Merge with Linux 2.5.74.
[linux-2.6/linux-mips.git] / fs / xfs / xfs_log_recover.c
blobb3ff7edad86d6949d11db83ee6caec9cc852f961
1 /*
2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
26 * http://www.sgi.com
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 #include "xfs.h"
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
36 #include "xfs_inum.h"
37 #include "xfs_log.h"
38 #include "xfs_ag.h"
39 #include "xfs_sb.h"
40 #include "xfs_trans.h"
41 #include "xfs_dir.h"
42 #include "xfs_dir2.h"
43 #include "xfs_dmapi.h"
44 #include "xfs_mount.h"
45 #include "xfs_error.h"
46 #include "xfs_bmap_btree.h"
47 #include "xfs_alloc.h"
48 #include "xfs_attr_sf.h"
49 #include "xfs_dir_sf.h"
50 #include "xfs_dir2_sf.h"
51 #include "xfs_dinode.h"
52 #include "xfs_imap.h"
53 #include "xfs_inode_item.h"
54 #include "xfs_inode.h"
55 #include "xfs_ialloc_btree.h"
56 #include "xfs_ialloc.h"
57 #include "xfs_error.h"
58 #include "xfs_log_priv.h"
59 #include "xfs_buf_item.h"
60 #include "xfs_alloc_btree.h"
61 #include "xfs_log_recover.h"
62 #include "xfs_extfree_item.h"
63 #include "xfs_trans_priv.h"
64 #include "xfs_bit.h"
65 #include "xfs_quota.h"
66 #include "xfs_rw.h"
68 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
69 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
70 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
71 xlog_recover_item_t *item);
72 #if defined(DEBUG)
73 STATIC void xlog_recover_check_summary(xlog_t *);
74 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
75 #else
76 #define xlog_recover_check_summary(log)
77 #define xlog_recover_check_ail(mp, lip, gen)
78 #endif
82 * Sector aligned buffer routines for buffer create/read/write/access
85 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
86 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
87 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
88 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
90 xfs_buf_t *
91 xlog_get_bp(
92 xlog_t *log,
93 int num_bblks)
95 ASSERT(num_bblks > 0);
97 if (log->l_sectbb_log) {
98 if (num_bblks > 1)
99 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
100 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
102 return XFS_ngetrbuf(BBTOB(num_bblks), log->l_mp);
105 void
106 xlog_put_bp(
107 xfs_buf_t *bp)
109 XFS_nfreerbuf(bp);
114 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
117 xlog_bread(
118 xlog_t *log,
119 xfs_daddr_t blk_no,
120 int nbblks,
121 xfs_buf_t *bp)
123 int error;
125 if (log->l_sectbb_log) {
126 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
127 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
130 ASSERT(nbblks > 0);
131 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
132 ASSERT(bp);
134 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
135 XFS_BUF_READ(bp);
136 XFS_BUF_BUSY(bp);
137 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
138 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
140 xfsbdstrat(log->l_mp, bp);
141 if ((error = xfs_iowait(bp)))
142 xfs_ioerror_alert("xlog_bread", log->l_mp,
143 bp, XFS_BUF_ADDR(bp));
144 return error;
148 * Write out the buffer at the given block for the given number of blocks.
149 * The buffer is kept locked across the write and is returned locked.
150 * This can only be used for synchronous log writes.
153 xlog_bwrite(
154 xlog_t *log,
155 xfs_daddr_t blk_no,
156 int nbblks,
157 xfs_buf_t *bp)
159 int error;
161 if (log->l_sectbb_log) {
162 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
163 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
166 ASSERT(nbblks > 0);
167 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
169 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
170 XFS_BUF_ZEROFLAGS(bp);
171 XFS_BUF_BUSY(bp);
172 XFS_BUF_HOLD(bp);
173 XFS_BUF_PSEMA(bp, PRIBIO);
174 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
175 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
177 if ((error = xfs_bwrite(log->l_mp, bp)))
178 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
179 bp, XFS_BUF_ADDR(bp));
180 return error;
183 xfs_caddr_t
184 xlog_align(
185 xlog_t *log,
186 xfs_daddr_t blk_no,
187 int nbblks,
188 xfs_buf_t *bp)
190 xfs_caddr_t ptr;
192 if (!log->l_sectbb_log)
193 return XFS_BUF_PTR(bp);
195 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
196 ASSERT(XFS_BUF_SIZE(bp) >=
197 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
198 return ptr;
201 #ifdef DEBUG
203 * dump debug superblock and log record information
205 STATIC void
206 xlog_header_check_dump(
207 xfs_mount_t *mp,
208 xlog_rec_header_t *head)
210 int b;
212 printk("%s: SB : uuid = ", __FUNCTION__);
213 for (b = 0; b < 16; b++)
214 printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
215 printk(", fmt = %d\n", XLOG_FMT);
216 printk(" log : uuid = ");
217 for (b = 0; b < 16; b++)
218 printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
219 printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
221 #else
222 #define xlog_header_check_dump(mp, head)
223 #endif
226 * check log record header for recovery
228 STATIC int
229 xlog_header_check_recover(
230 xfs_mount_t *mp,
231 xlog_rec_header_t *head)
233 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
236 * IRIX doesn't write the h_fmt field and leaves it zeroed
237 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
238 * a dirty log created in IRIX.
240 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
241 xlog_warn(
242 "XFS: dirty log written in incompatible format - can't recover");
243 xlog_header_check_dump(mp, head);
244 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
245 XFS_ERRLEVEL_HIGH, mp);
246 return XFS_ERROR(EFSCORRUPTED);
247 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
248 xlog_warn(
249 "XFS: dirty log entry has mismatched uuid - can't recover");
250 xlog_header_check_dump(mp, head);
251 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
252 XFS_ERRLEVEL_HIGH, mp);
253 return XFS_ERROR(EFSCORRUPTED);
255 return 0;
259 * read the head block of the log and check the header
261 STATIC int
262 xlog_header_check_mount(
263 xfs_mount_t *mp,
264 xlog_rec_header_t *head)
266 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
268 if (uuid_is_nil(&head->h_fs_uuid)) {
270 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
271 * h_fs_uuid is nil, we assume this log was last mounted
272 * by IRIX and continue.
274 xlog_warn("XFS: nil uuid in log - IRIX style log");
275 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
276 xlog_warn("XFS: log has mismatched uuid - can't recover");
277 xlog_header_check_dump(mp, head);
278 XFS_ERROR_REPORT("xlog_header_check_mount",
279 XFS_ERRLEVEL_HIGH, mp);
280 return XFS_ERROR(EFSCORRUPTED);
282 return 0;
285 STATIC void
286 xlog_recover_iodone(
287 struct xfs_buf *bp)
289 xfs_mount_t *mp;
291 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
293 if (XFS_BUF_GETERROR(bp)) {
295 * We're not going to bother about retrying
296 * this during recovery. One strike!
298 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
299 xfs_ioerror_alert("xlog_recover_iodone",
300 mp, bp, XFS_BUF_ADDR(bp));
301 xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
303 XFS_BUF_SET_FSPRIVATE(bp, NULL);
304 XFS_BUF_CLR_IODONE_FUNC(bp);
305 xfs_biodone(bp);
309 * This routine finds (to an approximation) the first block in the physical
310 * log which contains the given cycle. It uses a binary search algorithm.
311 * Note that the algorithm can not be perfect because the disk will not
312 * necessarily be perfect.
315 xlog_find_cycle_start(
316 xlog_t *log,
317 xfs_buf_t *bp,
318 xfs_daddr_t first_blk,
319 xfs_daddr_t *last_blk,
320 uint cycle)
322 xfs_caddr_t offset;
323 xfs_daddr_t mid_blk;
324 uint mid_cycle;
325 int error;
327 mid_blk = BLK_AVG(first_blk, *last_blk);
328 while (mid_blk != first_blk && mid_blk != *last_blk) {
329 if ((error = xlog_bread(log, mid_blk, 1, bp)))
330 return error;
331 offset = xlog_align(log, mid_blk, 1, bp);
332 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
333 if (mid_cycle == cycle) {
334 *last_blk = mid_blk;
335 /* last_half_cycle == mid_cycle */
336 } else {
337 first_blk = mid_blk;
338 /* first_half_cycle == mid_cycle */
340 mid_blk = BLK_AVG(first_blk, *last_blk);
342 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
343 (mid_blk == *last_blk && mid_blk-1 == first_blk));
345 return 0;
349 * Check that the range of blocks does not contain the cycle number
350 * given. The scan needs to occur from front to back and the ptr into the
351 * region must be updated since a later routine will need to perform another
352 * test. If the region is completely good, we end up returning the same
353 * last block number.
355 * Set blkno to -1 if we encounter no errors. This is an invalid block number
356 * since we don't ever expect logs to get this large.
358 STATIC int
359 xlog_find_verify_cycle(
360 xlog_t *log,
361 xfs_daddr_t start_blk,
362 int nbblks,
363 uint stop_on_cycle_no,
364 xfs_daddr_t *new_blk)
366 xfs_daddr_t i, j;
367 uint cycle;
368 xfs_buf_t *bp;
369 xfs_daddr_t bufblks;
370 xfs_caddr_t buf = NULL;
371 int error = 0;
373 bufblks = 1 << ffs(nbblks);
375 while (!(bp = xlog_get_bp(log, bufblks))) {
376 /* can't get enough memory to do everything in one big buffer */
377 bufblks >>= 1;
378 if (bufblks <= log->l_sectbb_log)
379 return ENOMEM;
382 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
383 int bcount;
385 bcount = min(bufblks, (start_blk + nbblks - i));
387 if ((error = xlog_bread(log, i, bcount, bp)))
388 goto out;
390 buf = xlog_align(log, i, bcount, bp);
391 for (j = 0; j < bcount; j++) {
392 cycle = GET_CYCLE(buf, ARCH_CONVERT);
393 if (cycle == stop_on_cycle_no) {
394 *new_blk = i+j;
395 goto out;
398 buf += BBSIZE;
402 *new_blk = -1;
404 out:
405 xlog_put_bp(bp);
406 return error;
410 * Potentially backup over partial log record write.
412 * In the typical case, last_blk is the number of the block directly after
413 * a good log record. Therefore, we subtract one to get the block number
414 * of the last block in the given buffer. extra_bblks contains the number
415 * of blocks we would have read on a previous read. This happens when the
416 * last log record is split over the end of the physical log.
418 * extra_bblks is the number of blocks potentially verified on a previous
419 * call to this routine.
421 STATIC int
422 xlog_find_verify_log_record(
423 xlog_t *log,
424 xfs_daddr_t start_blk,
425 xfs_daddr_t *last_blk,
426 int extra_bblks)
428 xfs_daddr_t i;
429 xfs_buf_t *bp;
430 xfs_caddr_t offset = NULL;
431 xlog_rec_header_t *head = NULL;
432 int error = 0;
433 int smallmem = 0;
434 int num_blks = *last_blk - start_blk;
435 int xhdrs;
437 ASSERT(start_blk != 0 || *last_blk != start_blk);
439 if (!(bp = xlog_get_bp(log, num_blks))) {
440 if (!(bp = xlog_get_bp(log, 1)))
441 return ENOMEM;
442 smallmem = 1;
443 } else {
444 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
445 goto out;
446 offset = xlog_align(log, start_blk, num_blks, bp);
447 offset += ((num_blks - 1) << BBSHIFT);
450 for (i = (*last_blk) - 1; i >= 0; i--) {
451 if (i < start_blk) {
452 /* legal log record not found */
453 xlog_warn(
454 "XFS: Log inconsistent (didn't find previous header)");
455 ASSERT(0);
456 error = XFS_ERROR(EIO);
457 goto out;
460 if (smallmem) {
461 if ((error = xlog_bread(log, i, 1, bp)))
462 goto out;
463 offset = xlog_align(log, i, 1, bp);
466 head = (xlog_rec_header_t *)offset;
468 if (XLOG_HEADER_MAGIC_NUM ==
469 INT_GET(head->h_magicno, ARCH_CONVERT))
470 break;
472 if (!smallmem)
473 offset -= BBSIZE;
477 * We hit the beginning of the physical log & still no header. Return
478 * to caller. If caller can handle a return of -1, then this routine
479 * will be called again for the end of the physical log.
481 if (i == -1) {
482 error = -1;
483 goto out;
487 * We have the final block of the good log (the first block
488 * of the log record _before_ the head. So we check the uuid.
490 if ((error = xlog_header_check_mount(log->l_mp, head)))
491 goto out;
494 * We may have found a log record header before we expected one.
495 * last_blk will be the 1st block # with a given cycle #. We may end
496 * up reading an entire log record. In this case, we don't want to
497 * reset last_blk. Only when last_blk points in the middle of a log
498 * record do we update last_blk.
500 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
501 uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
503 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
504 if (h_size % XLOG_HEADER_CYCLE_SIZE)
505 xhdrs++;
506 } else {
507 xhdrs = 1;
510 if (*last_blk - i + extra_bblks
511 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
512 *last_blk = i;
514 out:
515 xlog_put_bp(bp);
516 return error;
520 * Head is defined to be the point of the log where the next log write
521 * write could go. This means that incomplete LR writes at the end are
522 * eliminated when calculating the head. We aren't guaranteed that previous
523 * LR have complete transactions. We only know that a cycle number of
524 * current cycle number -1 won't be present in the log if we start writing
525 * from our current block number.
527 * last_blk contains the block number of the first block with a given
528 * cycle number.
530 * Return: zero if normal, non-zero if error.
533 xlog_find_head(
534 xlog_t *log,
535 xfs_daddr_t *return_head_blk)
537 xfs_buf_t *bp;
538 xfs_caddr_t offset;
539 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
540 int num_scan_bblks;
541 uint first_half_cycle, last_half_cycle;
542 uint stop_on_cycle;
543 int error, log_bbnum = log->l_logBBsize;
545 /* Is the end of the log device zeroed? */
546 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
547 *return_head_blk = first_blk;
549 /* Is the whole lot zeroed? */
550 if (!first_blk) {
551 /* Linux XFS shouldn't generate totally zeroed logs -
552 * mkfs etc write a dummy unmount record to a fresh
553 * log so we can store the uuid in there
555 xlog_warn("XFS: totally zeroed log");
558 return 0;
559 } else if (error) {
560 xlog_warn("XFS: empty log check failed");
561 return error;
564 first_blk = 0; /* get cycle # of 1st block */
565 bp = xlog_get_bp(log, 1);
566 if (!bp)
567 return ENOMEM;
568 if ((error = xlog_bread(log, 0, 1, bp)))
569 goto bp_err;
570 offset = xlog_align(log, 0, 1, bp);
571 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
573 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
574 if ((error = xlog_bread(log, last_blk, 1, bp)))
575 goto bp_err;
576 offset = xlog_align(log, last_blk, 1, bp);
577 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
578 ASSERT(last_half_cycle != 0);
581 * If the 1st half cycle number is equal to the last half cycle number,
582 * then the entire log is stamped with the same cycle number. In this
583 * case, head_blk can't be set to zero (which makes sense). The below
584 * math doesn't work out properly with head_blk equal to zero. Instead,
585 * we set it to log_bbnum which is an illegal block number, but this
586 * value makes the math correct. If head_blk doesn't changed through
587 * all the tests below, *head_blk is set to zero at the very end rather
588 * than log_bbnum. In a sense, log_bbnum and zero are the same block
589 * in a circular file.
591 if (first_half_cycle == last_half_cycle) {
593 * In this case we believe that the entire log should have
594 * cycle number last_half_cycle. We need to scan backwards
595 * from the end verifying that there are no holes still
596 * containing last_half_cycle - 1. If we find such a hole,
597 * then the start of that hole will be the new head. The
598 * simple case looks like
599 * x | x ... | x - 1 | x
600 * Another case that fits this picture would be
601 * x | x + 1 | x ... | x
602 * In this case the head really is somwhere at the end of the
603 * log, as one of the latest writes at the beginning was
604 * incomplete.
605 * One more case is
606 * x | x + 1 | x ... | x - 1 | x
607 * This is really the combination of the above two cases, and
608 * the head has to end up at the start of the x-1 hole at the
609 * end of the log.
611 * In the 256k log case, we will read from the beginning to the
612 * end of the log and search for cycle numbers equal to x-1.
613 * We don't worry about the x+1 blocks that we encounter,
614 * because we know that they cannot be the head since the log
615 * started with x.
617 head_blk = log_bbnum;
618 stop_on_cycle = last_half_cycle - 1;
619 } else {
621 * In this case we want to find the first block with cycle
622 * number matching last_half_cycle. We expect the log to be
623 * some variation on
624 * x + 1 ... | x ...
625 * The first block with cycle number x (last_half_cycle) will
626 * be where the new head belongs. First we do a binary search
627 * for the first occurrence of last_half_cycle. The binary
628 * search may not be totally accurate, so then we scan back
629 * from there looking for occurrences of last_half_cycle before
630 * us. If that backwards scan wraps around the beginning of
631 * the log, then we look for occurrences of last_half_cycle - 1
632 * at the end of the log. The cases we're looking for look
633 * like
634 * x + 1 ... | x | x + 1 | x ...
635 * ^ binary search stopped here
636 * or
637 * x + 1 ... | x ... | x - 1 | x
638 * <---------> less than scan distance
640 stop_on_cycle = last_half_cycle;
641 if ((error = xlog_find_cycle_start(log, bp, first_blk,
642 &head_blk, last_half_cycle)))
643 goto bp_err;
647 * Now validate the answer. Scan back some number of maximum possible
648 * blocks and make sure each one has the expected cycle number. The
649 * maximum is determined by the total possible amount of buffering
650 * in the in-core log. The following number can be made tighter if
651 * we actually look at the block size of the filesystem.
653 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
654 if (head_blk >= num_scan_bblks) {
656 * We are guaranteed that the entire check can be performed
657 * in one buffer.
659 start_blk = head_blk - num_scan_bblks;
660 if ((error = xlog_find_verify_cycle(log,
661 start_blk, num_scan_bblks,
662 stop_on_cycle, &new_blk)))
663 goto bp_err;
664 if (new_blk != -1)
665 head_blk = new_blk;
666 } else { /* need to read 2 parts of log */
668 * We are going to scan backwards in the log in two parts.
669 * First we scan the physical end of the log. In this part
670 * of the log, we are looking for blocks with cycle number
671 * last_half_cycle - 1.
672 * If we find one, then we know that the log starts there, as
673 * we've found a hole that didn't get written in going around
674 * the end of the physical log. The simple case for this is
675 * x + 1 ... | x ... | x - 1 | x
676 * <---------> less than scan distance
677 * If all of the blocks at the end of the log have cycle number
678 * last_half_cycle, then we check the blocks at the start of
679 * the log looking for occurrences of last_half_cycle. If we
680 * find one, then our current estimate for the location of the
681 * first occurrence of last_half_cycle is wrong and we move
682 * back to the hole we've found. This case looks like
683 * x + 1 ... | x | x + 1 | x ...
684 * ^ binary search stopped here
685 * Another case we need to handle that only occurs in 256k
686 * logs is
687 * x + 1 ... | x ... | x+1 | x ...
688 * ^ binary search stops here
689 * In a 256k log, the scan at the end of the log will see the
690 * x + 1 blocks. We need to skip past those since that is
691 * certainly not the head of the log. By searching for
692 * last_half_cycle-1 we accomplish that.
694 start_blk = log_bbnum - num_scan_bblks + head_blk;
695 ASSERT(head_blk <= INT_MAX &&
696 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
697 if ((error = xlog_find_verify_cycle(log, start_blk,
698 num_scan_bblks - (int)head_blk,
699 (stop_on_cycle - 1), &new_blk)))
700 goto bp_err;
701 if (new_blk != -1) {
702 head_blk = new_blk;
703 goto bad_blk;
707 * Scan beginning of log now. The last part of the physical
708 * log is good. This scan needs to verify that it doesn't find
709 * the last_half_cycle.
711 start_blk = 0;
712 ASSERT(head_blk <= INT_MAX);
713 if ((error = xlog_find_verify_cycle(log,
714 start_blk, (int)head_blk,
715 stop_on_cycle, &new_blk)))
716 goto bp_err;
717 if (new_blk != -1)
718 head_blk = new_blk;
721 bad_blk:
723 * Now we need to make sure head_blk is not pointing to a block in
724 * the middle of a log record.
726 num_scan_bblks = XLOG_REC_SHIFT(log);
727 if (head_blk >= num_scan_bblks) {
728 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
730 /* start ptr at last block ptr before head_blk */
731 if ((error = xlog_find_verify_log_record(log, start_blk,
732 &head_blk, 0)) == -1) {
733 error = XFS_ERROR(EIO);
734 goto bp_err;
735 } else if (error)
736 goto bp_err;
737 } else {
738 start_blk = 0;
739 ASSERT(head_blk <= INT_MAX);
740 if ((error = xlog_find_verify_log_record(log, start_blk,
741 &head_blk, 0)) == -1) {
742 /* We hit the beginning of the log during our search */
743 start_blk = log_bbnum - num_scan_bblks + head_blk;
744 new_blk = log_bbnum;
745 ASSERT(start_blk <= INT_MAX &&
746 (xfs_daddr_t) log_bbnum-start_blk >= 0);
747 ASSERT(head_blk <= INT_MAX);
748 if ((error = xlog_find_verify_log_record(log,
749 start_blk, &new_blk,
750 (int)head_blk)) == -1) {
751 error = XFS_ERROR(EIO);
752 goto bp_err;
753 } else if (error)
754 goto bp_err;
755 if (new_blk != log_bbnum)
756 head_blk = new_blk;
757 } else if (error)
758 goto bp_err;
761 xlog_put_bp(bp);
762 if (head_blk == log_bbnum)
763 *return_head_blk = 0;
764 else
765 *return_head_blk = head_blk;
767 * When returning here, we have a good block number. Bad block
768 * means that during a previous crash, we didn't have a clean break
769 * from cycle number N to cycle number N-1. In this case, we need
770 * to find the first block with cycle number N-1.
772 return 0;
774 bp_err:
775 xlog_put_bp(bp);
777 if (error)
778 xlog_warn("XFS: failed to find log head");
779 return error;
783 * Find the sync block number or the tail of the log.
785 * This will be the block number of the last record to have its
786 * associated buffers synced to disk. Every log record header has
787 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
788 * to get a sync block number. The only concern is to figure out which
789 * log record header to believe.
791 * The following algorithm uses the log record header with the largest
792 * lsn. The entire log record does not need to be valid. We only care
793 * that the header is valid.
795 * We could speed up search by using current head_blk buffer, but it is not
796 * available.
799 xlog_find_tail(
800 xlog_t *log,
801 xfs_daddr_t *head_blk,
802 xfs_daddr_t *tail_blk,
803 int readonly)
805 xlog_rec_header_t *rhead;
806 xlog_op_header_t *op_head;
807 xfs_caddr_t offset = NULL;
808 xfs_buf_t *bp;
809 int error, i, found;
810 xfs_daddr_t umount_data_blk;
811 xfs_daddr_t after_umount_blk;
812 xfs_lsn_t tail_lsn;
813 int hblks;
815 found = 0;
818 * Find previous log record
820 if ((error = xlog_find_head(log, head_blk)))
821 return error;
823 bp = xlog_get_bp(log, 1);
824 if (!bp)
825 return ENOMEM;
826 if (*head_blk == 0) { /* special case */
827 if ((error = xlog_bread(log, 0, 1, bp)))
828 goto bread_err;
829 offset = xlog_align(log, 0, 1, bp);
830 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
831 *tail_blk = 0;
832 /* leave all other log inited values alone */
833 goto exit;
838 * Search backwards looking for log record header block
840 ASSERT(*head_blk < INT_MAX);
841 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
842 if ((error = xlog_bread(log, i, 1, bp)))
843 goto bread_err;
844 offset = xlog_align(log, i, 1, bp);
845 if (XLOG_HEADER_MAGIC_NUM ==
846 INT_GET(*(uint *)offset, ARCH_CONVERT)) {
847 found = 1;
848 break;
852 * If we haven't found the log record header block, start looking
853 * again from the end of the physical log. XXXmiken: There should be
854 * a check here to make sure we didn't search more than N blocks in
855 * the previous code.
857 if (!found) {
858 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
859 if ((error = xlog_bread(log, i, 1, bp)))
860 goto bread_err;
861 offset = xlog_align(log, i, 1, bp);
862 if (XLOG_HEADER_MAGIC_NUM ==
863 INT_GET(*(uint*)offset, ARCH_CONVERT)) {
864 found = 2;
865 break;
869 if (!found) {
870 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
871 ASSERT(0);
872 return XFS_ERROR(EIO);
875 /* find blk_no of tail of log */
876 rhead = (xlog_rec_header_t *)offset;
877 *tail_blk = BLOCK_LSN(rhead->h_tail_lsn, ARCH_CONVERT);
880 * Reset log values according to the state of the log when we
881 * crashed. In the case where head_blk == 0, we bump curr_cycle
882 * one because the next write starts a new cycle rather than
883 * continuing the cycle of the last good log record. At this
884 * point we have guaranteed that all partial log records have been
885 * accounted for. Therefore, we know that the last good log record
886 * written was complete and ended exactly on the end boundary
887 * of the physical log.
889 log->l_prev_block = i;
890 log->l_curr_block = (int)*head_blk;
891 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
892 if (found == 2)
893 log->l_curr_cycle++;
894 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
895 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
896 log->l_grant_reserve_cycle = log->l_curr_cycle;
897 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
898 log->l_grant_write_cycle = log->l_curr_cycle;
899 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
902 * Look for unmount record. If we find it, then we know there
903 * was a clean unmount. Since 'i' could be the last block in
904 * the physical log, we convert to a log block before comparing
905 * to the head_blk.
907 * Save the current tail lsn to use to pass to
908 * xlog_clear_stale_blocks() below. We won't want to clear the
909 * unmount record if there is one, so we pass the lsn of the
910 * unmount record rather than the block after it.
912 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
913 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
914 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
916 if ((h_version & XLOG_VERSION_2) &&
917 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
918 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
919 if (h_size % XLOG_HEADER_CYCLE_SIZE)
920 hblks++;
921 } else {
922 hblks = 1;
924 } else {
925 hblks = 1;
927 after_umount_blk = (i + hblks + (int)
928 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
929 tail_lsn = log->l_tail_lsn;
930 if (*head_blk == after_umount_blk &&
931 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
932 umount_data_blk = (i + hblks) % log->l_logBBsize;
933 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
934 goto bread_err;
936 offset = xlog_align(log, umount_data_blk, 1, bp);
937 op_head = (xlog_op_header_t *)offset;
938 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
940 * Set tail and last sync so that newly written
941 * log records will point recovery to after the
942 * current unmount record.
944 ASSIGN_ANY_LSN(log->l_tail_lsn, log->l_curr_cycle,
945 after_umount_blk, ARCH_NOCONVERT);
946 ASSIGN_ANY_LSN(log->l_last_sync_lsn, log->l_curr_cycle,
947 after_umount_blk, ARCH_NOCONVERT);
948 *tail_blk = after_umount_blk;
953 * Make sure that there are no blocks in front of the head
954 * with the same cycle number as the head. This can happen
955 * because we allow multiple outstanding log writes concurrently,
956 * and the later writes might make it out before earlier ones.
958 * We use the lsn from before modifying it so that we'll never
959 * overwrite the unmount record after a clean unmount.
961 * Do this only if we are going to recover the filesystem
963 * NOTE: This used to say "if (!readonly)"
964 * However on Linux, we can & do recover a read-only filesystem.
965 * We only skip recovery if NORECOVERY is specified on mount,
966 * in which case we would not be here.
968 * But... if the -device- itself is readonly, just skip this.
969 * We can't recover this device anyway, so it won't matter.
971 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
972 error = xlog_clear_stale_blocks(log, tail_lsn);
975 bread_err:
976 exit:
977 xlog_put_bp(bp);
979 if (error)
980 xlog_warn("XFS: failed to locate log tail");
981 return error;
985 * Is the log zeroed at all?
987 * The last binary search should be changed to perform an X block read
988 * once X becomes small enough. You can then search linearly through
989 * the X blocks. This will cut down on the number of reads we need to do.
991 * If the log is partially zeroed, this routine will pass back the blkno
992 * of the first block with cycle number 0. It won't have a complete LR
993 * preceding it.
995 * Return:
996 * 0 => the log is completely written to
997 * -1 => use *blk_no as the first block of the log
998 * >0 => error has occurred
1001 xlog_find_zeroed(
1002 xlog_t *log,
1003 xfs_daddr_t *blk_no)
1005 xfs_buf_t *bp;
1006 xfs_caddr_t offset;
1007 uint first_cycle, last_cycle;
1008 xfs_daddr_t new_blk, last_blk, start_blk;
1009 xfs_daddr_t num_scan_bblks;
1010 int error, log_bbnum = log->l_logBBsize;
1012 /* check totally zeroed log */
1013 bp = xlog_get_bp(log, 1);
1014 if (!bp)
1015 return ENOMEM;
1016 if ((error = xlog_bread(log, 0, 1, bp)))
1017 goto bp_err;
1018 offset = xlog_align(log, 0, 1, bp);
1019 first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1020 if (first_cycle == 0) { /* completely zeroed log */
1021 *blk_no = 0;
1022 xlog_put_bp(bp);
1023 return -1;
1026 /* check partially zeroed log */
1027 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1028 goto bp_err;
1029 offset = xlog_align(log, log_bbnum-1, 1, bp);
1030 last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1031 if (last_cycle != 0) { /* log completely written to */
1032 xlog_put_bp(bp);
1033 return 0;
1034 } else if (first_cycle != 1) {
1036 * If the cycle of the last block is zero, the cycle of
1037 * the first block must be 1. If it's not, maybe we're
1038 * not looking at a log... Bail out.
1040 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1041 return XFS_ERROR(EINVAL);
1044 /* we have a partially zeroed log */
1045 last_blk = log_bbnum-1;
1046 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1047 goto bp_err;
1050 * Validate the answer. Because there is no way to guarantee that
1051 * the entire log is made up of log records which are the same size,
1052 * we scan over the defined maximum blocks. At this point, the maximum
1053 * is not chosen to mean anything special. XXXmiken
1055 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1056 ASSERT(num_scan_bblks <= INT_MAX);
1058 if (last_blk < num_scan_bblks)
1059 num_scan_bblks = last_blk;
1060 start_blk = last_blk - num_scan_bblks;
1063 * We search for any instances of cycle number 0 that occur before
1064 * our current estimate of the head. What we're trying to detect is
1065 * 1 ... | 0 | 1 | 0...
1066 * ^ binary search ends here
1068 if ((error = xlog_find_verify_cycle(log, start_blk,
1069 (int)num_scan_bblks, 0, &new_blk)))
1070 goto bp_err;
1071 if (new_blk != -1)
1072 last_blk = new_blk;
1075 * Potentially backup over partial log record write. We don't need
1076 * to search the end of the log because we know it is zero.
1078 if ((error = xlog_find_verify_log_record(log, start_blk,
1079 &last_blk, 0)) == -1) {
1080 error = XFS_ERROR(EIO);
1081 goto bp_err;
1082 } else if (error)
1083 goto bp_err;
1085 *blk_no = last_blk;
1086 bp_err:
1087 xlog_put_bp(bp);
1088 if (error)
1089 return error;
1090 return -1;
1094 * These are simple subroutines used by xlog_clear_stale_blocks() below
1095 * to initialize a buffer full of empty log record headers and write
1096 * them into the log.
1098 STATIC void
1099 xlog_add_record(
1100 xlog_t *log,
1101 xfs_caddr_t buf,
1102 int cycle,
1103 int block,
1104 int tail_cycle,
1105 int tail_block)
1107 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1109 memset(buf, 0, BBSIZE);
1110 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1111 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1112 INT_SET(recp->h_version, ARCH_CONVERT,
1113 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1114 ASSIGN_ANY_LSN(recp->h_lsn, cycle, block, ARCH_CONVERT);
1115 ASSIGN_ANY_LSN(recp->h_tail_lsn, tail_cycle, tail_block, ARCH_CONVERT);
1116 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1117 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1120 STATIC int
1121 xlog_write_log_records(
1122 xlog_t *log,
1123 int cycle,
1124 int start_block,
1125 int blocks,
1126 int tail_cycle,
1127 int tail_block)
1129 xfs_caddr_t offset;
1130 xfs_buf_t *bp;
1131 int balign, ealign;
1132 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1133 int end_block = start_block + blocks;
1134 int bufblks;
1135 int error = 0;
1136 int i, j = 0;
1138 bufblks = 1 << ffs(blocks);
1139 while (!(bp = xlog_get_bp(log, bufblks))) {
1140 bufblks >>= 1;
1141 if (bufblks <= log->l_sectbb_log)
1142 return ENOMEM;
1145 /* We may need to do a read at the start to fill in part of
1146 * the buffer in the starting sector not covered by the first
1147 * write below.
1149 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1150 if (balign != start_block) {
1151 if ((error = xlog_bread(log, start_block, 1, bp))) {
1152 xlog_put_bp(bp);
1153 return error;
1155 j = start_block - balign;
1158 for (i = start_block; i < end_block; i += bufblks) {
1159 int bcount, endcount;
1161 bcount = min(bufblks, end_block - start_block);
1162 endcount = bcount - j;
1164 /* We may need to do a read at the end to fill in part of
1165 * the buffer in the final sector not covered by the write.
1166 * If this is the same sector as the above read, skip it.
1168 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1169 if (j == 0 && (start_block + endcount > ealign)) {
1170 offset = XFS_BUF_PTR(bp);
1171 balign = BBTOB(ealign - start_block);
1172 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1173 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1174 break;
1175 XFS_BUF_SET_PTR(bp, offset, bufblks);
1178 offset = xlog_align(log, start_block, endcount, bp);
1179 for (; j < endcount; j++) {
1180 xlog_add_record(log, offset, cycle, i+j,
1181 tail_cycle, tail_block);
1182 offset += BBSIZE;
1184 error = xlog_bwrite(log, start_block, endcount, bp);
1185 if (error)
1186 break;
1187 start_block += endcount;
1188 j = 0;
1190 xlog_put_bp(bp);
1191 return error;
1195 * This routine is called to blow away any incomplete log writes out
1196 * in front of the log head. We do this so that we won't become confused
1197 * if we come up, write only a little bit more, and then crash again.
1198 * If we leave the partial log records out there, this situation could
1199 * cause us to think those partial writes are valid blocks since they
1200 * have the current cycle number. We get rid of them by overwriting them
1201 * with empty log records with the old cycle number rather than the
1202 * current one.
1204 * The tail lsn is passed in rather than taken from
1205 * the log so that we will not write over the unmount record after a
1206 * clean unmount in a 512 block log. Doing so would leave the log without
1207 * any valid log records in it until a new one was written. If we crashed
1208 * during that time we would not be able to recover.
1210 STATIC int
1211 xlog_clear_stale_blocks(
1212 xlog_t *log,
1213 xfs_lsn_t tail_lsn)
1215 int tail_cycle, head_cycle;
1216 int tail_block, head_block;
1217 int tail_distance, max_distance;
1218 int distance;
1219 int error;
1221 tail_cycle = CYCLE_LSN(tail_lsn, ARCH_NOCONVERT);
1222 tail_block = BLOCK_LSN(tail_lsn, ARCH_NOCONVERT);
1223 head_cycle = log->l_curr_cycle;
1224 head_block = log->l_curr_block;
1227 * Figure out the distance between the new head of the log
1228 * and the tail. We want to write over any blocks beyond the
1229 * head that we may have written just before the crash, but
1230 * we don't want to overwrite the tail of the log.
1232 if (head_cycle == tail_cycle) {
1234 * The tail is behind the head in the physical log,
1235 * so the distance from the head to the tail is the
1236 * distance from the head to the end of the log plus
1237 * the distance from the beginning of the log to the
1238 * tail.
1240 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1241 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1242 XFS_ERRLEVEL_LOW, log->l_mp);
1243 return XFS_ERROR(EFSCORRUPTED);
1245 tail_distance = tail_block + (log->l_logBBsize - head_block);
1246 } else {
1248 * The head is behind the tail in the physical log,
1249 * so the distance from the head to the tail is just
1250 * the tail block minus the head block.
1252 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1253 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1254 XFS_ERRLEVEL_LOW, log->l_mp);
1255 return XFS_ERROR(EFSCORRUPTED);
1257 tail_distance = tail_block - head_block;
1261 * If the head is right up against the tail, we can't clear
1262 * anything.
1264 if (tail_distance <= 0) {
1265 ASSERT(tail_distance == 0);
1266 return 0;
1269 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1271 * Take the smaller of the maximum amount of outstanding I/O
1272 * we could have and the distance to the tail to clear out.
1273 * We take the smaller so that we don't overwrite the tail and
1274 * we don't waste all day writing from the head to the tail
1275 * for no reason.
1277 max_distance = MIN(max_distance, tail_distance);
1279 if ((head_block + max_distance) <= log->l_logBBsize) {
1281 * We can stomp all the blocks we need to without
1282 * wrapping around the end of the log. Just do it
1283 * in a single write. Use the cycle number of the
1284 * current cycle minus one so that the log will look like:
1285 * n ... | n - 1 ...
1287 error = xlog_write_log_records(log, (head_cycle - 1),
1288 head_block, max_distance, tail_cycle,
1289 tail_block);
1290 if (error)
1291 return error;
1292 } else {
1294 * We need to wrap around the end of the physical log in
1295 * order to clear all the blocks. Do it in two separate
1296 * I/Os. The first write should be from the head to the
1297 * end of the physical log, and it should use the current
1298 * cycle number minus one just like above.
1300 distance = log->l_logBBsize - head_block;
1301 error = xlog_write_log_records(log, (head_cycle - 1),
1302 head_block, distance, tail_cycle,
1303 tail_block);
1305 if (error)
1306 return error;
1309 * Now write the blocks at the start of the physical log.
1310 * This writes the remainder of the blocks we want to clear.
1311 * It uses the current cycle number since we're now on the
1312 * same cycle as the head so that we get:
1313 * n ... n ... | n - 1 ...
1314 * ^^^^^ blocks we're writing
1316 distance = max_distance - (log->l_logBBsize - head_block);
1317 error = xlog_write_log_records(log, head_cycle, 0, distance,
1318 tail_cycle, tail_block);
1319 if (error)
1320 return error;
1323 return 0;
1326 /******************************************************************************
1328 * Log recover routines
1330 ******************************************************************************
1333 STATIC xlog_recover_t *
1334 xlog_recover_find_tid(
1335 xlog_recover_t *q,
1336 xlog_tid_t tid)
1338 xlog_recover_t *p = q;
1340 while (p != NULL) {
1341 if (p->r_log_tid == tid)
1342 break;
1343 p = p->r_next;
1345 return p;
1348 STATIC void
1349 xlog_recover_put_hashq(
1350 xlog_recover_t **q,
1351 xlog_recover_t *trans)
1353 trans->r_next = *q;
1354 *q = trans;
1357 STATIC void
1358 xlog_recover_add_item(
1359 xlog_recover_item_t **itemq)
1361 xlog_recover_item_t *item;
1363 item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
1364 xlog_recover_insert_item_backq(itemq, item);
1367 STATIC int
1368 xlog_recover_add_to_cont_trans(
1369 xlog_recover_t *trans,
1370 xfs_caddr_t dp,
1371 int len)
1373 xlog_recover_item_t *item;
1374 xfs_caddr_t ptr, old_ptr;
1375 int old_len;
1377 item = trans->r_itemq;
1378 if (item == 0) {
1379 /* finish copying rest of trans header */
1380 xlog_recover_add_item(&trans->r_itemq);
1381 ptr = (xfs_caddr_t) &trans->r_theader +
1382 sizeof(xfs_trans_header_t) - len;
1383 memcpy(ptr, dp, len); /* d, s, l */
1384 return 0;
1386 item = item->ri_prev;
1388 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1389 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1391 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0);
1392 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1393 item->ri_buf[item->ri_cnt-1].i_len += len;
1394 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1395 return 0;
1399 * The next region to add is the start of a new region. It could be
1400 * a whole region or it could be the first part of a new region. Because
1401 * of this, the assumption here is that the type and size fields of all
1402 * format structures fit into the first 32 bits of the structure.
1404 * This works because all regions must be 32 bit aligned. Therefore, we
1405 * either have both fields or we have neither field. In the case we have
1406 * neither field, the data part of the region is zero length. We only have
1407 * a log_op_header and can throw away the header since a new one will appear
1408 * later. If we have at least 4 bytes, then we can determine how many regions
1409 * will appear in the current log item.
1411 STATIC int
1412 xlog_recover_add_to_trans(
1413 xlog_recover_t *trans,
1414 xfs_caddr_t dp,
1415 int len)
1417 xfs_inode_log_format_t *in_f; /* any will do */
1418 xlog_recover_item_t *item;
1419 xfs_caddr_t ptr;
1421 if (!len)
1422 return 0;
1423 item = trans->r_itemq;
1424 if (item == 0) {
1425 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1426 if (len == sizeof(xfs_trans_header_t))
1427 xlog_recover_add_item(&trans->r_itemq);
1428 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1429 return 0;
1432 ptr = kmem_alloc(len, KM_SLEEP);
1433 memcpy(ptr, dp, len);
1434 in_f = (xfs_inode_log_format_t *)ptr;
1436 if (item->ri_prev->ri_total != 0 &&
1437 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1438 xlog_recover_add_item(&trans->r_itemq);
1440 item = trans->r_itemq;
1441 item = item->ri_prev;
1443 if (item->ri_total == 0) { /* first region to be added */
1444 item->ri_total = in_f->ilf_size;
1445 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1446 item->ri_buf = kmem_zalloc((item->ri_total *
1447 sizeof(xfs_log_iovec_t)), 0);
1449 ASSERT(item->ri_total > item->ri_cnt);
1450 /* Description region is ri_buf[0] */
1451 item->ri_buf[item->ri_cnt].i_addr = ptr;
1452 item->ri_buf[item->ri_cnt].i_len = len;
1453 item->ri_cnt++;
1454 return 0;
1457 STATIC void
1458 xlog_recover_new_tid(
1459 xlog_recover_t **q,
1460 xlog_tid_t tid,
1461 xfs_lsn_t lsn)
1463 xlog_recover_t *trans;
1465 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1466 trans->r_log_tid = tid;
1467 trans->r_lsn = lsn;
1468 xlog_recover_put_hashq(q, trans);
1471 STATIC int
1472 xlog_recover_unlink_tid(
1473 xlog_recover_t **q,
1474 xlog_recover_t *trans)
1476 xlog_recover_t *tp;
1477 int found = 0;
1479 ASSERT(trans != 0);
1480 if (trans == *q) {
1481 *q = (*q)->r_next;
1482 } else {
1483 tp = *q;
1484 while (tp != 0) {
1485 if (tp->r_next == trans) {
1486 found = 1;
1487 break;
1489 tp = tp->r_next;
1491 if (!found) {
1492 xlog_warn(
1493 "XFS: xlog_recover_unlink_tid: trans not found");
1494 ASSERT(0);
1495 return XFS_ERROR(EIO);
1497 tp->r_next = tp->r_next->r_next;
1499 return 0;
1502 STATIC void
1503 xlog_recover_insert_item_backq(
1504 xlog_recover_item_t **q,
1505 xlog_recover_item_t *item)
1507 if (*q == 0) {
1508 item->ri_prev = item->ri_next = item;
1509 *q = item;
1510 } else {
1511 item->ri_next = *q;
1512 item->ri_prev = (*q)->ri_prev;
1513 (*q)->ri_prev = item;
1514 item->ri_prev->ri_next = item;
1518 STATIC void
1519 xlog_recover_insert_item_frontq(
1520 xlog_recover_item_t **q,
1521 xlog_recover_item_t *item)
1523 xlog_recover_insert_item_backq(q, item);
1524 *q = item;
1527 STATIC int
1528 xlog_recover_reorder_trans(
1529 xlog_t *log,
1530 xlog_recover_t *trans)
1532 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1534 first_item = itemq = trans->r_itemq;
1535 trans->r_itemq = NULL;
1536 do {
1537 itemq_next = itemq->ri_next;
1538 switch (ITEM_TYPE(itemq)) {
1539 case XFS_LI_BUF:
1540 case XFS_LI_6_1_BUF:
1541 case XFS_LI_5_3_BUF:
1542 xlog_recover_insert_item_frontq(&trans->r_itemq, itemq);
1543 break;
1544 case XFS_LI_INODE:
1545 case XFS_LI_6_1_INODE:
1546 case XFS_LI_5_3_INODE:
1547 case XFS_LI_DQUOT:
1548 case XFS_LI_QUOTAOFF:
1549 case XFS_LI_EFD:
1550 case XFS_LI_EFI:
1551 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1552 break;
1553 default:
1554 xlog_warn(
1555 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1556 ASSERT(0);
1557 return XFS_ERROR(EIO);
1559 itemq = itemq_next;
1560 } while (first_item != itemq);
1561 return 0;
1565 * Build up the table of buf cancel records so that we don't replay
1566 * cancelled data in the second pass. For buffer records that are
1567 * not cancel records, there is nothing to do here so we just return.
1569 * If we get a cancel record which is already in the table, this indicates
1570 * that the buffer was cancelled multiple times. In order to ensure
1571 * that during pass 2 we keep the record in the table until we reach its
1572 * last occurrence in the log, we keep a reference count in the cancel
1573 * record in the table to tell us how many times we expect to see this
1574 * record during the second pass.
1576 STATIC void
1577 xlog_recover_do_buffer_pass1(
1578 xlog_t *log,
1579 xfs_buf_log_format_t *buf_f)
1581 xfs_buf_cancel_t *bcp;
1582 xfs_buf_cancel_t *nextp;
1583 xfs_buf_cancel_t *prevp;
1584 xfs_buf_cancel_t **bucket;
1585 xfs_buf_log_format_v1_t *obuf_f;
1586 xfs_daddr_t blkno = 0;
1587 uint len = 0;
1588 ushort flags = 0;
1590 switch (buf_f->blf_type) {
1591 case XFS_LI_BUF:
1592 blkno = buf_f->blf_blkno;
1593 len = buf_f->blf_len;
1594 flags = buf_f->blf_flags;
1595 break;
1596 case XFS_LI_6_1_BUF:
1597 case XFS_LI_5_3_BUF:
1598 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1599 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1600 len = obuf_f->blf_len;
1601 flags = obuf_f->blf_flags;
1602 break;
1606 * If this isn't a cancel buffer item, then just return.
1608 if (!(flags & XFS_BLI_CANCEL))
1609 return;
1612 * Insert an xfs_buf_cancel record into the hash table of
1613 * them. If there is already an identical record, bump
1614 * its reference count.
1616 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1617 XLOG_BC_TABLE_SIZE];
1619 * If the hash bucket is empty then just insert a new record into
1620 * the bucket.
1622 if (*bucket == NULL) {
1623 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1624 KM_SLEEP);
1625 bcp->bc_blkno = blkno;
1626 bcp->bc_len = len;
1627 bcp->bc_refcount = 1;
1628 bcp->bc_next = NULL;
1629 *bucket = bcp;
1630 return;
1634 * The hash bucket is not empty, so search for duplicates of our
1635 * record. If we find one them just bump its refcount. If not
1636 * then add us at the end of the list.
1638 prevp = NULL;
1639 nextp = *bucket;
1640 while (nextp != NULL) {
1641 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1642 nextp->bc_refcount++;
1643 return;
1645 prevp = nextp;
1646 nextp = nextp->bc_next;
1648 ASSERT(prevp != NULL);
1649 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1650 KM_SLEEP);
1651 bcp->bc_blkno = blkno;
1652 bcp->bc_len = len;
1653 bcp->bc_refcount = 1;
1654 bcp->bc_next = NULL;
1655 prevp->bc_next = bcp;
1659 * Check to see whether the buffer being recovered has a corresponding
1660 * entry in the buffer cancel record table. If it does then return 1
1661 * so that it will be cancelled, otherwise return 0. If the buffer is
1662 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1663 * the refcount on the entry in the table and remove it from the table
1664 * if this is the last reference.
1666 * We remove the cancel record from the table when we encounter its
1667 * last occurrence in the log so that if the same buffer is re-used
1668 * again after its last cancellation we actually replay the changes
1669 * made at that point.
1671 STATIC int
1672 xlog_recover_do_buffer_pass2(
1673 xlog_t *log,
1674 xfs_buf_log_format_t *buf_f)
1676 xfs_buf_cancel_t *bcp;
1677 xfs_buf_cancel_t *prevp;
1678 xfs_buf_cancel_t **bucket;
1679 xfs_buf_log_format_v1_t *obuf_f;
1680 xfs_daddr_t blkno = 0;
1681 ushort flags = 0;
1682 uint len = 0;
1684 switch (buf_f->blf_type) {
1685 case XFS_LI_BUF:
1686 blkno = buf_f->blf_blkno;
1687 flags = buf_f->blf_flags;
1688 len = buf_f->blf_len;
1689 break;
1690 case XFS_LI_6_1_BUF:
1691 case XFS_LI_5_3_BUF:
1692 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1693 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1694 flags = obuf_f->blf_flags;
1695 len = (xfs_daddr_t) obuf_f->blf_len;
1696 break;
1698 if (log->l_buf_cancel_table == NULL) {
1700 * There is nothing in the table built in pass one,
1701 * so this buffer must not be cancelled.
1703 ASSERT(!(flags & XFS_BLI_CANCEL));
1704 return 0;
1707 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1708 XLOG_BC_TABLE_SIZE];
1709 bcp = *bucket;
1710 if (bcp == NULL) {
1712 * There is no corresponding entry in the table built
1713 * in pass one, so this buffer has not been cancelled.
1715 ASSERT(!(flags & XFS_BLI_CANCEL));
1716 return 0;
1720 * Search for an entry in the buffer cancel table that
1721 * matches our buffer.
1723 prevp = NULL;
1724 while (bcp != NULL) {
1725 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1727 * We've go a match, so return 1 so that the
1728 * recovery of this buffer is cancelled.
1729 * If this buffer is actually a buffer cancel
1730 * log item, then decrement the refcount on the
1731 * one in the table and remove it if this is the
1732 * last reference.
1734 if (flags & XFS_BLI_CANCEL) {
1735 bcp->bc_refcount--;
1736 if (bcp->bc_refcount == 0) {
1737 if (prevp == NULL) {
1738 *bucket = bcp->bc_next;
1739 } else {
1740 prevp->bc_next = bcp->bc_next;
1742 kmem_free(bcp,
1743 sizeof(xfs_buf_cancel_t));
1746 return 1;
1748 prevp = bcp;
1749 bcp = bcp->bc_next;
1752 * We didn't find a corresponding entry in the table, so
1753 * return 0 so that the buffer is NOT cancelled.
1755 ASSERT(!(flags & XFS_BLI_CANCEL));
1756 return 0;
1760 * Perform recovery for a buffer full of inodes. In these buffers,
1761 * the only data which should be recovered is that which corresponds
1762 * to the di_next_unlinked pointers in the on disk inode structures.
1763 * The rest of the data for the inodes is always logged through the
1764 * inodes themselves rather than the inode buffer and is recovered
1765 * in xlog_recover_do_inode_trans().
1767 * The only time when buffers full of inodes are fully recovered is
1768 * when the buffer is full of newly allocated inodes. In this case
1769 * the buffer will not be marked as an inode buffer and so will be
1770 * sent to xlog_recover_do_reg_buffer() below during recovery.
1772 STATIC int
1773 xlog_recover_do_inode_buffer(
1774 xfs_mount_t *mp,
1775 xlog_recover_item_t *item,
1776 xfs_buf_t *bp,
1777 xfs_buf_log_format_t *buf_f)
1779 int i;
1780 int item_index;
1781 int bit;
1782 int nbits;
1783 int reg_buf_offset;
1784 int reg_buf_bytes;
1785 int next_unlinked_offset;
1786 int inodes_per_buf;
1787 xfs_agino_t *logged_nextp;
1788 xfs_agino_t *buffer_nextp;
1789 xfs_buf_log_format_v1_t *obuf_f;
1790 unsigned int *data_map = NULL;
1791 unsigned int map_size = 0;
1793 switch (buf_f->blf_type) {
1794 case XFS_LI_BUF:
1795 data_map = buf_f->blf_data_map;
1796 map_size = buf_f->blf_map_size;
1797 break;
1798 case XFS_LI_6_1_BUF:
1799 case XFS_LI_5_3_BUF:
1800 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1801 data_map = obuf_f->blf_data_map;
1802 map_size = obuf_f->blf_map_size;
1803 break;
1806 * Set the variables corresponding to the current region to
1807 * 0 so that we'll initialize them on the first pass through
1808 * the loop.
1810 reg_buf_offset = 0;
1811 reg_buf_bytes = 0;
1812 bit = 0;
1813 nbits = 0;
1814 item_index = 0;
1815 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1816 for (i = 0; i < inodes_per_buf; i++) {
1817 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1818 offsetof(xfs_dinode_t, di_next_unlinked);
1820 while (next_unlinked_offset >=
1821 (reg_buf_offset + reg_buf_bytes)) {
1823 * The next di_next_unlinked field is beyond
1824 * the current logged region. Find the next
1825 * logged region that contains or is beyond
1826 * the current di_next_unlinked field.
1828 bit += nbits;
1829 bit = xfs_next_bit(data_map, map_size, bit);
1832 * If there are no more logged regions in the
1833 * buffer, then we're done.
1835 if (bit == -1) {
1836 return 0;
1839 nbits = xfs_contig_bits(data_map, map_size,
1840 bit);
1841 reg_buf_offset = bit << XFS_BLI_SHIFT;
1842 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1843 item_index++;
1847 * If the current logged region starts after the current
1848 * di_next_unlinked field, then move on to the next
1849 * di_next_unlinked field.
1851 if (next_unlinked_offset < reg_buf_offset) {
1852 continue;
1855 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1856 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1857 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1860 * The current logged region contains a copy of the
1861 * current di_next_unlinked field. Extract its value
1862 * and copy it to the buffer copy.
1864 logged_nextp = (xfs_agino_t *)
1865 ((char *)(item->ri_buf[item_index].i_addr) +
1866 (next_unlinked_offset - reg_buf_offset));
1867 if (unlikely(*logged_nextp == 0)) {
1868 xfs_fs_cmn_err(CE_ALERT, mp,
1869 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1870 item, bp);
1871 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1872 XFS_ERRLEVEL_LOW, mp);
1873 return XFS_ERROR(EFSCORRUPTED);
1876 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1877 next_unlinked_offset);
1878 INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1881 return 0;
1885 * Perform a 'normal' buffer recovery. Each logged region of the
1886 * buffer should be copied over the corresponding region in the
1887 * given buffer. The bitmap in the buf log format structure indicates
1888 * where to place the logged data.
1890 /*ARGSUSED*/
1891 STATIC void
1892 xlog_recover_do_reg_buffer(
1893 xfs_mount_t *mp,
1894 xlog_recover_item_t *item,
1895 xfs_buf_t *bp,
1896 xfs_buf_log_format_t *buf_f)
1898 int i;
1899 int bit;
1900 int nbits;
1901 xfs_buf_log_format_v1_t *obuf_f;
1902 unsigned int *data_map = NULL;
1903 unsigned int map_size = 0;
1904 int error;
1906 switch (buf_f->blf_type) {
1907 case XFS_LI_BUF:
1908 data_map = buf_f->blf_data_map;
1909 map_size = buf_f->blf_map_size;
1910 break;
1911 case XFS_LI_6_1_BUF:
1912 case XFS_LI_5_3_BUF:
1913 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1914 data_map = obuf_f->blf_data_map;
1915 map_size = obuf_f->blf_map_size;
1916 break;
1918 bit = 0;
1919 i = 1; /* 0 is the buf format structure */
1920 while (1) {
1921 bit = xfs_next_bit(data_map, map_size, bit);
1922 if (bit == -1)
1923 break;
1924 nbits = xfs_contig_bits(data_map, map_size, bit);
1925 ASSERT(item->ri_buf[i].i_addr != 0);
1926 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1927 ASSERT(XFS_BUF_COUNT(bp) >=
1928 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1931 * Do a sanity check if this is a dquot buffer. Just checking
1932 * the first dquot in the buffer should do. XXXThis is
1933 * probably a good thing to do for other buf types also.
1935 error = 0;
1936 if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1937 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1938 item->ri_buf[i].i_addr,
1939 -1, 0, XFS_QMOPT_DOWARN,
1940 "dquot_buf_recover");
1942 if (!error)
1943 memcpy(xfs_buf_offset(bp,
1944 (uint)bit << XFS_BLI_SHIFT), /* dest */
1945 item->ri_buf[i].i_addr, /* source */
1946 nbits<<XFS_BLI_SHIFT); /* length */
1947 i++;
1948 bit += nbits;
1951 /* Shouldn't be any more regions */
1952 ASSERT(i == item->ri_total);
1956 * Do some primitive error checking on ondisk dquot data structures.
1959 xfs_qm_dqcheck(
1960 xfs_disk_dquot_t *ddq,
1961 xfs_dqid_t id,
1962 uint type, /* used only when IO_dorepair is true */
1963 uint flags,
1964 char *str)
1966 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1967 int errs = 0;
1970 * We can encounter an uninitialized dquot buffer for 2 reasons:
1971 * 1. If we crash while deleting the quotainode(s), and those blks got
1972 * used for user data. This is because we take the path of regular
1973 * file deletion; however, the size field of quotainodes is never
1974 * updated, so all the tricks that we play in itruncate_finish
1975 * don't quite matter.
1977 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1978 * But the allocation will be replayed so we'll end up with an
1979 * uninitialized quota block.
1981 * This is all fine; things are still consistent, and we haven't lost
1982 * any quota information. Just don't complain about bad dquot blks.
1984 if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) {
1985 if (flags & XFS_QMOPT_DOWARN)
1986 cmn_err(CE_ALERT,
1987 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1988 str, id,
1989 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC);
1990 errs++;
1992 if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) {
1993 if (flags & XFS_QMOPT_DOWARN)
1994 cmn_err(CE_ALERT,
1995 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1996 str, id,
1997 INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION);
1998 errs++;
2001 if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER &&
2002 INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) {
2003 if (flags & XFS_QMOPT_DOWARN)
2004 cmn_err(CE_ALERT,
2005 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2006 str, id, INT_GET(ddq->d_flags, ARCH_CONVERT));
2007 errs++;
2010 if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) {
2011 if (flags & XFS_QMOPT_DOWARN)
2012 cmn_err(CE_ALERT,
2013 "%s : ondisk-dquot 0x%x, ID mismatch: "
2014 "0x%x expected, found id 0x%x",
2015 str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT));
2016 errs++;
2019 if (! errs) {
2020 if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) &&
2021 INT_GET(ddq->d_bcount, ARCH_CONVERT) >=
2022 INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) {
2023 if (INT_ISZERO(ddq->d_btimer, ARCH_CONVERT) &&
2024 !INT_ISZERO(ddq->d_id, ARCH_CONVERT)) {
2025 if (flags & XFS_QMOPT_DOWARN)
2026 cmn_err(CE_ALERT,
2027 "%s : Dquot ID 0x%x (0x%x) "
2028 "BLK TIMER NOT STARTED",
2029 str, (int)
2030 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2031 errs++;
2034 if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) &&
2035 INT_GET(ddq->d_icount, ARCH_CONVERT) >=
2036 INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) {
2037 if (INT_ISZERO(ddq->d_itimer, ARCH_CONVERT) &&
2038 !INT_ISZERO(ddq->d_id, ARCH_CONVERT)) {
2039 if (flags & XFS_QMOPT_DOWARN)
2040 cmn_err(CE_ALERT,
2041 "%s : Dquot ID 0x%x (0x%x) "
2042 "INODE TIMER NOT STARTED",
2043 str, (int)
2044 INT_GET(ddq->d_id, ARCH_CONVERT), ddq);
2045 errs++;
2050 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2051 return errs;
2053 if (flags & XFS_QMOPT_DOWARN)
2054 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2057 * Typically, a repair is only requested by quotacheck.
2059 ASSERT(id != -1);
2060 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2061 memset(d, 0, sizeof(xfs_dqblk_t));
2062 INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC);
2063 INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION);
2064 INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id);
2065 INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type);
2067 return errs;
2071 * Perform a dquot buffer recovery.
2072 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2073 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2074 * Else, treat it as a regular buffer and do recovery.
2076 STATIC void
2077 xlog_recover_do_dquot_buffer(
2078 xfs_mount_t *mp,
2079 xlog_t *log,
2080 xlog_recover_item_t *item,
2081 xfs_buf_t *bp,
2082 xfs_buf_log_format_t *buf_f)
2084 uint type;
2087 * Filesystems are required to send in quota flags at mount time.
2089 if (mp->m_qflags == 0) {
2090 return;
2093 type = 0;
2094 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2095 type |= XFS_DQ_USER;
2096 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2097 type |= XFS_DQ_GROUP;
2099 * This type of quotas was turned off, so ignore this buffer
2101 if (log->l_quotaoffs_flag & type)
2102 return;
2104 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2108 * This routine replays a modification made to a buffer at runtime.
2109 * There are actually two types of buffer, regular and inode, which
2110 * are handled differently. Inode buffers are handled differently
2111 * in that we only recover a specific set of data from them, namely
2112 * the inode di_next_unlinked fields. This is because all other inode
2113 * data is actually logged via inode records and any data we replay
2114 * here which overlaps that may be stale.
2116 * When meta-data buffers are freed at run time we log a buffer item
2117 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2118 * of the buffer in the log should not be replayed at recovery time.
2119 * This is so that if the blocks covered by the buffer are reused for
2120 * file data before we crash we don't end up replaying old, freed
2121 * meta-data into a user's file.
2123 * To handle the cancellation of buffer log items, we make two passes
2124 * over the log during recovery. During the first we build a table of
2125 * those buffers which have been cancelled, and during the second we
2126 * only replay those buffers which do not have corresponding cancel
2127 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2128 * for more details on the implementation of the table of cancel records.
2130 STATIC int
2131 xlog_recover_do_buffer_trans(
2132 xlog_t *log,
2133 xlog_recover_item_t *item,
2134 int pass)
2136 xfs_buf_log_format_t *buf_f;
2137 xfs_buf_log_format_v1_t *obuf_f;
2138 xfs_mount_t *mp;
2139 xfs_buf_t *bp;
2140 int error;
2141 int cancel;
2142 xfs_daddr_t blkno;
2143 int len;
2144 ushort flags;
2146 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2148 if (pass == XLOG_RECOVER_PASS1) {
2150 * In this pass we're only looking for buf items
2151 * with the XFS_BLI_CANCEL bit set.
2153 xlog_recover_do_buffer_pass1(log, buf_f);
2154 return 0;
2155 } else {
2157 * In this pass we want to recover all the buffers
2158 * which have not been cancelled and are not
2159 * cancellation buffers themselves. The routine
2160 * we call here will tell us whether or not to
2161 * continue with the replay of this buffer.
2163 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2164 if (cancel) {
2165 return 0;
2168 switch (buf_f->blf_type) {
2169 case XFS_LI_BUF:
2170 blkno = buf_f->blf_blkno;
2171 len = buf_f->blf_len;
2172 flags = buf_f->blf_flags;
2173 break;
2174 case XFS_LI_6_1_BUF:
2175 case XFS_LI_5_3_BUF:
2176 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2177 blkno = obuf_f->blf_blkno;
2178 len = obuf_f->blf_len;
2179 flags = obuf_f->blf_flags;
2180 break;
2181 default:
2182 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2183 "xfs_log_recover: unknown buffer type 0x%x, dev 0x%x",
2184 buf_f->blf_type, log->l_dev);
2185 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2186 XFS_ERRLEVEL_LOW, log->l_mp);
2187 return XFS_ERROR(EFSCORRUPTED);
2190 mp = log->l_mp;
2191 if (flags & XFS_BLI_INODE_BUF) {
2192 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2193 XFS_BUF_LOCK);
2194 } else {
2195 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2197 if (XFS_BUF_ISERROR(bp)) {
2198 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2199 bp, blkno);
2200 error = XFS_BUF_GETERROR(bp);
2201 xfs_buf_relse(bp);
2202 return error;
2205 error = 0;
2206 if (flags & XFS_BLI_INODE_BUF) {
2207 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2208 } else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_GDQUOT_BUF)) {
2209 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2210 } else {
2211 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2213 if (error)
2214 return XFS_ERROR(error);
2217 * Perform delayed write on the buffer. Asynchronous writes will be
2218 * slower when taking into account all the buffers to be flushed.
2220 * Also make sure that only inode buffers with good sizes stay in
2221 * the buffer cache. The kernel moves inodes in buffers of 1 block
2222 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2223 * buffers in the log can be a different size if the log was generated
2224 * by an older kernel using unclustered inode buffers or a newer kernel
2225 * running with a different inode cluster size. Regardless, if the
2226 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2227 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2228 * the buffer out of the buffer cache so that the buffer won't
2229 * overlap with future reads of those inodes.
2231 if (XFS_DINODE_MAGIC ==
2232 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2233 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2234 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2235 XFS_BUF_STALE(bp);
2236 error = xfs_bwrite(mp, bp);
2237 } else {
2238 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2239 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2240 XFS_BUF_SET_FSPRIVATE(bp, mp);
2241 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2242 xfs_bdwrite(mp, bp);
2245 return (error);
2248 STATIC int
2249 xlog_recover_do_inode_trans(
2250 xlog_t *log,
2251 xlog_recover_item_t *item,
2252 int pass)
2254 xfs_inode_log_format_t *in_f;
2255 xfs_mount_t *mp;
2256 xfs_buf_t *bp;
2257 xfs_imap_t imap;
2258 xfs_dinode_t *dip;
2259 xfs_ino_t ino;
2260 int len;
2261 xfs_caddr_t src;
2262 xfs_caddr_t dest;
2263 int error;
2264 int attr_index;
2265 uint fields;
2266 xfs_dinode_core_t *dicp;
2268 if (pass == XLOG_RECOVER_PASS1) {
2269 return 0;
2272 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2273 ino = in_f->ilf_ino;
2274 mp = log->l_mp;
2275 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2276 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2277 imap.im_len = in_f->ilf_len;
2278 imap.im_boffset = in_f->ilf_boffset;
2279 } else {
2281 * It's an old inode format record. We don't know where
2282 * its cluster is located on disk, and we can't allow
2283 * xfs_imap() to figure it out because the inode btrees
2284 * are not ready to be used. Therefore do not pass the
2285 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2286 * us only the single block in which the inode lives
2287 * rather than its cluster, so we must make sure to
2288 * invalidate the buffer when we write it out below.
2290 imap.im_blkno = 0;
2291 xfs_imap(log->l_mp, 0, ino, &imap, 0);
2293 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2294 XFS_BUF_LOCK);
2295 if (XFS_BUF_ISERROR(bp)) {
2296 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2297 bp, imap.im_blkno);
2298 error = XFS_BUF_GETERROR(bp);
2299 xfs_buf_relse(bp);
2300 return error;
2302 error = 0;
2303 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2304 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2307 * Make sure the place we're flushing out to really looks
2308 * like an inode!
2310 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2311 xfs_buf_relse(bp);
2312 xfs_fs_cmn_err(CE_ALERT, mp,
2313 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2314 dip, bp, ino);
2315 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2316 XFS_ERRLEVEL_LOW, mp);
2317 return XFS_ERROR(EFSCORRUPTED);
2319 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2320 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2321 xfs_buf_relse(bp);
2322 xfs_fs_cmn_err(CE_ALERT, mp,
2323 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2324 item, ino);
2325 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2326 XFS_ERRLEVEL_LOW, mp);
2327 return XFS_ERROR(EFSCORRUPTED);
2329 if (unlikely((dicp->di_mode & IFMT) == IFREG)) {
2330 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2331 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2332 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2333 XFS_ERRLEVEL_LOW, mp, dicp);
2334 xfs_buf_relse(bp);
2335 xfs_fs_cmn_err(CE_ALERT, mp,
2336 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2337 item, dip, bp, ino);
2338 return XFS_ERROR(EFSCORRUPTED);
2340 } else if (unlikely((dicp->di_mode & IFMT) == IFDIR)) {
2341 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2342 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2343 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2344 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2345 XFS_ERRLEVEL_LOW, mp, dicp);
2346 xfs_buf_relse(bp);
2347 xfs_fs_cmn_err(CE_ALERT, mp,
2348 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2349 item, dip, bp, ino);
2350 return XFS_ERROR(EFSCORRUPTED);
2353 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2354 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2355 XFS_ERRLEVEL_LOW, mp, dicp);
2356 xfs_buf_relse(bp);
2357 xfs_fs_cmn_err(CE_ALERT, mp,
2358 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2359 item, dip, bp, ino,
2360 dicp->di_nextents + dicp->di_anextents,
2361 dicp->di_nblocks);
2362 return XFS_ERROR(EFSCORRUPTED);
2364 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2365 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2366 XFS_ERRLEVEL_LOW, mp, dicp);
2367 xfs_buf_relse(bp);
2368 xfs_fs_cmn_err(CE_ALERT, mp,
2369 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2370 item, dip, bp, ino, dicp->di_forkoff);
2371 return XFS_ERROR(EFSCORRUPTED);
2373 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2374 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2375 XFS_ERRLEVEL_LOW, mp, dicp);
2376 xfs_buf_relse(bp);
2377 xfs_fs_cmn_err(CE_ALERT, mp,
2378 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2379 item->ri_buf[1].i_len, item);
2380 return XFS_ERROR(EFSCORRUPTED);
2383 /* The core is in in-core format */
2384 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2385 (xfs_dinode_core_t*)item->ri_buf[1].i_addr,
2386 -1, ARCH_CONVERT);
2387 /* the rest is in on-disk format */
2388 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2389 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2390 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2391 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2394 fields = in_f->ilf_fields;
2395 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2396 case XFS_ILOG_DEV:
2397 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2399 break;
2400 case XFS_ILOG_UUID:
2401 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2402 break;
2405 if (in_f->ilf_size == 2)
2406 goto write_inode_buffer;
2407 len = item->ri_buf[2].i_len;
2408 src = item->ri_buf[2].i_addr;
2409 ASSERT(in_f->ilf_size <= 4);
2410 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2411 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2412 (len == in_f->ilf_dsize));
2414 switch (fields & XFS_ILOG_DFORK) {
2415 case XFS_ILOG_DDATA:
2416 case XFS_ILOG_DEXT:
2417 memcpy(&dip->di_u, src, len);
2418 break;
2420 case XFS_ILOG_DBROOT:
2421 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2422 &(dip->di_u.di_bmbt),
2423 XFS_DFORK_DSIZE(dip, mp));
2424 break;
2426 default:
2428 * There are no data fork flags set.
2430 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2431 break;
2435 * If we logged any attribute data, recover it. There may or
2436 * may not have been any other non-core data logged in this
2437 * transaction.
2439 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2440 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2441 attr_index = 3;
2442 } else {
2443 attr_index = 2;
2445 len = item->ri_buf[attr_index].i_len;
2446 src = item->ri_buf[attr_index].i_addr;
2447 ASSERT(len == in_f->ilf_asize);
2449 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2450 case XFS_ILOG_ADATA:
2451 case XFS_ILOG_AEXT:
2452 dest = XFS_DFORK_APTR(dip);
2453 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2454 memcpy(dest, src, len);
2455 break;
2457 case XFS_ILOG_ABROOT:
2458 dest = XFS_DFORK_APTR(dip);
2459 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2460 (xfs_bmdr_block_t*)dest,
2461 XFS_DFORK_ASIZE(dip, mp));
2462 break;
2464 default:
2465 xlog_warn("XFS: xlog_recover_do_inode_trans: Illegal flag");
2466 ASSERT(0);
2467 xfs_buf_relse(bp);
2468 return XFS_ERROR(EIO);
2472 write_inode_buffer:
2473 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2474 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2475 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2476 XFS_BUF_SET_FSPRIVATE(bp, mp);
2477 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2478 xfs_bdwrite(mp, bp);
2479 } else {
2480 XFS_BUF_STALE(bp);
2481 error = xfs_bwrite(mp, bp);
2484 return (error);
2488 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2489 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2490 * of that type.
2492 STATIC int
2493 xlog_recover_do_quotaoff_trans(
2494 xlog_t *log,
2495 xlog_recover_item_t *item,
2496 int pass)
2498 xfs_qoff_logformat_t *qoff_f;
2500 if (pass == XLOG_RECOVER_PASS2) {
2501 return (0);
2504 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2505 ASSERT(qoff_f);
2508 * The logitem format's flag tells us if this was user quotaoff,
2509 * group quotaoff or both.
2511 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2512 log->l_quotaoffs_flag |= XFS_DQ_USER;
2513 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2514 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2516 return (0);
2520 * Recover a dquot record
2522 STATIC int
2523 xlog_recover_do_dquot_trans(
2524 xlog_t *log,
2525 xlog_recover_item_t *item,
2526 int pass)
2528 xfs_mount_t *mp;
2529 xfs_buf_t *bp;
2530 struct xfs_disk_dquot *ddq, *recddq;
2531 int error;
2532 xfs_dq_logformat_t *dq_f;
2533 uint type;
2535 if (pass == XLOG_RECOVER_PASS1) {
2536 return 0;
2538 mp = log->l_mp;
2541 * Filesystems are required to send in quota flags at mount time.
2543 if (mp->m_qflags == 0)
2544 return (0);
2546 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2547 ASSERT(recddq);
2549 * This type of quotas was turned off, so ignore this record.
2551 type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2552 (XFS_DQ_USER | XFS_DQ_GROUP);
2553 ASSERT(type);
2554 if (log->l_quotaoffs_flag & type)
2555 return (0);
2558 * At this point we know that quota was _not_ turned off.
2559 * Since the mount flags are not indicating to us otherwise, this
2560 * must mean that quota is on, and the dquot needs to be replayed.
2561 * Remember that we may not have fully recovered the superblock yet,
2562 * so we can't do the usual trick of looking at the SB quota bits.
2564 * The other possibility, of course, is that the quota subsystem was
2565 * removed since the last mount - ENOSYS.
2567 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2568 ASSERT(dq_f);
2569 if ((error = xfs_qm_dqcheck(recddq,
2570 dq_f->qlf_id,
2571 0, XFS_QMOPT_DOWARN,
2572 "xlog_recover_do_dquot_trans (log copy)"))) {
2573 return XFS_ERROR(EIO);
2575 ASSERT(dq_f->qlf_len == 1);
2577 error = xfs_read_buf(mp, mp->m_ddev_targp,
2578 dq_f->qlf_blkno,
2579 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2580 0, &bp);
2581 if (error) {
2582 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2583 bp, dq_f->qlf_blkno);
2584 return error;
2586 ASSERT(bp);
2587 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2590 * At least the magic num portion should be on disk because this
2591 * was among a chunk of dquots created earlier, and we did some
2592 * minimal initialization then.
2594 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2595 "xlog_recover_do_dquot_trans")) {
2596 xfs_buf_relse(bp);
2597 return XFS_ERROR(EIO);
2600 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2602 ASSERT(dq_f->qlf_size == 2);
2603 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2604 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2605 XFS_BUF_SET_FSPRIVATE(bp, mp);
2606 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2607 xfs_bdwrite(mp, bp);
2609 return (0);
2613 * This routine is called to create an in-core extent free intent
2614 * item from the efi format structure which was logged on disk.
2615 * It allocates an in-core efi, copies the extents from the format
2616 * structure into it, and adds the efi to the AIL with the given
2617 * LSN.
2619 STATIC void
2620 xlog_recover_do_efi_trans(
2621 xlog_t *log,
2622 xlog_recover_item_t *item,
2623 xfs_lsn_t lsn,
2624 int pass)
2626 xfs_mount_t *mp;
2627 xfs_efi_log_item_t *efip;
2628 xfs_efi_log_format_t *efi_formatp;
2629 SPLDECL(s);
2631 if (pass == XLOG_RECOVER_PASS1) {
2632 return;
2635 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2636 ASSERT(item->ri_buf[0].i_len ==
2637 (sizeof(xfs_efi_log_format_t) +
2638 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2640 mp = log->l_mp;
2641 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2642 memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2643 sizeof(xfs_efi_log_format_t) +
2644 ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2645 efip->efi_next_extent = efi_formatp->efi_nextents;
2646 efip->efi_flags |= XFS_EFI_COMMITTED;
2648 AIL_LOCK(mp,s);
2650 * xfs_trans_update_ail() drops the AIL lock.
2652 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2657 * This routine is called when an efd format structure is found in
2658 * a committed transaction in the log. It's purpose is to cancel
2659 * the corresponding efi if it was still in the log. To do this
2660 * it searches the AIL for the efi with an id equal to that in the
2661 * efd format structure. If we find it, we remove the efi from the
2662 * AIL and free it.
2664 STATIC void
2665 xlog_recover_do_efd_trans(
2666 xlog_t *log,
2667 xlog_recover_item_t *item,
2668 int pass)
2670 xfs_mount_t *mp;
2671 xfs_efd_log_format_t *efd_formatp;
2672 xfs_efi_log_item_t *efip = NULL;
2673 xfs_log_item_t *lip;
2674 int gen;
2675 int nexts;
2676 __uint64_t efi_id;
2677 SPLDECL(s);
2679 if (pass == XLOG_RECOVER_PASS1) {
2680 return;
2683 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2684 ASSERT(item->ri_buf[0].i_len ==
2685 (sizeof(xfs_efd_log_format_t) +
2686 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2687 efi_id = efd_formatp->efd_efi_id;
2690 * Search for the efi with the id in the efd format structure
2691 * in the AIL.
2693 mp = log->l_mp;
2694 AIL_LOCK(mp,s);
2695 lip = xfs_trans_first_ail(mp, &gen);
2696 while (lip != NULL) {
2697 if (lip->li_type == XFS_LI_EFI) {
2698 efip = (xfs_efi_log_item_t *)lip;
2699 if (efip->efi_format.efi_id == efi_id) {
2701 * xfs_trans_delete_ail() drops the
2702 * AIL lock.
2704 xfs_trans_delete_ail(mp, lip, s);
2705 break;
2708 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2710 if (lip == NULL) {
2711 AIL_UNLOCK(mp, s);
2715 * If we found it, then free it up. If it wasn't there, it
2716 * must have been overwritten in the log. Oh well.
2718 if (lip != NULL) {
2719 nexts = efip->efi_format.efi_nextents;
2720 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
2721 kmem_free(lip, sizeof(xfs_efi_log_item_t) +
2722 ((nexts - 1) * sizeof(xfs_extent_t)));
2723 } else {
2724 kmem_zone_free(xfs_efi_zone, efip);
2730 * Perform the transaction
2732 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2733 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2735 STATIC int
2736 xlog_recover_do_trans(
2737 xlog_t *log,
2738 xlog_recover_t *trans,
2739 int pass)
2741 int error = 0;
2742 xlog_recover_item_t *item, *first_item;
2744 if ((error = xlog_recover_reorder_trans(log, trans)))
2745 return error;
2746 first_item = item = trans->r_itemq;
2747 do {
2749 * we don't need to worry about the block number being
2750 * truncated in > 1 TB buffers because in user-land,
2751 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2752 * the blkno's will get through the user-mode buffer
2753 * cache properly. The only bad case is o32 kernels
2754 * where xfs_daddr_t is 32-bits but mount will warn us
2755 * off a > 1 TB filesystem before we get here.
2757 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2758 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2759 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2760 if ((error = xlog_recover_do_buffer_trans(log, item,
2761 pass)))
2762 break;
2763 } else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2764 (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2765 (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2766 if ((error = xlog_recover_do_inode_trans(log, item,
2767 pass)))
2768 break;
2769 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2770 xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2771 pass);
2772 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2773 xlog_recover_do_efd_trans(log, item, pass);
2774 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2775 if ((error = xlog_recover_do_dquot_trans(log, item,
2776 pass)))
2777 break;
2778 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2779 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2780 pass)))
2781 break;
2782 } else {
2783 xlog_warn("XFS: xlog_recover_do_trans");
2784 ASSERT(0);
2785 error = XFS_ERROR(EIO);
2786 break;
2788 item = item->ri_next;
2789 } while (first_item != item);
2791 return error;
2795 * Free up any resources allocated by the transaction
2797 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2799 STATIC void
2800 xlog_recover_free_trans(
2801 xlog_recover_t *trans)
2803 xlog_recover_item_t *first_item, *item, *free_item;
2804 int i;
2806 item = first_item = trans->r_itemq;
2807 do {
2808 free_item = item;
2809 item = item->ri_next;
2810 /* Free the regions in the item. */
2811 for (i = 0; i < free_item->ri_cnt; i++) {
2812 kmem_free(free_item->ri_buf[i].i_addr,
2813 free_item->ri_buf[i].i_len);
2815 /* Free the item itself */
2816 kmem_free(free_item->ri_buf,
2817 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2818 kmem_free(free_item, sizeof(xlog_recover_item_t));
2819 } while (first_item != item);
2820 /* Free the transaction recover structure */
2821 kmem_free(trans, sizeof(xlog_recover_t));
2824 STATIC int
2825 xlog_recover_commit_trans(
2826 xlog_t *log,
2827 xlog_recover_t **q,
2828 xlog_recover_t *trans,
2829 int pass)
2831 int error;
2833 if ((error = xlog_recover_unlink_tid(q, trans)))
2834 return error;
2835 if ((error = xlog_recover_do_trans(log, trans, pass)))
2836 return error;
2837 xlog_recover_free_trans(trans); /* no error */
2838 return 0;
2841 STATIC int
2842 xlog_recover_unmount_trans(
2843 xlog_recover_t *trans)
2845 /* Do nothing now */
2846 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2847 return 0;
2851 * There are two valid states of the r_state field. 0 indicates that the
2852 * transaction structure is in a normal state. We have either seen the
2853 * start of the transaction or the last operation we added was not a partial
2854 * operation. If the last operation we added to the transaction was a
2855 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2857 * NOTE: skip LRs with 0 data length.
2859 STATIC int
2860 xlog_recover_process_data(
2861 xlog_t *log,
2862 xlog_recover_t *rhash[],
2863 xlog_rec_header_t *rhead,
2864 xfs_caddr_t dp,
2865 int pass)
2867 xfs_caddr_t lp;
2868 int num_logops;
2869 xlog_op_header_t *ohead;
2870 xlog_recover_t *trans;
2871 xlog_tid_t tid;
2872 int error;
2873 unsigned long hash;
2874 uint flags;
2876 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2877 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2879 /* check the log format matches our own - else we can't recover */
2880 if (xlog_header_check_recover(log->l_mp, rhead))
2881 return (XFS_ERROR(EIO));
2883 while ((dp < lp) && num_logops) {
2884 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2885 ohead = (xlog_op_header_t *)dp;
2886 dp += sizeof(xlog_op_header_t);
2887 if (ohead->oh_clientid != XFS_TRANSACTION &&
2888 ohead->oh_clientid != XFS_LOG) {
2889 xlog_warn(
2890 "XFS: xlog_recover_process_data: bad clientid");
2891 ASSERT(0);
2892 return (XFS_ERROR(EIO));
2894 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2895 hash = XLOG_RHASH(tid);
2896 trans = xlog_recover_find_tid(rhash[hash], tid);
2897 if (trans == NULL) { /* not found; add new tid */
2898 if (ohead->oh_flags & XLOG_START_TRANS)
2899 xlog_recover_new_tid(&rhash[hash], tid,
2900 INT_GET(rhead->h_lsn, ARCH_CONVERT));
2901 } else {
2902 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2903 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2904 if (flags & XLOG_WAS_CONT_TRANS)
2905 flags &= ~XLOG_CONTINUE_TRANS;
2906 switch (flags) {
2907 case XLOG_COMMIT_TRANS:
2908 error = xlog_recover_commit_trans(log,
2909 &rhash[hash], trans, pass);
2910 break;
2911 case XLOG_UNMOUNT_TRANS:
2912 error = xlog_recover_unmount_trans(trans);
2913 break;
2914 case XLOG_WAS_CONT_TRANS:
2915 error = xlog_recover_add_to_cont_trans(trans,
2916 dp, INT_GET(ohead->oh_len,
2917 ARCH_CONVERT));
2918 break;
2919 case XLOG_START_TRANS:
2920 xlog_warn(
2921 "XFS: xlog_recover_process_data: bad transaction");
2922 ASSERT(0);
2923 error = XFS_ERROR(EIO);
2924 break;
2925 case 0:
2926 case XLOG_CONTINUE_TRANS:
2927 error = xlog_recover_add_to_trans(trans,
2928 dp, INT_GET(ohead->oh_len,
2929 ARCH_CONVERT));
2930 break;
2931 default:
2932 xlog_warn(
2933 "XFS: xlog_recover_process_data: bad flag");
2934 ASSERT(0);
2935 error = XFS_ERROR(EIO);
2936 break;
2938 if (error)
2939 return error;
2941 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
2942 num_logops--;
2944 return 0;
2948 * Process an extent free intent item that was recovered from
2949 * the log. We need to free the extents that it describes.
2951 STATIC void
2952 xlog_recover_process_efi(
2953 xfs_mount_t *mp,
2954 xfs_efi_log_item_t *efip)
2956 xfs_efd_log_item_t *efdp;
2957 xfs_trans_t *tp;
2958 int i;
2959 xfs_extent_t *extp;
2960 xfs_fsblock_t startblock_fsb;
2962 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2965 * First check the validity of the extents described by the
2966 * EFI. If any are bad, then assume that all are bad and
2967 * just toss the EFI.
2969 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2970 extp = &(efip->efi_format.efi_extents[i]);
2971 startblock_fsb = XFS_BB_TO_FSB(mp,
2972 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2973 if ((startblock_fsb == 0) ||
2974 (extp->ext_len == 0) ||
2975 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2976 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2978 * This will pull the EFI from the AIL and
2979 * free the memory associated with it.
2981 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2982 return;
2986 tp = xfs_trans_alloc(mp, 0);
2987 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2988 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2990 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2991 extp = &(efip->efi_format.efi_extents[i]);
2992 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2993 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2994 extp->ext_len);
2997 efip->efi_flags |= XFS_EFI_RECOVERED;
2998 xfs_trans_commit(tp, 0, NULL);
3002 * Verify that once we've encountered something other than an EFI
3003 * in the AIL that there are no more EFIs in the AIL.
3005 #if defined(DEBUG)
3006 STATIC void
3007 xlog_recover_check_ail(
3008 xfs_mount_t *mp,
3009 xfs_log_item_t *lip,
3010 int gen)
3012 int orig_gen = gen;
3014 do {
3015 ASSERT(lip->li_type != XFS_LI_EFI);
3016 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3018 * The check will be bogus if we restart from the
3019 * beginning of the AIL, so ASSERT that we don't.
3020 * We never should since we're holding the AIL lock
3021 * the entire time.
3023 ASSERT(gen == orig_gen);
3024 } while (lip != NULL);
3026 #endif /* DEBUG */
3029 * When this is called, all of the EFIs which did not have
3030 * corresponding EFDs should be in the AIL. What we do now
3031 * is free the extents associated with each one.
3033 * Since we process the EFIs in normal transactions, they
3034 * will be removed at some point after the commit. This prevents
3035 * us from just walking down the list processing each one.
3036 * We'll use a flag in the EFI to skip those that we've already
3037 * processed and use the AIL iteration mechanism's generation
3038 * count to try to speed this up at least a bit.
3040 * When we start, we know that the EFIs are the only things in
3041 * the AIL. As we process them, however, other items are added
3042 * to the AIL. Since everything added to the AIL must come after
3043 * everything already in the AIL, we stop processing as soon as
3044 * we see something other than an EFI in the AIL.
3046 STATIC void
3047 xlog_recover_process_efis(
3048 xlog_t *log)
3050 xfs_log_item_t *lip;
3051 xfs_efi_log_item_t *efip;
3052 int gen;
3053 xfs_mount_t *mp;
3054 SPLDECL(s);
3056 mp = log->l_mp;
3057 AIL_LOCK(mp,s);
3059 lip = xfs_trans_first_ail(mp, &gen);
3060 while (lip != NULL) {
3062 * We're done when we see something other than an EFI.
3064 if (lip->li_type != XFS_LI_EFI) {
3065 xlog_recover_check_ail(mp, lip, gen);
3066 break;
3070 * Skip EFIs that we've already processed.
3072 efip = (xfs_efi_log_item_t *)lip;
3073 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3074 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3075 continue;
3078 AIL_UNLOCK(mp, s);
3079 xlog_recover_process_efi(mp, efip);
3080 AIL_LOCK(mp,s);
3081 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3083 AIL_UNLOCK(mp, s);
3087 * This routine performs a transaction to null out a bad inode pointer
3088 * in an agi unlinked inode hash bucket.
3090 STATIC void
3091 xlog_recover_clear_agi_bucket(
3092 xfs_mount_t *mp,
3093 xfs_agnumber_t agno,
3094 int bucket)
3096 xfs_trans_t *tp;
3097 xfs_agi_t *agi;
3098 xfs_buf_t *agibp;
3099 int offset;
3100 int error;
3102 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3103 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3105 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3106 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3107 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3108 if (error) {
3109 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3110 return;
3113 agi = XFS_BUF_TO_AGI(agibp);
3114 if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) {
3115 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3116 return;
3118 ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC);
3120 INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO);
3121 offset = offsetof(xfs_agi_t, agi_unlinked) +
3122 (sizeof(xfs_agino_t) * bucket);
3123 xfs_trans_log_buf(tp, agibp, offset,
3124 (offset + sizeof(xfs_agino_t) - 1));
3126 (void) xfs_trans_commit(tp, 0, NULL);
3130 * xlog_iunlink_recover
3132 * This is called during recovery to process any inodes which
3133 * we unlinked but not freed when the system crashed. These
3134 * inodes will be on the lists in the AGI blocks. What we do
3135 * here is scan all the AGIs and fully truncate and free any
3136 * inodes found on the lists. Each inode is removed from the
3137 * lists when it has been fully truncated and is freed. The
3138 * freeing of the inode and its removal from the list must be
3139 * atomic.
3141 void
3142 xlog_recover_process_iunlinks(
3143 xlog_t *log)
3145 xfs_mount_t *mp;
3146 xfs_agnumber_t agno;
3147 xfs_agi_t *agi;
3148 xfs_buf_t *agibp;
3149 xfs_buf_t *ibp;
3150 xfs_dinode_t *dip;
3151 xfs_inode_t *ip;
3152 xfs_agino_t agino;
3153 xfs_ino_t ino;
3154 int bucket;
3155 int error;
3156 uint mp_dmevmask;
3158 mp = log->l_mp;
3161 * Prevent any DMAPI event from being sent while in this function.
3163 mp_dmevmask = mp->m_dmevmask;
3164 mp->m_dmevmask = 0;
3166 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3168 * Find the agi for this ag.
3170 agibp = xfs_buf_read(mp->m_ddev_targp,
3171 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3172 XFS_FSS_TO_BB(mp, 1), 0);
3173 if (XFS_BUF_ISERROR(agibp)) {
3174 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3175 log->l_mp, agibp,
3176 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3178 agi = XFS_BUF_TO_AGI(agibp);
3179 ASSERT(XFS_AGI_MAGIC ==
3180 INT_GET(agi->agi_magicnum, ARCH_CONVERT));
3182 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3184 agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT);
3185 while (agino != NULLAGINO) {
3188 * Release the agi buffer so that it can
3189 * be acquired in the normal course of the
3190 * transaction to truncate and free the inode.
3192 xfs_buf_relse(agibp);
3194 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3195 error = xfs_iget(mp, NULL, ino, 0, &ip, 0);
3196 ASSERT(error || (ip != NULL));
3198 if (!error) {
3200 * Get the on disk inode to find the
3201 * next inode in the bucket.
3203 error = xfs_itobp(mp, NULL, ip, &dip,
3204 &ibp, 0);
3205 ASSERT(error || (dip != NULL));
3208 if (!error) {
3209 ASSERT(ip->i_d.di_nlink == 0);
3211 /* setup for the next pass */
3212 agino = INT_GET(dip->di_next_unlinked,
3213 ARCH_CONVERT);
3214 xfs_buf_relse(ibp);
3216 * Prevent any DMAPI event from
3217 * being sent when the
3218 * reference on the inode is
3219 * dropped.
3221 ip->i_d.di_dmevmask = 0;
3224 * If this is a new inode, handle
3225 * it specially. Otherwise,
3226 * just drop our reference to the
3227 * inode. If there are no
3228 * other references, this will
3229 * send the inode to
3230 * xfs_inactive() which will
3231 * truncate the file and free
3232 * the inode.
3234 if (ip->i_d.di_mode == 0)
3235 xfs_iput_new(ip, 0);
3236 else
3237 VN_RELE(XFS_ITOV(ip));
3238 } else {
3240 * We can't read in the inode
3241 * this bucket points to, or
3242 * this inode is messed up. Just
3243 * ditch this bucket of inodes. We
3244 * will lose some inodes and space,
3245 * but at least we won't hang. Call
3246 * xlog_recover_clear_agi_bucket()
3247 * to perform a transaction to clear
3248 * the inode pointer in the bucket.
3250 xlog_recover_clear_agi_bucket(mp, agno,
3251 bucket);
3253 agino = NULLAGINO;
3257 * Reacquire the agibuffer and continue around
3258 * the loop.
3260 agibp = xfs_buf_read(mp->m_ddev_targp,
3261 XFS_AG_DADDR(mp, agno,
3262 XFS_AGI_DADDR(mp)),
3263 XFS_FSS_TO_BB(mp, 1), 0);
3264 if (XFS_BUF_ISERROR(agibp)) {
3265 xfs_ioerror_alert(
3266 "xlog_recover_process_iunlinks(#2)",
3267 log->l_mp, agibp,
3268 XFS_AG_DADDR(mp, agno,
3269 XFS_AGI_DADDR(mp)));
3271 agi = XFS_BUF_TO_AGI(agibp);
3272 ASSERT(XFS_AGI_MAGIC == INT_GET(
3273 agi->agi_magicnum, ARCH_CONVERT));
3278 * Release the buffer for the current agi so we can
3279 * go on to the next one.
3281 xfs_buf_relse(agibp);
3284 mp->m_dmevmask = mp_dmevmask;
3288 #ifdef DEBUG
3289 STATIC void
3290 xlog_pack_data_checksum(
3291 xlog_t *log,
3292 xlog_in_core_t *iclog,
3293 int size)
3295 int i;
3296 uint *up;
3297 uint chksum = 0;
3299 up = (uint *)iclog->ic_datap;
3300 /* divide length by 4 to get # words */
3301 for (i = 0; i < (size >> 2); i++) {
3302 chksum ^= INT_GET(*up, ARCH_CONVERT);
3303 up++;
3305 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3307 #else
3308 #define xlog_pack_data_checksum(log, iclog, size)
3309 #endif
3312 * Stamp cycle number in every block
3314 void
3315 xlog_pack_data(
3316 xlog_t *log,
3317 xlog_in_core_t *iclog)
3319 int i, j, k;
3320 int size = iclog->ic_offset + iclog->ic_roundoff;
3321 uint cycle_lsn;
3322 xfs_caddr_t dp;
3323 xlog_in_core_2_t *xhdr;
3325 xlog_pack_data_checksum(log, iclog, size);
3327 cycle_lsn = CYCLE_LSN_NOCONV(iclog->ic_header.h_lsn, ARCH_CONVERT);
3329 dp = iclog->ic_datap;
3330 for (i = 0; i < BTOBB(size) &&
3331 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3332 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3333 *(uint *)dp = cycle_lsn;
3334 dp += BBSIZE;
3337 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3338 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3339 for ( ; i < BTOBB(size); i++) {
3340 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3341 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3342 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3343 *(uint *)dp = cycle_lsn;
3344 dp += BBSIZE;
3347 for (i = 1; i < log->l_iclog_heads; i++) {
3348 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3353 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3354 STATIC void
3355 xlog_unpack_data_checksum(
3356 xlog_rec_header_t *rhead,
3357 xfs_caddr_t dp,
3358 xlog_t *log)
3360 uint *up = (uint *)dp;
3361 uint chksum = 0;
3363 /* divide length by 4 to get # words */
3364 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3365 chksum ^= INT_GET(*up, ARCH_CONVERT);
3366 up++;
3368 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3369 if (!INT_ISZERO(rhead->h_chksum, ARCH_CONVERT) ||
3370 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3371 cmn_err(CE_DEBUG,
3372 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3373 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3374 cmn_err(CE_DEBUG,
3375 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3376 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3377 cmn_err(CE_DEBUG,
3378 "XFS: LogR this is a LogV2 filesystem");
3380 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3384 #else
3385 #define xlog_unpack_data_checksum(rhead, dp, log)
3386 #endif
3388 STATIC void
3389 xlog_unpack_data(
3390 xlog_rec_header_t *rhead,
3391 xfs_caddr_t dp,
3392 xlog_t *log)
3394 int i, j, k;
3395 xlog_in_core_2_t *xhdr;
3397 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3398 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3399 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3400 dp += BBSIZE;
3403 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3404 xhdr = (xlog_in_core_2_t *)rhead;
3405 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3406 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3407 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3408 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3409 dp += BBSIZE;
3413 xlog_unpack_data_checksum(rhead, dp, log);
3416 STATIC int
3417 xlog_valid_rec_header(
3418 xlog_t *log,
3419 xlog_rec_header_t *rhead,
3420 xfs_daddr_t blkno)
3422 int bblks;
3424 if (unlikely(
3425 (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3426 XLOG_HEADER_MAGIC_NUM))) {
3427 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3428 XFS_ERRLEVEL_LOW, log->l_mp);
3429 return XFS_ERROR(EFSCORRUPTED);
3431 if (unlikely(
3432 (INT_ISZERO(rhead->h_version, ARCH_CONVERT) ||
3433 (INT_GET(rhead->h_version, ARCH_CONVERT) &
3434 (~XLOG_VERSION_OKBITS)) != 0))) {
3435 xlog_warn("XFS: %s: unrecognised log version (%d).",
3436 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3437 return XFS_ERROR(EIO);
3440 /* LR body must have data or it wouldn't have been written */
3441 bblks = INT_GET(rhead->h_len, ARCH_CONVERT);
3442 if (unlikely( bblks <= 0 || bblks > INT_MAX )) {
3443 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3444 XFS_ERRLEVEL_LOW, log->l_mp);
3445 return XFS_ERROR(EFSCORRUPTED);
3447 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3448 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3449 XFS_ERRLEVEL_LOW, log->l_mp);
3450 return XFS_ERROR(EFSCORRUPTED);
3452 return 0;
3456 * Read the log from tail to head and process the log records found.
3457 * Handle the two cases where the tail and head are in the same cycle
3458 * and where the active portion of the log wraps around the end of
3459 * the physical log separately. The pass parameter is passed through
3460 * to the routines called to process the data and is not looked at
3461 * here.
3463 STATIC int
3464 xlog_do_recovery_pass(
3465 xlog_t *log,
3466 xfs_daddr_t head_blk,
3467 xfs_daddr_t tail_blk,
3468 int pass)
3470 xlog_rec_header_t *rhead;
3471 xfs_daddr_t blk_no;
3472 xfs_caddr_t bufaddr, offset;
3473 xfs_buf_t *hbp, *dbp;
3474 int error = 0, h_size;
3475 int bblks, split_bblks;
3476 int hblks, split_hblks, wrapped_hblks;
3477 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3479 ASSERT(head_blk != tail_blk);
3482 * Read the header of the tail block and get the iclog buffer size from
3483 * h_size. Use this to tell how many sectors make up the log header.
3485 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3487 * When using variable length iclogs, read first sector of
3488 * iclog header and extract the header size from it. Get a
3489 * new hbp that is the correct size.
3491 hbp = xlog_get_bp(log, 1);
3492 if (!hbp)
3493 return ENOMEM;
3494 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3495 goto bread_err1;
3496 offset = xlog_align(log, tail_blk, 1, hbp);
3497 rhead = (xlog_rec_header_t *)offset;
3498 error = xlog_valid_rec_header(log, rhead, tail_blk);
3499 if (error)
3500 goto bread_err1;
3501 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3502 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3503 & XLOG_VERSION_2) &&
3504 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3505 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3506 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3507 hblks++;
3508 xlog_put_bp(hbp);
3509 hbp = xlog_get_bp(log, hblks);
3510 } else {
3511 hblks = 1;
3513 } else {
3514 ASSERT(log->l_sectbb_log == 0);
3515 hblks = 1;
3516 hbp = xlog_get_bp(log, 1);
3517 h_size = XLOG_BIG_RECORD_BSIZE;
3520 if (!hbp)
3521 return ENOMEM;
3522 dbp = xlog_get_bp(log, BTOBB(h_size));
3523 if (!dbp) {
3524 xlog_put_bp(hbp);
3525 return ENOMEM;
3528 memset(rhash, 0, sizeof(rhash));
3529 if (tail_blk <= head_blk) {
3530 for (blk_no = tail_blk; blk_no < head_blk; ) {
3531 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3532 goto bread_err2;
3533 offset = xlog_align(log, blk_no, hblks, hbp);
3534 rhead = (xlog_rec_header_t *)offset;
3535 error = xlog_valid_rec_header(log, rhead, blk_no);
3536 if (error)
3537 goto bread_err2;
3539 /* blocks in data section */
3540 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3541 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3542 if (error)
3543 goto bread_err2;
3544 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3545 xlog_unpack_data(rhead, offset, log);
3546 if ((error = xlog_recover_process_data(log,
3547 rhash, rhead, offset, pass)))
3548 goto bread_err2;
3549 blk_no += bblks + hblks;
3551 } else {
3553 * Perform recovery around the end of the physical log.
3554 * When the head is not on the same cycle number as the tail,
3555 * we can't do a sequential recovery as above.
3557 blk_no = tail_blk;
3558 while (blk_no < log->l_logBBsize) {
3560 * Check for header wrapping around physical end-of-log
3562 offset = NULL;
3563 split_hblks = 0;
3564 wrapped_hblks = 0;
3565 if (blk_no + hblks <= log->l_logBBsize) {
3566 /* Read header in one read */
3567 error = xlog_bread(log, blk_no, hblks, hbp);
3568 if (error)
3569 goto bread_err2;
3570 offset = xlog_align(log, blk_no, hblks, hbp);
3571 } else {
3572 /* This LR is split across physical log end */
3573 if (blk_no != log->l_logBBsize) {
3574 /* some data before physical log end */
3575 ASSERT(blk_no <= INT_MAX);
3576 split_hblks = log->l_logBBsize - (int)blk_no;
3577 ASSERT(split_hblks > 0);
3578 if ((error = xlog_bread(log, blk_no,
3579 split_hblks, hbp)))
3580 goto bread_err2;
3581 offset = xlog_align(log, blk_no,
3582 split_hblks, hbp);
3585 * Note: this black magic still works with
3586 * large sector sizes (non-512) only because:
3587 * - we increased the buffer size originally
3588 * by 1 sector giving us enough extra space
3589 * for the second read;
3590 * - the log start is guaranteed to be sector
3591 * aligned;
3592 * - we read the log end (LR header start)
3593 * _first_, then the log start (LR header end)
3594 * - order is important.
3596 bufaddr = XFS_BUF_PTR(hbp);
3597 XFS_BUF_SET_PTR(hbp,
3598 bufaddr + BBTOB(split_hblks),
3599 BBTOB(hblks - split_hblks));
3600 wrapped_hblks = hblks - split_hblks;
3601 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3602 if (error)
3603 goto bread_err2;
3604 XFS_BUF_SET_PTR(hbp, bufaddr, hblks);
3605 if (!offset)
3606 offset = xlog_align(log, 0,
3607 wrapped_hblks, hbp);
3609 rhead = (xlog_rec_header_t *)offset;
3610 error = xlog_valid_rec_header(log, rhead,
3611 split_hblks ? blk_no : 0);
3612 if (error)
3613 goto bread_err2;
3615 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3616 blk_no += hblks;
3618 /* Read in data for log record */
3619 if (blk_no + bblks <= log->l_logBBsize) {
3620 error = xlog_bread(log, blk_no, bblks, dbp);
3621 if (error)
3622 goto bread_err2;
3623 offset = xlog_align(log, blk_no, bblks, dbp);
3624 } else {
3625 /* This log record is split across the
3626 * physical end of log */
3627 offset = NULL;
3628 split_bblks = 0;
3629 if (blk_no != log->l_logBBsize) {
3630 /* some data is before the physical
3631 * end of log */
3632 ASSERT(!wrapped_hblks);
3633 ASSERT(blk_no <= INT_MAX);
3634 split_bblks =
3635 log->l_logBBsize - (int)blk_no;
3636 ASSERT(split_bblks > 0);
3637 if ((error = xlog_bread(log, blk_no,
3638 split_bblks, dbp)))
3639 goto bread_err2;
3640 offset = xlog_align(log, blk_no,
3641 split_bblks, dbp);
3644 * Note: this black magic still works with
3645 * large sector sizes (non-512) only because:
3646 * - we increased the buffer size originally
3647 * by 1 sector giving us enough extra space
3648 * for the second read;
3649 * - the log start is guaranteed to be sector
3650 * aligned;
3651 * - we read the log end (LR header start)
3652 * _first_, then the log start (LR header end)
3653 * - order is important.
3655 bufaddr = XFS_BUF_PTR(dbp);
3656 XFS_BUF_SET_PTR(dbp,
3657 bufaddr + BBTOB(split_bblks),
3658 BBTOB(bblks - split_bblks));
3659 if ((error = xlog_bread(log, wrapped_hblks,
3660 bblks - split_bblks, dbp)))
3661 goto bread_err2;
3662 XFS_BUF_SET_PTR(dbp, bufaddr,
3663 XLOG_BIG_RECORD_BSIZE);
3664 if (!offset)
3665 offset = xlog_align(log, wrapped_hblks,
3666 bblks - split_bblks, dbp);
3668 xlog_unpack_data(rhead, offset, log);
3669 if ((error = xlog_recover_process_data(log, rhash,
3670 rhead, offset, pass)))
3671 goto bread_err2;
3672 blk_no += bblks;
3675 ASSERT(blk_no >= log->l_logBBsize);
3676 blk_no -= log->l_logBBsize;
3678 /* read first part of physical log */
3679 while (blk_no < head_blk) {
3680 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3681 goto bread_err2;
3682 offset = xlog_align(log, blk_no, hblks, hbp);
3683 rhead = (xlog_rec_header_t *)offset;
3684 error = xlog_valid_rec_header(log, rhead, blk_no);
3685 if (error)
3686 goto bread_err2;
3687 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3688 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3689 goto bread_err2;
3690 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3691 xlog_unpack_data(rhead, offset, log);
3692 if ((error = xlog_recover_process_data(log, rhash,
3693 rhead, offset, pass)))
3694 goto bread_err2;
3695 blk_no += bblks + hblks;
3699 bread_err2:
3700 xlog_put_bp(dbp);
3701 bread_err1:
3702 xlog_put_bp(hbp);
3703 return error;
3707 * Do the recovery of the log. We actually do this in two phases.
3708 * The two passes are necessary in order to implement the function
3709 * of cancelling a record written into the log. The first pass
3710 * determines those things which have been cancelled, and the
3711 * second pass replays log items normally except for those which
3712 * have been cancelled. The handling of the replay and cancellations
3713 * takes place in the log item type specific routines.
3715 * The table of items which have cancel records in the log is allocated
3716 * and freed at this level, since only here do we know when all of
3717 * the log recovery has been completed.
3719 STATIC int
3720 xlog_do_log_recovery(
3721 xlog_t *log,
3722 xfs_daddr_t head_blk,
3723 xfs_daddr_t tail_blk)
3725 int error;
3727 ASSERT(head_blk != tail_blk);
3730 * First do a pass to find all of the cancelled buf log items.
3731 * Store them in the buf_cancel_table for use in the second pass.
3733 log->l_buf_cancel_table =
3734 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3735 sizeof(xfs_buf_cancel_t*),
3736 KM_SLEEP);
3737 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3738 XLOG_RECOVER_PASS1);
3739 if (error != 0) {
3740 kmem_free(log->l_buf_cancel_table,
3741 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3742 log->l_buf_cancel_table = NULL;
3743 return error;
3746 * Then do a second pass to actually recover the items in the log.
3747 * When it is complete free the table of buf cancel items.
3749 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3750 XLOG_RECOVER_PASS2);
3751 #ifdef DEBUG
3753 int i;
3755 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3756 ASSERT(log->l_buf_cancel_table[i] == NULL);
3758 #endif /* DEBUG */
3760 kmem_free(log->l_buf_cancel_table,
3761 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3762 log->l_buf_cancel_table = NULL;
3764 return error;
3768 * Do the actual recovery
3770 STATIC int
3771 xlog_do_recover(
3772 xlog_t *log,
3773 xfs_daddr_t head_blk,
3774 xfs_daddr_t tail_blk)
3776 int error;
3777 xfs_buf_t *bp;
3778 xfs_sb_t *sbp;
3781 * First replay the images in the log.
3783 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3784 if (error) {
3785 return error;
3788 XFS_bflush(log->l_mp->m_ddev_targp);
3791 * If IO errors happened during recovery, bail out.
3793 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3794 return (EIO);
3798 * We now update the tail_lsn since much of the recovery has completed
3799 * and there may be space available to use. If there were no extent
3800 * or iunlinks, we can free up the entire log and set the tail_lsn to
3801 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3802 * lsn of the last known good LR on disk. If there are extent frees
3803 * or iunlinks they will have some entries in the AIL; so we look at
3804 * the AIL to determine how to set the tail_lsn.
3806 xlog_assign_tail_lsn(log->l_mp);
3809 * Now that we've finished replaying all buffer and inode
3810 * updates, re-read in the superblock.
3812 bp = xfs_getsb(log->l_mp, 0);
3813 XFS_BUF_UNDONE(bp);
3814 XFS_BUF_READ(bp);
3815 xfsbdstrat(log->l_mp, bp);
3816 if ((error = xfs_iowait(bp))) {
3817 xfs_ioerror_alert("xlog_do_recover",
3818 log->l_mp, bp, XFS_BUF_ADDR(bp));
3819 ASSERT(0);
3820 xfs_buf_relse(bp);
3821 return error;
3824 /* Convert superblock from on-disk format */
3825 sbp = &log->l_mp->m_sb;
3826 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, ARCH_CONVERT, XFS_SB_ALL_BITS);
3827 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3828 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3829 xfs_buf_relse(bp);
3831 xlog_recover_check_summary(log);
3833 /* Normal transactions can now occur */
3834 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3835 return 0;
3839 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3841 * Return error or zero.
3844 xlog_recover(
3845 xlog_t *log,
3846 int readonly)
3848 xfs_daddr_t head_blk, tail_blk;
3849 int error;
3851 /* find the tail of the log */
3852 if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly)))
3853 return error;
3855 if (tail_blk != head_blk) {
3856 /* There used to be a comment here:
3858 * disallow recovery on read-only mounts. note -- mount
3859 * checks for ENOSPC and turns it into an intelligent
3860 * error message.
3861 * ...but this is no longer true. Now, unless you specify
3862 * NORECOVERY (in which case this function would never be
3863 * called), we just go ahead and recover. We do this all
3864 * under the vfs layer, so we can get away with it unless
3865 * the device itself is read-only, in which case we fail.
3867 if ((error = xfs_dev_is_read_only(log->l_mp,
3868 "recovery required"))) {
3869 return error;
3872 cmn_err(CE_NOTE,
3873 "Starting XFS recovery on filesystem: %s (dev: %d/%d)",
3874 log->l_mp->m_fsname, MAJOR(log->l_dev),
3875 MINOR(log->l_dev));
3877 error = xlog_do_recover(log, head_blk, tail_blk);
3878 log->l_flags |= XLOG_RECOVERY_NEEDED;
3880 return error;
3884 * In the first part of recovery we replay inodes and buffers and build
3885 * up the list of extent free items which need to be processed. Here
3886 * we process the extent free items and clean up the on disk unlinked
3887 * inode lists. This is separated from the first part of recovery so
3888 * that the root and real-time bitmap inodes can be read in from disk in
3889 * between the two stages. This is necessary so that we can free space
3890 * in the real-time portion of the file system.
3893 xlog_recover_finish(
3894 xlog_t *log,
3895 int mfsi_flags)
3898 * Now we're ready to do the transactions needed for the
3899 * rest of recovery. Start with completing all the extent
3900 * free intent records and then process the unlinked inode
3901 * lists. At this point, we essentially run in normal mode
3902 * except that we're still performing recovery actions
3903 * rather than accepting new requests.
3905 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3906 xlog_recover_process_efis(log);
3908 * Sync the log to get all the EFIs out of the AIL.
3909 * This isn't absolutely necessary, but it helps in
3910 * case the unlink transactions would have problems
3911 * pushing the EFIs out of the way.
3913 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3914 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3916 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3917 xlog_recover_process_iunlinks(log);
3920 xlog_recover_check_summary(log);
3922 cmn_err(CE_NOTE,
3923 "Ending XFS recovery on filesystem: %s (dev: %d/%d)",
3924 log->l_mp->m_fsname, MAJOR(log->l_dev),
3925 MINOR(log->l_dev));
3927 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3928 } else {
3929 cmn_err(CE_DEBUG,
3930 "!Ending clean XFS mount for filesystem: %s",
3931 log->l_mp->m_fsname);
3933 return 0;
3937 #if defined(DEBUG)
3939 * Read all of the agf and agi counters and check that they
3940 * are consistent with the superblock counters.
3942 void
3943 xlog_recover_check_summary(
3944 xlog_t *log)
3946 xfs_mount_t *mp;
3947 xfs_agf_t *agfp;
3948 xfs_agi_t *agip;
3949 xfs_buf_t *agfbp;
3950 xfs_buf_t *agibp;
3951 xfs_daddr_t agfdaddr;
3952 xfs_daddr_t agidaddr;
3953 xfs_buf_t *sbbp;
3954 #ifdef XFS_LOUD_RECOVERY
3955 xfs_sb_t *sbp;
3956 #endif
3957 xfs_agnumber_t agno;
3958 __uint64_t freeblks;
3959 __uint64_t itotal;
3960 __uint64_t ifree;
3962 mp = log->l_mp;
3964 freeblks = 0LL;
3965 itotal = 0LL;
3966 ifree = 0LL;
3967 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3968 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
3969 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
3970 XFS_FSS_TO_BB(mp, 1), 0);
3971 if (XFS_BUF_ISERROR(agfbp)) {
3972 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
3973 mp, agfbp, agfdaddr);
3975 agfp = XFS_BUF_TO_AGF(agfbp);
3976 ASSERT(XFS_AGF_MAGIC ==
3977 INT_GET(agfp->agf_magicnum, ARCH_CONVERT));
3978 ASSERT(XFS_AGF_GOOD_VERSION(
3979 INT_GET(agfp->agf_versionnum, ARCH_CONVERT)));
3980 ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno);
3982 freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) +
3983 INT_GET(agfp->agf_flcount, ARCH_CONVERT);
3984 xfs_buf_relse(agfbp);
3986 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
3987 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
3988 XFS_FSS_TO_BB(mp, 1), 0);
3989 if (XFS_BUF_ISERROR(agibp)) {
3990 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
3991 log->l_mp, agibp, agidaddr);
3993 agip = XFS_BUF_TO_AGI(agibp);
3994 ASSERT(XFS_AGI_MAGIC ==
3995 INT_GET(agip->agi_magicnum, ARCH_CONVERT));
3996 ASSERT(XFS_AGI_GOOD_VERSION(
3997 INT_GET(agip->agi_versionnum, ARCH_CONVERT)));
3998 ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno);
4000 itotal += INT_GET(agip->agi_count, ARCH_CONVERT);
4001 ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT);
4002 xfs_buf_relse(agibp);
4005 sbbp = xfs_getsb(mp, 0);
4006 #ifdef XFS_LOUD_RECOVERY
4007 sbp = XFS_BUF_TO_SBP(sbbp);
4008 cmn_err(CE_NOTE,
4009 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4010 sbp->sb_icount, itotal);
4011 cmn_err(CE_NOTE,
4012 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4013 sbp->sb_ifree, ifree);
4014 cmn_err(CE_NOTE,
4015 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4016 sbp->sb_fdblocks, freeblks);
4017 #if 0
4019 * This is turned off until I account for the allocation
4020 * btree blocks which live in free space.
4022 ASSERT(sbp->sb_icount == itotal);
4023 ASSERT(sbp->sb_ifree == ifree);
4024 ASSERT(sbp->sb_fdblocks == freeblks);
4025 #endif
4026 #endif
4027 xfs_buf_relse(sbbp);
4029 #endif /* DEBUG */