2 * include/asm-s390/pgtable.h
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
10 * Derived from "include/asm-i386/pgtable.h"
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
16 #include <asm-generic/4level-fixup.h>
19 * The Linux memory management assumes a three-level page table setup. For
20 * s390 31 bit we "fold" the mid level into the top-level page table, so
21 * that we physically have the same two-level page table as the s390 mmu
22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
23 * the hardware provides (region first and region second tables are not
26 * The "pgd_xxx()" functions are trivial for a folded two-level
27 * setup: the pgd is never bad, and a pmd always exists (as it's folded
30 * This file contains the functions and defines necessary to modify and use
31 * the S390 page table tree.
35 #include <asm/processor.h>
36 #include <linux/threads.h>
38 struct vm_area_struct
; /* forward declaration (include/linux/mm.h) */
41 extern pgd_t swapper_pg_dir
[] __attribute__ ((aligned (4096)));
42 extern void paging_init(void);
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
48 #define update_mmu_cache(vma, address, pte) do { } while (0)
51 * ZERO_PAGE is a global shared page that is always zero: used
52 * for zero-mapped memory areas etc..
54 extern char empty_zero_page
[PAGE_SIZE
];
55 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
56 #endif /* !__ASSEMBLY__ */
59 * PMD_SHIFT determines the size of the area a second-level page
61 * PGDIR_SHIFT determines what a third-level page table entry can map
65 # define PGDIR_SHIFT 22
68 # define PGDIR_SHIFT 31
69 #endif /* __s390x__ */
71 #define PMD_SIZE (1UL << PMD_SHIFT)
72 #define PMD_MASK (~(PMD_SIZE-1))
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
83 # define PTRS_PER_PTE 1024
84 # define PTRS_PER_PMD 1
85 # define PTRS_PER_PGD 512
87 # define PTRS_PER_PTE 512
88 # define PTRS_PER_PMD 1024
89 # define PTRS_PER_PGD 2048
90 #endif /* __s390x__ */
93 * pgd entries used up by user/kernel:
96 # define USER_PTRS_PER_PGD 512
97 # define USER_PGD_PTRS 512
98 # define KERNEL_PGD_PTRS 512
100 # define USER_PTRS_PER_PGD 2048
101 # define USER_PGD_PTRS 2048
102 # define KERNEL_PGD_PTRS 2048
103 #endif /* __s390x__ */
105 #define FIRST_USER_ADDRESS 0
107 #define pte_ERROR(e) \
108 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
109 #define pmd_ERROR(e) \
110 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
111 #define pgd_ERROR(e) \
112 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
116 * Just any arbitrary offset to the start of the vmalloc VM area: the
117 * current 8MB value just means that there will be a 8MB "hole" after the
118 * physical memory until the kernel virtual memory starts. That means that
119 * any out-of-bounds memory accesses will hopefully be caught.
120 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
121 * area for the same reason. ;)
123 #define VMALLOC_OFFSET (8*1024*1024)
124 #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \
125 & ~(VMALLOC_OFFSET-1))
127 # define VMALLOC_END (0x7fffffffL)
128 #else /* __s390x__ */
129 # define VMALLOC_END (0x40000000000L)
130 #endif /* __s390x__ */
134 * A 31 bit pagetable entry of S390 has following format:
137 * 00000000001111111111222222222233
138 * 01234567890123456789012345678901
140 * I Page-Invalid Bit: Page is not available for address-translation
141 * P Page-Protection Bit: Store access not possible for page
143 * A 31 bit segmenttable entry of S390 has following format:
144 * | P-table origin | |PTL
146 * 00000000001111111111222222222233
147 * 01234567890123456789012345678901
149 * I Segment-Invalid Bit: Segment is not available for address-translation
150 * C Common-Segment Bit: Segment is not private (PoP 3-30)
151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
153 * The 31 bit segmenttable origin of S390 has following format:
155 * |S-table origin | | STL |
157 * 00000000001111111111222222222233
158 * 01234567890123456789012345678901
160 * X Space-Switch event:
161 * G Segment-Invalid Bit: *
162 * P Private-Space Bit: Segment is not private (PoP 3-30)
163 * S Storage-Alteration:
164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
166 * A 64 bit pagetable entry of S390 has following format:
168 * 0000000000111111111122222222223333333333444444444455555555556666
169 * 0123456789012345678901234567890123456789012345678901234567890123
171 * I Page-Invalid Bit: Page is not available for address-translation
172 * P Page-Protection Bit: Store access not possible for page
174 * A 64 bit segmenttable entry of S390 has following format:
175 * | P-table origin | TT
176 * 0000000000111111111122222222223333333333444444444455555555556666
177 * 0123456789012345678901234567890123456789012345678901234567890123
179 * I Segment-Invalid Bit: Segment is not available for address-translation
180 * C Common-Segment Bit: Segment is not private (PoP 3-30)
181 * P Page-Protection Bit: Store access not possible for page
184 * A 64 bit region table entry of S390 has following format:
185 * | S-table origin | TF TTTL
186 * 0000000000111111111122222222223333333333444444444455555555556666
187 * 0123456789012345678901234567890123456789012345678901234567890123
189 * I Segment-Invalid Bit: Segment is not available for address-translation
194 * The 64 bit regiontable origin of S390 has following format:
195 * | region table origon | DTTL
196 * 0000000000111111111122222222223333333333444444444455555555556666
197 * 0123456789012345678901234567890123456789012345678901234567890123
199 * X Space-Switch event:
200 * G Segment-Invalid Bit:
201 * P Private-Space Bit:
202 * S Storage-Alteration:
206 * A storage key has the following format:
210 * F : fetch protection bit
215 /* Hardware bits in the page table entry */
216 #define _PAGE_RO 0x200 /* HW read-only */
217 #define _PAGE_INVALID 0x400 /* HW invalid */
219 /* Mask and four different kinds of invalid pages. */
220 #define _PAGE_INVALID_MASK 0x601
221 #define _PAGE_INVALID_EMPTY 0x400
222 #define _PAGE_INVALID_NONE 0x401
223 #define _PAGE_INVALID_SWAP 0x600
224 #define _PAGE_INVALID_FILE 0x601
228 /* Bits in the segment table entry */
229 #define _PAGE_TABLE_LEN 0xf /* only full page-tables */
230 #define _PAGE_TABLE_COM 0x10 /* common page-table */
231 #define _PAGE_TABLE_INV 0x20 /* invalid page-table */
232 #define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */
234 /* Bits int the storage key */
235 #define _PAGE_CHANGED 0x02 /* HW changed bit */
236 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
238 #define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */
239 #define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */
242 * User and Kernel pagetables are identical
244 #define _PAGE_TABLE _PAGE_TABLE_LEN
245 #define _KERNPG_TABLE _PAGE_TABLE_LEN
248 * The Kernel segment-tables includes the User segment-table
251 #define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100)
252 #define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN
254 #define USER_STD_MASK 0x00000080UL
256 #else /* __s390x__ */
258 /* Bits in the segment table entry */
259 #define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */
260 #define _PMD_ENTRY 0x00
262 /* Bits in the region third table entry */
263 #define _PGD_ENTRY_INV 0x20 /* invalid region table entry */
264 #define _PGD_ENTRY 0x07
267 * User and kernel page directory
269 #define _REGION_THIRD 0x4
270 #define _REGION_THIRD_LEN 0x3
271 #define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100)
272 #define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN)
274 #define USER_STD_MASK 0x0000000000000080UL
276 /* Bits in the storage key */
277 #define _PAGE_CHANGED 0x02 /* HW changed bit */
278 #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
280 #endif /* __s390x__ */
283 * No mapping available
285 #define PAGE_NONE_SHARED __pgprot(_PAGE_INVALID_NONE)
286 #define PAGE_NONE_PRIVATE __pgprot(_PAGE_INVALID_NONE)
287 #define PAGE_RO_SHARED __pgprot(_PAGE_RO)
288 #define PAGE_RO_PRIVATE __pgprot(_PAGE_RO)
289 #define PAGE_COPY __pgprot(_PAGE_RO)
290 #define PAGE_SHARED __pgprot(0)
291 #define PAGE_KERNEL __pgprot(0)
294 * The S390 can't do page protection for execute, and considers that the
295 * same are read. Also, write permissions imply read permissions. This is
296 * the closest we can get..
299 #define __P000 PAGE_NONE_PRIVATE
300 #define __P001 PAGE_RO_PRIVATE
301 #define __P010 PAGE_COPY
302 #define __P011 PAGE_COPY
303 #define __P100 PAGE_RO_PRIVATE
304 #define __P101 PAGE_RO_PRIVATE
305 #define __P110 PAGE_COPY
306 #define __P111 PAGE_COPY
308 #define __S000 PAGE_NONE_SHARED
309 #define __S001 PAGE_RO_SHARED
310 #define __S010 PAGE_SHARED
311 #define __S011 PAGE_SHARED
312 #define __S100 PAGE_RO_SHARED
313 #define __S101 PAGE_RO_SHARED
314 #define __S110 PAGE_SHARED
315 #define __S111 PAGE_SHARED
318 * Certain architectures need to do special things when PTEs
319 * within a page table are directly modified. Thus, the following
320 * hook is made available.
322 static inline void set_pte(pte_t
*pteptr
, pte_t pteval
)
326 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
329 * pgd/pmd/pte query functions
333 static inline int pgd_present(pgd_t pgd
) { return 1; }
334 static inline int pgd_none(pgd_t pgd
) { return 0; }
335 static inline int pgd_bad(pgd_t pgd
) { return 0; }
337 static inline int pmd_present(pmd_t pmd
) { return pmd_val(pmd
) & _SEG_PRESENT
; }
338 static inline int pmd_none(pmd_t pmd
) { return pmd_val(pmd
) & _PAGE_TABLE_INV
; }
339 static inline int pmd_bad(pmd_t pmd
)
341 return (pmd_val(pmd
) & (~PAGE_MASK
& ~_PAGE_TABLE_INV
)) != _PAGE_TABLE
;
344 #else /* __s390x__ */
346 static inline int pgd_present(pgd_t pgd
)
348 return (pgd_val(pgd
) & ~PAGE_MASK
) == _PGD_ENTRY
;
351 static inline int pgd_none(pgd_t pgd
)
353 return pgd_val(pgd
) & _PGD_ENTRY_INV
;
356 static inline int pgd_bad(pgd_t pgd
)
358 return (pgd_val(pgd
) & (~PAGE_MASK
& ~_PGD_ENTRY_INV
)) != _PGD_ENTRY
;
361 static inline int pmd_present(pmd_t pmd
)
363 return (pmd_val(pmd
) & ~PAGE_MASK
) == _PMD_ENTRY
;
366 static inline int pmd_none(pmd_t pmd
)
368 return pmd_val(pmd
) & _PMD_ENTRY_INV
;
371 static inline int pmd_bad(pmd_t pmd
)
373 return (pmd_val(pmd
) & (~PAGE_MASK
& ~_PMD_ENTRY_INV
)) != _PMD_ENTRY
;
376 #endif /* __s390x__ */
378 static inline int pte_none(pte_t pte
)
380 return (pte_val(pte
) & _PAGE_INVALID_MASK
) == _PAGE_INVALID_EMPTY
;
383 static inline int pte_present(pte_t pte
)
385 return !(pte_val(pte
) & _PAGE_INVALID
) ||
386 (pte_val(pte
) & _PAGE_INVALID_MASK
) == _PAGE_INVALID_NONE
;
389 static inline int pte_file(pte_t pte
)
391 return (pte_val(pte
) & _PAGE_INVALID_MASK
) == _PAGE_INVALID_FILE
;
394 #define pte_same(a,b) (pte_val(a) == pte_val(b))
397 * query functions pte_write/pte_dirty/pte_young only work if
398 * pte_present() is true. Undefined behaviour if not..
400 static inline int pte_write(pte_t pte
)
402 return (pte_val(pte
) & _PAGE_RO
) == 0;
405 static inline int pte_dirty(pte_t pte
)
407 /* A pte is neither clean nor dirty on s/390. The dirty bit
408 * is in the storage key. See page_test_and_clear_dirty for
414 static inline int pte_young(pte_t pte
)
416 /* A pte is neither young nor old on s/390. The young bit
417 * is in the storage key. See page_test_and_clear_young for
423 static inline int pte_read(pte_t pte
)
425 /* All pages are readable since we don't use the fetch
426 * protection bit in the storage key.
432 * pgd/pmd/pte modification functions
437 static inline void pgd_clear(pgd_t
* pgdp
) { }
439 static inline void pmd_clear(pmd_t
* pmdp
)
441 pmd_val(pmdp
[0]) = _PAGE_TABLE_INV
;
442 pmd_val(pmdp
[1]) = _PAGE_TABLE_INV
;
443 pmd_val(pmdp
[2]) = _PAGE_TABLE_INV
;
444 pmd_val(pmdp
[3]) = _PAGE_TABLE_INV
;
447 #else /* __s390x__ */
449 static inline void pgd_clear(pgd_t
* pgdp
)
451 pgd_val(*pgdp
) = _PGD_ENTRY_INV
| _PGD_ENTRY
;
454 static inline void pmd_clear(pmd_t
* pmdp
)
456 pmd_val(*pmdp
) = _PMD_ENTRY_INV
| _PMD_ENTRY
;
457 pmd_val1(*pmdp
) = _PMD_ENTRY_INV
| _PMD_ENTRY
;
460 #endif /* __s390x__ */
462 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
464 pte_val(*ptep
) = _PAGE_INVALID_EMPTY
;
468 * The following pte modification functions only work if
469 * pte_present() is true. Undefined behaviour if not..
471 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
473 pte_val(pte
) &= PAGE_MASK
;
474 pte_val(pte
) |= pgprot_val(newprot
);
478 static inline pte_t
pte_wrprotect(pte_t pte
)
480 /* Do not clobber _PAGE_INVALID_NONE pages! */
481 if (!(pte_val(pte
) & _PAGE_INVALID
))
482 pte_val(pte
) |= _PAGE_RO
;
486 static inline pte_t
pte_mkwrite(pte_t pte
)
488 pte_val(pte
) &= ~_PAGE_RO
;
492 static inline pte_t
pte_mkclean(pte_t pte
)
494 /* The only user of pte_mkclean is the fork() code.
495 We must *not* clear the *physical* page dirty bit
496 just because fork() wants to clear the dirty bit in
497 *one* of the page's mappings. So we just do nothing. */
501 static inline pte_t
pte_mkdirty(pte_t pte
)
503 /* We do not explicitly set the dirty bit because the
504 * sske instruction is slow. It is faster to let the
505 * next instruction set the dirty bit.
510 static inline pte_t
pte_mkold(pte_t pte
)
512 /* S/390 doesn't keep its dirty/referenced bit in the pte.
513 * There is no point in clearing the real referenced bit.
518 static inline pte_t
pte_mkyoung(pte_t pte
)
520 /* S/390 doesn't keep its dirty/referenced bit in the pte.
521 * There is no point in setting the real referenced bit.
526 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
, unsigned long addr
, pte_t
*ptep
)
532 ptep_clear_flush_young(struct vm_area_struct
*vma
,
533 unsigned long address
, pte_t
*ptep
)
535 /* No need to flush TLB; bits are in storage key */
536 return ptep_test_and_clear_young(vma
, address
, ptep
);
539 static inline int ptep_test_and_clear_dirty(struct vm_area_struct
*vma
, unsigned long addr
, pte_t
*ptep
)
545 ptep_clear_flush_dirty(struct vm_area_struct
*vma
,
546 unsigned long address
, pte_t
*ptep
)
548 /* No need to flush TLB; bits are in storage key */
549 return ptep_test_and_clear_dirty(vma
, address
, ptep
);
552 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
555 pte_clear(mm
, addr
, ptep
);
560 ptep_clear_flush(struct vm_area_struct
*vma
,
561 unsigned long address
, pte_t
*ptep
)
565 if (!(pte_val(pte
) & _PAGE_INVALID
)) {
566 /* S390 has 1mb segments, we are emulating 4MB segments */
567 pte_t
*pto
= (pte_t
*) (((unsigned long) ptep
) & 0x7ffffc00);
568 __asm__
__volatile__ ("ipte %2,%3"
569 : "=m" (*ptep
) : "m" (*ptep
),
570 "a" (pto
), "a" (address
) );
572 #else /* __s390x__ */
573 if (!(pte_val(pte
) & _PAGE_INVALID
))
574 __asm__
__volatile__ ("ipte %2,%3"
575 : "=m" (*ptep
) : "m" (*ptep
),
576 "a" (ptep
), "a" (address
) );
577 #endif /* __s390x__ */
578 pte_val(*ptep
) = _PAGE_INVALID_EMPTY
;
582 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
584 pte_t old_pte
= *ptep
;
585 set_pte_at(mm
, addr
, ptep
, pte_wrprotect(old_pte
));
589 ptep_establish(struct vm_area_struct
*vma
,
590 unsigned long address
, pte_t
*ptep
,
593 ptep_clear_flush(vma
, address
, ptep
);
594 set_pte(ptep
, entry
);
597 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
598 ptep_establish(__vma, __address, __ptep, __entry)
601 * Test and clear dirty bit in storage key.
602 * We can't clear the changed bit atomically. This is a potential
603 * race against modification of the referenced bit. This function
604 * should therefore only be called if it is not mapped in any
607 #define page_test_and_clear_dirty(_page) \
609 struct page *__page = (_page); \
610 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
611 int __skey = page_get_storage_key(__physpage); \
612 if (__skey & _PAGE_CHANGED) \
613 page_set_storage_key(__physpage, __skey & ~_PAGE_CHANGED);\
614 (__skey & _PAGE_CHANGED); \
618 * Test and clear referenced bit in storage key.
620 #define page_test_and_clear_young(page) \
622 struct page *__page = (page); \
623 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
625 asm volatile ("rrbe 0,%1\n\t" \
628 : "=d" (__ccode) : "a" (__physpage) : "cc" ); \
633 * Conversion functions: convert a page and protection to a page entry,
634 * and a page entry and page directory to the page they refer to.
636 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
639 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
643 #define mk_pte(pg, pgprot) \
645 struct page *__page = (pg); \
646 pgprot_t __pgprot = (pgprot); \
647 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \
648 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \
652 #define pfn_pte(pfn, pgprot) \
654 pgprot_t __pgprot = (pgprot); \
655 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \
656 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \
662 #define pfn_pmd(pfn, pgprot) \
664 pgprot_t __pgprot = (pgprot); \
665 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \
666 pmd_t __pmd = __pmd(__physpage + pgprot_val(__pgprot)); \
670 #endif /* __s390x__ */
672 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
673 #define pte_page(x) pfn_to_page(pte_pfn(x))
675 #define pmd_page_kernel(pmd) (pmd_val(pmd) & PAGE_MASK)
677 #define pmd_page(pmd) (mem_map+(pmd_val(pmd) >> PAGE_SHIFT))
679 #define pgd_page_kernel(pgd) (pgd_val(pgd) & PAGE_MASK)
681 /* to find an entry in a page-table-directory */
682 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
683 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
685 /* to find an entry in a kernel page-table-directory */
686 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
690 /* Find an entry in the second-level page table.. */
691 static inline pmd_t
* pmd_offset(pgd_t
* dir
, unsigned long address
)
693 return (pmd_t
*) dir
;
696 #else /* __s390x__ */
698 /* Find an entry in the second-level page table.. */
699 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
700 #define pmd_offset(dir,addr) \
701 ((pmd_t *) pgd_page_kernel(*(dir)) + pmd_index(addr))
703 #endif /* __s390x__ */
705 /* Find an entry in the third-level page table.. */
706 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
707 #define pte_offset_kernel(pmd, address) \
708 ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address))
709 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
710 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
711 #define pte_unmap(pte) do { } while (0)
712 #define pte_unmap_nested(pte) do { } while (0)
715 * 31 bit swap entry format:
716 * A page-table entry has some bits we have to treat in a special way.
717 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
718 * exception will occur instead of a page translation exception. The
719 * specifiation exception has the bad habit not to store necessary
720 * information in the lowcore.
721 * Bit 21 and bit 22 are the page invalid bit and the page protection
722 * bit. We set both to indicate a swapped page.
723 * Bit 30 and 31 are used to distinguish the different page types. For
724 * a swapped page these bits need to be zero.
725 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
726 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
727 * plus 24 for the offset.
728 * 0| offset |0110|o|type |00|
729 * 0 0000000001111111111 2222 2 22222 33
730 * 0 1234567890123456789 0123 4 56789 01
732 * 64 bit swap entry format:
733 * A page-table entry has some bits we have to treat in a special way.
734 * Bits 52 and bit 55 have to be zero, otherwise an specification
735 * exception will occur instead of a page translation exception. The
736 * specifiation exception has the bad habit not to store necessary
737 * information in the lowcore.
738 * Bit 53 and bit 54 are the page invalid bit and the page protection
739 * bit. We set both to indicate a swapped page.
740 * Bit 62 and 63 are used to distinguish the different page types. For
741 * a swapped page these bits need to be zero.
742 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
743 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
744 * plus 56 for the offset.
745 * | offset |0110|o|type |00|
746 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
747 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
750 #define __SWP_OFFSET_MASK (~0UL >> 12)
752 #define __SWP_OFFSET_MASK (~0UL >> 11)
754 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
757 offset
&= __SWP_OFFSET_MASK
;
758 pte_val(pte
) = _PAGE_INVALID_SWAP
| ((type
& 0x1f) << 2) |
759 ((offset
& 1UL) << 7) | ((offset
& ~1UL) << 11);
763 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
764 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
765 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
767 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
768 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
771 # define PTE_FILE_MAX_BITS 26
772 #else /* __s390x__ */
773 # define PTE_FILE_MAX_BITS 59
774 #endif /* __s390x__ */
776 #define pte_to_pgoff(__pte) \
777 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
779 #define pgoff_to_pte(__off) \
780 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
781 | _PAGE_INVALID_FILE })
783 #endif /* !__ASSEMBLY__ */
785 #define kern_addr_valid(addr) (1)
788 * No page table caches to initialise
790 #define pgtable_cache_init() do { } while (0)
792 #define __HAVE_ARCH_PTEP_ESTABLISH
793 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
794 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
795 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
796 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
797 #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
798 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
799 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
800 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
801 #define __HAVE_ARCH_PTE_SAME
802 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
803 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
804 #include <asm-generic/pgtable.h>
806 #endif /* _S390_PAGE_H */