Wipe out the last remains of arch/mips64/boot, rot in pieces ...
[linux-2.6/linux-mips.git] / mm / slab.c
blobbee3dfdf8619fc0d3867d31d574175fb5485cad0
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
80 #include <linux/config.h>
81 #include <linux/slab.h>
82 #include <linux/mm.h>
83 #include <linux/swap.h>
84 #include <linux/cache.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compiler.h>
88 #include <linux/seq_file.h>
89 #include <linux/notifier.h>
90 #include <linux/kallsyms.h>
91 #include <linux/cpu.h>
92 #include <linux/sysctl.h>
93 #include <linux/module.h>
95 #include <asm/uaccess.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
100 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
101 * SLAB_RED_ZONE & SLAB_POISON.
102 * 0 for faster, smaller code (especially in the critical paths).
104 * STATS - 1 to collect stats for /proc/slabinfo.
105 * 0 for faster, smaller code (especially in the critical paths).
107 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
110 #ifdef CONFIG_DEBUG_SLAB
111 #define DEBUG 1
112 #define STATS 1
113 #define FORCED_DEBUG 1
114 #else
115 #define DEBUG 0
116 #define STATS 0
117 #define FORCED_DEBUG 0
118 #endif
121 /* Shouldn't this be in a header file somewhere? */
122 #define BYTES_PER_WORD sizeof(void *)
124 /* Legal flag mask for kmem_cache_create(). */
125 #if DEBUG
126 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
127 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
128 SLAB_NO_REAP | SLAB_CACHE_DMA | \
129 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
130 SLAB_RECLAIM_ACCOUNT )
131 #else
132 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
133 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
134 SLAB_RECLAIM_ACCOUNT)
135 #endif
138 * kmem_bufctl_t:
140 * Bufctl's are used for linking objs within a slab
141 * linked offsets.
143 * This implementation relies on "struct page" for locating the cache &
144 * slab an object belongs to.
145 * This allows the bufctl structure to be small (one int), but limits
146 * the number of objects a slab (not a cache) can contain when off-slab
147 * bufctls are used. The limit is the size of the largest general cache
148 * that does not use off-slab slabs.
149 * For 32bit archs with 4 kB pages, is this 56.
150 * This is not serious, as it is only for large objects, when it is unwise
151 * to have too many per slab.
152 * Note: This limit can be raised by introducing a general cache whose size
153 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
156 #define BUFCTL_END 0xffffFFFF
157 #define SLAB_LIMIT 0xffffFFFE
158 typedef unsigned int kmem_bufctl_t;
160 /* Max number of objs-per-slab for caches which use off-slab slabs.
161 * Needed to avoid a possible looping condition in cache_grow().
163 static unsigned long offslab_limit;
166 * struct slab
168 * Manages the objs in a slab. Placed either at the beginning of mem allocated
169 * for a slab, or allocated from an general cache.
170 * Slabs are chained into three list: fully used, partial, fully free slabs.
172 struct slab {
173 struct list_head list;
174 unsigned long colouroff;
175 void *s_mem; /* including colour offset */
176 unsigned int inuse; /* num of objs active in slab */
177 kmem_bufctl_t free;
181 * struct array_cache
183 * Per cpu structures
184 * Purpose:
185 * - LIFO ordering, to hand out cache-warm objects from _alloc
186 * - reduce the number of linked list operations
187 * - reduce spinlock operations
189 * The limit is stored in the per-cpu structure to reduce the data cache
190 * footprint.
193 struct array_cache {
194 unsigned int avail;
195 unsigned int limit;
196 unsigned int batchcount;
197 unsigned int touched;
200 /* bootstrap: The caches do not work without cpuarrays anymore,
201 * but the cpuarrays are allocated from the generic caches...
203 #define BOOT_CPUCACHE_ENTRIES 1
204 struct arraycache_init {
205 struct array_cache cache;
206 void * entries[BOOT_CPUCACHE_ENTRIES];
210 * The slab lists of all objects.
211 * Hopefully reduce the internal fragmentation
212 * NUMA: The spinlock could be moved from the kmem_cache_t
213 * into this structure, too. Figure out what causes
214 * fewer cross-node spinlock operations.
216 struct kmem_list3 {
217 struct list_head slabs_partial; /* partial list first, better asm code */
218 struct list_head slabs_full;
219 struct list_head slabs_free;
220 unsigned long free_objects;
221 int free_touched;
222 unsigned long next_reap;
223 struct array_cache *shared;
226 #define LIST3_INIT(parent) \
228 .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
229 .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
230 .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
232 #define list3_data(cachep) \
233 (&(cachep)->lists)
235 /* NUMA: per-node */
236 #define list3_data_ptr(cachep, ptr) \
237 list3_data(cachep)
240 * kmem_cache_t
242 * manages a cache.
245 struct kmem_cache_s {
246 /* 1) per-cpu data, touched during every alloc/free */
247 struct array_cache *array[NR_CPUS];
248 unsigned int batchcount;
249 unsigned int limit;
250 /* 2) touched by every alloc & free from the backend */
251 struct kmem_list3 lists;
252 /* NUMA: kmem_3list_t *nodelists[NR_NODES] */
253 unsigned int objsize;
254 unsigned int flags; /* constant flags */
255 unsigned int num; /* # of objs per slab */
256 unsigned int free_limit; /* upper limit of objects in the lists */
257 spinlock_t spinlock;
259 /* 3) cache_grow/shrink */
260 /* order of pgs per slab (2^n) */
261 unsigned int gfporder;
263 /* force GFP flags, e.g. GFP_DMA */
264 unsigned int gfpflags;
266 size_t colour; /* cache colouring range */
267 unsigned int colour_off; /* colour offset */
268 unsigned int colour_next; /* cache colouring */
269 kmem_cache_t *slabp_cache;
270 unsigned int dflags; /* dynamic flags */
272 /* constructor func */
273 void (*ctor)(void *, kmem_cache_t *, unsigned long);
275 /* de-constructor func */
276 void (*dtor)(void *, kmem_cache_t *, unsigned long);
278 /* 4) cache creation/removal */
279 const char *name;
280 struct list_head next;
282 /* 5) statistics */
283 #if STATS
284 unsigned long num_active;
285 unsigned long num_allocations;
286 unsigned long high_mark;
287 unsigned long grown;
288 unsigned long reaped;
289 unsigned long errors;
290 unsigned long max_freeable;
291 atomic_t allochit;
292 atomic_t allocmiss;
293 atomic_t freehit;
294 atomic_t freemiss;
295 #endif
298 #define CFLGS_OFF_SLAB (0x80000000UL)
299 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
301 #define BATCHREFILL_LIMIT 16
302 /* Optimization question: fewer reaps means less
303 * probability for unnessary cpucache drain/refill cycles.
305 * OTHO the cpuarrays can contain lots of objects,
306 * which could lock up otherwise freeable slabs.
308 #define REAPTIMEOUT_CPUC (2*HZ)
309 #define REAPTIMEOUT_LIST3 (4*HZ)
311 #if STATS
312 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
313 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
314 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
315 #define STATS_INC_GROWN(x) ((x)->grown++)
316 #define STATS_INC_REAPED(x) ((x)->reaped++)
317 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
318 (x)->high_mark = (x)->num_active; \
319 } while (0)
320 #define STATS_INC_ERR(x) ((x)->errors++)
321 #define STATS_SET_FREEABLE(x, i) \
322 do { if ((x)->max_freeable < i) \
323 (x)->max_freeable = i; \
324 } while (0)
326 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
327 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
328 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
329 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
330 #else
331 #define STATS_INC_ACTIVE(x) do { } while (0)
332 #define STATS_DEC_ACTIVE(x) do { } while (0)
333 #define STATS_INC_ALLOCED(x) do { } while (0)
334 #define STATS_INC_GROWN(x) do { } while (0)
335 #define STATS_INC_REAPED(x) do { } while (0)
336 #define STATS_SET_HIGH(x) do { } while (0)
337 #define STATS_INC_ERR(x) do { } while (0)
338 #define STATS_SET_FREEABLE(x, i) \
339 do { } while (0)
341 #define STATS_INC_ALLOCHIT(x) do { } while (0)
342 #define STATS_INC_ALLOCMISS(x) do { } while (0)
343 #define STATS_INC_FREEHIT(x) do { } while (0)
344 #define STATS_INC_FREEMISS(x) do { } while (0)
345 #endif
347 #if DEBUG
348 /* Magic nums for obj red zoning.
349 * Placed in the first word before and the first word after an obj.
351 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
352 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
354 /* ...and for poisoning */
355 #define POISON_BEFORE 0x5a /* for use-uninitialised poisoning */
356 #define POISON_AFTER 0x6b /* for use-after-free poisoning */
357 #define POISON_END 0xa5 /* end-byte of poisoning */
359 static inline int obj_dbghead(kmem_cache_t *cachep)
361 if (cachep->flags & SLAB_RED_ZONE)
362 return BYTES_PER_WORD;
363 return 0;
366 static inline int obj_dbglen(kmem_cache_t *cachep)
368 int len = 0;
370 if (cachep->flags & SLAB_RED_ZONE) {
371 len += 2*BYTES_PER_WORD;
373 if (cachep->flags & SLAB_STORE_USER) {
374 len += BYTES_PER_WORD;
376 return len;
378 #else
379 static inline int obj_dbghead(kmem_cache_t *cachep)
381 return 0;
383 static inline int obj_dbglen(kmem_cache_t *cachep)
385 return 0;
387 #endif
390 * Maximum size of an obj (in 2^order pages)
391 * and absolute limit for the gfp order.
393 #if defined(CONFIG_LARGE_ALLOCS)
394 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
395 #define MAX_GFP_ORDER 13 /* up to 32Mb */
396 #elif defined(CONFIG_MMU)
397 #define MAX_OBJ_ORDER 5 /* 32 pages */
398 #define MAX_GFP_ORDER 5 /* 32 pages */
399 #else
400 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
401 #define MAX_GFP_ORDER 8 /* up to 1Mb */
402 #endif
405 * Do not go above this order unless 0 objects fit into the slab.
407 #define BREAK_GFP_ORDER_HI 2
408 #define BREAK_GFP_ORDER_LO 1
409 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
411 /* Macros for storing/retrieving the cachep and or slab from the
412 * global 'mem_map'. These are used to find the slab an obj belongs to.
413 * With kfree(), these are used to find the cache which an obj belongs to.
415 #define SET_PAGE_CACHE(pg,x) ((pg)->list.next = (struct list_head *)(x))
416 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->list.next)
417 #define SET_PAGE_SLAB(pg,x) ((pg)->list.prev = (struct list_head *)(x))
418 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->list.prev)
420 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
421 struct cache_sizes malloc_sizes[] = {
422 #define CACHE(x) { .cs_size = (x) },
423 #include <linux/kmalloc_sizes.h>
424 { 0, }
425 #undef CACHE
428 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
429 static struct cache_names {
430 char *name;
431 char *name_dma;
432 } cache_names[] = {
433 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
434 #include <linux/kmalloc_sizes.h>
435 { 0, }
436 #undef CACHE
439 struct arraycache_init initarray_cache __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
440 struct arraycache_init initarray_generic __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
442 /* internal cache of cache description objs */
443 static kmem_cache_t cache_cache = {
444 .lists = LIST3_INIT(cache_cache.lists),
445 .batchcount = 1,
446 .limit = BOOT_CPUCACHE_ENTRIES,
447 .objsize = sizeof(kmem_cache_t),
448 .flags = SLAB_NO_REAP,
449 .spinlock = SPIN_LOCK_UNLOCKED,
450 .colour_off = L1_CACHE_BYTES,
451 .name = "kmem_cache",
454 /* Guard access to the cache-chain. */
455 static struct semaphore cache_chain_sem;
457 struct list_head cache_chain;
460 * vm_enough_memory() looks at this to determine how many
461 * slab-allocated pages are possibly freeable under pressure
463 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
465 atomic_t slab_reclaim_pages;
466 EXPORT_SYMBOL(slab_reclaim_pages);
469 * chicken and egg problem: delay the per-cpu array allocation
470 * until the general caches are up.
472 enum {
473 NONE,
474 PARTIAL,
475 FULL
476 } g_cpucache_up;
478 static DEFINE_PER_CPU(struct timer_list, reap_timers);
480 static void reap_timer_fnc(unsigned long data);
482 static void enable_cpucache (kmem_cache_t *cachep);
484 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
485 static void cache_estimate (unsigned long gfporder, size_t size,
486 int flags, size_t *left_over, unsigned int *num)
488 int i;
489 size_t wastage = PAGE_SIZE<<gfporder;
490 size_t extra = 0;
491 size_t base = 0;
493 if (!(flags & CFLGS_OFF_SLAB)) {
494 base = sizeof(struct slab);
495 extra = sizeof(kmem_bufctl_t);
497 i = 0;
498 while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
499 i++;
500 if (i > 0)
501 i--;
503 if (i > SLAB_LIMIT)
504 i = SLAB_LIMIT;
506 *num = i;
507 wastage -= i*size;
508 wastage -= L1_CACHE_ALIGN(base+i*extra);
509 *left_over = wastage;
512 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
514 static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
516 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
517 function, cachep->name, msg);
518 dump_stack();
522 * Start the reap timer running on the target CPU. We run at around 1 to 2Hz.
523 * Add the CPU number into the expiry time to minimize the possibility of the
524 * CPUs getting into lockstep and contending for the global cache chain lock.
526 static void start_cpu_timer(int cpu)
528 struct timer_list *rt = &per_cpu(reap_timers, cpu);
530 if (rt->function == NULL) {
531 init_timer(rt);
532 rt->expires = jiffies + HZ + 3*cpu;
533 rt->function = reap_timer_fnc;
534 add_timer_on(rt, cpu);
539 * Note: if someone calls kmem_cache_alloc() on the new
540 * cpu before the cpuup callback had a chance to allocate
541 * the head arrays, it will oops.
542 * Is CPU_ONLINE early enough?
544 static int __devinit cpuup_callback(struct notifier_block *nfb,
545 unsigned long action,
546 void *hcpu)
548 long cpu = (long)hcpu;
549 struct list_head *p;
551 switch (action) {
552 case CPU_UP_PREPARE:
553 down(&cache_chain_sem);
554 list_for_each(p, &cache_chain) {
555 int memsize;
556 struct array_cache *nc;
558 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
559 memsize = sizeof(void*)*cachep->limit+sizeof(struct array_cache);
560 nc = kmalloc(memsize, GFP_KERNEL);
561 if (!nc)
562 goto bad;
563 nc->avail = 0;
564 nc->limit = cachep->limit;
565 nc->batchcount = cachep->batchcount;
566 nc->touched = 0;
568 spin_lock_irq(&cachep->spinlock);
569 cachep->array[cpu] = nc;
570 cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
571 + cachep->num;
572 spin_unlock_irq(&cachep->spinlock);
575 up(&cache_chain_sem);
576 break;
577 case CPU_ONLINE:
578 if (g_cpucache_up == FULL)
579 start_cpu_timer(cpu);
580 break;
581 case CPU_UP_CANCELED:
582 down(&cache_chain_sem);
584 list_for_each(p, &cache_chain) {
585 struct array_cache *nc;
586 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
588 nc = cachep->array[cpu];
589 cachep->array[cpu] = NULL;
590 kfree(nc);
592 up(&cache_chain_sem);
593 break;
595 return NOTIFY_OK;
596 bad:
597 up(&cache_chain_sem);
598 return NOTIFY_BAD;
601 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
603 static inline void ** ac_entry(struct array_cache *ac)
605 return (void**)(ac+1);
608 static inline struct array_cache *ac_data(kmem_cache_t *cachep)
610 return cachep->array[smp_processor_id()];
613 /* Initialisation.
614 * Called after the gfp() functions have been enabled, and before smp_init().
616 void __init kmem_cache_init(void)
618 size_t left_over;
619 struct cache_sizes *sizes;
620 struct cache_names *names;
623 * Fragmentation resistance on low memory - only use bigger
624 * page orders on machines with more than 32MB of memory.
626 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
627 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
630 /* Bootstrap is tricky, because several objects are allocated
631 * from caches that do not exist yet:
632 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
633 * structures of all caches, except cache_cache itself: cache_cache
634 * is statically allocated.
635 * Initially an __init data area is used for the head array, it's
636 * replaced with a kmalloc allocated array at the end of the bootstrap.
637 * 2) Create the first kmalloc cache.
638 * The kmem_cache_t for the new cache is allocated normally. An __init
639 * data area is used for the head array.
640 * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
641 * 4) Replace the __init data head arrays for cache_cache and the first
642 * kmalloc cache with kmalloc allocated arrays.
643 * 5) Resize the head arrays of the kmalloc caches to their final sizes.
646 /* 1) create the cache_cache */
647 init_MUTEX(&cache_chain_sem);
648 INIT_LIST_HEAD(&cache_chain);
649 list_add(&cache_cache.next, &cache_chain);
650 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
652 cache_estimate(0, cache_cache.objsize, 0,
653 &left_over, &cache_cache.num);
654 if (!cache_cache.num)
655 BUG();
657 cache_cache.colour = left_over/cache_cache.colour_off;
658 cache_cache.colour_next = 0;
661 /* 2+3) create the kmalloc caches */
662 sizes = malloc_sizes;
663 names = cache_names;
665 while (sizes->cs_size) {
666 /* For performance, all the general caches are L1 aligned.
667 * This should be particularly beneficial on SMP boxes, as it
668 * eliminates "false sharing".
669 * Note for systems short on memory removing the alignment will
670 * allow tighter packing of the smaller caches. */
671 sizes->cs_cachep = kmem_cache_create(
672 names->name, sizes->cs_size,
673 0, SLAB_HWCACHE_ALIGN, NULL, NULL);
674 if (!sizes->cs_cachep)
675 BUG();
677 /* Inc off-slab bufctl limit until the ceiling is hit. */
678 if (!(OFF_SLAB(sizes->cs_cachep))) {
679 offslab_limit = sizes->cs_size-sizeof(struct slab);
680 offslab_limit /= sizeof(kmem_bufctl_t);
683 sizes->cs_dmacachep = kmem_cache_create(
684 names->name_dma, sizes->cs_size,
685 0, SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
686 if (!sizes->cs_dmacachep)
687 BUG();
689 sizes++;
690 names++;
692 /* 4) Replace the bootstrap head arrays */
694 void * ptr;
696 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
697 local_irq_disable();
698 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
699 memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init));
700 cache_cache.array[smp_processor_id()] = ptr;
701 local_irq_enable();
703 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
704 local_irq_disable();
705 BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache);
706 memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep),
707 sizeof(struct arraycache_init));
708 malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr;
709 local_irq_enable();
712 /* 5) resize the head arrays to their final sizes */
714 kmem_cache_t *cachep;
715 down(&cache_chain_sem);
716 list_for_each_entry(cachep, &cache_chain, next)
717 enable_cpucache(cachep);
718 up(&cache_chain_sem);
721 /* Done! */
722 g_cpucache_up = FULL;
724 /* Register a cpu startup notifier callback
725 * that initializes ac_data for all new cpus
727 register_cpu_notifier(&cpucache_notifier);
730 /* The reap timers are started later, with a module init call:
731 * That part of the kernel is not yet operational.
735 int __init cpucache_init(void)
737 int cpu;
740 * Register the timers that return unneeded
741 * pages to gfp.
743 for (cpu = 0; cpu < NR_CPUS; cpu++) {
744 if (cpu_online(cpu))
745 start_cpu_timer(cpu);
748 return 0;
751 __initcall(cpucache_init);
753 /* Interface to system's page allocator. No need to hold the cache-lock.
755 static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long flags)
757 void *addr;
760 * If we requested dmaable memory, we will get it. Even if we
761 * did not request dmaable memory, we might get it, but that
762 * would be relatively rare and ignorable.
764 flags |= cachep->gfpflags;
765 if ( cachep->flags & SLAB_RECLAIM_ACCOUNT)
766 atomic_add(1<<cachep->gfporder, &slab_reclaim_pages);
767 addr = (void*) __get_free_pages(flags, cachep->gfporder);
768 /* Assume that now we have the pages no one else can legally
769 * messes with the 'struct page's.
770 * However vm_scan() might try to test the structure to see if
771 * it is a named-page or buffer-page. The members it tests are
772 * of no interest here.....
774 return addr;
777 /* Interface to system's page release. */
778 static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
780 unsigned long i = (1<<cachep->gfporder);
781 struct page *page = virt_to_page(addr);
782 const unsigned long nr_freed = i;
784 /* free_pages() does not clear the type bit - we do that.
785 * The pages have been unlinked from their cache-slab,
786 * but their 'struct page's might be accessed in
787 * vm_scan(). Shouldn't be a worry.
789 while (i--) {
790 ClearPageSlab(page);
791 page++;
793 sub_page_state(nr_slab, nr_freed);
794 if (current->reclaim_state)
795 current->reclaim_state->reclaimed_slab += nr_freed;
796 free_pages((unsigned long)addr, cachep->gfporder);
797 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
798 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
801 #if DEBUG
803 #ifdef CONFIG_DEBUG_PAGEALLOC
804 static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned long caller)
806 int size = cachep->objsize-obj_dbglen(cachep);
808 addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
810 if (size < 5*sizeof(unsigned long))
811 return;
813 *addr++=0x12345678;
814 *addr++=caller;
815 *addr++=smp_processor_id();
816 size -= 3*sizeof(unsigned long);
818 unsigned long *sptr = &caller;
819 unsigned long svalue;
821 while (((long) sptr & (THREAD_SIZE-1)) != 0) {
822 svalue = *sptr++;
823 if (kernel_text_address(svalue)) {
824 *addr++=svalue;
825 size -= sizeof(unsigned long);
826 if (size <= sizeof(unsigned long))
827 break;
832 *addr++=0x87654321;
834 #endif
836 static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
838 int size = cachep->objsize-obj_dbglen(cachep);
839 addr = &((char*)addr)[obj_dbghead(cachep)];
841 memset(addr, val, size);
842 *(unsigned char *)(addr+size-1) = POISON_END;
845 static void *scan_poisoned_obj(unsigned char* addr, unsigned int size)
847 unsigned char *end;
849 end = addr + size - 1;
851 for (; addr < end; addr++) {
852 if (*addr != POISON_BEFORE && *addr != POISON_AFTER)
853 return addr;
855 if (*addr != POISON_END)
856 return addr;
857 return NULL;
860 static void check_poison_obj(kmem_cache_t *cachep, void *addr)
862 void *end;
863 int size = cachep->objsize-obj_dbglen(cachep);
865 addr = &((char*)addr)[obj_dbghead(cachep)];
867 end = scan_poisoned_obj(addr, size);
868 if (end) {
869 int s;
870 printk(KERN_ERR "Slab corruption: start=%p, expend=%p, "
871 "problemat=%p\n", addr, addr+size-1, end);
872 if (cachep->flags & SLAB_STORE_USER) {
873 void *pc;
875 if (cachep->flags & SLAB_RED_ZONE)
876 pc = *(void**)(addr+size+BYTES_PER_WORD);
877 else
878 pc = *(void**)(addr+size);
879 printk(KERN_ERR "Last user: [<%p>]", pc);
880 print_symbol("(%s)", (unsigned long)pc);
881 printk("\n");
883 printk(KERN_ERR "Data: ");
884 for (s = 0; s < size; s++) {
885 if (((char*)addr)[s] == POISON_BEFORE)
886 printk(".");
887 else if (((char*)addr)[s] == POISON_AFTER)
888 printk("*");
889 else
890 printk("%02X ", ((unsigned char*)addr)[s]);
892 printk("\n");
893 printk(KERN_ERR "Next: ");
894 for (; s < size + 32; s++) {
895 if (((char*)addr)[s] == POISON_BEFORE)
896 printk(".");
897 else if (((char*)addr)[s] == POISON_AFTER)
898 printk("*");
899 else
900 printk("%02X ", ((unsigned char*)addr)[s]);
902 printk("\n");
903 slab_error(cachep, "object was modified after freeing");
906 #endif
908 /* Destroy all the objs in a slab, and release the mem back to the system.
909 * Before calling the slab must have been unlinked from the cache.
910 * The cache-lock is not held/needed.
912 static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
914 #if DEBUG
915 int i;
916 for (i = 0; i < cachep->num; i++) {
917 void *objp = slabp->s_mem + cachep->objsize * i;
918 int objlen = cachep->objsize;
920 if (cachep->flags & SLAB_POISON) {
921 #ifdef CONFIG_DEBUG_PAGEALLOC
922 if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
923 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
924 else
925 check_poison_obj(cachep, objp);
926 #else
927 check_poison_obj(cachep, objp);
928 #endif
930 if (cachep->flags & SLAB_STORE_USER)
931 objlen -= BYTES_PER_WORD;
933 if (cachep->flags & SLAB_RED_ZONE) {
934 if (*((unsigned long*)(objp)) != RED_INACTIVE)
935 slab_error(cachep, "start of a freed object "
936 "was overwritten");
937 if (*((unsigned long*)(objp + objlen - BYTES_PER_WORD))
938 != RED_INACTIVE)
939 slab_error(cachep, "end of a freed object "
940 "was overwritten");
941 objp += BYTES_PER_WORD;
943 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
944 (cachep->dtor)(objp, cachep, 0);
946 #else
947 if (cachep->dtor) {
948 int i;
949 for (i = 0; i < cachep->num; i++) {
950 void* objp = slabp->s_mem+cachep->objsize*i;
951 (cachep->dtor)(objp, cachep, 0);
954 #endif
956 kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
957 if (OFF_SLAB(cachep))
958 kmem_cache_free(cachep->slabp_cache, slabp);
962 * kmem_cache_create - Create a cache.
963 * @name: A string which is used in /proc/slabinfo to identify this cache.
964 * @size: The size of objects to be created in this cache.
965 * @offset: The offset to use within the page.
966 * @flags: SLAB flags
967 * @ctor: A constructor for the objects.
968 * @dtor: A destructor for the objects.
970 * Returns a ptr to the cache on success, NULL on failure.
971 * Cannot be called within a int, but can be interrupted.
972 * The @ctor is run when new pages are allocated by the cache
973 * and the @dtor is run before the pages are handed back.
975 * @name must be valid until the cache is destroyed. This implies that
976 * the module calling this has to destroy the cache before getting
977 * unloaded.
979 * The flags are
981 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
982 * to catch references to uninitialised memory.
984 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
985 * for buffer overruns.
987 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
988 * memory pressure.
990 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
991 * cacheline. This can be beneficial if you're counting cycles as closely
992 * as davem.
994 kmem_cache_t *
995 kmem_cache_create (const char *name, size_t size, size_t offset,
996 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
997 void (*dtor)(void*, kmem_cache_t *, unsigned long))
999 const char *func_nm = KERN_ERR "kmem_create: ";
1000 size_t left_over, align, slab_size;
1001 kmem_cache_t *cachep = NULL;
1004 * Sanity checks... these are all serious usage bugs.
1006 if ((!name) ||
1007 in_interrupt() ||
1008 (size < BYTES_PER_WORD) ||
1009 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1010 (dtor && !ctor) ||
1011 (offset < 0 || offset > size))
1012 BUG();
1014 #if DEBUG
1015 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1016 /* No constructor, but inital state check requested */
1017 printk("%sNo con, but init state check requested - %s\n", func_nm, name);
1018 flags &= ~SLAB_DEBUG_INITIAL;
1021 #if FORCED_DEBUG
1022 #ifdef CONFIG_DEBUG_PAGEALLOC
1023 if (size < PAGE_SIZE-3*BYTES_PER_WORD && size > 128)
1024 size = PAGE_SIZE-3*BYTES_PER_WORD;
1025 #endif
1027 * Enable redzoning and last user accounting, except
1028 * - for caches with forced alignment: redzoning would violate the
1029 * alignment
1030 * - for caches with large objects, if the increased size would
1031 * increase the object size above the next power of two: caches
1032 * with object sizes just above a power of two have a significant
1033 * amount of internal fragmentation
1035 if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))
1036 && !(flags & SLAB_MUST_HWCACHE_ALIGN)) {
1037 flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1039 flags |= SLAB_POISON;
1040 #endif
1041 #endif
1044 * Always checks flags, a caller might be expecting debug
1045 * support which isn't available.
1047 if (flags & ~CREATE_MASK)
1048 BUG();
1050 /* Get cache's description obj. */
1051 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1052 if (!cachep)
1053 goto opps;
1054 memset(cachep, 0, sizeof(kmem_cache_t));
1056 /* Check that size is in terms of words. This is needed to avoid
1057 * unaligned accesses for some archs when redzoning is used, and makes
1058 * sure any on-slab bufctl's are also correctly aligned.
1060 if (size & (BYTES_PER_WORD-1)) {
1061 size += (BYTES_PER_WORD-1);
1062 size &= ~(BYTES_PER_WORD-1);
1063 printk("%sForcing size word alignment - %s\n", func_nm, name);
1066 #if DEBUG
1067 if (flags & SLAB_RED_ZONE) {
1069 * There is no point trying to honour cache alignment
1070 * when redzoning.
1072 flags &= ~SLAB_HWCACHE_ALIGN;
1073 size += 2*BYTES_PER_WORD; /* words for redzone */
1075 if (flags & SLAB_STORE_USER) {
1076 flags &= ~SLAB_HWCACHE_ALIGN;
1077 size += BYTES_PER_WORD; /* word for kfree caller address */
1079 #endif
1080 align = BYTES_PER_WORD;
1081 if (flags & SLAB_HWCACHE_ALIGN)
1082 align = L1_CACHE_BYTES;
1084 /* Determine if the slab management is 'on' or 'off' slab. */
1085 if (size >= (PAGE_SIZE>>3))
1087 * Size is large, assume best to place the slab management obj
1088 * off-slab (should allow better packing of objs).
1090 flags |= CFLGS_OFF_SLAB;
1092 if (flags & SLAB_HWCACHE_ALIGN) {
1093 /* Need to adjust size so that objs are cache aligned. */
1094 /* Small obj size, can get at least two per cache line. */
1095 while (size <= align/2)
1096 align /= 2;
1097 size = (size+align-1)&(~(align-1));
1100 /* Cal size (in pages) of slabs, and the num of objs per slab.
1101 * This could be made much more intelligent. For now, try to avoid
1102 * using high page-orders for slabs. When the gfp() funcs are more
1103 * friendly towards high-order requests, this should be changed.
1105 do {
1106 unsigned int break_flag = 0;
1107 cal_wastage:
1108 cache_estimate(cachep->gfporder, size, flags,
1109 &left_over, &cachep->num);
1110 if (break_flag)
1111 break;
1112 if (cachep->gfporder >= MAX_GFP_ORDER)
1113 break;
1114 if (!cachep->num)
1115 goto next;
1116 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) {
1117 /* Oops, this num of objs will cause problems. */
1118 cachep->gfporder--;
1119 break_flag++;
1120 goto cal_wastage;
1124 * Large num of objs is good, but v. large slabs are currently
1125 * bad for the gfp()s.
1127 if (cachep->gfporder >= slab_break_gfp_order)
1128 break;
1130 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1131 break; /* Acceptable internal fragmentation. */
1132 next:
1133 cachep->gfporder++;
1134 } while (1);
1136 if (!cachep->num) {
1137 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1138 kmem_cache_free(&cache_cache, cachep);
1139 cachep = NULL;
1140 goto opps;
1142 slab_size = L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab));
1145 * If the slab has been placed off-slab, and we have enough space then
1146 * move it on-slab. This is at the expense of any extra colouring.
1148 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1149 flags &= ~CFLGS_OFF_SLAB;
1150 left_over -= slab_size;
1153 /* Offset must be a multiple of the alignment. */
1154 offset += (align-1);
1155 offset &= ~(align-1);
1156 if (!offset)
1157 offset = L1_CACHE_BYTES;
1158 cachep->colour_off = offset;
1159 cachep->colour = left_over/offset;
1161 cachep->flags = flags;
1162 cachep->gfpflags = 0;
1163 if (flags & SLAB_CACHE_DMA)
1164 cachep->gfpflags |= GFP_DMA;
1165 spin_lock_init(&cachep->spinlock);
1166 cachep->objsize = size;
1167 /* NUMA */
1168 INIT_LIST_HEAD(&cachep->lists.slabs_full);
1169 INIT_LIST_HEAD(&cachep->lists.slabs_partial);
1170 INIT_LIST_HEAD(&cachep->lists.slabs_free);
1172 if (flags & CFLGS_OFF_SLAB)
1173 cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
1174 cachep->ctor = ctor;
1175 cachep->dtor = dtor;
1176 cachep->name = name;
1178 if (g_cpucache_up == FULL) {
1179 enable_cpucache(cachep);
1180 } else {
1181 if (g_cpucache_up == NONE) {
1182 /* Note: the first kmem_cache_create must create
1183 * the cache that's used by kmalloc(24), otherwise
1184 * the creation of further caches will BUG().
1186 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1187 g_cpucache_up = PARTIAL;
1188 } else {
1189 cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL);
1191 BUG_ON(!ac_data(cachep));
1192 ac_data(cachep)->avail = 0;
1193 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1194 ac_data(cachep)->batchcount = 1;
1195 ac_data(cachep)->touched = 0;
1196 cachep->batchcount = 1;
1197 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1198 cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
1199 + cachep->num;
1202 cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 +
1203 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1205 /* Need the semaphore to access the chain. */
1206 down(&cache_chain_sem);
1208 struct list_head *p;
1209 mm_segment_t old_fs;
1211 old_fs = get_fs();
1212 set_fs(KERNEL_DS);
1213 list_for_each(p, &cache_chain) {
1214 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1215 char tmp;
1216 /* This happens when the module gets unloaded and doesn't
1217 destroy its slab cache and noone else reuses the vmalloc
1218 area of the module. Print a warning. */
1219 if (__get_user(tmp,pc->name)) {
1220 printk("SLAB: cache with size %d has lost its name\n",
1221 pc->objsize);
1222 continue;
1224 if (!strcmp(pc->name,name)) {
1225 printk("kmem_cache_create: duplicate cache %s\n",name);
1226 up(&cache_chain_sem);
1227 BUG();
1230 set_fs(old_fs);
1233 /* cache setup completed, link it into the list */
1234 list_add(&cachep->next, &cache_chain);
1235 up(&cache_chain_sem);
1236 opps:
1237 return cachep;
1240 static inline void check_irq_off(void)
1242 #if DEBUG
1243 BUG_ON(!irqs_disabled());
1244 #endif
1247 static inline void check_irq_on(void)
1249 #if DEBUG
1250 BUG_ON(irqs_disabled());
1251 #endif
1254 static inline void check_spinlock_acquired(kmem_cache_t *cachep)
1256 #ifdef CONFIG_SMP
1257 check_irq_off();
1258 BUG_ON(spin_trylock(&cachep->spinlock));
1259 #endif
1263 * Waits for all CPUs to execute func().
1265 static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1267 check_irq_on();
1268 preempt_disable();
1270 local_irq_disable();
1271 func(arg);
1272 local_irq_enable();
1274 if (smp_call_function(func, arg, 1, 1))
1275 BUG();
1277 preempt_enable();
1280 static void free_block (kmem_cache_t* cachep, void** objpp, int len);
1281 static void drain_array_locked(kmem_cache_t* cachep,
1282 struct array_cache *ac, int force);
1284 static void do_drain(void *arg)
1286 kmem_cache_t *cachep = (kmem_cache_t*)arg;
1287 struct array_cache *ac;
1289 check_irq_off();
1290 ac = ac_data(cachep);
1291 spin_lock(&cachep->spinlock);
1292 free_block(cachep, &ac_entry(ac)[0], ac->avail);
1293 spin_unlock(&cachep->spinlock);
1294 ac->avail = 0;
1297 static void drain_cpu_caches(kmem_cache_t *cachep)
1299 smp_call_function_all_cpus(do_drain, cachep);
1300 check_irq_on();
1301 spin_lock_irq(&cachep->spinlock);
1302 if (cachep->lists.shared)
1303 drain_array_locked(cachep, cachep->lists.shared, 1);
1304 spin_unlock_irq(&cachep->spinlock);
1308 /* NUMA shrink all list3s */
1309 static int __cache_shrink(kmem_cache_t *cachep)
1311 struct slab *slabp;
1312 int ret;
1314 drain_cpu_caches(cachep);
1316 check_irq_on();
1317 spin_lock_irq(&cachep->spinlock);
1319 for(;;) {
1320 struct list_head *p;
1322 p = cachep->lists.slabs_free.prev;
1323 if (p == &cachep->lists.slabs_free)
1324 break;
1326 slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list);
1327 #if DEBUG
1328 if (slabp->inuse)
1329 BUG();
1330 #endif
1331 list_del(&slabp->list);
1333 cachep->lists.free_objects -= cachep->num;
1334 spin_unlock_irq(&cachep->spinlock);
1335 slab_destroy(cachep, slabp);
1336 spin_lock_irq(&cachep->spinlock);
1338 ret = !list_empty(&cachep->lists.slabs_full) ||
1339 !list_empty(&cachep->lists.slabs_partial);
1340 spin_unlock_irq(&cachep->spinlock);
1341 return ret;
1345 * kmem_cache_shrink - Shrink a cache.
1346 * @cachep: The cache to shrink.
1348 * Releases as many slabs as possible for a cache.
1349 * To help debugging, a zero exit status indicates all slabs were released.
1351 int kmem_cache_shrink(kmem_cache_t *cachep)
1353 if (!cachep || in_interrupt())
1354 BUG();
1356 return __cache_shrink(cachep);
1360 * kmem_cache_destroy - delete a cache
1361 * @cachep: the cache to destroy
1363 * Remove a kmem_cache_t object from the slab cache.
1364 * Returns 0 on success.
1366 * It is expected this function will be called by a module when it is
1367 * unloaded. This will remove the cache completely, and avoid a duplicate
1368 * cache being allocated each time a module is loaded and unloaded, if the
1369 * module doesn't have persistent in-kernel storage across loads and unloads.
1371 * The cache must be empty before calling this function.
1373 * The caller must guarantee that noone will allocate memory from the cache
1374 * during the kmem_cache_destroy().
1376 int kmem_cache_destroy (kmem_cache_t * cachep)
1378 int i;
1380 if (!cachep || in_interrupt())
1381 BUG();
1383 /* Find the cache in the chain of caches. */
1384 down(&cache_chain_sem);
1386 * the chain is never empty, cache_cache is never destroyed
1388 list_del(&cachep->next);
1389 up(&cache_chain_sem);
1391 if (__cache_shrink(cachep)) {
1392 slab_error(cachep, "Can't free all objects");
1393 down(&cache_chain_sem);
1394 list_add(&cachep->next,&cache_chain);
1395 up(&cache_chain_sem);
1396 return 1;
1399 for (i = 0; i < NR_CPUS; i++)
1400 kfree(cachep->array[i]);
1402 /* NUMA: free the list3 structures */
1403 kfree(cachep->lists.shared);
1404 cachep->lists.shared = NULL;
1405 kmem_cache_free(&cache_cache, cachep);
1407 return 0;
1410 /* Get the memory for a slab management obj. */
1411 static inline struct slab* alloc_slabmgmt (kmem_cache_t *cachep,
1412 void *objp, int colour_off, int local_flags)
1414 struct slab *slabp;
1416 if (OFF_SLAB(cachep)) {
1417 /* Slab management obj is off-slab. */
1418 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
1419 if (!slabp)
1420 return NULL;
1421 } else {
1422 slabp = objp+colour_off;
1423 colour_off += L1_CACHE_ALIGN(cachep->num *
1424 sizeof(kmem_bufctl_t) + sizeof(struct slab));
1426 slabp->inuse = 0;
1427 slabp->colouroff = colour_off;
1428 slabp->s_mem = objp+colour_off;
1430 return slabp;
1433 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
1435 return (kmem_bufctl_t *)(slabp+1);
1438 static void cache_init_objs (kmem_cache_t * cachep,
1439 struct slab * slabp, unsigned long ctor_flags)
1441 int i;
1443 for (i = 0; i < cachep->num; i++) {
1444 void* objp = slabp->s_mem+cachep->objsize*i;
1445 #if DEBUG
1446 int objlen = cachep->objsize;
1447 /* need to poison the objs? */
1448 if (cachep->flags & SLAB_POISON)
1449 poison_obj(cachep, objp, POISON_BEFORE);
1450 if (cachep->flags & SLAB_STORE_USER) {
1451 objlen -= BYTES_PER_WORD;
1452 ((unsigned long*)(objp+objlen))[0] = 0;
1455 if (cachep->flags & SLAB_RED_ZONE) {
1456 *((unsigned long*)(objp)) = RED_INACTIVE;
1457 objp += BYTES_PER_WORD;
1458 objlen -= 2* BYTES_PER_WORD;
1459 *((unsigned long*)(objp + objlen)) = RED_INACTIVE;
1462 * Constructors are not allowed to allocate memory from
1463 * the same cache which they are a constructor for.
1464 * Otherwise, deadlock. They must also be threaded.
1466 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
1467 cachep->ctor(objp, cachep, ctor_flags);
1469 if (cachep->flags & SLAB_RED_ZONE) {
1470 if (*((unsigned long*)(objp + objlen)) != RED_INACTIVE)
1471 slab_error(cachep, "constructor overwrote the"
1472 " end of an object");
1473 objp -= BYTES_PER_WORD;
1474 if (*((unsigned long*)(objp)) != RED_INACTIVE)
1475 slab_error(cachep, "constructor overwrote the"
1476 " start of an object");
1478 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
1479 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
1480 #else
1481 if (cachep->ctor)
1482 cachep->ctor(objp, cachep, ctor_flags);
1483 #endif
1484 slab_bufctl(slabp)[i] = i+1;
1486 slab_bufctl(slabp)[i-1] = BUFCTL_END;
1487 slabp->free = 0;
1490 static void kmem_flagcheck(kmem_cache_t *cachep, int flags)
1492 if (flags & SLAB_DMA) {
1493 if (!(cachep->gfpflags & GFP_DMA))
1494 BUG();
1495 } else {
1496 if (cachep->gfpflags & GFP_DMA)
1497 BUG();
1502 * Grow (by 1) the number of slabs within a cache. This is called by
1503 * kmem_cache_alloc() when there are no active objs left in a cache.
1505 static int cache_grow (kmem_cache_t * cachep, int flags)
1507 struct slab *slabp;
1508 struct page *page;
1509 void *objp;
1510 size_t offset;
1511 unsigned int i, local_flags;
1512 unsigned long ctor_flags;
1514 /* Be lazy and only check for valid flags here,
1515 * keeping it out of the critical path in kmem_cache_alloc().
1517 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
1518 BUG();
1519 if (flags & SLAB_NO_GROW)
1520 return 0;
1522 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1523 local_flags = (flags & SLAB_LEVEL_MASK);
1524 if (!(local_flags & __GFP_WAIT))
1526 * Not allowed to sleep. Need to tell a constructor about
1527 * this - it might need to know...
1529 ctor_flags |= SLAB_CTOR_ATOMIC;
1531 /* About to mess with non-constant members - lock. */
1532 check_irq_off();
1533 spin_lock(&cachep->spinlock);
1535 /* Get colour for the slab, and cal the next value. */
1536 offset = cachep->colour_next;
1537 cachep->colour_next++;
1538 if (cachep->colour_next >= cachep->colour)
1539 cachep->colour_next = 0;
1540 offset *= cachep->colour_off;
1542 spin_unlock(&cachep->spinlock);
1544 if (local_flags & __GFP_WAIT)
1545 local_irq_enable();
1548 * The test for missing atomic flag is performed here, rather than
1549 * the more obvious place, simply to reduce the critical path length
1550 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
1551 * will eventually be caught here (where it matters).
1553 kmem_flagcheck(cachep, flags);
1556 /* Get mem for the objs. */
1557 if (!(objp = kmem_getpages(cachep, flags)))
1558 goto failed;
1560 /* Get slab management. */
1561 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
1562 goto opps1;
1564 /* Nasty!!!!!! I hope this is OK. */
1565 i = 1 << cachep->gfporder;
1566 page = virt_to_page(objp);
1567 do {
1568 SET_PAGE_CACHE(page, cachep);
1569 SET_PAGE_SLAB(page, slabp);
1570 SetPageSlab(page);
1571 inc_page_state(nr_slab);
1572 page++;
1573 } while (--i);
1575 cache_init_objs(cachep, slabp, ctor_flags);
1577 if (local_flags & __GFP_WAIT)
1578 local_irq_disable();
1579 check_irq_off();
1580 spin_lock(&cachep->spinlock);
1582 /* Make slab active. */
1583 list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
1584 STATS_INC_GROWN(cachep);
1585 list3_data(cachep)->free_objects += cachep->num;
1586 spin_unlock(&cachep->spinlock);
1587 return 1;
1588 opps1:
1589 kmem_freepages(cachep, objp);
1590 failed:
1591 if (local_flags & __GFP_WAIT)
1592 local_irq_disable();
1593 return 0;
1597 * Perform extra freeing checks:
1598 * - detect bad pointers.
1599 * - POISON/RED_ZONE checking
1600 * - destructor calls, for caches with POISON+dtor
1602 static inline void kfree_debugcheck(const void *objp)
1604 #if DEBUG
1605 struct page *page;
1607 if (!virt_addr_valid(objp)) {
1608 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
1609 (unsigned long)objp);
1610 BUG();
1612 page = virt_to_page(objp);
1613 if (!PageSlab(page)) {
1614 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
1615 BUG();
1617 #endif
1620 static inline void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp, void *caller)
1622 #if DEBUG
1623 struct page *page;
1624 unsigned int objnr;
1625 int objlen = cachep->objsize;
1626 struct slab *slabp;
1628 kfree_debugcheck(objp);
1629 page = virt_to_page(objp);
1631 BUG_ON(GET_PAGE_CACHE(page) != cachep);
1632 slabp = GET_PAGE_SLAB(page);
1634 if (cachep->flags & SLAB_STORE_USER) {
1635 objlen -= BYTES_PER_WORD;
1637 if (cachep->flags & SLAB_RED_ZONE) {
1638 objp -= BYTES_PER_WORD;
1639 if (xchg((unsigned long *)objp, RED_INACTIVE) != RED_ACTIVE)
1640 slab_error(cachep, "double free, or memory before"
1641 " object was overwritten");
1642 if (xchg((unsigned long *)(objp+objlen-BYTES_PER_WORD), RED_INACTIVE) != RED_ACTIVE)
1643 slab_error(cachep, "double free, or memory after "
1644 " object was overwritten");
1646 if (cachep->flags & SLAB_STORE_USER) {
1647 *((void**)(objp+objlen)) = caller;
1650 objnr = (objp-slabp->s_mem)/cachep->objsize;
1652 BUG_ON(objnr >= cachep->num);
1653 BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
1655 if (cachep->flags & SLAB_DEBUG_INITIAL) {
1656 /* Need to call the slab's constructor so the
1657 * caller can perform a verify of its state (debugging).
1658 * Called without the cache-lock held.
1660 cachep->ctor(objp+obj_dbghead(cachep),
1661 cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
1663 if (cachep->flags & SLAB_POISON && cachep->dtor) {
1664 /* we want to cache poison the object,
1665 * call the destruction callback
1667 cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
1669 if (cachep->flags & SLAB_POISON) {
1670 #ifdef CONFIG_DEBUG_PAGEALLOC
1671 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
1672 store_stackinfo(cachep, objp, POISON_AFTER);
1673 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
1674 } else {
1675 poison_obj(cachep, objp, POISON_AFTER);
1677 #else
1678 poison_obj(cachep, objp, POISON_AFTER);
1679 #endif
1681 #endif
1682 return objp;
1685 static inline void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
1687 #if DEBUG
1688 int i;
1689 int entries = 0;
1691 check_spinlock_acquired(cachep);
1692 /* Check slab's freelist to see if this obj is there. */
1693 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
1694 entries++;
1695 BUG_ON(entries > cachep->num);
1696 BUG_ON(i < 0 || i >= cachep->num);
1698 BUG_ON(entries != cachep->num - slabp->inuse);
1699 #endif
1702 static inline void * cache_alloc_one_tail (kmem_cache_t *cachep,
1703 struct slab *slabp)
1705 void *objp;
1707 check_spinlock_acquired(cachep);
1709 STATS_INC_ALLOCED(cachep);
1710 STATS_INC_ACTIVE(cachep);
1711 STATS_SET_HIGH(cachep);
1713 /* get obj pointer */
1714 slabp->inuse++;
1715 objp = slabp->s_mem + slabp->free*cachep->objsize;
1716 slabp->free=slab_bufctl(slabp)[slabp->free];
1718 return objp;
1721 static inline void cache_alloc_listfixup(struct kmem_list3 *l3, struct slab *slabp)
1723 list_del(&slabp->list);
1724 if (slabp->free == BUFCTL_END) {
1725 list_add(&slabp->list, &l3->slabs_full);
1726 } else {
1727 list_add(&slabp->list, &l3->slabs_partial);
1731 static void* cache_alloc_refill(kmem_cache_t* cachep, int flags)
1733 int batchcount;
1734 struct kmem_list3 *l3;
1735 struct array_cache *ac;
1737 check_irq_off();
1738 ac = ac_data(cachep);
1739 retry:
1740 batchcount = ac->batchcount;
1741 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
1742 /* if there was little recent activity on this
1743 * cache, then perform only a partial refill.
1744 * Otherwise we could generate refill bouncing.
1746 batchcount = BATCHREFILL_LIMIT;
1748 l3 = list3_data(cachep);
1750 BUG_ON(ac->avail > 0);
1751 spin_lock(&cachep->spinlock);
1752 if (l3->shared) {
1753 struct array_cache *shared_array = l3->shared;
1754 if (shared_array->avail) {
1755 if (batchcount > shared_array->avail)
1756 batchcount = shared_array->avail;
1757 shared_array->avail -= batchcount;
1758 ac->avail = batchcount;
1759 memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail],
1760 sizeof(void*)*batchcount);
1761 shared_array->touched = 1;
1762 goto alloc_done;
1765 while (batchcount > 0) {
1766 struct list_head *entry;
1767 struct slab *slabp;
1768 /* Get slab alloc is to come from. */
1769 entry = l3->slabs_partial.next;
1770 if (entry == &l3->slabs_partial) {
1771 l3->free_touched = 1;
1772 entry = l3->slabs_free.next;
1773 if (entry == &l3->slabs_free)
1774 goto must_grow;
1777 slabp = list_entry(entry, struct slab, list);
1778 check_slabp(cachep, slabp);
1779 while (slabp->inuse < cachep->num && batchcount--)
1780 ac_entry(ac)[ac->avail++] =
1781 cache_alloc_one_tail(cachep, slabp);
1782 check_slabp(cachep, slabp);
1783 cache_alloc_listfixup(l3, slabp);
1786 must_grow:
1787 l3->free_objects -= ac->avail;
1788 alloc_done:
1789 spin_unlock(&cachep->spinlock);
1791 if (unlikely(!ac->avail)) {
1792 int x;
1793 x = cache_grow(cachep, flags);
1795 // cache_grow can reenable interrupts, then ac could change.
1796 ac = ac_data(cachep);
1797 if (!x && ac->avail == 0) // no objects in sight? abort
1798 return NULL;
1800 if (!ac->avail) // objects refilled by interrupt?
1801 goto retry;
1803 ac->touched = 1;
1804 return ac_entry(ac)[--ac->avail];
1807 static inline void
1808 cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags)
1810 if (flags & __GFP_WAIT)
1811 might_sleep();
1812 #if DEBUG
1813 kmem_flagcheck(cachep, flags);
1814 #endif
1817 static inline void *
1818 cache_alloc_debugcheck_after(kmem_cache_t *cachep,
1819 unsigned long flags, void *objp, void *caller)
1821 #if DEBUG
1822 int objlen = cachep->objsize;
1824 if (!objp)
1825 return objp;
1826 if (cachep->flags & SLAB_POISON) {
1827 #ifdef CONFIG_DEBUG_PAGEALLOC
1828 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
1829 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
1830 else
1831 check_poison_obj(cachep, objp);
1832 #else
1833 check_poison_obj(cachep, objp);
1834 #endif
1835 poison_obj(cachep, objp, POISON_BEFORE);
1837 if (cachep->flags & SLAB_STORE_USER) {
1838 objlen -= BYTES_PER_WORD;
1839 *((void **)(objp+objlen)) = caller;
1842 if (cachep->flags & SLAB_RED_ZONE) {
1843 /* Set alloc red-zone, and check old one. */
1844 if (xchg((unsigned long *)objp, RED_ACTIVE) != RED_INACTIVE) {
1845 slab_error(cachep, "memory before object was "
1846 "overwritten");
1848 if (xchg((unsigned long *)(objp+objlen - BYTES_PER_WORD),
1849 RED_ACTIVE) != RED_INACTIVE) {
1850 slab_error(cachep, "memory after object was "
1851 "overwritten");
1853 objp += BYTES_PER_WORD;
1855 if (cachep->ctor && cachep->flags & SLAB_POISON) {
1856 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1858 if (!(flags & __GFP_WAIT))
1859 ctor_flags |= SLAB_CTOR_ATOMIC;
1861 cachep->ctor(objp, cachep, ctor_flags);
1863 #endif
1864 return objp;
1868 static inline void * __cache_alloc (kmem_cache_t *cachep, int flags)
1870 unsigned long save_flags;
1871 void* objp;
1872 struct array_cache *ac;
1874 cache_alloc_debugcheck_before(cachep, flags);
1876 local_irq_save(save_flags);
1877 ac = ac_data(cachep);
1878 if (likely(ac->avail)) {
1879 STATS_INC_ALLOCHIT(cachep);
1880 ac->touched = 1;
1881 objp = ac_entry(ac)[--ac->avail];
1882 } else {
1883 STATS_INC_ALLOCMISS(cachep);
1884 objp = cache_alloc_refill(cachep, flags);
1886 local_irq_restore(save_flags);
1887 objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0));
1888 return objp;
1892 * NUMA: different approach needed if the spinlock is moved into
1893 * the l3 structure
1896 static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
1898 int i;
1900 check_spinlock_acquired(cachep);
1902 /* NUMA: move add into loop */
1903 cachep->lists.free_objects += nr_objects;
1905 for (i = 0; i < nr_objects; i++) {
1906 void *objp = objpp[i];
1907 struct slab *slabp;
1908 unsigned int objnr;
1910 slabp = GET_PAGE_SLAB(virt_to_page(objp));
1911 list_del(&slabp->list);
1912 objnr = (objp - slabp->s_mem) / cachep->objsize;
1913 check_slabp(cachep, slabp);
1914 slab_bufctl(slabp)[objnr] = slabp->free;
1915 slabp->free = objnr;
1916 STATS_DEC_ACTIVE(cachep);
1917 slabp->inuse--;
1918 check_slabp(cachep, slabp);
1920 /* fixup slab chains */
1921 if (slabp->inuse == 0) {
1922 if (cachep->lists.free_objects > cachep->free_limit) {
1923 cachep->lists.free_objects -= cachep->num;
1924 slab_destroy(cachep, slabp);
1925 } else {
1926 list_add(&slabp->list,
1927 &list3_data_ptr(cachep, objp)->slabs_free);
1929 } else {
1930 /* Unconditionally move a slab to the end of the
1931 * partial list on free - maximum time for the
1932 * other objects to be freed, too.
1934 list_add_tail(&slabp->list,
1935 &list3_data_ptr(cachep, objp)->slabs_partial);
1940 static void cache_flusharray (kmem_cache_t* cachep, struct array_cache *ac)
1942 int batchcount;
1944 batchcount = ac->batchcount;
1945 #if DEBUG
1946 BUG_ON(!batchcount || batchcount > ac->avail);
1947 #endif
1948 check_irq_off();
1949 spin_lock(&cachep->spinlock);
1950 if (cachep->lists.shared) {
1951 struct array_cache *shared_array = cachep->lists.shared;
1952 int max = shared_array->limit-shared_array->avail;
1953 if (max) {
1954 if (batchcount > max)
1955 batchcount = max;
1956 memcpy(&ac_entry(shared_array)[shared_array->avail],
1957 &ac_entry(ac)[0],
1958 sizeof(void*)*batchcount);
1959 shared_array->avail += batchcount;
1960 goto free_done;
1964 free_block(cachep, &ac_entry(ac)[0], batchcount);
1965 free_done:
1966 #if STATS
1968 int i = 0;
1969 struct list_head *p;
1971 p = list3_data(cachep)->slabs_free.next;
1972 while (p != &(list3_data(cachep)->slabs_free)) {
1973 struct slab *slabp;
1975 slabp = list_entry(p, struct slab, list);
1976 BUG_ON(slabp->inuse);
1978 i++;
1979 p = p->next;
1981 STATS_SET_FREEABLE(cachep, i);
1983 #endif
1984 spin_unlock(&cachep->spinlock);
1985 ac->avail -= batchcount;
1986 memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount],
1987 sizeof(void*)*ac->avail);
1991 * __cache_free
1992 * Release an obj back to its cache. If the obj has a constructed
1993 * state, it must be in this state _before_ it is released.
1995 * Called with disabled ints.
1997 static inline void __cache_free (kmem_cache_t *cachep, void* objp)
1999 struct array_cache *ac = ac_data(cachep);
2001 check_irq_off();
2002 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2004 if (likely(ac->avail < ac->limit)) {
2005 STATS_INC_FREEHIT(cachep);
2006 ac_entry(ac)[ac->avail++] = objp;
2007 return;
2008 } else {
2009 STATS_INC_FREEMISS(cachep);
2010 cache_flusharray(cachep, ac);
2011 ac_entry(ac)[ac->avail++] = objp;
2016 * kmem_cache_alloc - Allocate an object
2017 * @cachep: The cache to allocate from.
2018 * @flags: See kmalloc().
2020 * Allocate an object from this cache. The flags are only relevant
2021 * if the cache has no available objects.
2023 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
2025 return __cache_alloc(cachep, flags);
2029 * kmalloc - allocate memory
2030 * @size: how many bytes of memory are required.
2031 * @flags: the type of memory to allocate.
2033 * kmalloc is the normal method of allocating memory
2034 * in the kernel.
2036 * The @flags argument may be one of:
2038 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2040 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2042 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2044 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2045 * must be suitable for DMA. This can mean different things on different
2046 * platforms. For example, on i386, it means that the memory must come
2047 * from the first 16MB.
2049 void * __kmalloc (size_t size, int flags)
2051 struct cache_sizes *csizep = malloc_sizes;
2053 for (; csizep->cs_size; csizep++) {
2054 if (size > csizep->cs_size)
2055 continue;
2056 #if DEBUG
2057 /* This happens if someone tries to call
2058 * kmem_cache_create(), or kmalloc(), before
2059 * the generic caches are initialized.
2061 BUG_ON(csizep->cs_cachep == NULL);
2062 #endif
2063 return __cache_alloc(flags & GFP_DMA ?
2064 csizep->cs_dmacachep : csizep->cs_cachep, flags);
2066 return NULL;
2069 #ifdef CONFIG_SMP
2071 * __alloc_percpu - allocate one copy of the object for every present
2072 * cpu in the system, zeroing them.
2073 * Objects should be dereferenced using per_cpu_ptr/get_cpu_ptr
2074 * macros only.
2076 * @size: how many bytes of memory are required.
2077 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2079 void *__alloc_percpu(size_t size, size_t align)
2081 int i;
2082 struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2084 if (!pdata)
2085 return NULL;
2087 for (i = 0; i < NR_CPUS; i++) {
2088 if (!cpu_possible(i))
2089 continue;
2090 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
2091 if (!pdata->ptrs[i])
2092 goto unwind_oom;
2093 memset(pdata->ptrs[i], 0, size);
2096 /* Catch derefs w/o wrappers */
2097 return (void *) (~(unsigned long) pdata);
2099 unwind_oom:
2100 while (--i >= 0) {
2101 if (!cpu_possible(i))
2102 continue;
2103 kfree(pdata->ptrs[i]);
2105 kfree(pdata);
2106 return NULL;
2108 #endif
2111 * kmem_cache_free - Deallocate an object
2112 * @cachep: The cache the allocation was from.
2113 * @objp: The previously allocated object.
2115 * Free an object which was previously allocated from this
2116 * cache.
2118 void kmem_cache_free (kmem_cache_t *cachep, void *objp)
2120 unsigned long flags;
2122 local_irq_save(flags);
2123 __cache_free(cachep, objp);
2124 local_irq_restore(flags);
2128 * kfree - free previously allocated memory
2129 * @objp: pointer returned by kmalloc.
2131 * Don't free memory not originally allocated by kmalloc()
2132 * or you will run into trouble.
2134 void kfree (const void *objp)
2136 kmem_cache_t *c;
2137 unsigned long flags;
2139 if (!objp)
2140 return;
2141 local_irq_save(flags);
2142 kfree_debugcheck(objp);
2143 c = GET_PAGE_CACHE(virt_to_page(objp));
2144 __cache_free(c, (void*)objp);
2145 local_irq_restore(flags);
2148 #ifdef CONFIG_SMP
2150 * free_percpu - free previously allocated percpu memory
2151 * @objp: pointer returned by alloc_percpu.
2153 * Don't free memory not originally allocated by alloc_percpu()
2154 * The complemented objp is to check for that.
2156 void
2157 free_percpu(const void *objp)
2159 int i;
2160 struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
2162 for (i = 0; i < NR_CPUS; i++) {
2163 if (!cpu_possible(i))
2164 continue;
2165 kfree(p->ptrs[i]);
2168 #endif
2170 unsigned int kmem_cache_size(kmem_cache_t *cachep)
2172 return cachep->objsize-obj_dbglen(cachep);
2175 kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
2177 struct cache_sizes *csizep = malloc_sizes;
2179 /* This function could be moved to the header file, and
2180 * made inline so consumers can quickly determine what
2181 * cache pointer they require.
2183 for ( ; csizep->cs_size; csizep++) {
2184 if (size > csizep->cs_size)
2185 continue;
2186 break;
2188 return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
2191 struct ccupdate_struct {
2192 kmem_cache_t *cachep;
2193 struct array_cache *new[NR_CPUS];
2196 static void do_ccupdate_local(void *info)
2198 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
2199 struct array_cache *old;
2201 check_irq_off();
2202 old = ac_data(new->cachep);
2204 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
2205 new->new[smp_processor_id()] = old;
2209 static int do_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount, int shared)
2211 struct ccupdate_struct new;
2212 struct array_cache *new_shared;
2213 int i;
2215 memset(&new.new,0,sizeof(new.new));
2216 for (i = 0; i < NR_CPUS; i++) {
2217 struct array_cache *ccnew;
2219 ccnew = kmalloc(sizeof(void*)*limit+
2220 sizeof(struct array_cache), GFP_KERNEL);
2221 if (!ccnew) {
2222 for (i--; i >= 0; i--) kfree(new.new[i]);
2223 return -ENOMEM;
2225 ccnew->avail = 0;
2226 ccnew->limit = limit;
2227 ccnew->batchcount = batchcount;
2228 ccnew->touched = 0;
2229 new.new[i] = ccnew;
2231 new.cachep = cachep;
2233 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
2235 check_irq_on();
2236 spin_lock_irq(&cachep->spinlock);
2237 cachep->batchcount = batchcount;
2238 cachep->limit = limit;
2239 cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num;
2240 spin_unlock_irq(&cachep->spinlock);
2242 for (i = 0; i < NR_CPUS; i++) {
2243 struct array_cache *ccold = new.new[i];
2244 if (!ccold)
2245 continue;
2246 spin_lock_irq(&cachep->spinlock);
2247 free_block(cachep, ac_entry(ccold), ccold->avail);
2248 spin_unlock_irq(&cachep->spinlock);
2249 kfree(ccold);
2251 new_shared = kmalloc(sizeof(void*)*batchcount*shared+
2252 sizeof(struct array_cache), GFP_KERNEL);
2253 if (new_shared) {
2254 struct array_cache *old;
2255 new_shared->avail = 0;
2256 new_shared->limit = batchcount*shared;
2257 new_shared->batchcount = 0xbaadf00d;
2258 new_shared->touched = 0;
2260 spin_lock_irq(&cachep->spinlock);
2261 old = cachep->lists.shared;
2262 cachep->lists.shared = new_shared;
2263 if (old)
2264 free_block(cachep, ac_entry(old), old->avail);
2265 spin_unlock_irq(&cachep->spinlock);
2266 kfree(old);
2269 return 0;
2273 static void enable_cpucache (kmem_cache_t *cachep)
2275 int err;
2276 int limit, shared;
2278 /* The head array serves three purposes:
2279 * - create a LIFO ordering, i.e. return objects that are cache-warm
2280 * - reduce the number of spinlock operations.
2281 * - reduce the number of linked list operations on the slab and
2282 * bufctl chains: array operations are cheaper.
2283 * The numbers are guessed, we should auto-tune as described by
2284 * Bonwick.
2286 if (cachep->objsize > 131072)
2287 limit = 1;
2288 else if (cachep->objsize > PAGE_SIZE)
2289 limit = 8;
2290 else if (cachep->objsize > 1024)
2291 limit = 24;
2292 else if (cachep->objsize > 256)
2293 limit = 54;
2294 else
2295 limit = 120;
2297 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
2298 * allocation behaviour: Most allocs on one cpu, most free operations
2299 * on another cpu. For these cases, an efficient object passing between
2300 * cpus is necessary. This is provided by a shared array. The array
2301 * replaces Bonwick's magazine layer.
2302 * On uniprocessor, it's functionally equivalent (but less efficient)
2303 * to a larger limit. Thus disabled by default.
2305 shared = 0;
2306 #ifdef CONFIG_SMP
2307 if (cachep->objsize <= PAGE_SIZE)
2308 shared = 8;
2309 #endif
2311 #if DEBUG
2312 /* With debugging enabled, large batchcount lead to excessively
2313 * long periods with disabled local interrupts. Limit the
2314 * batchcount
2316 if (limit > 32)
2317 limit = 32;
2318 #endif
2319 err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
2320 if (err)
2321 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
2322 cachep->name, -err);
2325 static void drain_array(kmem_cache_t *cachep, struct array_cache *ac)
2327 int tofree;
2329 check_irq_off();
2330 if (ac->touched) {
2331 ac->touched = 0;
2332 } else if (ac->avail) {
2333 tofree = (ac->limit+4)/5;
2334 if (tofree > ac->avail) {
2335 tofree = (ac->avail+1)/2;
2337 spin_lock(&cachep->spinlock);
2338 free_block(cachep, ac_entry(ac), tofree);
2339 spin_unlock(&cachep->spinlock);
2340 ac->avail -= tofree;
2341 memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
2342 sizeof(void*)*ac->avail);
2346 static void drain_array_locked(kmem_cache_t *cachep,
2347 struct array_cache *ac, int force)
2349 int tofree;
2351 check_spinlock_acquired(cachep);
2352 if (ac->touched) {
2353 ac->touched = 0;
2354 } else if (ac->avail) {
2355 tofree = force ? ac->avail : (ac->limit+4)/5;
2356 if (tofree > ac->avail) {
2357 tofree = (ac->avail+1)/2;
2359 free_block(cachep, ac_entry(ac), tofree);
2360 ac->avail -= tofree;
2361 memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
2362 sizeof(void*)*ac->avail);
2367 * cache_reap - Reclaim memory from caches.
2369 * Called from a timer, every few seconds
2370 * Purpose:
2371 * - clear the per-cpu caches for this CPU.
2372 * - return freeable pages to the main free memory pool.
2374 * If we cannot acquire the cache chain semaphore then just give up - we'll
2375 * try again next timer interrupt.
2377 static inline void cache_reap (void)
2379 struct list_head *walk;
2381 #if DEBUG
2382 BUG_ON(!in_interrupt());
2383 BUG_ON(in_irq());
2384 #endif
2385 if (down_trylock(&cache_chain_sem))
2386 return;
2388 list_for_each(walk, &cache_chain) {
2389 kmem_cache_t *searchp;
2390 struct list_head* p;
2391 int tofree;
2392 struct slab *slabp;
2394 searchp = list_entry(walk, kmem_cache_t, next);
2396 if (searchp->flags & SLAB_NO_REAP)
2397 goto next;
2399 check_irq_on();
2400 local_irq_disable();
2401 drain_array(searchp, ac_data(searchp));
2403 if(time_after(searchp->lists.next_reap, jiffies))
2404 goto next_irqon;
2406 spin_lock(&searchp->spinlock);
2407 if(time_after(searchp->lists.next_reap, jiffies)) {
2408 goto next_unlock;
2410 searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3;
2412 if (searchp->lists.shared)
2413 drain_array_locked(searchp, searchp->lists.shared, 0);
2415 if (searchp->lists.free_touched) {
2416 searchp->lists.free_touched = 0;
2417 goto next_unlock;
2420 tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num);
2421 do {
2422 p = list3_data(searchp)->slabs_free.next;
2423 if (p == &(list3_data(searchp)->slabs_free))
2424 break;
2426 slabp = list_entry(p, struct slab, list);
2427 BUG_ON(slabp->inuse);
2428 list_del(&slabp->list);
2429 STATS_INC_REAPED(searchp);
2431 /* Safe to drop the lock. The slab is no longer
2432 * linked to the cache.
2433 * searchp cannot disappear, we hold
2434 * cache_chain_lock
2436 searchp->lists.free_objects -= searchp->num;
2437 spin_unlock_irq(&searchp->spinlock);
2438 slab_destroy(searchp, slabp);
2439 spin_lock_irq(&searchp->spinlock);
2440 } while(--tofree > 0);
2441 next_unlock:
2442 spin_unlock(&searchp->spinlock);
2443 next_irqon:
2444 local_irq_enable();
2445 next:
2448 check_irq_on();
2449 up(&cache_chain_sem);
2453 * This is a timer handler. There is on per CPU. It is called periodially
2454 * to shrink this CPU's caches. Otherwise there could be memory tied up
2455 * for long periods (or for ever) due to load changes.
2457 static void reap_timer_fnc(unsigned long data)
2459 int cpu = smp_processor_id();
2460 struct timer_list *rt = &__get_cpu_var(reap_timers);
2462 cache_reap();
2463 mod_timer(rt, jiffies + REAPTIMEOUT_CPUC + cpu);
2466 #ifdef CONFIG_PROC_FS
2468 static void *s_start(struct seq_file *m, loff_t *pos)
2470 loff_t n = *pos;
2471 struct list_head *p;
2473 down(&cache_chain_sem);
2474 if (!n) {
2476 * Output format version, so at least we can change it
2477 * without _too_ many complaints.
2479 #if STATS
2480 seq_puts(m, "slabinfo - version: 2.0 (statistics)\n");
2481 #else
2482 seq_puts(m, "slabinfo - version: 2.0\n");
2483 #endif
2484 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
2485 seq_puts(m, " : tunables <batchcount> <limit <sharedfactor>");
2486 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
2487 #if STATS
2488 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <freelimit>");
2489 seq_puts(m, " : cpustat <allochit <allocmiss <freehit <freemiss>");
2490 #endif
2491 seq_putc(m, '\n');
2493 p = cache_chain.next;
2494 while (n--) {
2495 p = p->next;
2496 if (p == &cache_chain)
2497 return NULL;
2499 return list_entry(p, kmem_cache_t, next);
2502 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2504 kmem_cache_t *cachep = p;
2505 ++*pos;
2506 return cachep->next.next == &cache_chain ? NULL
2507 : list_entry(cachep->next.next, kmem_cache_t, next);
2510 static void s_stop(struct seq_file *m, void *p)
2512 up(&cache_chain_sem);
2515 static int s_show(struct seq_file *m, void *p)
2517 kmem_cache_t *cachep = p;
2518 struct list_head *q;
2519 struct slab *slabp;
2520 unsigned long active_objs;
2521 unsigned long num_objs;
2522 unsigned long active_slabs = 0;
2523 unsigned long num_slabs;
2524 const char *name;
2525 char *error = NULL;
2526 mm_segment_t old_fs;
2527 char tmp;
2529 check_irq_on();
2530 spin_lock_irq(&cachep->spinlock);
2531 active_objs = 0;
2532 num_slabs = 0;
2533 list_for_each(q,&cachep->lists.slabs_full) {
2534 slabp = list_entry(q, struct slab, list);
2535 if (slabp->inuse != cachep->num && !error)
2536 error = "slabs_full accounting error";
2537 active_objs += cachep->num;
2538 active_slabs++;
2540 list_for_each(q,&cachep->lists.slabs_partial) {
2541 slabp = list_entry(q, struct slab, list);
2542 if (slabp->inuse == cachep->num && !error)
2543 error = "slabs_partial inuse accounting error";
2544 if (!slabp->inuse && !error)
2545 error = "slabs_partial/inuse accounting error";
2546 active_objs += slabp->inuse;
2547 active_slabs++;
2549 list_for_each(q,&cachep->lists.slabs_free) {
2550 slabp = list_entry(q, struct slab, list);
2551 if (slabp->inuse && !error)
2552 error = "slabs_free/inuse accounting error";
2553 num_slabs++;
2555 num_slabs+=active_slabs;
2556 num_objs = num_slabs*cachep->num;
2557 if (num_objs - active_objs != cachep->lists.free_objects && !error)
2558 error = "free_objects accounting error";
2560 name = cachep->name;
2563 * Check to see if `name' resides inside a module which has been
2564 * unloaded (someone forgot to destroy their cache)
2566 old_fs = get_fs();
2567 set_fs(KERNEL_DS);
2568 if (__get_user(tmp, name))
2569 name = "broken";
2570 set_fs(old_fs);
2572 if (error)
2573 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
2575 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
2576 name, active_objs, num_objs, cachep->objsize,
2577 cachep->num, (1<<cachep->gfporder));
2578 seq_printf(m, " : tunables %4u %4u %4u",
2579 cachep->limit, cachep->batchcount,
2580 cachep->lists.shared->limit/cachep->batchcount);
2581 seq_printf(m, " : slabdata %6lu %6lu %6u",
2582 active_slabs, num_slabs, cachep->lists.shared->avail);
2583 #if STATS
2584 { /* list3 stats */
2585 unsigned long high = cachep->high_mark;
2586 unsigned long allocs = cachep->num_allocations;
2587 unsigned long grown = cachep->grown;
2588 unsigned long reaped = cachep->reaped;
2589 unsigned long errors = cachep->errors;
2590 unsigned long max_freeable = cachep->max_freeable;
2591 unsigned long free_limit = cachep->free_limit;
2593 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu",
2594 allocs, high, grown, reaped, errors,
2595 max_freeable, free_limit);
2597 /* cpu stats */
2599 unsigned long allochit = atomic_read(&cachep->allochit);
2600 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
2601 unsigned long freehit = atomic_read(&cachep->freehit);
2602 unsigned long freemiss = atomic_read(&cachep->freemiss);
2604 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
2605 allochit, allocmiss, freehit, freemiss);
2607 #endif
2608 seq_putc(m, '\n');
2609 spin_unlock_irq(&cachep->spinlock);
2610 return 0;
2614 * slabinfo_op - iterator that generates /proc/slabinfo
2616 * Output layout:
2617 * cache-name
2618 * num-active-objs
2619 * total-objs
2620 * object size
2621 * num-active-slabs
2622 * total-slabs
2623 * num-pages-per-slab
2624 * + further values on SMP and with statistics enabled
2627 struct seq_operations slabinfo_op = {
2628 .start = s_start,
2629 .next = s_next,
2630 .stop = s_stop,
2631 .show = s_show,
2634 #define MAX_SLABINFO_WRITE 128
2636 * slabinfo_write - Tuning for the slab allocator
2637 * @file: unused
2638 * @buffer: user buffer
2639 * @count: data len
2640 * @data: unused
2642 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
2643 size_t count, loff_t *ppos)
2645 char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
2646 int limit, batchcount, shared, res;
2647 struct list_head *p;
2649 if (count > MAX_SLABINFO_WRITE)
2650 return -EINVAL;
2651 if (copy_from_user(&kbuf, buffer, count))
2652 return -EFAULT;
2653 kbuf[MAX_SLABINFO_WRITE] = '\0';
2655 tmp = strchr(kbuf, ' ');
2656 if (!tmp)
2657 return -EINVAL;
2658 *tmp = '\0';
2659 tmp++;
2660 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
2661 return -EINVAL;
2663 /* Find the cache in the chain of caches. */
2664 down(&cache_chain_sem);
2665 res = -EINVAL;
2666 list_for_each(p,&cache_chain) {
2667 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
2669 if (!strcmp(cachep->name, kbuf)) {
2670 if (limit < 1 ||
2671 batchcount < 1 ||
2672 batchcount > limit ||
2673 shared < 0) {
2674 res = -EINVAL;
2675 } else {
2676 res = do_tune_cpucache(cachep, limit, batchcount, shared);
2678 break;
2681 up(&cache_chain_sem);
2682 if (res >= 0)
2683 res = count;
2684 return res;
2686 #endif
2688 unsigned int ksize(const void *objp)
2690 kmem_cache_t *c;
2691 unsigned long flags;
2692 unsigned int size = 0;
2694 if (likely(objp != NULL)) {
2695 local_irq_save(flags);
2696 c = GET_PAGE_CACHE(virt_to_page(objp));
2697 size = kmem_cache_size(c);
2698 local_irq_restore(flags);
2701 return size;
2704 void ptrinfo(unsigned long addr)
2706 struct page *page;
2708 printk("Dumping data about address %p.\n", (void*)addr);
2709 if (!virt_addr_valid((void*)addr)) {
2710 printk("virt addr invalid.\n");
2711 return;
2713 do {
2714 pgd_t *pgd = pgd_offset_k(addr);
2715 pmd_t *pmd;
2716 if (pgd_none(*pgd)) {
2717 printk("No pgd.\n");
2718 break;
2720 pmd = pmd_offset(pgd, addr);
2721 if (pmd_none(*pmd)) {
2722 printk("No pmd.\n");
2723 break;
2725 #ifdef CONFIG_X86
2726 if (pmd_large(*pmd)) {
2727 printk("Large page.\n");
2728 break;
2730 #endif
2731 printk("normal page, pte_val 0x%llx\n",
2732 (unsigned long long)pte_val(*pte_offset_kernel(pmd, addr)));
2733 } while(0);
2735 page = virt_to_page((void*)addr);
2736 printk("struct page at %p, flags %lxh.\n", page, page->flags);
2737 if (PageSlab(page)) {
2738 kmem_cache_t *c;
2739 struct slab *s;
2740 unsigned long flags;
2741 int objnr;
2742 void *objp;
2744 c = GET_PAGE_CACHE(page);
2745 printk("belongs to cache %s.\n",c->name);
2747 spin_lock_irqsave(&c->spinlock, flags);
2748 s = GET_PAGE_SLAB(page);
2749 printk("slabp %p with %d inuse objects (from %d).\n",
2750 s, s->inuse, c->num);
2751 check_slabp(c,s);
2753 objnr = (addr-(unsigned long)s->s_mem)/c->objsize;
2754 objp = s->s_mem+c->objsize*objnr;
2755 printk("points into object no %d, starting at %p, len %d.\n",
2756 objnr, objp, c->objsize);
2757 if (objnr >= c->num) {
2758 printk("Bad obj number.\n");
2759 } else {
2760 kernel_map_pages(virt_to_page(objp), c->objsize/PAGE_SIZE, 1);
2762 printk("redzone: %lxh/%lxh/%lxh.\n",
2763 ((unsigned long*)objp)[0],
2764 ((unsigned long*)(objp+c->objsize))[-2],
2765 ((unsigned long*)(objp+c->objsize))[-1]);
2767 spin_unlock_irqrestore(&c->spinlock, flags);