2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
18 #include <asm/pgtable.h>
20 #include <linux/hugetlb.h>
22 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
23 static unsigned long nr_huge_pages
, free_huge_pages
;
24 unsigned long max_huge_pages
;
25 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
26 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
27 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
30 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 static DEFINE_SPINLOCK(hugetlb_lock
);
34 static void enqueue_huge_page(struct page
*page
)
36 int nid
= page_to_nid(page
);
37 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
39 free_huge_pages_node
[nid
]++;
42 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
43 unsigned long address
)
45 int nid
= numa_node_id();
46 struct page
*page
= NULL
;
47 struct zonelist
*zonelist
= huge_zonelist(vma
, address
);
50 for (z
= zonelist
->zones
; *z
; z
++) {
51 nid
= (*z
)->zone_pgdat
->node_id
;
52 if (cpuset_zone_allowed(*z
, GFP_HIGHUSER
) &&
53 !list_empty(&hugepage_freelists
[nid
]))
58 page
= list_entry(hugepage_freelists
[nid
].next
,
62 free_huge_pages_node
[nid
]--;
67 static struct page
*alloc_fresh_huge_page(void)
71 page
= alloc_pages_node(nid
, GFP_HIGHUSER
|__GFP_COMP
|__GFP_NOWARN
,
73 nid
= (nid
+ 1) % num_online_nodes();
75 spin_lock(&hugetlb_lock
);
77 nr_huge_pages_node
[page_to_nid(page
)]++;
78 spin_unlock(&hugetlb_lock
);
83 void free_huge_page(struct page
*page
)
85 BUG_ON(page_count(page
));
87 INIT_LIST_HEAD(&page
->lru
);
88 page
[1].mapping
= NULL
;
90 spin_lock(&hugetlb_lock
);
91 enqueue_huge_page(page
);
92 spin_unlock(&hugetlb_lock
);
95 struct page
*alloc_huge_page(struct vm_area_struct
*vma
, unsigned long addr
)
100 spin_lock(&hugetlb_lock
);
101 page
= dequeue_huge_page(vma
, addr
);
103 spin_unlock(&hugetlb_lock
);
106 spin_unlock(&hugetlb_lock
);
107 set_page_count(page
, 1);
108 page
[1].mapping
= (void *)free_huge_page
;
109 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); ++i
)
110 clear_highpage(&page
[i
]);
114 static int __init
hugetlb_init(void)
119 if (HPAGE_SHIFT
== 0)
122 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
123 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
125 for (i
= 0; i
< max_huge_pages
; ++i
) {
126 page
= alloc_fresh_huge_page();
129 spin_lock(&hugetlb_lock
);
130 enqueue_huge_page(page
);
131 spin_unlock(&hugetlb_lock
);
133 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
134 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
137 module_init(hugetlb_init
);
139 static int __init
hugetlb_setup(char *s
)
141 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
145 __setup("hugepages=", hugetlb_setup
);
148 static void update_and_free_page(struct page
*page
)
152 nr_huge_pages_node
[page_zone(page
)->zone_pgdat
->node_id
]--;
153 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
154 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
155 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
156 1 << PG_private
| 1<< PG_writeback
);
157 set_page_count(&page
[i
], 0);
159 set_page_count(page
, 1);
160 __free_pages(page
, HUGETLB_PAGE_ORDER
);
163 #ifdef CONFIG_HIGHMEM
164 static void try_to_free_low(unsigned long count
)
167 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
168 struct page
*page
, *next
;
169 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
170 if (PageHighMem(page
))
172 list_del(&page
->lru
);
173 update_and_free_page(page
);
174 nid
= page_zone(page
)->zone_pgdat
->node_id
;
176 free_huge_pages_node
[nid
]--;
177 if (count
>= nr_huge_pages
)
183 static inline void try_to_free_low(unsigned long count
)
188 static unsigned long set_max_huge_pages(unsigned long count
)
190 while (count
> nr_huge_pages
) {
191 struct page
*page
= alloc_fresh_huge_page();
193 return nr_huge_pages
;
194 spin_lock(&hugetlb_lock
);
195 enqueue_huge_page(page
);
196 spin_unlock(&hugetlb_lock
);
198 if (count
>= nr_huge_pages
)
199 return nr_huge_pages
;
201 spin_lock(&hugetlb_lock
);
202 try_to_free_low(count
);
203 while (count
< nr_huge_pages
) {
204 struct page
*page
= dequeue_huge_page(NULL
, 0);
207 update_and_free_page(page
);
209 spin_unlock(&hugetlb_lock
);
210 return nr_huge_pages
;
213 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
214 struct file
*file
, void __user
*buffer
,
215 size_t *length
, loff_t
*ppos
)
217 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
218 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
221 #endif /* CONFIG_SYSCTL */
223 int hugetlb_report_meminfo(char *buf
)
226 "HugePages_Total: %5lu\n"
227 "HugePages_Free: %5lu\n"
228 "Hugepagesize: %5lu kB\n",
234 int hugetlb_report_node_meminfo(int nid
, char *buf
)
237 "Node %d HugePages_Total: %5u\n"
238 "Node %d HugePages_Free: %5u\n",
239 nid
, nr_huge_pages_node
[nid
],
240 nid
, free_huge_pages_node
[nid
]);
243 int is_hugepage_mem_enough(size_t size
)
245 return (size
+ ~HPAGE_MASK
)/HPAGE_SIZE
<= free_huge_pages
;
248 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
249 unsigned long hugetlb_total_pages(void)
251 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
255 * We cannot handle pagefaults against hugetlb pages at all. They cause
256 * handle_mm_fault() to try to instantiate regular-sized pages in the
257 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
260 static struct page
*hugetlb_nopage(struct vm_area_struct
*vma
,
261 unsigned long address
, int *unused
)
267 struct vm_operations_struct hugetlb_vm_ops
= {
268 .nopage
= hugetlb_nopage
,
271 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
278 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
280 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
282 entry
= pte_mkyoung(entry
);
283 entry
= pte_mkhuge(entry
);
288 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
289 unsigned long address
, pte_t
*ptep
)
293 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
294 ptep_set_access_flags(vma
, address
, ptep
, entry
, 1);
295 update_mmu_cache(vma
, address
, entry
);
296 lazy_mmu_prot_update(entry
);
300 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
301 struct vm_area_struct
*vma
)
303 pte_t
*src_pte
, *dst_pte
, entry
;
304 struct page
*ptepage
;
308 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
310 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
311 src_pte
= huge_pte_offset(src
, addr
);
314 dst_pte
= huge_pte_alloc(dst
, addr
);
317 spin_lock(&dst
->page_table_lock
);
318 spin_lock(&src
->page_table_lock
);
319 if (!pte_none(*src_pte
)) {
321 ptep_set_wrprotect(src
, addr
, src_pte
);
323 ptepage
= pte_page(entry
);
325 add_mm_counter(dst
, file_rss
, HPAGE_SIZE
/ PAGE_SIZE
);
326 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
328 spin_unlock(&src
->page_table_lock
);
329 spin_unlock(&dst
->page_table_lock
);
337 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
340 struct mm_struct
*mm
= vma
->vm_mm
;
341 unsigned long address
;
346 WARN_ON(!is_vm_hugetlb_page(vma
));
347 BUG_ON(start
& ~HPAGE_MASK
);
348 BUG_ON(end
& ~HPAGE_MASK
);
350 spin_lock(&mm
->page_table_lock
);
352 /* Update high watermark before we lower rss */
353 update_hiwater_rss(mm
);
355 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
356 ptep
= huge_pte_offset(mm
, address
);
360 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
364 page
= pte_page(pte
);
366 add_mm_counter(mm
, file_rss
, (int) -(HPAGE_SIZE
/ PAGE_SIZE
));
369 spin_unlock(&mm
->page_table_lock
);
370 flush_tlb_range(vma
, start
, end
);
373 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
374 unsigned long address
, pte_t
*ptep
, pte_t pte
)
376 struct page
*old_page
, *new_page
;
379 old_page
= pte_page(pte
);
381 /* If no-one else is actually using this page, avoid the copy
382 * and just make the page writable */
383 avoidcopy
= (page_count(old_page
) == 1);
385 set_huge_ptep_writable(vma
, address
, ptep
);
386 return VM_FAULT_MINOR
;
389 page_cache_get(old_page
);
390 new_page
= alloc_huge_page(vma
, address
);
393 page_cache_release(old_page
);
395 /* Logically this is OOM, not a SIGBUS, but an OOM
396 * could cause the kernel to go killing other
397 * processes which won't help the hugepage situation
399 return VM_FAULT_SIGBUS
;
402 spin_unlock(&mm
->page_table_lock
);
403 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++)
404 copy_user_highpage(new_page
+ i
, old_page
+ i
,
405 address
+ i
*PAGE_SIZE
);
406 spin_lock(&mm
->page_table_lock
);
408 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
409 if (likely(pte_same(*ptep
, pte
))) {
411 set_huge_pte_at(mm
, address
, ptep
,
412 make_huge_pte(vma
, new_page
, 1));
413 /* Make the old page be freed below */
416 page_cache_release(new_page
);
417 page_cache_release(old_page
);
418 return VM_FAULT_MINOR
;
421 int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
422 unsigned long address
, pte_t
*ptep
, int write_access
)
424 int ret
= VM_FAULT_SIGBUS
;
428 struct address_space
*mapping
;
431 mapping
= vma
->vm_file
->f_mapping
;
432 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
433 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
436 * Use page lock to guard against racing truncation
437 * before we get page_table_lock.
440 page
= find_lock_page(mapping
, idx
);
442 if (hugetlb_get_quota(mapping
))
444 page
= alloc_huge_page(vma
, address
);
446 hugetlb_put_quota(mapping
);
450 if (vma
->vm_flags
& VM_SHARED
) {
453 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
456 hugetlb_put_quota(mapping
);
465 spin_lock(&mm
->page_table_lock
);
466 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
470 ret
= VM_FAULT_MINOR
;
471 if (!pte_none(*ptep
))
474 add_mm_counter(mm
, file_rss
, HPAGE_SIZE
/ PAGE_SIZE
);
475 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
476 && (vma
->vm_flags
& VM_SHARED
)));
477 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
479 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
480 /* Optimization, do the COW without a second fault */
481 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
484 spin_unlock(&mm
->page_table_lock
);
490 spin_unlock(&mm
->page_table_lock
);
491 hugetlb_put_quota(mapping
);
497 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
498 unsigned long address
, int write_access
)
504 ptep
= huge_pte_alloc(mm
, address
);
510 return hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
512 ret
= VM_FAULT_MINOR
;
514 spin_lock(&mm
->page_table_lock
);
515 /* Check for a racing update before calling hugetlb_cow */
516 if (likely(pte_same(entry
, *ptep
)))
517 if (write_access
&& !pte_write(entry
))
518 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
519 spin_unlock(&mm
->page_table_lock
);
524 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
525 struct page
**pages
, struct vm_area_struct
**vmas
,
526 unsigned long *position
, int *length
, int i
)
528 unsigned long vpfn
, vaddr
= *position
;
529 int remainder
= *length
;
531 vpfn
= vaddr
/PAGE_SIZE
;
532 spin_lock(&mm
->page_table_lock
);
533 while (vaddr
< vma
->vm_end
&& remainder
) {
538 * Some archs (sparc64, sh*) have multiple pte_ts to
539 * each hugepage. We have to make * sure we get the
540 * first, for the page indexing below to work.
542 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
544 if (!pte
|| pte_none(*pte
)) {
547 spin_unlock(&mm
->page_table_lock
);
548 ret
= hugetlb_fault(mm
, vma
, vaddr
, 0);
549 spin_lock(&mm
->page_table_lock
);
550 if (ret
== VM_FAULT_MINOR
)
560 page
= &pte_page(*pte
)[vpfn
% (HPAGE_SIZE
/PAGE_SIZE
)];
573 spin_unlock(&mm
->page_table_lock
);