3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
80 #include <linux/config.h>
81 #include <linux/slab.h>
83 #include <linux/swap.h>
84 #include <linux/cache.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compiler.h>
88 #include <linux/seq_file.h>
89 #include <linux/notifier.h>
90 #include <linux/kallsyms.h>
91 #include <linux/cpu.h>
92 #include <linux/sysctl.h>
93 #include <linux/module.h>
95 #include <asm/uaccess.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
100 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
101 * SLAB_RED_ZONE & SLAB_POISON.
102 * 0 for faster, smaller code (especially in the critical paths).
104 * STATS - 1 to collect stats for /proc/slabinfo.
105 * 0 for faster, smaller code (especially in the critical paths).
107 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
110 #ifdef CONFIG_DEBUG_SLAB
113 #define FORCED_DEBUG 1
117 #define FORCED_DEBUG 0
121 /* Shouldn't this be in a header file somewhere? */
122 #define BYTES_PER_WORD sizeof(void *)
124 /* Legal flag mask for kmem_cache_create(). */
126 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
127 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
128 SLAB_NO_REAP | SLAB_CACHE_DMA | \
129 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
130 SLAB_RECLAIM_ACCOUNT )
132 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
133 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
134 SLAB_RECLAIM_ACCOUNT)
140 * Bufctl's are used for linking objs within a slab
143 * This implementation relies on "struct page" for locating the cache &
144 * slab an object belongs to.
145 * This allows the bufctl structure to be small (one int), but limits
146 * the number of objects a slab (not a cache) can contain when off-slab
147 * bufctls are used. The limit is the size of the largest general cache
148 * that does not use off-slab slabs.
149 * For 32bit archs with 4 kB pages, is this 56.
150 * This is not serious, as it is only for large objects, when it is unwise
151 * to have too many per slab.
152 * Note: This limit can be raised by introducing a general cache whose size
153 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
156 #define BUFCTL_END 0xffffFFFF
157 #define SLAB_LIMIT 0xffffFFFE
158 typedef unsigned int kmem_bufctl_t
;
160 /* Max number of objs-per-slab for caches which use off-slab slabs.
161 * Needed to avoid a possible looping condition in cache_grow().
163 static unsigned long offslab_limit
;
168 * Manages the objs in a slab. Placed either at the beginning of mem allocated
169 * for a slab, or allocated from an general cache.
170 * Slabs are chained into three list: fully used, partial, fully free slabs.
173 struct list_head list
;
174 unsigned long colouroff
;
175 void *s_mem
; /* including colour offset */
176 unsigned int inuse
; /* num of objs active in slab */
185 * - LIFO ordering, to hand out cache-warm objects from _alloc
186 * - reduce the number of linked list operations
187 * - reduce spinlock operations
189 * The limit is stored in the per-cpu structure to reduce the data cache
196 unsigned int batchcount
;
197 unsigned int touched
;
200 /* bootstrap: The caches do not work without cpuarrays anymore,
201 * but the cpuarrays are allocated from the generic caches...
203 #define BOOT_CPUCACHE_ENTRIES 1
204 struct arraycache_init
{
205 struct array_cache cache
;
206 void * entries
[BOOT_CPUCACHE_ENTRIES
];
210 * The slab lists of all objects.
211 * Hopefully reduce the internal fragmentation
212 * NUMA: The spinlock could be moved from the kmem_cache_t
213 * into this structure, too. Figure out what causes
214 * fewer cross-node spinlock operations.
217 struct list_head slabs_partial
; /* partial list first, better asm code */
218 struct list_head slabs_full
;
219 struct list_head slabs_free
;
220 unsigned long free_objects
;
222 unsigned long next_reap
;
223 struct array_cache
*shared
;
226 #define LIST3_INIT(parent) \
228 .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
229 .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
230 .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
232 #define list3_data(cachep) \
236 #define list3_data_ptr(cachep, ptr) \
245 struct kmem_cache_s
{
246 /* 1) per-cpu data, touched during every alloc/free */
247 struct array_cache
*array
[NR_CPUS
];
248 unsigned int batchcount
;
250 /* 2) touched by every alloc & free from the backend */
251 struct kmem_list3 lists
;
252 /* NUMA: kmem_3list_t *nodelists[NR_NODES] */
253 unsigned int objsize
;
254 unsigned int flags
; /* constant flags */
255 unsigned int num
; /* # of objs per slab */
256 unsigned int free_limit
; /* upper limit of objects in the lists */
259 /* 3) cache_grow/shrink */
260 /* order of pgs per slab (2^n) */
261 unsigned int gfporder
;
263 /* force GFP flags, e.g. GFP_DMA */
264 unsigned int gfpflags
;
266 size_t colour
; /* cache colouring range */
267 unsigned int colour_off
; /* colour offset */
268 unsigned int colour_next
; /* cache colouring */
269 kmem_cache_t
*slabp_cache
;
270 unsigned int dflags
; /* dynamic flags */
272 /* constructor func */
273 void (*ctor
)(void *, kmem_cache_t
*, unsigned long);
275 /* de-constructor func */
276 void (*dtor
)(void *, kmem_cache_t
*, unsigned long);
278 /* 4) cache creation/removal */
280 struct list_head next
;
284 unsigned long num_active
;
285 unsigned long num_allocations
;
286 unsigned long high_mark
;
288 unsigned long reaped
;
289 unsigned long errors
;
290 unsigned long max_freeable
;
298 #define CFLGS_OFF_SLAB (0x80000000UL)
299 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
301 #define BATCHREFILL_LIMIT 16
302 /* Optimization question: fewer reaps means less
303 * probability for unnessary cpucache drain/refill cycles.
305 * OTHO the cpuarrays can contain lots of objects,
306 * which could lock up otherwise freeable slabs.
308 #define REAPTIMEOUT_CPUC (2*HZ)
309 #define REAPTIMEOUT_LIST3 (4*HZ)
312 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
313 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
314 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
315 #define STATS_INC_GROWN(x) ((x)->grown++)
316 #define STATS_INC_REAPED(x) ((x)->reaped++)
317 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
318 (x)->high_mark = (x)->num_active; \
320 #define STATS_INC_ERR(x) ((x)->errors++)
321 #define STATS_SET_FREEABLE(x, i) \
322 do { if ((x)->max_freeable < i) \
323 (x)->max_freeable = i; \
326 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
327 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
328 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
329 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
331 #define STATS_INC_ACTIVE(x) do { } while (0)
332 #define STATS_DEC_ACTIVE(x) do { } while (0)
333 #define STATS_INC_ALLOCED(x) do { } while (0)
334 #define STATS_INC_GROWN(x) do { } while (0)
335 #define STATS_INC_REAPED(x) do { } while (0)
336 #define STATS_SET_HIGH(x) do { } while (0)
337 #define STATS_INC_ERR(x) do { } while (0)
338 #define STATS_SET_FREEABLE(x, i) \
341 #define STATS_INC_ALLOCHIT(x) do { } while (0)
342 #define STATS_INC_ALLOCMISS(x) do { } while (0)
343 #define STATS_INC_FREEHIT(x) do { } while (0)
344 #define STATS_INC_FREEMISS(x) do { } while (0)
348 /* Magic nums for obj red zoning.
349 * Placed in the first word before and the first word after an obj.
351 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
352 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
354 /* ...and for poisoning */
355 #define POISON_BEFORE 0x5a /* for use-uninitialised poisoning */
356 #define POISON_AFTER 0x6b /* for use-after-free poisoning */
357 #define POISON_END 0xa5 /* end-byte of poisoning */
359 static inline int obj_dbghead(kmem_cache_t
*cachep
)
361 if (cachep
->flags
& SLAB_RED_ZONE
)
362 return BYTES_PER_WORD
;
366 static inline int obj_dbglen(kmem_cache_t
*cachep
)
370 if (cachep
->flags
& SLAB_RED_ZONE
) {
371 len
+= 2*BYTES_PER_WORD
;
373 if (cachep
->flags
& SLAB_STORE_USER
) {
374 len
+= BYTES_PER_WORD
;
379 static inline int obj_dbghead(kmem_cache_t
*cachep
)
383 static inline int obj_dbglen(kmem_cache_t
*cachep
)
390 * Maximum size of an obj (in 2^order pages)
391 * and absolute limit for the gfp order.
393 #if defined(CONFIG_LARGE_ALLOCS)
394 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
395 #define MAX_GFP_ORDER 13 /* up to 32Mb */
396 #elif defined(CONFIG_MMU)
397 #define MAX_OBJ_ORDER 5 /* 32 pages */
398 #define MAX_GFP_ORDER 5 /* 32 pages */
400 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
401 #define MAX_GFP_ORDER 8 /* up to 1Mb */
405 * Do not go above this order unless 0 objects fit into the slab.
407 #define BREAK_GFP_ORDER_HI 2
408 #define BREAK_GFP_ORDER_LO 1
409 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
411 /* Macros for storing/retrieving the cachep and or slab from the
412 * global 'mem_map'. These are used to find the slab an obj belongs to.
413 * With kfree(), these are used to find the cache which an obj belongs to.
415 #define SET_PAGE_CACHE(pg,x) ((pg)->list.next = (struct list_head *)(x))
416 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->list.next)
417 #define SET_PAGE_SLAB(pg,x) ((pg)->list.prev = (struct list_head *)(x))
418 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->list.prev)
420 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
421 struct cache_sizes malloc_sizes
[] = {
422 #define CACHE(x) { .cs_size = (x) },
423 #include <linux/kmalloc_sizes.h>
428 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
429 static struct cache_names
{
433 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
434 #include <linux/kmalloc_sizes.h>
439 struct arraycache_init initarray_cache __initdata
= { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
440 struct arraycache_init initarray_generic __initdata
= { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
442 /* internal cache of cache description objs */
443 static kmem_cache_t cache_cache
= {
444 .lists
= LIST3_INIT(cache_cache
.lists
),
446 .limit
= BOOT_CPUCACHE_ENTRIES
,
447 .objsize
= sizeof(kmem_cache_t
),
448 .flags
= SLAB_NO_REAP
,
449 .spinlock
= SPIN_LOCK_UNLOCKED
,
450 .colour_off
= L1_CACHE_BYTES
,
451 .name
= "kmem_cache",
454 /* Guard access to the cache-chain. */
455 static struct semaphore cache_chain_sem
;
457 struct list_head cache_chain
;
460 * vm_enough_memory() looks at this to determine how many
461 * slab-allocated pages are possibly freeable under pressure
463 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
465 atomic_t slab_reclaim_pages
;
466 EXPORT_SYMBOL(slab_reclaim_pages
);
469 * chicken and egg problem: delay the per-cpu array allocation
470 * until the general caches are up.
478 static DEFINE_PER_CPU(struct timer_list
, reap_timers
);
480 static void reap_timer_fnc(unsigned long data
);
482 static void enable_cpucache (kmem_cache_t
*cachep
);
484 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
485 static void cache_estimate (unsigned long gfporder
, size_t size
,
486 int flags
, size_t *left_over
, unsigned int *num
)
489 size_t wastage
= PAGE_SIZE
<<gfporder
;
493 if (!(flags
& CFLGS_OFF_SLAB
)) {
494 base
= sizeof(struct slab
);
495 extra
= sizeof(kmem_bufctl_t
);
498 while (i
*size
+ L1_CACHE_ALIGN(base
+i
*extra
) <= wastage
)
508 wastage
-= L1_CACHE_ALIGN(base
+i
*extra
);
509 *left_over
= wastage
;
512 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
514 static void __slab_error(const char *function
, kmem_cache_t
*cachep
, char *msg
)
516 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
517 function
, cachep
->name
, msg
);
522 * Start the reap timer running on the target CPU. We run at around 1 to 2Hz.
523 * Add the CPU number into the expiry time to minimize the possibility of the
524 * CPUs getting into lockstep and contending for the global cache chain lock.
526 static void start_cpu_timer(int cpu
)
528 struct timer_list
*rt
= &per_cpu(reap_timers
, cpu
);
530 if (rt
->function
== NULL
) {
532 rt
->expires
= jiffies
+ HZ
+ 3*cpu
;
533 rt
->function
= reap_timer_fnc
;
534 add_timer_on(rt
, cpu
);
539 * Note: if someone calls kmem_cache_alloc() on the new
540 * cpu before the cpuup callback had a chance to allocate
541 * the head arrays, it will oops.
542 * Is CPU_ONLINE early enough?
544 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
545 unsigned long action
,
548 long cpu
= (long)hcpu
;
553 down(&cache_chain_sem
);
554 list_for_each(p
, &cache_chain
) {
556 struct array_cache
*nc
;
558 kmem_cache_t
* cachep
= list_entry(p
, kmem_cache_t
, next
);
559 memsize
= sizeof(void*)*cachep
->limit
+sizeof(struct array_cache
);
560 nc
= kmalloc(memsize
, GFP_KERNEL
);
564 nc
->limit
= cachep
->limit
;
565 nc
->batchcount
= cachep
->batchcount
;
568 spin_lock_irq(&cachep
->spinlock
);
569 cachep
->array
[cpu
] = nc
;
570 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
572 spin_unlock_irq(&cachep
->spinlock
);
575 up(&cache_chain_sem
);
578 if (g_cpucache_up
== FULL
)
579 start_cpu_timer(cpu
);
581 case CPU_UP_CANCELED
:
582 down(&cache_chain_sem
);
584 list_for_each(p
, &cache_chain
) {
585 struct array_cache
*nc
;
586 kmem_cache_t
* cachep
= list_entry(p
, kmem_cache_t
, next
);
588 nc
= cachep
->array
[cpu
];
589 cachep
->array
[cpu
] = NULL
;
592 up(&cache_chain_sem
);
597 up(&cache_chain_sem
);
601 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
603 static inline void ** ac_entry(struct array_cache
*ac
)
605 return (void**)(ac
+1);
608 static inline struct array_cache
*ac_data(kmem_cache_t
*cachep
)
610 return cachep
->array
[smp_processor_id()];
614 * Called after the gfp() functions have been enabled, and before smp_init().
616 void __init
kmem_cache_init(void)
619 struct cache_sizes
*sizes
;
620 struct cache_names
*names
;
623 * Fragmentation resistance on low memory - only use bigger
624 * page orders on machines with more than 32MB of memory.
626 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
627 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
630 /* Bootstrap is tricky, because several objects are allocated
631 * from caches that do not exist yet:
632 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
633 * structures of all caches, except cache_cache itself: cache_cache
634 * is statically allocated.
635 * Initially an __init data area is used for the head array, it's
636 * replaced with a kmalloc allocated array at the end of the bootstrap.
637 * 2) Create the first kmalloc cache.
638 * The kmem_cache_t for the new cache is allocated normally. An __init
639 * data area is used for the head array.
640 * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
641 * 4) Replace the __init data head arrays for cache_cache and the first
642 * kmalloc cache with kmalloc allocated arrays.
643 * 5) Resize the head arrays of the kmalloc caches to their final sizes.
646 /* 1) create the cache_cache */
647 init_MUTEX(&cache_chain_sem
);
648 INIT_LIST_HEAD(&cache_chain
);
649 list_add(&cache_cache
.next
, &cache_chain
);
650 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
652 cache_estimate(0, cache_cache
.objsize
, 0,
653 &left_over
, &cache_cache
.num
);
654 if (!cache_cache
.num
)
657 cache_cache
.colour
= left_over
/cache_cache
.colour_off
;
658 cache_cache
.colour_next
= 0;
661 /* 2+3) create the kmalloc caches */
662 sizes
= malloc_sizes
;
665 while (sizes
->cs_size
) {
666 /* For performance, all the general caches are L1 aligned.
667 * This should be particularly beneficial on SMP boxes, as it
668 * eliminates "false sharing".
669 * Note for systems short on memory removing the alignment will
670 * allow tighter packing of the smaller caches. */
671 sizes
->cs_cachep
= kmem_cache_create(
672 names
->name
, sizes
->cs_size
,
673 0, SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
674 if (!sizes
->cs_cachep
)
677 /* Inc off-slab bufctl limit until the ceiling is hit. */
678 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
679 offslab_limit
= sizes
->cs_size
-sizeof(struct slab
);
680 offslab_limit
/= sizeof(kmem_bufctl_t
);
683 sizes
->cs_dmacachep
= kmem_cache_create(
684 names
->name_dma
, sizes
->cs_size
,
685 0, SLAB_CACHE_DMA
|SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
686 if (!sizes
->cs_dmacachep
)
692 /* 4) Replace the bootstrap head arrays */
696 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
698 BUG_ON(ac_data(&cache_cache
) != &initarray_cache
.cache
);
699 memcpy(ptr
, ac_data(&cache_cache
), sizeof(struct arraycache_init
));
700 cache_cache
.array
[smp_processor_id()] = ptr
;
703 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
705 BUG_ON(ac_data(malloc_sizes
[0].cs_cachep
) != &initarray_generic
.cache
);
706 memcpy(ptr
, ac_data(malloc_sizes
[0].cs_cachep
),
707 sizeof(struct arraycache_init
));
708 malloc_sizes
[0].cs_cachep
->array
[smp_processor_id()] = ptr
;
712 /* 5) resize the head arrays to their final sizes */
714 kmem_cache_t
*cachep
;
715 down(&cache_chain_sem
);
716 list_for_each_entry(cachep
, &cache_chain
, next
)
717 enable_cpucache(cachep
);
718 up(&cache_chain_sem
);
722 g_cpucache_up
= FULL
;
724 /* Register a cpu startup notifier callback
725 * that initializes ac_data for all new cpus
727 register_cpu_notifier(&cpucache_notifier
);
730 /* The reap timers are started later, with a module init call:
731 * That part of the kernel is not yet operational.
735 int __init
cpucache_init(void)
740 * Register the timers that return unneeded
743 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
745 start_cpu_timer(cpu
);
751 __initcall(cpucache_init
);
753 /* Interface to system's page allocator. No need to hold the cache-lock.
755 static inline void * kmem_getpages (kmem_cache_t
*cachep
, unsigned long flags
)
760 * If we requested dmaable memory, we will get it. Even if we
761 * did not request dmaable memory, we might get it, but that
762 * would be relatively rare and ignorable.
764 flags
|= cachep
->gfpflags
;
765 if ( cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
766 atomic_add(1<<cachep
->gfporder
, &slab_reclaim_pages
);
767 addr
= (void*) __get_free_pages(flags
, cachep
->gfporder
);
768 /* Assume that now we have the pages no one else can legally
769 * messes with the 'struct page's.
770 * However vm_scan() might try to test the structure to see if
771 * it is a named-page or buffer-page. The members it tests are
772 * of no interest here.....
777 /* Interface to system's page release. */
778 static inline void kmem_freepages (kmem_cache_t
*cachep
, void *addr
)
780 unsigned long i
= (1<<cachep
->gfporder
);
781 struct page
*page
= virt_to_page(addr
);
782 const unsigned long nr_freed
= i
;
784 /* free_pages() does not clear the type bit - we do that.
785 * The pages have been unlinked from their cache-slab,
786 * but their 'struct page's might be accessed in
787 * vm_scan(). Shouldn't be a worry.
793 sub_page_state(nr_slab
, nr_freed
);
794 if (current
->reclaim_state
)
795 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
796 free_pages((unsigned long)addr
, cachep
->gfporder
);
797 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
798 atomic_sub(1<<cachep
->gfporder
, &slab_reclaim_pages
);
803 #ifdef CONFIG_DEBUG_PAGEALLOC
804 static void store_stackinfo(kmem_cache_t
*cachep
, unsigned long *addr
, unsigned long caller
)
806 int size
= cachep
->objsize
-obj_dbglen(cachep
);
808 addr
= (unsigned long *)&((char*)addr
)[obj_dbghead(cachep
)];
810 if (size
< 5*sizeof(unsigned long))
815 *addr
++=smp_processor_id();
816 size
-= 3*sizeof(unsigned long);
818 unsigned long *sptr
= &caller
;
819 unsigned long svalue
;
821 while (((long) sptr
& (THREAD_SIZE
-1)) != 0) {
823 if (kernel_text_address(svalue
)) {
825 size
-= sizeof(unsigned long);
826 if (size
<= sizeof(unsigned long))
836 static void poison_obj(kmem_cache_t
*cachep
, void *addr
, unsigned char val
)
838 int size
= cachep
->objsize
-obj_dbglen(cachep
);
839 addr
= &((char*)addr
)[obj_dbghead(cachep
)];
841 memset(addr
, val
, size
);
842 *(unsigned char *)(addr
+size
-1) = POISON_END
;
845 static void *scan_poisoned_obj(unsigned char* addr
, unsigned int size
)
849 end
= addr
+ size
- 1;
851 for (; addr
< end
; addr
++) {
852 if (*addr
!= POISON_BEFORE
&& *addr
!= POISON_AFTER
)
855 if (*addr
!= POISON_END
)
860 static void check_poison_obj(kmem_cache_t
*cachep
, void *addr
)
863 int size
= cachep
->objsize
-obj_dbglen(cachep
);
865 addr
= &((char*)addr
)[obj_dbghead(cachep
)];
867 end
= scan_poisoned_obj(addr
, size
);
870 printk(KERN_ERR
"Slab corruption: start=%p, expend=%p, "
871 "problemat=%p\n", addr
, addr
+size
-1, end
);
872 if (cachep
->flags
& SLAB_STORE_USER
) {
875 if (cachep
->flags
& SLAB_RED_ZONE
)
876 pc
= *(void**)(addr
+size
+BYTES_PER_WORD
);
878 pc
= *(void**)(addr
+size
);
879 printk(KERN_ERR
"Last user: [<%p>]", pc
);
880 print_symbol("(%s)", (unsigned long)pc
);
883 printk(KERN_ERR
"Data: ");
884 for (s
= 0; s
< size
; s
++) {
885 if (((char*)addr
)[s
] == POISON_BEFORE
)
887 else if (((char*)addr
)[s
] == POISON_AFTER
)
890 printk("%02X ", ((unsigned char*)addr
)[s
]);
893 printk(KERN_ERR
"Next: ");
894 for (; s
< size
+ 32; s
++) {
895 if (((char*)addr
)[s
] == POISON_BEFORE
)
897 else if (((char*)addr
)[s
] == POISON_AFTER
)
900 printk("%02X ", ((unsigned char*)addr
)[s
]);
903 slab_error(cachep
, "object was modified after freeing");
908 /* Destroy all the objs in a slab, and release the mem back to the system.
909 * Before calling the slab must have been unlinked from the cache.
910 * The cache-lock is not held/needed.
912 static void slab_destroy (kmem_cache_t
*cachep
, struct slab
*slabp
)
916 for (i
= 0; i
< cachep
->num
; i
++) {
917 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
918 int objlen
= cachep
->objsize
;
920 if (cachep
->flags
& SLAB_POISON
) {
921 #ifdef CONFIG_DEBUG_PAGEALLOC
922 if ((cachep
->objsize
%PAGE_SIZE
)==0 && OFF_SLAB(cachep
))
923 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
,1);
925 check_poison_obj(cachep
, objp
);
927 check_poison_obj(cachep
, objp
);
930 if (cachep
->flags
& SLAB_STORE_USER
)
931 objlen
-= BYTES_PER_WORD
;
933 if (cachep
->flags
& SLAB_RED_ZONE
) {
934 if (*((unsigned long*)(objp
)) != RED_INACTIVE
)
935 slab_error(cachep
, "start of a freed object "
937 if (*((unsigned long*)(objp
+ objlen
- BYTES_PER_WORD
))
939 slab_error(cachep
, "end of a freed object "
941 objp
+= BYTES_PER_WORD
;
943 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
944 (cachep
->dtor
)(objp
, cachep
, 0);
949 for (i
= 0; i
< cachep
->num
; i
++) {
950 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
951 (cachep
->dtor
)(objp
, cachep
, 0);
956 kmem_freepages(cachep
, slabp
->s_mem
-slabp
->colouroff
);
957 if (OFF_SLAB(cachep
))
958 kmem_cache_free(cachep
->slabp_cache
, slabp
);
962 * kmem_cache_create - Create a cache.
963 * @name: A string which is used in /proc/slabinfo to identify this cache.
964 * @size: The size of objects to be created in this cache.
965 * @offset: The offset to use within the page.
967 * @ctor: A constructor for the objects.
968 * @dtor: A destructor for the objects.
970 * Returns a ptr to the cache on success, NULL on failure.
971 * Cannot be called within a int, but can be interrupted.
972 * The @ctor is run when new pages are allocated by the cache
973 * and the @dtor is run before the pages are handed back.
975 * @name must be valid until the cache is destroyed. This implies that
976 * the module calling this has to destroy the cache before getting
981 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
982 * to catch references to uninitialised memory.
984 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
985 * for buffer overruns.
987 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
990 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
991 * cacheline. This can be beneficial if you're counting cycles as closely
995 kmem_cache_create (const char *name
, size_t size
, size_t offset
,
996 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
997 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
999 const char *func_nm
= KERN_ERR
"kmem_create: ";
1000 size_t left_over
, align
, slab_size
;
1001 kmem_cache_t
*cachep
= NULL
;
1004 * Sanity checks... these are all serious usage bugs.
1008 (size
< BYTES_PER_WORD
) ||
1009 (size
> (1<<MAX_OBJ_ORDER
)*PAGE_SIZE
) ||
1011 (offset
< 0 || offset
> size
))
1015 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1016 /* No constructor, but inital state check requested */
1017 printk("%sNo con, but init state check requested - %s\n", func_nm
, name
);
1018 flags
&= ~SLAB_DEBUG_INITIAL
;
1022 #ifdef CONFIG_DEBUG_PAGEALLOC
1023 if (size
< PAGE_SIZE
-3*BYTES_PER_WORD
&& size
> 128)
1024 size
= PAGE_SIZE
-3*BYTES_PER_WORD
;
1027 * Enable redzoning and last user accounting, except
1028 * - for caches with forced alignment: redzoning would violate the
1030 * - for caches with large objects, if the increased size would
1031 * increase the object size above the next power of two: caches
1032 * with object sizes just above a power of two have a significant
1033 * amount of internal fragmentation
1035 if ((size
< 4096 || fls(size
-1) == fls(size
-1+3*BYTES_PER_WORD
))
1036 && !(flags
& SLAB_MUST_HWCACHE_ALIGN
)) {
1037 flags
|= SLAB_RED_ZONE
|SLAB_STORE_USER
;
1039 flags
|= SLAB_POISON
;
1044 * Always checks flags, a caller might be expecting debug
1045 * support which isn't available.
1047 if (flags
& ~CREATE_MASK
)
1050 /* Get cache's description obj. */
1051 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1054 memset(cachep
, 0, sizeof(kmem_cache_t
));
1056 /* Check that size is in terms of words. This is needed to avoid
1057 * unaligned accesses for some archs when redzoning is used, and makes
1058 * sure any on-slab bufctl's are also correctly aligned.
1060 if (size
& (BYTES_PER_WORD
-1)) {
1061 size
+= (BYTES_PER_WORD
-1);
1062 size
&= ~(BYTES_PER_WORD
-1);
1063 printk("%sForcing size word alignment - %s\n", func_nm
, name
);
1067 if (flags
& SLAB_RED_ZONE
) {
1069 * There is no point trying to honour cache alignment
1072 flags
&= ~SLAB_HWCACHE_ALIGN
;
1073 size
+= 2*BYTES_PER_WORD
; /* words for redzone */
1075 if (flags
& SLAB_STORE_USER
) {
1076 flags
&= ~SLAB_HWCACHE_ALIGN
;
1077 size
+= BYTES_PER_WORD
; /* word for kfree caller address */
1080 align
= BYTES_PER_WORD
;
1081 if (flags
& SLAB_HWCACHE_ALIGN
)
1082 align
= L1_CACHE_BYTES
;
1084 /* Determine if the slab management is 'on' or 'off' slab. */
1085 if (size
>= (PAGE_SIZE
>>3))
1087 * Size is large, assume best to place the slab management obj
1088 * off-slab (should allow better packing of objs).
1090 flags
|= CFLGS_OFF_SLAB
;
1092 if (flags
& SLAB_HWCACHE_ALIGN
) {
1093 /* Need to adjust size so that objs are cache aligned. */
1094 /* Small obj size, can get at least two per cache line. */
1095 while (size
<= align
/2)
1097 size
= (size
+align
-1)&(~(align
-1));
1100 /* Cal size (in pages) of slabs, and the num of objs per slab.
1101 * This could be made much more intelligent. For now, try to avoid
1102 * using high page-orders for slabs. When the gfp() funcs are more
1103 * friendly towards high-order requests, this should be changed.
1106 unsigned int break_flag
= 0;
1108 cache_estimate(cachep
->gfporder
, size
, flags
,
1109 &left_over
, &cachep
->num
);
1112 if (cachep
->gfporder
>= MAX_GFP_ORDER
)
1116 if (flags
& CFLGS_OFF_SLAB
&& cachep
->num
> offslab_limit
) {
1117 /* Oops, this num of objs will cause problems. */
1124 * Large num of objs is good, but v. large slabs are currently
1125 * bad for the gfp()s.
1127 if (cachep
->gfporder
>= slab_break_gfp_order
)
1130 if ((left_over
*8) <= (PAGE_SIZE
<<cachep
->gfporder
))
1131 break; /* Acceptable internal fragmentation. */
1137 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
1138 kmem_cache_free(&cache_cache
, cachep
);
1142 slab_size
= L1_CACHE_ALIGN(cachep
->num
*sizeof(kmem_bufctl_t
)+sizeof(struct slab
));
1145 * If the slab has been placed off-slab, and we have enough space then
1146 * move it on-slab. This is at the expense of any extra colouring.
1148 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
1149 flags
&= ~CFLGS_OFF_SLAB
;
1150 left_over
-= slab_size
;
1153 /* Offset must be a multiple of the alignment. */
1154 offset
+= (align
-1);
1155 offset
&= ~(align
-1);
1157 offset
= L1_CACHE_BYTES
;
1158 cachep
->colour_off
= offset
;
1159 cachep
->colour
= left_over
/offset
;
1161 cachep
->flags
= flags
;
1162 cachep
->gfpflags
= 0;
1163 if (flags
& SLAB_CACHE_DMA
)
1164 cachep
->gfpflags
|= GFP_DMA
;
1165 spin_lock_init(&cachep
->spinlock
);
1166 cachep
->objsize
= size
;
1168 INIT_LIST_HEAD(&cachep
->lists
.slabs_full
);
1169 INIT_LIST_HEAD(&cachep
->lists
.slabs_partial
);
1170 INIT_LIST_HEAD(&cachep
->lists
.slabs_free
);
1172 if (flags
& CFLGS_OFF_SLAB
)
1173 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
,0);
1174 cachep
->ctor
= ctor
;
1175 cachep
->dtor
= dtor
;
1176 cachep
->name
= name
;
1178 if (g_cpucache_up
== FULL
) {
1179 enable_cpucache(cachep
);
1181 if (g_cpucache_up
== NONE
) {
1182 /* Note: the first kmem_cache_create must create
1183 * the cache that's used by kmalloc(24), otherwise
1184 * the creation of further caches will BUG().
1186 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1187 g_cpucache_up
= PARTIAL
;
1189 cachep
->array
[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init
),GFP_KERNEL
);
1191 BUG_ON(!ac_data(cachep
));
1192 ac_data(cachep
)->avail
= 0;
1193 ac_data(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1194 ac_data(cachep
)->batchcount
= 1;
1195 ac_data(cachep
)->touched
= 0;
1196 cachep
->batchcount
= 1;
1197 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1198 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
1202 cachep
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1203 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
1205 /* Need the semaphore to access the chain. */
1206 down(&cache_chain_sem
);
1208 struct list_head
*p
;
1209 mm_segment_t old_fs
;
1213 list_for_each(p
, &cache_chain
) {
1214 kmem_cache_t
*pc
= list_entry(p
, kmem_cache_t
, next
);
1216 /* This happens when the module gets unloaded and doesn't
1217 destroy its slab cache and noone else reuses the vmalloc
1218 area of the module. Print a warning. */
1219 if (__get_user(tmp
,pc
->name
)) {
1220 printk("SLAB: cache with size %d has lost its name\n",
1224 if (!strcmp(pc
->name
,name
)) {
1225 printk("kmem_cache_create: duplicate cache %s\n",name
);
1226 up(&cache_chain_sem
);
1233 /* cache setup completed, link it into the list */
1234 list_add(&cachep
->next
, &cache_chain
);
1235 up(&cache_chain_sem
);
1240 static inline void check_irq_off(void)
1243 BUG_ON(!irqs_disabled());
1247 static inline void check_irq_on(void)
1250 BUG_ON(irqs_disabled());
1254 static inline void check_spinlock_acquired(kmem_cache_t
*cachep
)
1258 BUG_ON(spin_trylock(&cachep
->spinlock
));
1263 * Waits for all CPUs to execute func().
1265 static void smp_call_function_all_cpus(void (*func
) (void *arg
), void *arg
)
1270 local_irq_disable();
1274 if (smp_call_function(func
, arg
, 1, 1))
1280 static void free_block (kmem_cache_t
* cachep
, void** objpp
, int len
);
1281 static void drain_array_locked(kmem_cache_t
* cachep
,
1282 struct array_cache
*ac
, int force
);
1284 static void do_drain(void *arg
)
1286 kmem_cache_t
*cachep
= (kmem_cache_t
*)arg
;
1287 struct array_cache
*ac
;
1290 ac
= ac_data(cachep
);
1291 spin_lock(&cachep
->spinlock
);
1292 free_block(cachep
, &ac_entry(ac
)[0], ac
->avail
);
1293 spin_unlock(&cachep
->spinlock
);
1297 static void drain_cpu_caches(kmem_cache_t
*cachep
)
1299 smp_call_function_all_cpus(do_drain
, cachep
);
1301 spin_lock_irq(&cachep
->spinlock
);
1302 if (cachep
->lists
.shared
)
1303 drain_array_locked(cachep
, cachep
->lists
.shared
, 1);
1304 spin_unlock_irq(&cachep
->spinlock
);
1308 /* NUMA shrink all list3s */
1309 static int __cache_shrink(kmem_cache_t
*cachep
)
1314 drain_cpu_caches(cachep
);
1317 spin_lock_irq(&cachep
->spinlock
);
1320 struct list_head
*p
;
1322 p
= cachep
->lists
.slabs_free
.prev
;
1323 if (p
== &cachep
->lists
.slabs_free
)
1326 slabp
= list_entry(cachep
->lists
.slabs_free
.prev
, struct slab
, list
);
1331 list_del(&slabp
->list
);
1333 cachep
->lists
.free_objects
-= cachep
->num
;
1334 spin_unlock_irq(&cachep
->spinlock
);
1335 slab_destroy(cachep
, slabp
);
1336 spin_lock_irq(&cachep
->spinlock
);
1338 ret
= !list_empty(&cachep
->lists
.slabs_full
) ||
1339 !list_empty(&cachep
->lists
.slabs_partial
);
1340 spin_unlock_irq(&cachep
->spinlock
);
1345 * kmem_cache_shrink - Shrink a cache.
1346 * @cachep: The cache to shrink.
1348 * Releases as many slabs as possible for a cache.
1349 * To help debugging, a zero exit status indicates all slabs were released.
1351 int kmem_cache_shrink(kmem_cache_t
*cachep
)
1353 if (!cachep
|| in_interrupt())
1356 return __cache_shrink(cachep
);
1360 * kmem_cache_destroy - delete a cache
1361 * @cachep: the cache to destroy
1363 * Remove a kmem_cache_t object from the slab cache.
1364 * Returns 0 on success.
1366 * It is expected this function will be called by a module when it is
1367 * unloaded. This will remove the cache completely, and avoid a duplicate
1368 * cache being allocated each time a module is loaded and unloaded, if the
1369 * module doesn't have persistent in-kernel storage across loads and unloads.
1371 * The cache must be empty before calling this function.
1373 * The caller must guarantee that noone will allocate memory from the cache
1374 * during the kmem_cache_destroy().
1376 int kmem_cache_destroy (kmem_cache_t
* cachep
)
1380 if (!cachep
|| in_interrupt())
1383 /* Find the cache in the chain of caches. */
1384 down(&cache_chain_sem
);
1386 * the chain is never empty, cache_cache is never destroyed
1388 list_del(&cachep
->next
);
1389 up(&cache_chain_sem
);
1391 if (__cache_shrink(cachep
)) {
1392 slab_error(cachep
, "Can't free all objects");
1393 down(&cache_chain_sem
);
1394 list_add(&cachep
->next
,&cache_chain
);
1395 up(&cache_chain_sem
);
1399 for (i
= 0; i
< NR_CPUS
; i
++)
1400 kfree(cachep
->array
[i
]);
1402 /* NUMA: free the list3 structures */
1403 kfree(cachep
->lists
.shared
);
1404 cachep
->lists
.shared
= NULL
;
1405 kmem_cache_free(&cache_cache
, cachep
);
1410 /* Get the memory for a slab management obj. */
1411 static inline struct slab
* alloc_slabmgmt (kmem_cache_t
*cachep
,
1412 void *objp
, int colour_off
, int local_flags
)
1416 if (OFF_SLAB(cachep
)) {
1417 /* Slab management obj is off-slab. */
1418 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
1422 slabp
= objp
+colour_off
;
1423 colour_off
+= L1_CACHE_ALIGN(cachep
->num
*
1424 sizeof(kmem_bufctl_t
) + sizeof(struct slab
));
1427 slabp
->colouroff
= colour_off
;
1428 slabp
->s_mem
= objp
+colour_off
;
1433 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
1435 return (kmem_bufctl_t
*)(slabp
+1);
1438 static void cache_init_objs (kmem_cache_t
* cachep
,
1439 struct slab
* slabp
, unsigned long ctor_flags
)
1443 for (i
= 0; i
< cachep
->num
; i
++) {
1444 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1446 int objlen
= cachep
->objsize
;
1447 /* need to poison the objs? */
1448 if (cachep
->flags
& SLAB_POISON
)
1449 poison_obj(cachep
, objp
, POISON_BEFORE
);
1450 if (cachep
->flags
& SLAB_STORE_USER
) {
1451 objlen
-= BYTES_PER_WORD
;
1452 ((unsigned long*)(objp
+objlen
))[0] = 0;
1455 if (cachep
->flags
& SLAB_RED_ZONE
) {
1456 *((unsigned long*)(objp
)) = RED_INACTIVE
;
1457 objp
+= BYTES_PER_WORD
;
1458 objlen
-= 2* BYTES_PER_WORD
;
1459 *((unsigned long*)(objp
+ objlen
)) = RED_INACTIVE
;
1462 * Constructors are not allowed to allocate memory from
1463 * the same cache which they are a constructor for.
1464 * Otherwise, deadlock. They must also be threaded.
1466 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
1467 cachep
->ctor(objp
, cachep
, ctor_flags
);
1469 if (cachep
->flags
& SLAB_RED_ZONE
) {
1470 if (*((unsigned long*)(objp
+ objlen
)) != RED_INACTIVE
)
1471 slab_error(cachep
, "constructor overwrote the"
1472 " end of an object");
1473 objp
-= BYTES_PER_WORD
;
1474 if (*((unsigned long*)(objp
)) != RED_INACTIVE
)
1475 slab_error(cachep
, "constructor overwrote the"
1476 " start of an object");
1478 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
1479 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1482 cachep
->ctor(objp
, cachep
, ctor_flags
);
1484 slab_bufctl(slabp
)[i
] = i
+1;
1486 slab_bufctl(slabp
)[i
-1] = BUFCTL_END
;
1490 static void kmem_flagcheck(kmem_cache_t
*cachep
, int flags
)
1492 if (flags
& SLAB_DMA
) {
1493 if (!(cachep
->gfpflags
& GFP_DMA
))
1496 if (cachep
->gfpflags
& GFP_DMA
)
1502 * Grow (by 1) the number of slabs within a cache. This is called by
1503 * kmem_cache_alloc() when there are no active objs left in a cache.
1505 static int cache_grow (kmem_cache_t
* cachep
, int flags
)
1511 unsigned int i
, local_flags
;
1512 unsigned long ctor_flags
;
1514 /* Be lazy and only check for valid flags here,
1515 * keeping it out of the critical path in kmem_cache_alloc().
1517 if (flags
& ~(SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
))
1519 if (flags
& SLAB_NO_GROW
)
1522 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
1523 local_flags
= (flags
& SLAB_LEVEL_MASK
);
1524 if (!(local_flags
& __GFP_WAIT
))
1526 * Not allowed to sleep. Need to tell a constructor about
1527 * this - it might need to know...
1529 ctor_flags
|= SLAB_CTOR_ATOMIC
;
1531 /* About to mess with non-constant members - lock. */
1533 spin_lock(&cachep
->spinlock
);
1535 /* Get colour for the slab, and cal the next value. */
1536 offset
= cachep
->colour_next
;
1537 cachep
->colour_next
++;
1538 if (cachep
->colour_next
>= cachep
->colour
)
1539 cachep
->colour_next
= 0;
1540 offset
*= cachep
->colour_off
;
1542 spin_unlock(&cachep
->spinlock
);
1544 if (local_flags
& __GFP_WAIT
)
1548 * The test for missing atomic flag is performed here, rather than
1549 * the more obvious place, simply to reduce the critical path length
1550 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
1551 * will eventually be caught here (where it matters).
1553 kmem_flagcheck(cachep
, flags
);
1556 /* Get mem for the objs. */
1557 if (!(objp
= kmem_getpages(cachep
, flags
)))
1560 /* Get slab management. */
1561 if (!(slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
)))
1564 /* Nasty!!!!!! I hope this is OK. */
1565 i
= 1 << cachep
->gfporder
;
1566 page
= virt_to_page(objp
);
1568 SET_PAGE_CACHE(page
, cachep
);
1569 SET_PAGE_SLAB(page
, slabp
);
1571 inc_page_state(nr_slab
);
1575 cache_init_objs(cachep
, slabp
, ctor_flags
);
1577 if (local_flags
& __GFP_WAIT
)
1578 local_irq_disable();
1580 spin_lock(&cachep
->spinlock
);
1582 /* Make slab active. */
1583 list_add_tail(&slabp
->list
, &(list3_data(cachep
)->slabs_free
));
1584 STATS_INC_GROWN(cachep
);
1585 list3_data(cachep
)->free_objects
+= cachep
->num
;
1586 spin_unlock(&cachep
->spinlock
);
1589 kmem_freepages(cachep
, objp
);
1591 if (local_flags
& __GFP_WAIT
)
1592 local_irq_disable();
1597 * Perform extra freeing checks:
1598 * - detect bad pointers.
1599 * - POISON/RED_ZONE checking
1600 * - destructor calls, for caches with POISON+dtor
1602 static inline void kfree_debugcheck(const void *objp
)
1607 if (!virt_addr_valid(objp
)) {
1608 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
1609 (unsigned long)objp
);
1612 page
= virt_to_page(objp
);
1613 if (!PageSlab(page
)) {
1614 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp
);
1620 static inline void *cache_free_debugcheck (kmem_cache_t
* cachep
, void * objp
, void *caller
)
1625 int objlen
= cachep
->objsize
;
1628 kfree_debugcheck(objp
);
1629 page
= virt_to_page(objp
);
1631 BUG_ON(GET_PAGE_CACHE(page
) != cachep
);
1632 slabp
= GET_PAGE_SLAB(page
);
1634 if (cachep
->flags
& SLAB_STORE_USER
) {
1635 objlen
-= BYTES_PER_WORD
;
1637 if (cachep
->flags
& SLAB_RED_ZONE
) {
1638 objp
-= BYTES_PER_WORD
;
1639 if (xchg((unsigned long *)objp
, RED_INACTIVE
) != RED_ACTIVE
)
1640 slab_error(cachep
, "double free, or memory before"
1641 " object was overwritten");
1642 if (xchg((unsigned long *)(objp
+objlen
-BYTES_PER_WORD
), RED_INACTIVE
) != RED_ACTIVE
)
1643 slab_error(cachep
, "double free, or memory after "
1644 " object was overwritten");
1646 if (cachep
->flags
& SLAB_STORE_USER
) {
1647 *((void**)(objp
+objlen
)) = caller
;
1650 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1652 BUG_ON(objnr
>= cachep
->num
);
1653 BUG_ON(objp
!= slabp
->s_mem
+ objnr
*cachep
->objsize
);
1655 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
1656 /* Need to call the slab's constructor so the
1657 * caller can perform a verify of its state (debugging).
1658 * Called without the cache-lock held.
1660 cachep
->ctor(objp
+obj_dbghead(cachep
),
1661 cachep
, SLAB_CTOR_CONSTRUCTOR
|SLAB_CTOR_VERIFY
);
1663 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
1664 /* we want to cache poison the object,
1665 * call the destruction callback
1667 cachep
->dtor(objp
+obj_dbghead(cachep
), cachep
, 0);
1669 if (cachep
->flags
& SLAB_POISON
) {
1670 #ifdef CONFIG_DEBUG_PAGEALLOC
1671 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)) {
1672 store_stackinfo(cachep
, objp
, POISON_AFTER
);
1673 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1675 poison_obj(cachep
, objp
, POISON_AFTER
);
1678 poison_obj(cachep
, objp
, POISON_AFTER
);
1685 static inline void check_slabp(kmem_cache_t
*cachep
, struct slab
*slabp
)
1691 check_spinlock_acquired(cachep
);
1692 /* Check slab's freelist to see if this obj is there. */
1693 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
1695 BUG_ON(entries
> cachep
->num
);
1696 BUG_ON(i
< 0 || i
>= cachep
->num
);
1698 BUG_ON(entries
!= cachep
->num
- slabp
->inuse
);
1702 static inline void * cache_alloc_one_tail (kmem_cache_t
*cachep
,
1707 check_spinlock_acquired(cachep
);
1709 STATS_INC_ALLOCED(cachep
);
1710 STATS_INC_ACTIVE(cachep
);
1711 STATS_SET_HIGH(cachep
);
1713 /* get obj pointer */
1715 objp
= slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
1716 slabp
->free
=slab_bufctl(slabp
)[slabp
->free
];
1721 static inline void cache_alloc_listfixup(struct kmem_list3
*l3
, struct slab
*slabp
)
1723 list_del(&slabp
->list
);
1724 if (slabp
->free
== BUFCTL_END
) {
1725 list_add(&slabp
->list
, &l3
->slabs_full
);
1727 list_add(&slabp
->list
, &l3
->slabs_partial
);
1731 static void* cache_alloc_refill(kmem_cache_t
* cachep
, int flags
)
1734 struct kmem_list3
*l3
;
1735 struct array_cache
*ac
;
1738 ac
= ac_data(cachep
);
1740 batchcount
= ac
->batchcount
;
1741 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
1742 /* if there was little recent activity on this
1743 * cache, then perform only a partial refill.
1744 * Otherwise we could generate refill bouncing.
1746 batchcount
= BATCHREFILL_LIMIT
;
1748 l3
= list3_data(cachep
);
1750 BUG_ON(ac
->avail
> 0);
1751 spin_lock(&cachep
->spinlock
);
1753 struct array_cache
*shared_array
= l3
->shared
;
1754 if (shared_array
->avail
) {
1755 if (batchcount
> shared_array
->avail
)
1756 batchcount
= shared_array
->avail
;
1757 shared_array
->avail
-= batchcount
;
1758 ac
->avail
= batchcount
;
1759 memcpy(ac_entry(ac
), &ac_entry(shared_array
)[shared_array
->avail
],
1760 sizeof(void*)*batchcount
);
1761 shared_array
->touched
= 1;
1765 while (batchcount
> 0) {
1766 struct list_head
*entry
;
1768 /* Get slab alloc is to come from. */
1769 entry
= l3
->slabs_partial
.next
;
1770 if (entry
== &l3
->slabs_partial
) {
1771 l3
->free_touched
= 1;
1772 entry
= l3
->slabs_free
.next
;
1773 if (entry
== &l3
->slabs_free
)
1777 slabp
= list_entry(entry
, struct slab
, list
);
1778 check_slabp(cachep
, slabp
);
1779 while (slabp
->inuse
< cachep
->num
&& batchcount
--)
1780 ac_entry(ac
)[ac
->avail
++] =
1781 cache_alloc_one_tail(cachep
, slabp
);
1782 check_slabp(cachep
, slabp
);
1783 cache_alloc_listfixup(l3
, slabp
);
1787 l3
->free_objects
-= ac
->avail
;
1789 spin_unlock(&cachep
->spinlock
);
1791 if (unlikely(!ac
->avail
)) {
1793 x
= cache_grow(cachep
, flags
);
1795 // cache_grow can reenable interrupts, then ac could change.
1796 ac
= ac_data(cachep
);
1797 if (!x
&& ac
->avail
== 0) // no objects in sight? abort
1800 if (!ac
->avail
) // objects refilled by interrupt?
1804 return ac_entry(ac
)[--ac
->avail
];
1808 cache_alloc_debugcheck_before(kmem_cache_t
*cachep
, int flags
)
1810 if (flags
& __GFP_WAIT
)
1813 kmem_flagcheck(cachep
, flags
);
1817 static inline void *
1818 cache_alloc_debugcheck_after(kmem_cache_t
*cachep
,
1819 unsigned long flags
, void *objp
, void *caller
)
1822 int objlen
= cachep
->objsize
;
1826 if (cachep
->flags
& SLAB_POISON
) {
1827 #ifdef CONFIG_DEBUG_PAGEALLOC
1828 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
1829 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 1);
1831 check_poison_obj(cachep
, objp
);
1833 check_poison_obj(cachep
, objp
);
1835 poison_obj(cachep
, objp
, POISON_BEFORE
);
1837 if (cachep
->flags
& SLAB_STORE_USER
) {
1838 objlen
-= BYTES_PER_WORD
;
1839 *((void **)(objp
+objlen
)) = caller
;
1842 if (cachep
->flags
& SLAB_RED_ZONE
) {
1843 /* Set alloc red-zone, and check old one. */
1844 if (xchg((unsigned long *)objp
, RED_ACTIVE
) != RED_INACTIVE
) {
1845 slab_error(cachep
, "memory before object was "
1848 if (xchg((unsigned long *)(objp
+objlen
- BYTES_PER_WORD
),
1849 RED_ACTIVE
) != RED_INACTIVE
) {
1850 slab_error(cachep
, "memory after object was "
1853 objp
+= BYTES_PER_WORD
;
1855 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
1856 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
1858 if (!(flags
& __GFP_WAIT
))
1859 ctor_flags
|= SLAB_CTOR_ATOMIC
;
1861 cachep
->ctor(objp
, cachep
, ctor_flags
);
1868 static inline void * __cache_alloc (kmem_cache_t
*cachep
, int flags
)
1870 unsigned long save_flags
;
1872 struct array_cache
*ac
;
1874 cache_alloc_debugcheck_before(cachep
, flags
);
1876 local_irq_save(save_flags
);
1877 ac
= ac_data(cachep
);
1878 if (likely(ac
->avail
)) {
1879 STATS_INC_ALLOCHIT(cachep
);
1881 objp
= ac_entry(ac
)[--ac
->avail
];
1883 STATS_INC_ALLOCMISS(cachep
);
1884 objp
= cache_alloc_refill(cachep
, flags
);
1886 local_irq_restore(save_flags
);
1887 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, __builtin_return_address(0));
1892 * NUMA: different approach needed if the spinlock is moved into
1896 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int nr_objects
)
1900 check_spinlock_acquired(cachep
);
1902 /* NUMA: move add into loop */
1903 cachep
->lists
.free_objects
+= nr_objects
;
1905 for (i
= 0; i
< nr_objects
; i
++) {
1906 void *objp
= objpp
[i
];
1910 slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
1911 list_del(&slabp
->list
);
1912 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
1913 check_slabp(cachep
, slabp
);
1914 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
1915 slabp
->free
= objnr
;
1916 STATS_DEC_ACTIVE(cachep
);
1918 check_slabp(cachep
, slabp
);
1920 /* fixup slab chains */
1921 if (slabp
->inuse
== 0) {
1922 if (cachep
->lists
.free_objects
> cachep
->free_limit
) {
1923 cachep
->lists
.free_objects
-= cachep
->num
;
1924 slab_destroy(cachep
, slabp
);
1926 list_add(&slabp
->list
,
1927 &list3_data_ptr(cachep
, objp
)->slabs_free
);
1930 /* Unconditionally move a slab to the end of the
1931 * partial list on free - maximum time for the
1932 * other objects to be freed, too.
1934 list_add_tail(&slabp
->list
,
1935 &list3_data_ptr(cachep
, objp
)->slabs_partial
);
1940 static void cache_flusharray (kmem_cache_t
* cachep
, struct array_cache
*ac
)
1944 batchcount
= ac
->batchcount
;
1946 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
1949 spin_lock(&cachep
->spinlock
);
1950 if (cachep
->lists
.shared
) {
1951 struct array_cache
*shared_array
= cachep
->lists
.shared
;
1952 int max
= shared_array
->limit
-shared_array
->avail
;
1954 if (batchcount
> max
)
1956 memcpy(&ac_entry(shared_array
)[shared_array
->avail
],
1958 sizeof(void*)*batchcount
);
1959 shared_array
->avail
+= batchcount
;
1964 free_block(cachep
, &ac_entry(ac
)[0], batchcount
);
1969 struct list_head
*p
;
1971 p
= list3_data(cachep
)->slabs_free
.next
;
1972 while (p
!= &(list3_data(cachep
)->slabs_free
)) {
1975 slabp
= list_entry(p
, struct slab
, list
);
1976 BUG_ON(slabp
->inuse
);
1981 STATS_SET_FREEABLE(cachep
, i
);
1984 spin_unlock(&cachep
->spinlock
);
1985 ac
->avail
-= batchcount
;
1986 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[batchcount
],
1987 sizeof(void*)*ac
->avail
);
1992 * Release an obj back to its cache. If the obj has a constructed
1993 * state, it must be in this state _before_ it is released.
1995 * Called with disabled ints.
1997 static inline void __cache_free (kmem_cache_t
*cachep
, void* objp
)
1999 struct array_cache
*ac
= ac_data(cachep
);
2002 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
2004 if (likely(ac
->avail
< ac
->limit
)) {
2005 STATS_INC_FREEHIT(cachep
);
2006 ac_entry(ac
)[ac
->avail
++] = objp
;
2009 STATS_INC_FREEMISS(cachep
);
2010 cache_flusharray(cachep
, ac
);
2011 ac_entry(ac
)[ac
->avail
++] = objp
;
2016 * kmem_cache_alloc - Allocate an object
2017 * @cachep: The cache to allocate from.
2018 * @flags: See kmalloc().
2020 * Allocate an object from this cache. The flags are only relevant
2021 * if the cache has no available objects.
2023 void * kmem_cache_alloc (kmem_cache_t
*cachep
, int flags
)
2025 return __cache_alloc(cachep
, flags
);
2029 * kmalloc - allocate memory
2030 * @size: how many bytes of memory are required.
2031 * @flags: the type of memory to allocate.
2033 * kmalloc is the normal method of allocating memory
2036 * The @flags argument may be one of:
2038 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2040 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2042 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2044 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2045 * must be suitable for DMA. This can mean different things on different
2046 * platforms. For example, on i386, it means that the memory must come
2047 * from the first 16MB.
2049 void * __kmalloc (size_t size
, int flags
)
2051 struct cache_sizes
*csizep
= malloc_sizes
;
2053 for (; csizep
->cs_size
; csizep
++) {
2054 if (size
> csizep
->cs_size
)
2057 /* This happens if someone tries to call
2058 * kmem_cache_create(), or kmalloc(), before
2059 * the generic caches are initialized.
2061 BUG_ON(csizep
->cs_cachep
== NULL
);
2063 return __cache_alloc(flags
& GFP_DMA
?
2064 csizep
->cs_dmacachep
: csizep
->cs_cachep
, flags
);
2071 * __alloc_percpu - allocate one copy of the object for every present
2072 * cpu in the system, zeroing them.
2073 * Objects should be dereferenced using per_cpu_ptr/get_cpu_ptr
2076 * @size: how many bytes of memory are required.
2077 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2079 void *__alloc_percpu(size_t size
, size_t align
)
2082 struct percpu_data
*pdata
= kmalloc(sizeof (*pdata
), GFP_KERNEL
);
2087 for (i
= 0; i
< NR_CPUS
; i
++) {
2088 if (!cpu_possible(i
))
2090 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
2091 if (!pdata
->ptrs
[i
])
2093 memset(pdata
->ptrs
[i
], 0, size
);
2096 /* Catch derefs w/o wrappers */
2097 return (void *) (~(unsigned long) pdata
);
2101 if (!cpu_possible(i
))
2103 kfree(pdata
->ptrs
[i
]);
2111 * kmem_cache_free - Deallocate an object
2112 * @cachep: The cache the allocation was from.
2113 * @objp: The previously allocated object.
2115 * Free an object which was previously allocated from this
2118 void kmem_cache_free (kmem_cache_t
*cachep
, void *objp
)
2120 unsigned long flags
;
2122 local_irq_save(flags
);
2123 __cache_free(cachep
, objp
);
2124 local_irq_restore(flags
);
2128 * kfree - free previously allocated memory
2129 * @objp: pointer returned by kmalloc.
2131 * Don't free memory not originally allocated by kmalloc()
2132 * or you will run into trouble.
2134 void kfree (const void *objp
)
2137 unsigned long flags
;
2141 local_irq_save(flags
);
2142 kfree_debugcheck(objp
);
2143 c
= GET_PAGE_CACHE(virt_to_page(objp
));
2144 __cache_free(c
, (void*)objp
);
2145 local_irq_restore(flags
);
2150 * free_percpu - free previously allocated percpu memory
2151 * @objp: pointer returned by alloc_percpu.
2153 * Don't free memory not originally allocated by alloc_percpu()
2154 * The complemented objp is to check for that.
2157 free_percpu(const void *objp
)
2160 struct percpu_data
*p
= (struct percpu_data
*) (~(unsigned long) objp
);
2162 for (i
= 0; i
< NR_CPUS
; i
++) {
2163 if (!cpu_possible(i
))
2170 unsigned int kmem_cache_size(kmem_cache_t
*cachep
)
2172 return cachep
->objsize
-obj_dbglen(cachep
);
2175 kmem_cache_t
* kmem_find_general_cachep (size_t size
, int gfpflags
)
2177 struct cache_sizes
*csizep
= malloc_sizes
;
2179 /* This function could be moved to the header file, and
2180 * made inline so consumers can quickly determine what
2181 * cache pointer they require.
2183 for ( ; csizep
->cs_size
; csizep
++) {
2184 if (size
> csizep
->cs_size
)
2188 return (gfpflags
& GFP_DMA
) ? csizep
->cs_dmacachep
: csizep
->cs_cachep
;
2191 struct ccupdate_struct
{
2192 kmem_cache_t
*cachep
;
2193 struct array_cache
*new[NR_CPUS
];
2196 static void do_ccupdate_local(void *info
)
2198 struct ccupdate_struct
*new = (struct ccupdate_struct
*)info
;
2199 struct array_cache
*old
;
2202 old
= ac_data(new->cachep
);
2204 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
2205 new->new[smp_processor_id()] = old
;
2209 static int do_tune_cpucache (kmem_cache_t
* cachep
, int limit
, int batchcount
, int shared
)
2211 struct ccupdate_struct
new;
2212 struct array_cache
*new_shared
;
2215 memset(&new.new,0,sizeof(new.new));
2216 for (i
= 0; i
< NR_CPUS
; i
++) {
2217 struct array_cache
*ccnew
;
2219 ccnew
= kmalloc(sizeof(void*)*limit
+
2220 sizeof(struct array_cache
), GFP_KERNEL
);
2222 for (i
--; i
>= 0; i
--) kfree(new.new[i
]);
2226 ccnew
->limit
= limit
;
2227 ccnew
->batchcount
= batchcount
;
2231 new.cachep
= cachep
;
2233 smp_call_function_all_cpus(do_ccupdate_local
, (void *)&new);
2236 spin_lock_irq(&cachep
->spinlock
);
2237 cachep
->batchcount
= batchcount
;
2238 cachep
->limit
= limit
;
2239 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
+ cachep
->num
;
2240 spin_unlock_irq(&cachep
->spinlock
);
2242 for (i
= 0; i
< NR_CPUS
; i
++) {
2243 struct array_cache
*ccold
= new.new[i
];
2246 spin_lock_irq(&cachep
->spinlock
);
2247 free_block(cachep
, ac_entry(ccold
), ccold
->avail
);
2248 spin_unlock_irq(&cachep
->spinlock
);
2251 new_shared
= kmalloc(sizeof(void*)*batchcount
*shared
+
2252 sizeof(struct array_cache
), GFP_KERNEL
);
2254 struct array_cache
*old
;
2255 new_shared
->avail
= 0;
2256 new_shared
->limit
= batchcount
*shared
;
2257 new_shared
->batchcount
= 0xbaadf00d;
2258 new_shared
->touched
= 0;
2260 spin_lock_irq(&cachep
->spinlock
);
2261 old
= cachep
->lists
.shared
;
2262 cachep
->lists
.shared
= new_shared
;
2264 free_block(cachep
, ac_entry(old
), old
->avail
);
2265 spin_unlock_irq(&cachep
->spinlock
);
2273 static void enable_cpucache (kmem_cache_t
*cachep
)
2278 /* The head array serves three purposes:
2279 * - create a LIFO ordering, i.e. return objects that are cache-warm
2280 * - reduce the number of spinlock operations.
2281 * - reduce the number of linked list operations on the slab and
2282 * bufctl chains: array operations are cheaper.
2283 * The numbers are guessed, we should auto-tune as described by
2286 if (cachep
->objsize
> 131072)
2288 else if (cachep
->objsize
> PAGE_SIZE
)
2290 else if (cachep
->objsize
> 1024)
2292 else if (cachep
->objsize
> 256)
2297 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
2298 * allocation behaviour: Most allocs on one cpu, most free operations
2299 * on another cpu. For these cases, an efficient object passing between
2300 * cpus is necessary. This is provided by a shared array. The array
2301 * replaces Bonwick's magazine layer.
2302 * On uniprocessor, it's functionally equivalent (but less efficient)
2303 * to a larger limit. Thus disabled by default.
2307 if (cachep
->objsize
<= PAGE_SIZE
)
2312 /* With debugging enabled, large batchcount lead to excessively
2313 * long periods with disabled local interrupts. Limit the
2319 err
= do_tune_cpucache(cachep
, limit
, (limit
+1)/2, shared
);
2321 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
2322 cachep
->name
, -err
);
2325 static void drain_array(kmem_cache_t
*cachep
, struct array_cache
*ac
)
2332 } else if (ac
->avail
) {
2333 tofree
= (ac
->limit
+4)/5;
2334 if (tofree
> ac
->avail
) {
2335 tofree
= (ac
->avail
+1)/2;
2337 spin_lock(&cachep
->spinlock
);
2338 free_block(cachep
, ac_entry(ac
), tofree
);
2339 spin_unlock(&cachep
->spinlock
);
2340 ac
->avail
-= tofree
;
2341 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[tofree
],
2342 sizeof(void*)*ac
->avail
);
2346 static void drain_array_locked(kmem_cache_t
*cachep
,
2347 struct array_cache
*ac
, int force
)
2351 check_spinlock_acquired(cachep
);
2354 } else if (ac
->avail
) {
2355 tofree
= force
? ac
->avail
: (ac
->limit
+4)/5;
2356 if (tofree
> ac
->avail
) {
2357 tofree
= (ac
->avail
+1)/2;
2359 free_block(cachep
, ac_entry(ac
), tofree
);
2360 ac
->avail
-= tofree
;
2361 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[tofree
],
2362 sizeof(void*)*ac
->avail
);
2367 * cache_reap - Reclaim memory from caches.
2369 * Called from a timer, every few seconds
2371 * - clear the per-cpu caches for this CPU.
2372 * - return freeable pages to the main free memory pool.
2374 * If we cannot acquire the cache chain semaphore then just give up - we'll
2375 * try again next timer interrupt.
2377 static inline void cache_reap (void)
2379 struct list_head
*walk
;
2382 BUG_ON(!in_interrupt());
2385 if (down_trylock(&cache_chain_sem
))
2388 list_for_each(walk
, &cache_chain
) {
2389 kmem_cache_t
*searchp
;
2390 struct list_head
* p
;
2394 searchp
= list_entry(walk
, kmem_cache_t
, next
);
2396 if (searchp
->flags
& SLAB_NO_REAP
)
2400 local_irq_disable();
2401 drain_array(searchp
, ac_data(searchp
));
2403 if(time_after(searchp
->lists
.next_reap
, jiffies
))
2406 spin_lock(&searchp
->spinlock
);
2407 if(time_after(searchp
->lists
.next_reap
, jiffies
)) {
2410 searchp
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
2412 if (searchp
->lists
.shared
)
2413 drain_array_locked(searchp
, searchp
->lists
.shared
, 0);
2415 if (searchp
->lists
.free_touched
) {
2416 searchp
->lists
.free_touched
= 0;
2420 tofree
= (searchp
->free_limit
+5*searchp
->num
-1)/(5*searchp
->num
);
2422 p
= list3_data(searchp
)->slabs_free
.next
;
2423 if (p
== &(list3_data(searchp
)->slabs_free
))
2426 slabp
= list_entry(p
, struct slab
, list
);
2427 BUG_ON(slabp
->inuse
);
2428 list_del(&slabp
->list
);
2429 STATS_INC_REAPED(searchp
);
2431 /* Safe to drop the lock. The slab is no longer
2432 * linked to the cache.
2433 * searchp cannot disappear, we hold
2436 searchp
->lists
.free_objects
-= searchp
->num
;
2437 spin_unlock_irq(&searchp
->spinlock
);
2438 slab_destroy(searchp
, slabp
);
2439 spin_lock_irq(&searchp
->spinlock
);
2440 } while(--tofree
> 0);
2442 spin_unlock(&searchp
->spinlock
);
2449 up(&cache_chain_sem
);
2453 * This is a timer handler. There is on per CPU. It is called periodially
2454 * to shrink this CPU's caches. Otherwise there could be memory tied up
2455 * for long periods (or for ever) due to load changes.
2457 static void reap_timer_fnc(unsigned long data
)
2459 int cpu
= smp_processor_id();
2460 struct timer_list
*rt
= &__get_cpu_var(reap_timers
);
2463 mod_timer(rt
, jiffies
+ REAPTIMEOUT_CPUC
+ cpu
);
2466 #ifdef CONFIG_PROC_FS
2468 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2471 struct list_head
*p
;
2473 down(&cache_chain_sem
);
2476 * Output format version, so at least we can change it
2477 * without _too_ many complaints.
2480 seq_puts(m
, "slabinfo - version: 2.0 (statistics)\n");
2482 seq_puts(m
, "slabinfo - version: 2.0\n");
2484 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
2485 seq_puts(m
, " : tunables <batchcount> <limit <sharedfactor>");
2486 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
2488 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <freelimit>");
2489 seq_puts(m
, " : cpustat <allochit <allocmiss <freehit <freemiss>");
2493 p
= cache_chain
.next
;
2496 if (p
== &cache_chain
)
2499 return list_entry(p
, kmem_cache_t
, next
);
2502 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2504 kmem_cache_t
*cachep
= p
;
2506 return cachep
->next
.next
== &cache_chain
? NULL
2507 : list_entry(cachep
->next
.next
, kmem_cache_t
, next
);
2510 static void s_stop(struct seq_file
*m
, void *p
)
2512 up(&cache_chain_sem
);
2515 static int s_show(struct seq_file
*m
, void *p
)
2517 kmem_cache_t
*cachep
= p
;
2518 struct list_head
*q
;
2520 unsigned long active_objs
;
2521 unsigned long num_objs
;
2522 unsigned long active_slabs
= 0;
2523 unsigned long num_slabs
;
2526 mm_segment_t old_fs
;
2530 spin_lock_irq(&cachep
->spinlock
);
2533 list_for_each(q
,&cachep
->lists
.slabs_full
) {
2534 slabp
= list_entry(q
, struct slab
, list
);
2535 if (slabp
->inuse
!= cachep
->num
&& !error
)
2536 error
= "slabs_full accounting error";
2537 active_objs
+= cachep
->num
;
2540 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2541 slabp
= list_entry(q
, struct slab
, list
);
2542 if (slabp
->inuse
== cachep
->num
&& !error
)
2543 error
= "slabs_partial inuse accounting error";
2544 if (!slabp
->inuse
&& !error
)
2545 error
= "slabs_partial/inuse accounting error";
2546 active_objs
+= slabp
->inuse
;
2549 list_for_each(q
,&cachep
->lists
.slabs_free
) {
2550 slabp
= list_entry(q
, struct slab
, list
);
2551 if (slabp
->inuse
&& !error
)
2552 error
= "slabs_free/inuse accounting error";
2555 num_slabs
+=active_slabs
;
2556 num_objs
= num_slabs
*cachep
->num
;
2557 if (num_objs
- active_objs
!= cachep
->lists
.free_objects
&& !error
)
2558 error
= "free_objects accounting error";
2560 name
= cachep
->name
;
2563 * Check to see if `name' resides inside a module which has been
2564 * unloaded (someone forgot to destroy their cache)
2568 if (__get_user(tmp
, name
))
2573 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
2575 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
2576 name
, active_objs
, num_objs
, cachep
->objsize
,
2577 cachep
->num
, (1<<cachep
->gfporder
));
2578 seq_printf(m
, " : tunables %4u %4u %4u",
2579 cachep
->limit
, cachep
->batchcount
,
2580 cachep
->lists
.shared
->limit
/cachep
->batchcount
);
2581 seq_printf(m
, " : slabdata %6lu %6lu %6u",
2582 active_slabs
, num_slabs
, cachep
->lists
.shared
->avail
);
2585 unsigned long high
= cachep
->high_mark
;
2586 unsigned long allocs
= cachep
->num_allocations
;
2587 unsigned long grown
= cachep
->grown
;
2588 unsigned long reaped
= cachep
->reaped
;
2589 unsigned long errors
= cachep
->errors
;
2590 unsigned long max_freeable
= cachep
->max_freeable
;
2591 unsigned long free_limit
= cachep
->free_limit
;
2593 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu",
2594 allocs
, high
, grown
, reaped
, errors
,
2595 max_freeable
, free_limit
);
2599 unsigned long allochit
= atomic_read(&cachep
->allochit
);
2600 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
2601 unsigned long freehit
= atomic_read(&cachep
->freehit
);
2602 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
2604 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
2605 allochit
, allocmiss
, freehit
, freemiss
);
2609 spin_unlock_irq(&cachep
->spinlock
);
2614 * slabinfo_op - iterator that generates /proc/slabinfo
2623 * num-pages-per-slab
2624 * + further values on SMP and with statistics enabled
2627 struct seq_operations slabinfo_op
= {
2634 #define MAX_SLABINFO_WRITE 128
2636 * slabinfo_write - Tuning for the slab allocator
2638 * @buffer: user buffer
2642 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
2643 size_t count
, loff_t
*ppos
)
2645 char kbuf
[MAX_SLABINFO_WRITE
+1], *tmp
;
2646 int limit
, batchcount
, shared
, res
;
2647 struct list_head
*p
;
2649 if (count
> MAX_SLABINFO_WRITE
)
2651 if (copy_from_user(&kbuf
, buffer
, count
))
2653 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
2655 tmp
= strchr(kbuf
, ' ');
2660 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
2663 /* Find the cache in the chain of caches. */
2664 down(&cache_chain_sem
);
2666 list_for_each(p
,&cache_chain
) {
2667 kmem_cache_t
*cachep
= list_entry(p
, kmem_cache_t
, next
);
2669 if (!strcmp(cachep
->name
, kbuf
)) {
2672 batchcount
> limit
||
2676 res
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
);
2681 up(&cache_chain_sem
);
2688 unsigned int ksize(const void *objp
)
2691 unsigned long flags
;
2692 unsigned int size
= 0;
2694 if (likely(objp
!= NULL
)) {
2695 local_irq_save(flags
);
2696 c
= GET_PAGE_CACHE(virt_to_page(objp
));
2697 size
= kmem_cache_size(c
);
2698 local_irq_restore(flags
);
2704 void ptrinfo(unsigned long addr
)
2708 printk("Dumping data about address %p.\n", (void*)addr
);
2709 if (!virt_addr_valid((void*)addr
)) {
2710 printk("virt addr invalid.\n");
2714 pgd_t
*pgd
= pgd_offset_k(addr
);
2716 if (pgd_none(*pgd
)) {
2717 printk("No pgd.\n");
2720 pmd
= pmd_offset(pgd
, addr
);
2721 if (pmd_none(*pmd
)) {
2722 printk("No pmd.\n");
2726 if (pmd_large(*pmd
)) {
2727 printk("Large page.\n");
2731 printk("normal page, pte_val 0x%llx\n",
2732 (unsigned long long)pte_val(*pte_offset_kernel(pmd
, addr
)));
2735 page
= virt_to_page((void*)addr
);
2736 printk("struct page at %p, flags %lxh.\n", page
, page
->flags
);
2737 if (PageSlab(page
)) {
2740 unsigned long flags
;
2744 c
= GET_PAGE_CACHE(page
);
2745 printk("belongs to cache %s.\n",c
->name
);
2747 spin_lock_irqsave(&c
->spinlock
, flags
);
2748 s
= GET_PAGE_SLAB(page
);
2749 printk("slabp %p with %d inuse objects (from %d).\n",
2750 s
, s
->inuse
, c
->num
);
2753 objnr
= (addr
-(unsigned long)s
->s_mem
)/c
->objsize
;
2754 objp
= s
->s_mem
+c
->objsize
*objnr
;
2755 printk("points into object no %d, starting at %p, len %d.\n",
2756 objnr
, objp
, c
->objsize
);
2757 if (objnr
>= c
->num
) {
2758 printk("Bad obj number.\n");
2760 kernel_map_pages(virt_to_page(objp
), c
->objsize
/PAGE_SIZE
, 1);
2762 printk("redzone: %lxh/%lxh/%lxh.\n",
2763 ((unsigned long*)objp
)[0],
2764 ((unsigned long*)(objp
+c
->objsize
))[-2],
2765 ((unsigned long*)(objp
+c
->objsize
))[-1]);
2767 spin_unlock_irqrestore(&c
->spinlock
, flags
);