fail the allocation back to the
813 * caller. GFP_NOFS allocators need to know how to deal with it. Kicking
814 * bdflush, waiting and retrying will work.
816 * This is a fairly lame algorithm - it can result in excessive CPU burning and
817 * excessive rotation of the inactive list, which is _supposed_ to be an LRU,
818 * yes?
820 int try_to_free_pages(struct zone *cz,
821 unsigned int gfp_mask, unsigned int order)
823 int priority;
824 int ret = 0;
825 const int nr_pages = SWAP_CLUSTER_MAX;
826 int nr_reclaimed = 0;
827 struct reclaim_state *reclaim_state = current->reclaim_state;
829 inc_page_state(allocstall);
831 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
832 int total_scanned = 0;
833 struct page_state ps;
835 get_page_state(&ps);
836 nr_reclaimed += shrink_caches(cz, priority, &total_scanned,
837 gfp_mask, nr_pages, &ps);
838 if (nr_reclaimed >= nr_pages) {
839 ret = 1;
840 goto out;
842 if (!(gfp_mask & __GFP_FS))
843 break; /* Let the caller handle it */
845 * Try to write back as many pages as we just scanned. Not
846 * sure if that makes sense, but it's an attempt to avoid
847 * creating IO storms unnecessarily
849 wakeup_bdflush(total_scanned);
851 /* Take a nap, wait for some writeback to complete */
852 blk_congestion_wait(WRITE, HZ/10);
853 if (cz - cz->zone_pgdat->node_zones < ZONE_HIGHMEM) {
854 shrink_slab(total_scanned, gfp_mask);
855 if (reclaim_state) {
856 nr_reclaimed += reclaim_state->reclaimed_slab;
857 reclaim_state->reclaimed_slab = 0;
861 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY))
862 out_of_memory();
863 out:
864 return ret;
868 * For kswapd, balance_pgdat() will work across all this node's zones until
869 * they are all at pages_high.
871 * If `nr_pages' is non-zero then it is the number of pages which are to be
872 * reclaimed, regardless of the zone occupancies. This is a software suspend
873 * special.
875 * Returns the number of pages which were actually freed.
877 * There is special handling here for zones which are full of pinned pages.
878 * This can happen if the pages are all mlocked, or if they are all used by
879 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
880 * What we do is to detect the case where all pages in the zone have been
881 * scanned twice and there has been zero successful reclaim. Mark the zone as
882 * dead and from now on, only perform a short scan. Basically we're polling
883 * the zone for when the problem goes away.
885 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, struct page_state *ps)
887 int to_free = nr_pages;
888 int priority;
889 int i;
890 struct reclaim_state *reclaim_state = current->reclaim_state;
892 inc_page_state(pageoutrun);
894 for (priority = DEF_PRIORITY; priority; priority--) {
895 int all_zones_ok = 1;
897 for (i = 0; i < pgdat->nr_zones; i++) {
898 struct zone *zone = pgdat->node_zones + i;
899 int nr_mapped = 0;
900 int max_scan;
901 int to_reclaim;
903 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
904 continue;
906 if (nr_pages && to_free > 0) { /* Software suspend */
907 to_reclaim = min(to_free, SWAP_CLUSTER_MAX*8);
908 } else { /* Zone balancing */
909 to_reclaim = zone->pages_high-zone->free_pages;
910 if (to_reclaim <= 0)
911 continue;
913 all_zones_ok = 0;
914 max_scan = zone->nr_inactive >> priority;
915 if (max_scan < to_reclaim * 2)
916 max_scan = to_reclaim * 2;
917 if (max_scan < SWAP_CLUSTER_MAX)
918 max_scan = SWAP_CLUSTER_MAX;
919 to_free -= shrink_zone(zone, max_scan, GFP_KERNEL,
920 to_reclaim, &nr_mapped, ps, priority);
921 if (i < ZONE_HIGHMEM) {
922 reclaim_state->reclaimed_slab = 0;
923 shrink_slab(max_scan + nr_mapped, GFP_KERNEL);
924 to_free += reclaim_state->reclaimed_slab;
926 if (zone->all_unreclaimable)
927 continue;
928 if (zone->pages_scanned > zone->present_pages * 2)
929 zone->all_unreclaimable = 1;
931 if (all_zones_ok)
932 break;
933 blk_congestion_wait(WRITE, HZ/10);
935 return nr_pages - to_free;
939 * The background pageout daemon, started as a kernel thread
940 * from the init process.
942 * This basically trickles out pages so that we have _some_
943 * free memory available even if there is no other activity
944 * that frees anything up. This is needed for things like routing
945 * etc, where we otherwise might have all activity going on in
946 * asynchronous contexts that cannot page things out.
948 * If there are applications that are active memory-allocators
949 * (most normal use), this basically shouldn't matter.
951 int kswapd(void *p)
953 pg_data_t *pgdat = (pg_data_t*)p;
954 struct task_struct *tsk = current;
955 DEFINE_WAIT(wait);
956 struct reclaim_state reclaim_state = {
957 .reclaimed_slab = 0,
959 unsigned long cpumask;
961 daemonize("kswapd%d", pgdat->node_id);
962 cpumask = node_to_cpumask(pgdat->node_id);
963 if (cpumask)
964 set_cpus_allowed(tsk, cpumask);
965 current->reclaim_state = &reclaim_state;
968 * Tell the memory management that we're a "memory allocator",
969 * and that if we need more memory we should get access to it
970 * regardless (see "__alloc_pages()"). "kswapd" should
971 * never get caught in the normal page freeing logic.
973 * (Kswapd normally doesn't need memory anyway, but sometimes
974 * you need a small amount of memory in order to be able to
975 * page out something else, and this flag essentially protects
976 * us from recursively trying to free more memory as we're
977 * trying to free the first piece of memory in the first place).
979 tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
981 for ( ; ; ) {
982 struct page_state ps;
984 if (current->flags & PF_FREEZE)
985 refrigerator(PF_IOTHREAD);
986 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
987 schedule();
988 finish_wait(&pgdat->kswapd_wait, &wait);
989 get_page_state(&ps);
990 balance_pgdat(pgdat, 0, &ps);
995 * A zone is low on free memory, so wake its kswapd task to service it.
997 void wakeup_kswapd(struct zone *zone)
999 if (zone->free_pages > zone->pages_low)
1000 return;
1001 if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1002 return;
1003 wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1006 #ifdef CONFIG_SOFTWARE_SUSPEND
1008 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1009 * pages.
1011 int shrink_all_memory(int nr_pages)
1013 pg_data_t *pgdat;
1014 int nr_to_free = nr_pages;
1015 int ret = 0;
1016 struct reclaim_state reclaim_state = {
1017 .reclaimed_slab = 0,
1020 current->reclaim_state = &reclaim_state;
1021 for_each_pgdat(pgdat) {
1022 int freed;
1023 struct page_state ps;
1025 get_page_state(&ps);
1026 freed = balance_pgdat(pgdat, nr_to_free, &ps);
1027 ret += freed;
1028 nr_to_free -= freed;
1029 if (nr_to_free <= 0)
1030 break;
1032 current->reclaim_state = NULL;
1033 return ret;
1035 #endif
1037 static int __init kswapd_init(void)
1039 pg_data_t *pgdat;
1040 swap_setup();
1041 for_each_pgdat(pgdat)
1042 kernel_thread(kswapd, pgdat, CLONE_KERNEL);
1043 total_memory = nr_free_pagecache_pages();
1044 return 0;
1047 module_init(kswapd_init)