Merge with Linux 2.5.74.
[linux-2.6/linux-mips.git] / drivers / ide / ide-io.c
blob25d714b06b314c328e4e3f8cb890419bdf9c78ab
1 /*
2 * IDE I/O functions
4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
51 #include <asm/byteorder.h>
52 #include <asm/irq.h>
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/bitops.h>
57 #include "ide_modes.h"
59 #if (DISK_RECOVERY_TIME > 0)
61 Error So the User Has To Fix the Compilation And Stop Hacking Port 0x43
62 Does anyone ever use this anyway ??
65 * For really screwy hardware (hey, at least it *can* be used with Linux)
66 * we can enforce a minimum delay time between successive operations.
68 static unsigned long read_timer (ide_hwif_t *hwif)
70 unsigned long t, flags;
71 int i;
73 /* FIXME this is completely unsafe! */
74 local_irq_save(flags);
75 t = jiffies * 11932;
76 outb_p(0, 0x43);
77 i = inb_p(0x40);
78 i |= inb_p(0x40) << 8;
79 local_irq_restore(flags);
80 return (t - i);
82 #endif /* DISK_RECOVERY_TIME */
84 static inline void set_recovery_timer (ide_hwif_t *hwif)
86 #if (DISK_RECOVERY_TIME > 0)
87 hwif->last_time = read_timer(hwif);
88 #endif /* DISK_RECOVERY_TIME */
91 /**
92 * ide_end_request - complete an IDE I/O
93 * @drive: IDE device for the I/O
94 * @uptodate:
95 * @nr_sectors: number of sectors completed
97 * This is our end_request wrapper function. We complete the I/O
98 * update random number input and dequeue the request, which if
99 * it was tagged may be out of order.
102 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
104 struct request *rq;
105 unsigned long flags;
106 int ret = 1;
108 spin_lock_irqsave(&ide_lock, flags);
109 rq = HWGROUP(drive)->rq;
111 BUG_ON(!(rq->flags & REQ_STARTED));
113 if (!nr_sectors)
114 nr_sectors = rq->hard_cur_sectors;
117 * decide whether to reenable DMA -- 3 is a random magic for now,
118 * if we DMA timeout more than 3 times, just stay in PIO
120 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
121 drive->state = 0;
122 HWGROUP(drive)->hwif->ide_dma_on(drive);
125 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
126 add_disk_randomness(rq->rq_disk);
127 if (!blk_rq_tagged(rq))
128 blkdev_dequeue_request(rq);
129 else
130 blk_queue_end_tag(&drive->queue, rq);
131 HWGROUP(drive)->rq = NULL;
132 end_that_request_last(rq);
133 ret = 0;
135 spin_unlock_irqrestore(&ide_lock, flags);
136 return ret;
139 EXPORT_SYMBOL(ide_end_request);
142 * ide_complete_pm_request - end the current Power Management request
143 * @drive: target drive
144 * @rq: request
146 * This function cleans up the current PM request and stops the queue
147 * if necessary.
149 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
151 unsigned long flags;
153 #ifdef DEBUG_PM
154 printk("%s: completing PM request, %s\n", drive->name,
155 blk_pm_suspend_request(rq) ? "suspend" : "resume");
156 #endif
157 spin_lock_irqsave(&ide_lock, flags);
158 if (blk_pm_suspend_request(rq)) {
159 blk_stop_queue(&drive->queue);
160 } else {
161 drive->blocked = 0;
162 blk_start_queue(&drive->queue);
164 blkdev_dequeue_request(rq);
165 HWGROUP(drive)->rq = NULL;
166 end_that_request_last(rq);
167 spin_unlock_irqrestore(&ide_lock, flags);
171 * ide_end_drive_cmd - end an explicit drive command
172 * @drive: command
173 * @stat: status bits
174 * @err: error bits
176 * Clean up after success/failure of an explicit drive command.
177 * These get thrown onto the queue so they are synchronized with
178 * real I/O operations on the drive.
180 * In LBA48 mode we have to read the register set twice to get
181 * all the extra information out.
184 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
186 ide_hwif_t *hwif = HWIF(drive);
187 unsigned long flags;
188 struct request *rq;
190 spin_lock_irqsave(&ide_lock, flags);
191 rq = HWGROUP(drive)->rq;
192 spin_unlock_irqrestore(&ide_lock, flags);
194 if (rq->flags & REQ_DRIVE_CMD) {
195 u8 *args = (u8 *) rq->buffer;
196 if (rq->errors == 0)
197 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
199 if (args) {
200 args[0] = stat;
201 args[1] = err;
202 args[2] = hwif->INB(IDE_NSECTOR_REG);
204 } else if (rq->flags & REQ_DRIVE_TASK) {
205 u8 *args = (u8 *) rq->buffer;
206 if (rq->errors == 0)
207 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
209 if (args) {
210 args[0] = stat;
211 args[1] = err;
212 args[2] = hwif->INB(IDE_NSECTOR_REG);
213 args[3] = hwif->INB(IDE_SECTOR_REG);
214 args[4] = hwif->INB(IDE_LCYL_REG);
215 args[5] = hwif->INB(IDE_HCYL_REG);
216 args[6] = hwif->INB(IDE_SELECT_REG);
218 } else if (rq->flags & REQ_DRIVE_TASKFILE) {
219 ide_task_t *args = (ide_task_t *) rq->special;
220 if (rq->errors == 0)
221 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
223 if (args) {
224 if (args->tf_in_flags.b.data) {
225 u16 data = hwif->INW(IDE_DATA_REG);
226 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
227 args->hobRegister[IDE_DATA_OFFSET_HOB] = (data >> 8) & 0xFF;
229 args->tfRegister[IDE_ERROR_OFFSET] = err;
230 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
231 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
232 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
233 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
234 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
235 args->tfRegister[IDE_STATUS_OFFSET] = stat;
237 if (drive->addressing == 1) {
238 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG_HOB);
239 args->hobRegister[IDE_FEATURE_OFFSET_HOB] = hwif->INB(IDE_FEATURE_REG);
240 args->hobRegister[IDE_NSECTOR_OFFSET_HOB] = hwif->INB(IDE_NSECTOR_REG);
241 args->hobRegister[IDE_SECTOR_OFFSET_HOB] = hwif->INB(IDE_SECTOR_REG);
242 args->hobRegister[IDE_LCYL_OFFSET_HOB] = hwif->INB(IDE_LCYL_REG);
243 args->hobRegister[IDE_HCYL_OFFSET_HOB] = hwif->INB(IDE_HCYL_REG);
246 } else if (blk_pm_request(rq)) {
247 #ifdef DEBUG_PM
248 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
249 drive->name, rq->pm->pm_step, stat, err);
250 #endif
251 DRIVER(drive)->complete_power_step(drive, rq, stat, err);
252 if (rq->pm->pm_step == ide_pm_state_completed)
253 ide_complete_pm_request(drive, rq);
254 return;
257 spin_lock_irqsave(&ide_lock, flags);
258 blkdev_dequeue_request(rq);
259 HWGROUP(drive)->rq = NULL;
260 end_that_request_last(rq);
261 spin_unlock_irqrestore(&ide_lock, flags);
264 EXPORT_SYMBOL(ide_end_drive_cmd);
267 * try_to_flush_leftover_data - flush junk
268 * @drive: drive to flush
270 * try_to_flush_leftover_data() is invoked in response to a drive
271 * unexpectedly having its DRQ_STAT bit set. As an alternative to
272 * resetting the drive, this routine tries to clear the condition
273 * by read a sector's worth of data from the drive. Of course,
274 * this may not help if the drive is *waiting* for data from *us*.
276 void try_to_flush_leftover_data (ide_drive_t *drive)
278 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
280 if (drive->media != ide_disk)
281 return;
282 while (i > 0) {
283 u32 buffer[16];
284 u32 wcount = (i > 16) ? 16 : i;
286 i -= wcount;
287 HWIF(drive)->ata_input_data(drive, buffer, wcount);
291 EXPORT_SYMBOL(try_to_flush_leftover_data);
294 * FIXME Add an ATAPI error
298 * ide_error - handle an error on the IDE
299 * @drive: drive the error occurred on
300 * @msg: message to report
301 * @stat: status bits
303 * ide_error() takes action based on the error returned by the drive.
304 * For normal I/O that may well include retries. We deal with
305 * both new-style (taskfile) and old style command handling here.
306 * In the case of taskfile command handling there is work left to
307 * do
310 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
312 ide_hwif_t *hwif;
313 struct request *rq;
314 u8 err;
316 err = ide_dump_status(drive, msg, stat);
317 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
318 return ide_stopped;
320 hwif = HWIF(drive);
321 /* retry only "normal" I/O: */
322 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) {
323 rq->errors = 1;
324 ide_end_drive_cmd(drive, stat, err);
325 return ide_stopped;
327 if (rq->flags & REQ_DRIVE_TASKFILE) {
328 rq->errors = 1;
329 ide_end_drive_cmd(drive, stat, err);
330 // ide_end_taskfile(drive, stat, err);
331 return ide_stopped;
334 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
335 /* other bits are useless when BUSY */
336 rq->errors |= ERROR_RESET;
337 } else {
338 if (drive->media != ide_disk)
339 goto media_out;
341 if (stat & ERR_STAT) {
342 /* err has different meaning on cdrom and tape */
343 if (err == ABRT_ERR) {
344 if (drive->select.b.lba &&
345 (hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY))
346 /* some newer drives don't
347 * support WIN_SPECIFY
349 return ide_stopped;
350 } else if ((err & BAD_CRC) == BAD_CRC) {
351 drive->crc_count++;
352 /* UDMA crc error -- just retry the operation */
353 } else if (err & (BBD_ERR | ECC_ERR)) {
354 /* retries won't help these */
355 rq->errors = ERROR_MAX;
356 } else if (err & TRK0_ERR) {
357 /* help it find track zero */
358 rq->errors |= ERROR_RECAL;
361 media_out:
362 if ((stat & DRQ_STAT) && rq_data_dir(rq) != WRITE)
363 try_to_flush_leftover_data(drive);
365 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) {
366 /* force an abort */
367 hwif->OUTB(WIN_IDLEIMMEDIATE,IDE_COMMAND_REG);
369 if (rq->errors >= ERROR_MAX) {
370 DRIVER(drive)->end_request(drive, 0, 0);
371 } else {
372 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
373 ++rq->errors;
374 return ide_do_reset(drive);
376 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
377 drive->special.b.recalibrate = 1;
378 ++rq->errors;
380 return ide_stopped;
383 EXPORT_SYMBOL(ide_error);
386 * ide_abort - abort pending IDE operatins
387 * @drive: drive the error occurred on
388 * @msg: message to report
390 * ide_abort kills and cleans up when we are about to do a
391 * host initiated reset on active commands. Longer term we
392 * want handlers to have sensible abort handling themselves
394 * This differs fundamentally from ide_error because in
395 * this case the command is doing just fine when we
396 * blow it away.
399 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
401 ide_hwif_t *hwif;
402 struct request *rq;
404 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
405 return ide_stopped;
407 hwif = HWIF(drive);
408 /* retry only "normal" I/O: */
409 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) {
410 rq->errors = 1;
411 ide_end_drive_cmd(drive, BUSY_STAT, 0);
412 return ide_stopped;
414 if (rq->flags & REQ_DRIVE_TASKFILE) {
415 rq->errors = 1;
416 ide_end_drive_cmd(drive, BUSY_STAT, 0);
417 // ide_end_taskfile(drive, BUSY_STAT, 0);
418 return ide_stopped;
421 rq->errors |= ERROR_RESET;
422 DRIVER(drive)->end_request(drive, 0, 0);
423 return ide_stopped;
426 EXPORT_SYMBOL(ide_abort);
429 * ide_cmd - issue a simple drive command
430 * @drive: drive the command is for
431 * @cmd: command byte
432 * @nsect: sector byte
433 * @handler: handler for the command completion
435 * Issue a simple drive command with interrupts.
436 * The drive must be selected beforehand.
439 void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, ide_handler_t *handler)
441 ide_hwif_t *hwif = HWIF(drive);
442 if (IDE_CONTROL_REG)
443 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
444 SELECT_MASK(drive,0);
445 hwif->OUTB(nsect,IDE_NSECTOR_REG);
446 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
449 EXPORT_SYMBOL(ide_cmd);
452 * drive_cmd_intr - drive command completion interrupt
453 * @drive: drive the completion interrupt occurred on
455 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
456 * We do any necessary daya reading and then wait for the drive to
457 * go non busy. At that point we may read the error data and complete
458 * the request
461 ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
463 struct request *rq = HWGROUP(drive)->rq;
464 ide_hwif_t *hwif = HWIF(drive);
465 u8 *args = (u8 *) rq->buffer;
466 u8 stat = hwif->INB(IDE_STATUS_REG);
467 int retries = 10;
469 local_irq_enable();
470 if ((stat & DRQ_STAT) && args && args[3]) {
471 u8 io_32bit = drive->io_32bit;
472 drive->io_32bit = 0;
473 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
474 drive->io_32bit = io_32bit;
475 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
476 udelay(100);
479 if (!OK_STAT(stat, READY_STAT, BAD_STAT) && DRIVER(drive) != NULL)
480 return DRIVER(drive)->error(drive, "drive_cmd", stat);
481 /* calls ide_end_drive_cmd */
482 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
483 return ide_stopped;
486 EXPORT_SYMBOL(drive_cmd_intr);
489 * do_special - issue some special commands
490 * @drive: drive the command is for
492 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
493 * commands to a drive. It used to do much more, but has been scaled
494 * back.
497 ide_startstop_t do_special (ide_drive_t *drive)
499 special_t *s = &drive->special;
501 #ifdef DEBUG
502 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
503 #endif
504 if (s->b.set_tune) {
505 s->b.set_tune = 0;
506 if (HWIF(drive)->tuneproc != NULL)
507 HWIF(drive)->tuneproc(drive, drive->tune_req);
508 return ide_stopped;
510 else
511 return DRIVER(drive)->special(drive);
514 EXPORT_SYMBOL(do_special);
517 * execute_drive_command - issue special drive command
518 * @drive: the drive to issue th command on
519 * @rq: the request structure holding the command
521 * execute_drive_cmd() issues a special drive command, usually
522 * initiated by ioctl() from the external hdparm program. The
523 * command can be a drive command, drive task or taskfile
524 * operation. Weirdly you can call it with NULL to wait for
525 * all commands to finish. Don't do this as that is due to change
528 ide_startstop_t execute_drive_cmd (ide_drive_t *drive, struct request *rq)
530 ide_hwif_t *hwif = HWIF(drive);
531 if (rq->flags & REQ_DRIVE_TASKFILE) {
532 ide_task_t *args = rq->special;
534 if (!args)
535 goto done;
537 if (args->tf_out_flags.all != 0)
538 return flagged_taskfile(drive, args);
539 return do_rw_taskfile(drive, args);
540 } else if (rq->flags & REQ_DRIVE_TASK) {
541 u8 *args = rq->buffer;
542 u8 sel;
544 if (!args)
545 goto done;
546 #ifdef DEBUG
547 printk("%s: DRIVE_TASK_CMD ", drive->name);
548 printk("cmd=0x%02x ", args[0]);
549 printk("fr=0x%02x ", args[1]);
550 printk("ns=0x%02x ", args[2]);
551 printk("sc=0x%02x ", args[3]);
552 printk("lcyl=0x%02x ", args[4]);
553 printk("hcyl=0x%02x ", args[5]);
554 printk("sel=0x%02x\n", args[6]);
555 #endif
556 hwif->OUTB(args[1], IDE_FEATURE_REG);
557 hwif->OUTB(args[3], IDE_SECTOR_REG);
558 hwif->OUTB(args[4], IDE_LCYL_REG);
559 hwif->OUTB(args[5], IDE_HCYL_REG);
560 sel = (args[6] & ~0x10);
561 if (drive->select.b.unit)
562 sel |= 0x10;
563 hwif->OUTB(sel, IDE_SELECT_REG);
564 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
565 return ide_started;
566 } else if (rq->flags & REQ_DRIVE_CMD) {
567 u8 *args = rq->buffer;
569 if (!args)
570 goto done;
571 #ifdef DEBUG
572 printk("%s: DRIVE_CMD ", drive->name);
573 printk("cmd=0x%02x ", args[0]);
574 printk("sc=0x%02x ", args[1]);
575 printk("fr=0x%02x ", args[2]);
576 printk("xx=0x%02x\n", args[3]);
577 #endif
578 if (args[0] == WIN_SMART) {
579 hwif->OUTB(0x4f, IDE_LCYL_REG);
580 hwif->OUTB(0xc2, IDE_HCYL_REG);
581 hwif->OUTB(args[2],IDE_FEATURE_REG);
582 hwif->OUTB(args[1],IDE_SECTOR_REG);
583 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
584 return ide_started;
586 hwif->OUTB(args[2],IDE_FEATURE_REG);
587 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
588 return ide_started;
591 done:
593 * NULL is actually a valid way of waiting for
594 * all current requests to be flushed from the queue.
596 #ifdef DEBUG
597 printk("%s: DRIVE_CMD (null)\n", drive->name);
598 #endif
599 ide_end_drive_cmd(drive,
600 hwif->INB(IDE_STATUS_REG),
601 hwif->INB(IDE_ERROR_REG));
602 return ide_stopped;
605 EXPORT_SYMBOL(execute_drive_cmd);
608 * start_request - start of I/O and command issuing for IDE
610 * start_request() initiates handling of a new I/O request. It
611 * accepts commands and I/O (read/write) requests. It also does
612 * the final remapping for weird stuff like EZDrive. Once
613 * device mapper can work sector level the EZDrive stuff can go away
615 * FIXME: this function needs a rename
618 ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
620 ide_startstop_t startstop;
621 unsigned long block;
623 BUG_ON(!(rq->flags & REQ_STARTED));
625 #ifdef DEBUG
626 printk("%s: start_request: current=0x%08lx\n",
627 HWIF(drive)->name, (unsigned long) rq);
628 #endif
630 /* bail early if we've exceeded max_failures */
631 if (drive->max_failures && (drive->failures > drive->max_failures)) {
632 goto kill_rq;
636 * bail early if we've sent a device to sleep, however how to wake
637 * this needs to be a masked flag. FIXME for proper operations.
639 if (drive->suspend_reset)
640 goto kill_rq;
642 block = rq->sector;
643 if (blk_fs_request(rq) &&
644 (drive->media == ide_disk || drive->media == ide_floppy)) {
645 block += drive->sect0;
647 /* Yecch - this will shift the entire interval,
648 possibly killing some innocent following sector */
649 if (block == 0 && drive->remap_0_to_1 == 1)
650 block = 1; /* redirect MBR access to EZ-Drive partn table */
652 #if (DISK_RECOVERY_TIME > 0)
653 while ((read_timer() - HWIF(drive)->last_time) < DISK_RECOVERY_TIME);
654 #endif
656 if (blk_pm_suspend_request(rq) &&
657 rq->pm->pm_step == ide_pm_state_start_suspend)
658 /* Mark drive blocked when starting the suspend sequence. */
659 drive->blocked = 1;
660 else if (blk_pm_resume_request(rq) &&
661 rq->pm->pm_step == ide_pm_state_start_resume) {
663 * The first thing we do on wakeup is to wait for BSY bit to
664 * go away (with a looong timeout) as a drive on this hwif may
665 * just be POSTing itself.
666 * We do that before even selecting as the "other" device on
667 * the bus may be broken enough to walk on our toes at this
668 * point.
670 int rc;
671 #ifdef DEBUG_PM
672 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
673 #endif
674 rc = ide_wait_not_busy(HWIF(drive), 35000);
675 if (rc)
676 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
677 SELECT_DRIVE(drive);
678 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
679 rc = ide_wait_not_busy(HWIF(drive), 10000);
680 if (rc)
681 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
684 SELECT_DRIVE(drive);
685 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
686 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
687 return startstop;
689 if (!drive->special.all) {
690 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
691 return execute_drive_cmd(drive, rq);
692 else if (rq->flags & REQ_DRIVE_TASKFILE)
693 return execute_drive_cmd(drive, rq);
694 else if (blk_pm_request(rq)) {
695 #ifdef DEBUG_PM
696 printk("%s: start_power_step(step: %d)\n",
697 drive->name, rq->pm->pm_step);
698 #endif
699 startstop = DRIVER(drive)->start_power_step(drive, rq);
700 if (startstop == ide_stopped &&
701 rq->pm->pm_step == ide_pm_state_completed)
702 ide_complete_pm_request(drive, rq);
703 return startstop;
705 return (DRIVER(drive)->do_request(drive, rq, block));
707 return do_special(drive);
708 kill_rq:
709 DRIVER(drive)->end_request(drive, 0, 0);
710 return ide_stopped;
713 EXPORT_SYMBOL(start_request);
716 * ide_stall_queue - pause an IDE device
717 * @drive: drive to stall
718 * @timeout: time to stall for (jiffies)
720 * ide_stall_queue() can be used by a drive to give excess bandwidth back
721 * to the hwgroup by sleeping for timeout jiffies.
724 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
726 if (timeout > WAIT_WORSTCASE)
727 timeout = WAIT_WORSTCASE;
728 drive->sleep = timeout + jiffies;
731 EXPORT_SYMBOL(ide_stall_queue);
733 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
736 * choose_drive - select a drive to service
737 * @hwgroup: hardware group to select on
739 * choose_drive() selects the next drive which will be serviced.
740 * This is necessary because the IDE layer can't issue commands
741 * to both drives on the same cable, unlike SCSI.
744 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
746 ide_drive_t *drive, *best;
748 repeat:
749 best = NULL;
750 drive = hwgroup->drive;
751 do {
752 if ((!drive->sleep || time_after_eq(jiffies, drive->sleep))
753 && !elv_queue_empty(&drive->queue)) {
754 if (!best
755 || (drive->sleep && (!best->sleep || 0 < (signed long)(best->sleep - drive->sleep)))
756 || (!best->sleep && 0 < (signed long)(WAKEUP(best) - WAKEUP(drive))))
758 if (!blk_queue_plugged(&drive->queue))
759 best = drive;
762 } while ((drive = drive->next) != hwgroup->drive);
763 if (best && best->nice1 && !best->sleep && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
764 long t = (signed long)(WAKEUP(best) - jiffies);
765 if (t >= WAIT_MIN_SLEEP) {
767 * We *may* have some time to spare, but first let's see if
768 * someone can potentially benefit from our nice mood today..
770 drive = best->next;
771 do {
772 if (!drive->sleep
773 /* FIXME: use time_before */
774 && 0 < (signed long)(WAKEUP(drive) - (jiffies - best->service_time))
775 && 0 < (signed long)((jiffies + t) - WAKEUP(drive)))
777 ide_stall_queue(best, IDE_MIN(t, 10 * WAIT_MIN_SLEEP));
778 goto repeat;
780 } while ((drive = drive->next) != best);
783 return best;
787 * Issue a new request to a drive from hwgroup
788 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
790 * A hwgroup is a serialized group of IDE interfaces. Usually there is
791 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
792 * may have both interfaces in a single hwgroup to "serialize" access.
793 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
794 * together into one hwgroup for serialized access.
796 * Note also that several hwgroups can end up sharing a single IRQ,
797 * possibly along with many other devices. This is especially common in
798 * PCI-based systems with off-board IDE controller cards.
800 * The IDE driver uses the single global ide_lock spinlock to protect
801 * access to the request queues, and to protect the hwgroup->busy flag.
803 * The first thread into the driver for a particular hwgroup sets the
804 * hwgroup->busy flag to indicate that this hwgroup is now active,
805 * and then initiates processing of the top request from the request queue.
807 * Other threads attempting entry notice the busy setting, and will simply
808 * queue their new requests and exit immediately. Note that hwgroup->busy
809 * remains set even when the driver is merely awaiting the next interrupt.
810 * Thus, the meaning is "this hwgroup is busy processing a request".
812 * When processing of a request completes, the completing thread or IRQ-handler
813 * will start the next request from the queue. If no more work remains,
814 * the driver will clear the hwgroup->busy flag and exit.
816 * The ide_lock (spinlock) is used to protect all access to the
817 * hwgroup->busy flag, but is otherwise not needed for most processing in
818 * the driver. This makes the driver much more friendlier to shared IRQs
819 * than previous designs, while remaining 100% (?) SMP safe and capable.
821 /* --BenH: made non-static as ide-pmac.c uses it to kick the hwgroup back
822 * into life on wakeup from machine sleep.
824 void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
826 ide_drive_t *drive;
827 ide_hwif_t *hwif;
828 struct request *rq;
829 ide_startstop_t startstop;
831 /* for atari only: POSSIBLY BROKEN HERE(?) */
832 ide_get_lock(ide_intr, hwgroup);
834 /* caller must own ide_lock */
835 BUG_ON(!irqs_disabled());
837 while (!hwgroup->busy) {
838 hwgroup->busy = 1;
839 drive = choose_drive(hwgroup);
840 if (drive == NULL) {
841 unsigned long sleep = 0;
842 hwgroup->rq = NULL;
843 drive = hwgroup->drive;
844 do {
845 if (drive->sleep && (!sleep || 0 < (signed long)(sleep - drive->sleep)))
846 sleep = drive->sleep;
847 } while ((drive = drive->next) != hwgroup->drive);
848 if (sleep) {
850 * Take a short snooze, and then wake up this hwgroup again.
851 * This gives other hwgroups on the same a chance to
852 * play fairly with us, just in case there are big differences
853 * in relative throughputs.. don't want to hog the cpu too much.
855 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
856 sleep = jiffies + WAIT_MIN_SLEEP;
857 #if 1
858 if (timer_pending(&hwgroup->timer))
859 printk(KERN_CRIT "ide_set_handler: timer already active\n");
860 #endif
861 /* so that ide_timer_expiry knows what to do */
862 hwgroup->sleeping = 1;
863 mod_timer(&hwgroup->timer, sleep);
864 /* we purposely leave hwgroup->busy==1
865 * while sleeping */
866 } else {
867 /* Ugly, but how can we sleep for the lock
868 * otherwise? perhaps from tq_disk?
871 /* for atari only */
872 ide_release_lock();
873 hwgroup->busy = 0;
876 /* no more work for this hwgroup (for now) */
877 return;
879 hwif = HWIF(drive);
880 if (hwgroup->hwif->sharing_irq &&
881 hwif != hwgroup->hwif &&
882 hwif->io_ports[IDE_CONTROL_OFFSET]) {
883 /* set nIEN for previous hwif */
884 SELECT_INTERRUPT(drive);
886 hwgroup->hwif = hwif;
887 hwgroup->drive = drive;
888 drive->sleep = 0;
889 drive->service_start = jiffies;
891 queue_next:
892 if (!ata_can_queue(drive)) {
893 if (!ata_pending_commands(drive))
894 hwgroup->busy = 0;
896 break;
899 if (blk_queue_plugged(&drive->queue)) {
900 if (drive->using_tcq)
901 break;
903 printk(KERN_ERR "ide: huh? queue was plugged!\n");
904 break;
908 * we know that the queue isn't empty, but this can happen
909 * if the q->prep_rq_fn() decides to kill a request
911 rq = elv_next_request(&drive->queue);
912 if (!rq) {
913 hwgroup->busy = !!ata_pending_commands(drive);
914 break;
918 * Sanity: don't accept a request that isn't a PM request
919 * if we are currently power managed. This is very important as
920 * blk_stop_queue() doesn't prevent the elv_next_request()
921 * above to return us whatever is in the queue. Since we call
922 * ide_do_request() ourselves, we end up taking requests while
923 * the queue is blocked...
925 * We let requests forced at head of queue with ide-preempt
926 * though. I hope that doesn't happen too much, hopefully not
927 * unless the subdriver triggers such a thing in it's own PM
928 * state machine.
930 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
931 #ifdef DEBUG_PM
932 printk("%s: a request made it's way while we are power managing...\n", drive->name);
933 #endif
934 /* We clear busy, there should be no pending ATA command at this point. */
935 hwgroup->busy = 0;
936 break;
939 if (!rq->bio && ata_pending_commands(drive))
940 break;
942 hwgroup->rq = rq;
945 * Some systems have trouble with IDE IRQs arriving while
946 * the driver is still setting things up. So, here we disable
947 * the IRQ used by this interface while the request is being started.
948 * This may look bad at first, but pretty much the same thing
949 * happens anyway when any interrupt comes in, IDE or otherwise
950 * -- the kernel masks the IRQ while it is being handled.
952 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
953 disable_irq_nosync(hwif->irq);
954 spin_unlock(&ide_lock);
955 local_irq_enable();
956 /* allow other IRQs while we start this request */
957 startstop = start_request(drive, rq);
958 spin_lock_irq(&ide_lock);
959 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
960 enable_irq(hwif->irq);
961 if (startstop == ide_released)
962 goto queue_next;
963 if (startstop == ide_stopped)
964 hwgroup->busy = 0;
968 EXPORT_SYMBOL(ide_do_request);
971 * Passes the stuff to ide_do_request
973 void do_ide_request(request_queue_t *q)
975 ide_do_request(q->queuedata, IDE_NO_IRQ);
979 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
980 * retry the current request in pio mode instead of risking tossing it
981 * all away
983 void ide_dma_timeout_retry(ide_drive_t *drive)
985 ide_hwif_t *hwif = HWIF(drive);
986 struct request *rq;
989 * end current dma transaction
991 (void) hwif->ide_dma_end(drive);
994 * complain a little, later we might remove some of this verbosity
996 printk(KERN_WARNING "%s: timeout waiting for DMA\n", drive->name);
997 (void) hwif->ide_dma_timeout(drive);
1000 * disable dma for now, but remember that we did so because of
1001 * a timeout -- we'll reenable after we finish this next request
1002 * (or rather the first chunk of it) in pio.
1004 drive->retry_pio++;
1005 drive->state = DMA_PIO_RETRY;
1006 (void) hwif->ide_dma_off_quietly(drive);
1009 * un-busy drive etc (hwgroup->busy is cleared on return) and
1010 * make sure request is sane
1012 rq = HWGROUP(drive)->rq;
1013 HWGROUP(drive)->rq = NULL;
1015 rq->errors = 0;
1016 rq->sector = rq->bio->bi_sector;
1017 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1018 rq->hard_cur_sectors = rq->current_nr_sectors;
1019 if (rq->bio)
1020 rq->buffer = NULL;
1023 EXPORT_SYMBOL(ide_dma_timeout_retry);
1026 * ide_timer_expiry - handle lack of an IDE interrupt
1027 * @data: timer callback magic (hwgroup)
1029 * An IDE command has timed out before the expected drive return
1030 * occurred. At this point we attempt to clean up the current
1031 * mess. If the current handler includes an expiry handler then
1032 * we invoke the expiry handler, and providing it is happy the
1033 * work is done. If that fails we apply generic recovery rules
1034 * invoking the handler and checking the drive DMA status. We
1035 * have an excessively incestuous relationship with the DMA
1036 * logic that wants cleaning up.
1039 void ide_timer_expiry (unsigned long data)
1041 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1042 ide_handler_t *handler;
1043 ide_expiry_t *expiry;
1044 unsigned long flags;
1045 unsigned long wait;
1047 spin_lock_irqsave(&ide_lock, flags);
1048 del_timer(&hwgroup->timer);
1050 if ((handler = hwgroup->handler) == NULL) {
1052 * Either a marginal timeout occurred
1053 * (got the interrupt just as timer expired),
1054 * or we were "sleeping" to give other devices a chance.
1055 * Either way, we don't really want to complain about anything.
1057 if (hwgroup->sleeping) {
1058 hwgroup->sleeping = 0;
1059 hwgroup->busy = 0;
1061 } else {
1062 ide_drive_t *drive = hwgroup->drive;
1063 if (!drive) {
1064 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1065 hwgroup->handler = NULL;
1066 } else {
1067 ide_hwif_t *hwif;
1068 ide_startstop_t startstop = ide_stopped;
1069 if (!hwgroup->busy) {
1070 hwgroup->busy = 1; /* paranoia */
1071 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1073 if ((expiry = hwgroup->expiry) != NULL) {
1074 /* continue */
1075 if ((wait = expiry(drive)) != 0) {
1076 /* reset timer */
1077 hwgroup->timer.expires = jiffies + wait;
1078 add_timer(&hwgroup->timer);
1079 spin_unlock_irqrestore(&ide_lock, flags);
1080 return;
1083 hwgroup->handler = NULL;
1085 * We need to simulate a real interrupt when invoking
1086 * the handler() function, which means we need to
1087 * globally mask the specific IRQ:
1089 spin_unlock(&ide_lock);
1090 hwif = HWIF(drive);
1091 #if DISABLE_IRQ_NOSYNC
1092 disable_irq_nosync(hwif->irq);
1093 #else
1094 /* disable_irq_nosync ?? */
1095 disable_irq(hwif->irq);
1096 #endif /* DISABLE_IRQ_NOSYNC */
1097 /* local CPU only,
1098 * as if we were handling an interrupt */
1099 local_irq_disable();
1100 if (hwgroup->poll_timeout != 0) {
1101 startstop = handler(drive);
1102 } else if (drive_is_ready(drive)) {
1103 if (drive->waiting_for_dma)
1104 (void) hwgroup->hwif->ide_dma_lostirq(drive);
1105 (void)ide_ack_intr(hwif);
1106 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1107 startstop = handler(drive);
1108 } else {
1109 if (drive->waiting_for_dma) {
1110 startstop = ide_stopped;
1111 ide_dma_timeout_retry(drive);
1112 } else
1113 startstop = DRIVER(drive)->error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1115 set_recovery_timer(hwif);
1116 drive->service_time = jiffies - drive->service_start;
1117 enable_irq(hwif->irq);
1118 spin_lock_irq(&ide_lock);
1119 if (startstop == ide_stopped)
1120 hwgroup->busy = 0;
1123 ide_do_request(hwgroup, IDE_NO_IRQ);
1124 spin_unlock_irqrestore(&ide_lock, flags);
1127 EXPORT_SYMBOL(ide_timer_expiry);
1130 * unexpected_intr - handle an unexpected IDE interrupt
1131 * @irq: interrupt line
1132 * @hwgroup: hwgroup being processed
1134 * There's nothing really useful we can do with an unexpected interrupt,
1135 * other than reading the status register (to clear it), and logging it.
1136 * There should be no way that an irq can happen before we're ready for it,
1137 * so we needn't worry much about losing an "important" interrupt here.
1139 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1140 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1141 * looks "good", we just ignore the interrupt completely.
1143 * This routine assumes __cli() is in effect when called.
1145 * If an unexpected interrupt happens on irq15 while we are handling irq14
1146 * and if the two interfaces are "serialized" (CMD640), then it looks like
1147 * we could screw up by interfering with a new request being set up for
1148 * irq15.
1150 * In reality, this is a non-issue. The new command is not sent unless
1151 * the drive is ready to accept one, in which case we know the drive is
1152 * not trying to interrupt us. And ide_set_handler() is always invoked
1153 * before completing the issuance of any new drive command, so we will not
1154 * be accidentally invoked as a result of any valid command completion
1155 * interrupt.
1157 * Note that we must walk the entire hwgroup here. We know which hwif
1158 * is doing the current command, but we don't know which hwif burped
1159 * mysteriously.
1162 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1164 u8 stat;
1165 ide_hwif_t *hwif = hwgroup->hwif;
1168 * handle the unexpected interrupt
1170 do {
1171 if (hwif->irq == irq) {
1172 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1173 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1174 /* Try to not flood the console with msgs */
1175 static unsigned long last_msgtime, count;
1176 ++count;
1177 if (time_after(jiffies, last_msgtime + HZ)) {
1178 last_msgtime = jiffies;
1179 printk(KERN_ERR "%s%s: unexpected interrupt, "
1180 "status=0x%02x, count=%ld\n",
1181 hwif->name,
1182 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1186 } while ((hwif = hwif->next) != hwgroup->hwif);
1190 * ide_intr - default IDE interrupt handler
1191 * @irq: interrupt number
1192 * @dev_id: hwif group
1193 * @regs: unused weirdness from the kernel irq layer
1195 * This is the default IRQ handler for the IDE layer. You should
1196 * not need to override it. If you do be aware it is subtle in
1197 * places
1199 * hwgroup->hwif is the interface in the group currently performing
1200 * a command. hwgroup->drive is the drive and hwgroup->handler is
1201 * the IRQ handler to call. As we issue a command the handlers
1202 * step through multiple states, reassigning the handler to the
1203 * next step in the process. Unlike a smart SCSI controller IDE
1204 * expects the main processor to sequence the various transfer
1205 * stages. We also manage a poll timer to catch up with most
1206 * timeout situations. There are still a few where the handlers
1207 * don't ever decide to give up.
1209 * The handler eventually returns ide_stopped to indicate the
1210 * request completed. At this point we issue the next request
1211 * on the hwgroup and the process begins again.
1214 irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1216 unsigned long flags;
1217 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1218 ide_hwif_t *hwif;
1219 ide_drive_t *drive;
1220 ide_handler_t *handler;
1221 ide_startstop_t startstop;
1223 spin_lock_irqsave(&ide_lock, flags);
1224 hwif = hwgroup->hwif;
1226 if (!ide_ack_intr(hwif)) {
1227 spin_unlock_irqrestore(&ide_lock, flags);
1228 return IRQ_NONE;
1231 if ((handler = hwgroup->handler) == NULL ||
1232 hwgroup->poll_timeout != 0) {
1234 * Not expecting an interrupt from this drive.
1235 * That means this could be:
1236 * (1) an interrupt from another PCI device
1237 * sharing the same PCI INT# as us.
1238 * or (2) a drive just entered sleep or standby mode,
1239 * and is interrupting to let us know.
1240 * or (3) a spurious interrupt of unknown origin.
1242 * For PCI, we cannot tell the difference,
1243 * so in that case we just ignore it and hope it goes away.
1245 * FIXME: unexpected_intr should be hwif-> then we can
1246 * remove all the ifdef PCI crap
1248 #ifdef CONFIG_BLK_DEV_IDEPCI
1249 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1250 #endif /* CONFIG_BLK_DEV_IDEPCI */
1253 * Probably not a shared PCI interrupt,
1254 * so we can safely try to do something about it:
1256 unexpected_intr(irq, hwgroup);
1257 #ifdef CONFIG_BLK_DEV_IDEPCI
1258 } else {
1260 * Whack the status register, just in case
1261 * we have a leftover pending IRQ.
1263 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1264 #endif /* CONFIG_BLK_DEV_IDEPCI */
1266 spin_unlock_irqrestore(&ide_lock, flags);
1267 return IRQ_NONE;
1269 drive = hwgroup->drive;
1270 if (!drive) {
1272 * This should NEVER happen, and there isn't much
1273 * we could do about it here.
1275 * [Note - this can occur if the drive is hot unplugged]
1277 spin_unlock_irqrestore(&ide_lock, flags);
1278 return IRQ_HANDLED;
1280 if (!drive_is_ready(drive)) {
1282 * This happens regularly when we share a PCI IRQ with
1283 * another device. Unfortunately, it can also happen
1284 * with some buggy drives that trigger the IRQ before
1285 * their status register is up to date. Hopefully we have
1286 * enough advance overhead that the latter isn't a problem.
1288 spin_unlock_irqrestore(&ide_lock, flags);
1289 return IRQ_NONE;
1291 if (!hwgroup->busy) {
1292 hwgroup->busy = 1; /* paranoia */
1293 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1295 hwgroup->handler = NULL;
1296 del_timer(&hwgroup->timer);
1297 spin_unlock(&ide_lock);
1299 if (drive->unmask)
1300 local_irq_enable();
1301 /* service this interrupt, may set handler for next interrupt */
1302 startstop = handler(drive);
1303 spin_lock_irq(&ide_lock);
1306 * Note that handler() may have set things up for another
1307 * interrupt to occur soon, but it cannot happen until
1308 * we exit from this routine, because it will be the
1309 * same irq as is currently being serviced here, and Linux
1310 * won't allow another of the same (on any CPU) until we return.
1312 set_recovery_timer(HWIF(drive));
1313 drive->service_time = jiffies - drive->service_start;
1314 if (startstop == ide_stopped) {
1315 if (hwgroup->handler == NULL) { /* paranoia */
1316 hwgroup->busy = 0;
1317 ide_do_request(hwgroup, hwif->irq);
1318 } else {
1319 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1320 "on exit\n", drive->name);
1323 spin_unlock_irqrestore(&ide_lock, flags);
1324 return IRQ_HANDLED;
1327 EXPORT_SYMBOL(ide_intr);
1330 * ide_init_drive_cmd - initialize a drive command request
1331 * @rq: request object
1333 * Initialize a request before we fill it in and send it down to
1334 * ide_do_drive_cmd. Commands must be set up by this function. Right
1335 * now it doesn't do a lot, but if that changes abusers will have a
1336 * nasty suprise.
1339 void ide_init_drive_cmd (struct request *rq)
1341 memset(rq, 0, sizeof(*rq));
1342 rq->flags = REQ_DRIVE_CMD;
1345 EXPORT_SYMBOL(ide_init_drive_cmd);
1348 * ide_do_drive_cmd - issue IDE special command
1349 * @drive: device to issue command
1350 * @rq: request to issue
1351 * @action: action for processing
1353 * This function issues a special IDE device request
1354 * onto the request queue.
1356 * If action is ide_wait, then the rq is queued at the end of the
1357 * request queue, and the function sleeps until it has been processed.
1358 * This is for use when invoked from an ioctl handler.
1360 * If action is ide_preempt, then the rq is queued at the head of
1361 * the request queue, displacing the currently-being-processed
1362 * request and this function returns immediately without waiting
1363 * for the new rq to be completed. This is VERY DANGEROUS, and is
1364 * intended for careful use by the ATAPI tape/cdrom driver code.
1366 * If action is ide_next, then the rq is queued immediately after
1367 * the currently-being-processed-request (if any), and the function
1368 * returns without waiting for the new rq to be completed. As above,
1369 * This is VERY DANGEROUS, and is intended for careful use by the
1370 * ATAPI tape/cdrom driver code.
1372 * If action is ide_end, then the rq is queued at the end of the
1373 * request queue, and the function returns immediately without waiting
1374 * for the new rq to be completed. This is again intended for careful
1375 * use by the ATAPI tape/cdrom driver code.
1378 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1380 unsigned long flags;
1381 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1382 DECLARE_COMPLETION(wait);
1383 int insert_end = 1, err;
1384 int must_wait = (action == ide_wait || action == ide_head_wait);
1386 #ifdef CONFIG_BLK_DEV_PDC4030
1388 * FIXME: there should be a drive or hwif->special
1389 * handler that points here by default, not hacks
1390 * in the ide-io.c code
1392 * FIXME2: That code breaks power management if used with
1393 * this chipset, that really doesn't belong here !
1395 if (HWIF(drive)->chipset == ide_pdc4030 && rq->buffer != NULL)
1396 return -ENOSYS; /* special drive cmds not supported */
1397 #endif
1398 rq->errors = 0;
1399 rq->rq_status = RQ_ACTIVE;
1401 rq->rq_disk = drive->disk;
1404 * we need to hold an extra reference to request for safe inspection
1405 * after completion
1407 if (must_wait) {
1408 rq->ref_count++;
1409 rq->waiting = &wait;
1412 spin_lock_irqsave(&ide_lock, flags);
1413 if (action == ide_preempt || action == ide_head_wait) {
1414 hwgroup->rq = NULL;
1415 insert_end = 0;
1416 rq->flags |= REQ_PREEMPT;
1418 __elv_add_request(&drive->queue, rq, insert_end, 0);
1419 ide_do_request(hwgroup, IDE_NO_IRQ);
1420 spin_unlock_irqrestore(&ide_lock, flags);
1422 err = 0;
1423 if (must_wait) {
1424 wait_for_completion(&wait);
1425 if (rq->errors)
1426 err = -EIO;
1428 blk_put_request(rq);
1431 return err;
1434 EXPORT_SYMBOL(ide_do_drive_cmd);