Use a spinlock to protect the vdma data structures.
[linux-2.6/linux-mips.git] / include / asm-alpha / bitops.h
blob4c0e5f417cf334e591269f2853183dabce68be5c
1 #ifndef _ALPHA_BITOPS_H
2 #define _ALPHA_BITOPS_H
4 #include <linux/config.h>
5 #include <linux/kernel.h>
6 #include <asm/compiler.h>
8 /*
9 * Copyright 1994, Linus Torvalds.
13 * These have to be done with inline assembly: that way the bit-setting
14 * is guaranteed to be atomic. All bit operations return 0 if the bit
15 * was cleared before the operation and != 0 if it was not.
17 * To get proper branch prediction for the main line, we must branch
18 * forward to code at the end of this object's .text section, then
19 * branch back to restart the operation.
21 * bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1).
24 static inline void
25 set_bit(unsigned long nr, volatile void * addr)
27 unsigned long temp;
28 int *m = ((int *) addr) + (nr >> 5);
30 __asm__ __volatile__(
31 "1: ldl_l %0,%3\n"
32 " bis %0,%2,%0\n"
33 " stl_c %0,%1\n"
34 " beq %0,2f\n"
35 ".subsection 2\n"
36 "2: br 1b\n"
37 ".previous"
38 :"=&r" (temp), "=m" (*m)
39 :"Ir" (1UL << (nr & 31)), "m" (*m));
43 * WARNING: non atomic version.
45 static inline void
46 __set_bit(unsigned long nr, volatile void * addr)
48 int *m = ((int *) addr) + (nr >> 5);
50 *m |= 1 << (nr & 31);
53 #define smp_mb__before_clear_bit() smp_mb()
54 #define smp_mb__after_clear_bit() smp_mb()
56 static inline void
57 clear_bit(unsigned long nr, volatile void * addr)
59 unsigned long temp;
60 int *m = ((int *) addr) + (nr >> 5);
62 __asm__ __volatile__(
63 "1: ldl_l %0,%3\n"
64 " bic %0,%2,%0\n"
65 " stl_c %0,%1\n"
66 " beq %0,2f\n"
67 ".subsection 2\n"
68 "2: br 1b\n"
69 ".previous"
70 :"=&r" (temp), "=m" (*m)
71 :"Ir" (1UL << (nr & 31)), "m" (*m));
75 * WARNING: non atomic version.
77 static __inline__ void
78 __clear_bit(unsigned long nr, volatile void * addr)
80 int *m = ((int *) addr) + (nr >> 5);
82 *m &= ~(1 << (nr & 31));
85 static inline void
86 change_bit(unsigned long nr, volatile void * addr)
88 unsigned long temp;
89 int *m = ((int *) addr) + (nr >> 5);
91 __asm__ __volatile__(
92 "1: ldl_l %0,%3\n"
93 " xor %0,%2,%0\n"
94 " stl_c %0,%1\n"
95 " beq %0,2f\n"
96 ".subsection 2\n"
97 "2: br 1b\n"
98 ".previous"
99 :"=&r" (temp), "=m" (*m)
100 :"Ir" (1UL << (nr & 31)), "m" (*m));
104 * WARNING: non atomic version.
106 static __inline__ void
107 __change_bit(unsigned long nr, volatile void * addr)
109 int *m = ((int *) addr) + (nr >> 5);
111 *m ^= 1 << (nr & 31);
114 static inline int
115 test_and_set_bit(unsigned long nr, volatile void *addr)
117 unsigned long oldbit;
118 unsigned long temp;
119 int *m = ((int *) addr) + (nr >> 5);
121 __asm__ __volatile__(
122 "1: ldl_l %0,%4\n"
123 " and %0,%3,%2\n"
124 " bne %2,2f\n"
125 " xor %0,%3,%0\n"
126 " stl_c %0,%1\n"
127 " beq %0,3f\n"
128 "2:\n"
129 #ifdef CONFIG_SMP
130 " mb\n"
131 #endif
132 ".subsection 2\n"
133 "3: br 1b\n"
134 ".previous"
135 :"=&r" (temp), "=m" (*m), "=&r" (oldbit)
136 :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
138 return oldbit != 0;
142 * WARNING: non atomic version.
144 static inline int
145 __test_and_set_bit(unsigned long nr, volatile void * addr)
147 unsigned long mask = 1 << (nr & 0x1f);
148 int *m = ((int *) addr) + (nr >> 5);
149 int old = *m;
151 *m = old | mask;
152 return (old & mask) != 0;
155 static inline int
156 test_and_clear_bit(unsigned long nr, volatile void * addr)
158 unsigned long oldbit;
159 unsigned long temp;
160 int *m = ((int *) addr) + (nr >> 5);
162 __asm__ __volatile__(
163 "1: ldl_l %0,%4\n"
164 " and %0,%3,%2\n"
165 " beq %2,2f\n"
166 " xor %0,%3,%0\n"
167 " stl_c %0,%1\n"
168 " beq %0,3f\n"
169 "2:\n"
170 #ifdef CONFIG_SMP
171 " mb\n"
172 #endif
173 ".subsection 2\n"
174 "3: br 1b\n"
175 ".previous"
176 :"=&r" (temp), "=m" (*m), "=&r" (oldbit)
177 :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
179 return oldbit != 0;
183 * WARNING: non atomic version.
185 static inline int
186 __test_and_clear_bit(unsigned long nr, volatile void * addr)
188 unsigned long mask = 1 << (nr & 0x1f);
189 int *m = ((int *) addr) + (nr >> 5);
190 int old = *m;
192 *m = old & ~mask;
193 return (old & mask) != 0;
196 static inline int
197 test_and_change_bit(unsigned long nr, volatile void * addr)
199 unsigned long oldbit;
200 unsigned long temp;
201 int *m = ((int *) addr) + (nr >> 5);
203 __asm__ __volatile__(
204 "1: ldl_l %0,%4\n"
205 " and %0,%3,%2\n"
206 " xor %0,%3,%0\n"
207 " stl_c %0,%1\n"
208 " beq %0,3f\n"
209 #ifdef CONFIG_SMP
210 " mb\n"
211 #endif
212 ".subsection 2\n"
213 "3: br 1b\n"
214 ".previous"
215 :"=&r" (temp), "=m" (*m), "=&r" (oldbit)
216 :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
218 return oldbit != 0;
222 * WARNING: non atomic version.
224 static __inline__ int
225 __test_and_change_bit(unsigned long nr, volatile void * addr)
227 unsigned long mask = 1 << (nr & 0x1f);
228 int *m = ((int *) addr) + (nr >> 5);
229 int old = *m;
231 *m = old ^ mask;
232 return (old & mask) != 0;
235 static inline int
236 test_bit(int nr, const volatile void * addr)
238 return (1UL & (((const int *) addr)[nr >> 5] >> (nr & 31))) != 0UL;
242 * ffz = Find First Zero in word. Undefined if no zero exists,
243 * so code should check against ~0UL first..
245 * Do a binary search on the bits. Due to the nature of large
246 * constants on the alpha, it is worthwhile to split the search.
248 static inline unsigned long ffz_b(unsigned long x)
250 unsigned long sum, x1, x2, x4;
252 x = ~x & -~x; /* set first 0 bit, clear others */
253 x1 = x & 0xAA;
254 x2 = x & 0xCC;
255 x4 = x & 0xF0;
256 sum = x2 ? 2 : 0;
257 sum += (x4 != 0) * 4;
258 sum += (x1 != 0);
260 return sum;
263 static inline unsigned long ffz(unsigned long word)
265 #if defined(__alpha_cix__) && defined(__alpha_fix__)
266 /* Whee. EV67 can calculate it directly. */
267 return __kernel_cttz(~word);
268 #else
269 unsigned long bits, qofs, bofs;
271 bits = __kernel_cmpbge(word, ~0UL);
272 qofs = ffz_b(bits);
273 bits = __kernel_extbl(word, qofs);
274 bofs = ffz_b(bits);
276 return qofs*8 + bofs;
277 #endif
281 * __ffs = Find First set bit in word. Undefined if no set bit exists.
283 static inline unsigned long __ffs(unsigned long word)
285 #if defined(__alpha_cix__) && defined(__alpha_fix__)
286 /* Whee. EV67 can calculate it directly. */
287 return __kernel_cttz(word);
288 #else
289 unsigned long bits, qofs, bofs;
291 bits = __kernel_cmpbge(0, word);
292 qofs = ffz_b(bits);
293 bits = __kernel_extbl(word, qofs);
294 bofs = ffz_b(~bits);
296 return qofs*8 + bofs;
297 #endif
300 #ifdef __KERNEL__
303 * ffs: find first bit set. This is defined the same way as
304 * the libc and compiler builtin ffs routines, therefore
305 * differs in spirit from the above __ffs.
308 static inline int ffs(int word)
310 int result = __ffs(word) + 1;
311 return word ? result : 0;
315 * fls: find last bit set.
317 #if defined(__alpha_cix__) && defined(__alpha_fix__)
318 static inline int fls(int word)
320 return 64 - __kernel_ctlz(word & 0xffffffff);
322 #else
323 #define fls generic_fls
324 #endif
326 /* Compute powers of two for the given integer. */
327 static inline int floor_log2(unsigned long word)
329 #if defined(__alpha_cix__) && defined(__alpha_fix__)
330 return 63 - __kernel_ctlz(word);
331 #else
332 long bit;
333 for (bit = -1; word ; bit++)
334 word >>= 1;
335 return bit;
336 #endif
339 static inline int ceil_log2(unsigned int word)
341 long bit = floor_log2(word);
342 return bit + (word > (1UL << bit));
346 * hweightN: returns the hamming weight (i.e. the number
347 * of bits set) of a N-bit word
350 #if defined(__alpha_cix__) && defined(__alpha_fix__)
351 /* Whee. EV67 can calculate it directly. */
352 static inline unsigned long hweight64(unsigned long w)
354 return __kernel_ctpop(w);
357 #define hweight32(x) hweight64((x) & 0xfffffffful)
358 #define hweight16(x) hweight64((x) & 0xfffful)
359 #define hweight8(x) hweight64((x) & 0xfful)
360 #else
361 static inline unsigned long hweight64(unsigned long w)
363 unsigned long result;
364 for (result = 0; w ; w >>= 1)
365 result += (w & 1);
366 return result;
369 #define hweight32(x) generic_hweight32(x)
370 #define hweight16(x) generic_hweight16(x)
371 #define hweight8(x) generic_hweight8(x)
372 #endif
374 #endif /* __KERNEL__ */
377 * Find next zero bit in a bitmap reasonably efficiently..
379 static inline unsigned long
380 find_next_zero_bit(void * addr, unsigned long size, unsigned long offset)
382 unsigned long * p = ((unsigned long *) addr) + (offset >> 6);
383 unsigned long result = offset & ~63UL;
384 unsigned long tmp;
386 if (offset >= size)
387 return size;
388 size -= result;
389 offset &= 63UL;
390 if (offset) {
391 tmp = *(p++);
392 tmp |= ~0UL >> (64-offset);
393 if (size < 64)
394 goto found_first;
395 if (~tmp)
396 goto found_middle;
397 size -= 64;
398 result += 64;
400 while (size & ~63UL) {
401 if (~(tmp = *(p++)))
402 goto found_middle;
403 result += 64;
404 size -= 64;
406 if (!size)
407 return result;
408 tmp = *p;
409 found_first:
410 tmp |= ~0UL << size;
411 if (tmp == ~0UL) /* Are any bits zero? */
412 return result + size; /* Nope. */
413 found_middle:
414 return result + ffz(tmp);
418 * Find next one bit in a bitmap reasonably efficiently.
420 static inline unsigned long
421 find_next_bit(void * addr, unsigned long size, unsigned long offset)
423 unsigned long * p = ((unsigned long *) addr) + (offset >> 6);
424 unsigned long result = offset & ~63UL;
425 unsigned long tmp;
427 if (offset >= size)
428 return size;
429 size -= result;
430 offset &= 63UL;
431 if (offset) {
432 tmp = *(p++);
433 tmp &= ~0UL << offset;
434 if (size < 64)
435 goto found_first;
436 if (tmp)
437 goto found_middle;
438 size -= 64;
439 result += 64;
441 while (size & ~63UL) {
442 if ((tmp = *(p++)))
443 goto found_middle;
444 result += 64;
445 size -= 64;
447 if (!size)
448 return result;
449 tmp = *p;
450 found_first:
451 tmp &= ~0UL >> (64 - size);
452 if (!tmp)
453 return result + size;
454 found_middle:
455 return result + __ffs(tmp);
459 * The optimizer actually does good code for this case.
461 #define find_first_zero_bit(addr, size) \
462 find_next_zero_bit((addr), (size), 0)
463 #define find_first_bit(addr, size) \
464 find_next_bit((addr), (size), 0)
466 #ifdef __KERNEL__
469 * Every architecture must define this function. It's the fastest
470 * way of searching a 140-bit bitmap where the first 100 bits are
471 * unlikely to be set. It's guaranteed that at least one of the 140
472 * bits is set.
474 static inline unsigned long
475 sched_find_first_bit(unsigned long b[3])
477 unsigned long b0 = b[0], b1 = b[1], b2 = b[2];
478 unsigned long ofs;
480 ofs = (b1 ? 64 : 128);
481 b1 = (b1 ? b1 : b2);
482 ofs = (b0 ? 0 : ofs);
483 b0 = (b0 ? b0 : b1);
485 return __ffs(b0) + ofs;
489 #define ext2_set_bit __test_and_set_bit
490 #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
491 #define ext2_clear_bit __test_and_clear_bit
492 #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
493 #define ext2_test_bit test_bit
494 #define ext2_find_first_zero_bit find_first_zero_bit
495 #define ext2_find_next_zero_bit find_next_zero_bit
497 /* Bitmap functions for the minix filesystem. */
498 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
499 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
500 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
501 #define minix_test_bit(nr,addr) test_bit(nr,addr)
502 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
504 #endif /* __KERNEL__ */
506 #endif /* _ALPHA_BITOPS_H */