4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 akpm@zip.com.au
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/bio.h>
31 #include <linux/wait.h>
32 #include <linux/err.h>
33 #include <linux/blkdev.h>
34 #include <linux/buffer_head.h>
35 #include <linux/rwsem.h>
36 #include <linux/uio.h>
37 #include <asm/atomic.h>
40 * How many user pages to map in one call to get_user_pages(). This determines
41 * the size of a structure on the stack.
46 * This code generally works in units of "dio_blocks". A dio_block is
47 * somewhere between the hard sector size and the filesystem block size. it
48 * is determined on a per-invocation basis. When talking to the filesystem
49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
51 * to bio_block quantities by shifting left by blkfactor.
53 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
57 * This determines whether we need to do the fancy locking which prevents
58 * direct-IO from being able to read uninitialised disk blocks. If its zero
59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
60 * not held for the entire direct write (taken briefly, initially, during a
61 * direct read though, but its never held for the duration of a direct-IO).
65 /* BIO submission state */
66 struct bio
*bio
; /* bio under assembly */
69 loff_t i_size
; /* i_size when submitted */
70 int lock_type
; /* doesn't change */
71 unsigned blkbits
; /* doesn't change */
72 unsigned blkfactor
; /* When we're using an alignment which
73 is finer than the filesystem's soft
74 blocksize, this specifies how much
75 finer. blkfactor=2 means 1/4-block
76 alignment. Does not change */
77 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
78 been performed at the start of a
80 int pages_in_io
; /* approximate total IO pages */
81 size_t size
; /* total request size (doesn't change)*/
82 sector_t block_in_file
; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available
; /* At block_in_file. changes */
85 sector_t final_block_in_request
;/* doesn't change */
86 unsigned first_block_in_page
; /* doesn't change, Used only once */
87 int boundary
; /* prev block is at a boundary */
88 int reap_counter
; /* rate limit reaping */
89 get_block_t
*get_block
; /* block mapping function */
90 dio_iodone_t
*end_io
; /* IO completion function */
91 sector_t final_block_in_bio
; /* current final block in bio + 1 */
92 sector_t next_block_for_io
; /* next block to be put under IO,
93 in dio_blocks units */
94 struct buffer_head map_bh
; /* last get_block() result */
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
101 struct page
*cur_page
; /* The page */
102 unsigned cur_page_offset
; /* Offset into it, in bytes */
103 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block
; /* Where it starts */
107 * Page fetching state. These variables belong to dio_refill_pages().
109 int curr_page
; /* changes */
110 int total_pages
; /* doesn't change */
111 unsigned long curr_user_address
;/* changes */
114 * Page queue. These variables belong to dio_refill_pages() and
117 struct page
*pages
[DIO_PAGES
]; /* page buffer */
118 unsigned head
; /* next page to process */
119 unsigned tail
; /* last valid page + 1 */
120 int page_errors
; /* errno from get_user_pages() */
122 /* BIO completion state */
123 spinlock_t bio_lock
; /* protects BIO fields below */
124 int bio_count
; /* nr bios to be completed */
125 int bios_in_flight
; /* nr bios in flight */
126 struct bio
*bio_list
; /* singly linked via bi_private */
127 struct task_struct
*waiter
; /* waiting task (NULL if none) */
129 /* AIO related stuff */
130 struct kiocb
*iocb
; /* kiocb */
131 int is_async
; /* is IO async ? */
132 int io_error
; /* IO error in completion path */
133 ssize_t result
; /* IO result */
137 * How many pages are in the queue?
139 static inline unsigned dio_pages_present(struct dio
*dio
)
141 return dio
->tail
- dio
->head
;
145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
147 static int dio_refill_pages(struct dio
*dio
)
152 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
153 down_read(¤t
->mm
->mmap_sem
);
154 ret
= get_user_pages(
155 current
, /* Task for fault acounting */
156 current
->mm
, /* whose pages? */
157 dio
->curr_user_address
, /* Where from? */
158 nr_pages
, /* How many pages? */
159 dio
->rw
== READ
, /* Write to memory? */
163 up_read(¤t
->mm
->mmap_sem
);
165 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
& WRITE
)) {
166 struct page
*page
= ZERO_PAGE(dio
->curr_user_address
);
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
172 if (dio
->page_errors
== 0)
173 dio
->page_errors
= ret
;
174 page_cache_get(page
);
175 dio
->pages
[0] = page
;
183 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
184 dio
->curr_page
+= ret
;
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
199 static struct page
*dio_get_page(struct dio
*dio
)
201 if (dio_pages_present(dio
) == 0) {
204 ret
= dio_refill_pages(dio
);
207 BUG_ON(dio_pages_present(dio
) == 0);
209 return dio
->pages
[dio
->head
++];
213 * Called when all DIO BIO I/O has been completed - let the filesystem
214 * know, if it registered an interest earlier via get_block. Pass the
215 * private field of the map buffer_head so that filesystems can use it
216 * to hold additional state between get_block calls and dio_complete.
218 static void dio_complete(struct dio
*dio
, loff_t offset
, ssize_t bytes
)
220 if (dio
->end_io
&& dio
->result
)
221 dio
->end_io(dio
->iocb
, offset
, bytes
, dio
->map_bh
.b_private
);
222 if (dio
->lock_type
== DIO_LOCKING
)
223 /* lockdep: non-owner release */
224 up_read_non_owner(&dio
->inode
->i_alloc_sem
);
228 * Called when a BIO has been processed. If the count goes to zero then IO is
229 * complete and we can signal this to the AIO layer.
231 static void finished_one_bio(struct dio
*dio
)
235 spin_lock_irqsave(&dio
->bio_lock
, flags
);
236 if (dio
->bio_count
== 1) {
242 * Last reference to the dio is going away.
243 * Drop spinlock and complete the DIO.
245 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
247 /* Check for short read case */
248 transferred
= dio
->result
;
249 offset
= dio
->iocb
->ki_pos
;
251 if ((dio
->rw
== READ
) &&
252 ((offset
+ transferred
) > dio
->i_size
))
253 transferred
= dio
->i_size
- offset
;
255 /* check for error in completion path */
257 transferred
= dio
->io_error
;
259 dio_complete(dio
, offset
, transferred
);
261 /* Complete AIO later if falling back to buffered i/o */
262 if (dio
->result
== dio
->size
||
263 ((dio
->rw
== READ
) && dio
->result
)) {
264 aio_complete(dio
->iocb
, transferred
, 0);
269 * Falling back to buffered
271 spin_lock_irqsave(&dio
->bio_lock
, flags
);
274 wake_up_process(dio
->waiter
);
275 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
281 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
284 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
286 * Asynchronous IO callback.
288 static int dio_bio_end_aio(struct bio
*bio
, unsigned int bytes_done
, int error
)
290 struct dio
*dio
= bio
->bi_private
;
295 /* cleanup the bio */
296 dio_bio_complete(dio
, bio
);
301 * The BIO completion handler simply queues the BIO up for the process-context
304 * During I/O bi_private points at the dio. After I/O, bi_private is used to
305 * implement a singly-linked list of completed BIOs, at dio->bio_list.
307 static int dio_bio_end_io(struct bio
*bio
, unsigned int bytes_done
, int error
)
309 struct dio
*dio
= bio
->bi_private
;
315 spin_lock_irqsave(&dio
->bio_lock
, flags
);
316 bio
->bi_private
= dio
->bio_list
;
318 dio
->bios_in_flight
--;
319 if (dio
->waiter
&& dio
->bios_in_flight
== 0)
320 wake_up_process(dio
->waiter
);
321 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
326 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
327 sector_t first_sector
, int nr_vecs
)
331 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
336 bio
->bi_sector
= first_sector
;
338 bio
->bi_end_io
= dio_bio_end_aio
;
340 bio
->bi_end_io
= dio_bio_end_io
;
347 * In the AIO read case we speculatively dirty the pages before starting IO.
348 * During IO completion, any of these pages which happen to have been written
349 * back will be redirtied by bio_check_pages_dirty().
351 static void dio_bio_submit(struct dio
*dio
)
353 struct bio
*bio
= dio
->bio
;
356 bio
->bi_private
= dio
;
357 spin_lock_irqsave(&dio
->bio_lock
, flags
);
359 dio
->bios_in_flight
++;
360 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
361 if (dio
->is_async
&& dio
->rw
== READ
)
362 bio_set_pages_dirty(bio
);
363 submit_bio(dio
->rw
, bio
);
370 * Release any resources in case of a failure
372 static void dio_cleanup(struct dio
*dio
)
374 while (dio_pages_present(dio
))
375 page_cache_release(dio_get_page(dio
));
379 * Wait for the next BIO to complete. Remove it and return it.
381 static struct bio
*dio_await_one(struct dio
*dio
)
386 spin_lock_irqsave(&dio
->bio_lock
, flags
);
387 while (dio
->bio_list
== NULL
) {
388 set_current_state(TASK_UNINTERRUPTIBLE
);
389 if (dio
->bio_list
== NULL
) {
390 dio
->waiter
= current
;
391 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
392 blk_run_address_space(dio
->inode
->i_mapping
);
394 spin_lock_irqsave(&dio
->bio_lock
, flags
);
397 set_current_state(TASK_RUNNING
);
400 dio
->bio_list
= bio
->bi_private
;
401 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
406 * Process one completed BIO. No locks are held.
408 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
410 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
411 struct bio_vec
*bvec
= bio
->bi_io_vec
;
415 dio
->io_error
= -EIO
;
417 if (dio
->is_async
&& dio
->rw
== READ
) {
418 bio_check_pages_dirty(bio
); /* transfers ownership */
420 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
421 struct page
*page
= bvec
[page_no
].bv_page
;
423 if (dio
->rw
== READ
&& !PageCompound(page
))
424 set_page_dirty_lock(page
);
425 page_cache_release(page
);
429 finished_one_bio(dio
);
430 return uptodate
? 0 : -EIO
;
434 * Wait on and process all in-flight BIOs.
436 static int dio_await_completion(struct dio
*dio
)
444 * The bio_lock is not held for the read of bio_count.
445 * This is ok since it is the dio_bio_complete() that changes
448 while (dio
->bio_count
) {
449 struct bio
*bio
= dio_await_one(dio
);
452 ret2
= dio_bio_complete(dio
, bio
);
460 * A really large O_DIRECT read or write can generate a lot of BIOs. So
461 * to keep the memory consumption sane we periodically reap any completed BIOs
462 * during the BIO generation phase.
464 * This also helps to limit the peak amount of pinned userspace memory.
466 static int dio_bio_reap(struct dio
*dio
)
470 if (dio
->reap_counter
++ >= 64) {
471 while (dio
->bio_list
) {
476 spin_lock_irqsave(&dio
->bio_lock
, flags
);
478 dio
->bio_list
= bio
->bi_private
;
479 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
480 ret2
= dio_bio_complete(dio
, bio
);
484 dio
->reap_counter
= 0;
490 * Call into the fs to map some more disk blocks. We record the current number
491 * of available blocks at dio->blocks_available. These are in units of the
492 * fs blocksize, (1 << inode->i_blkbits).
494 * The fs is allowed to map lots of blocks at once. If it wants to do that,
495 * it uses the passed inode-relative block number as the file offset, as usual.
497 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
498 * has remaining to do. The fs should not map more than this number of blocks.
500 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
501 * indicate how much contiguous disk space has been made available at
504 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
505 * This isn't very efficient...
507 * In the case of filesystem holes: the fs may return an arbitrarily-large
508 * hole by returning an appropriate value in b_size and by clearing
509 * buffer_mapped(). However the direct-io code will only process holes one
510 * block at a time - it will repeatedly call get_block() as it walks the hole.
512 static int get_more_blocks(struct dio
*dio
)
515 struct buffer_head
*map_bh
= &dio
->map_bh
;
516 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
517 unsigned long fs_count
; /* Number of filesystem-sized blocks */
518 unsigned long dio_count
;/* Number of dio_block-sized blocks */
519 unsigned long blkmask
;
523 * If there was a memory error and we've overwritten all the
524 * mapped blocks then we can now return that memory error
526 ret
= dio
->page_errors
;
528 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
529 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
530 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
531 fs_count
= dio_count
>> dio
->blkfactor
;
532 blkmask
= (1 << dio
->blkfactor
) - 1;
533 if (dio_count
& blkmask
)
537 map_bh
->b_size
= fs_count
<< dio
->inode
->i_blkbits
;
539 create
= dio
->rw
& WRITE
;
540 if (dio
->lock_type
== DIO_LOCKING
) {
541 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
544 } else if (dio
->lock_type
== DIO_NO_LOCKING
) {
549 * For writes inside i_size we forbid block creations: only
550 * overwrites are permitted. We fall back to buffered writes
551 * at a higher level for inside-i_size block-instantiating
554 ret
= (*dio
->get_block
)(dio
->inode
, fs_startblk
,
561 * There is no bio. Make one now.
563 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
568 ret
= dio_bio_reap(dio
);
571 sector
= start_sector
<< (dio
->blkbits
- 9);
572 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
573 BUG_ON(nr_pages
<= 0);
574 ret
= dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
581 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
582 * that was successful then update final_block_in_bio and take a ref against
583 * the just-added page.
585 * Return zero on success. Non-zero means the caller needs to start a new BIO.
587 static int dio_bio_add_page(struct dio
*dio
)
591 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
592 dio
->cur_page_len
, dio
->cur_page_offset
);
593 if (ret
== dio
->cur_page_len
) {
595 * Decrement count only, if we are done with this page
597 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
599 page_cache_get(dio
->cur_page
);
600 dio
->final_block_in_bio
= dio
->cur_page_block
+
601 (dio
->cur_page_len
>> dio
->blkbits
);
610 * Put cur_page under IO. The section of cur_page which is described by
611 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
612 * starts on-disk at cur_page_block.
614 * We take a ref against the page here (on behalf of its presence in the bio).
616 * The caller of this function is responsible for removing cur_page from the
617 * dio, and for dropping the refcount which came from that presence.
619 static int dio_send_cur_page(struct dio
*dio
)
625 * See whether this new request is contiguous with the old
627 if (dio
->final_block_in_bio
!= dio
->cur_page_block
)
630 * Submit now if the underlying fs is about to perform a
637 if (dio
->bio
== NULL
) {
638 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
643 if (dio_bio_add_page(dio
) != 0) {
645 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
647 ret
= dio_bio_add_page(dio
);
656 * An autonomous function to put a chunk of a page under deferred IO.
658 * The caller doesn't actually know (or care) whether this piece of page is in
659 * a BIO, or is under IO or whatever. We just take care of all possible
660 * situations here. The separation between the logic of do_direct_IO() and
661 * that of submit_page_section() is important for clarity. Please don't break.
663 * The chunk of page starts on-disk at blocknr.
665 * We perform deferred IO, by recording the last-submitted page inside our
666 * private part of the dio structure. If possible, we just expand the IO
667 * across that page here.
669 * If that doesn't work out then we put the old page into the bio and add this
670 * page to the dio instead.
673 submit_page_section(struct dio
*dio
, struct page
*page
,
674 unsigned offset
, unsigned len
, sector_t blocknr
)
679 * Can we just grow the current page's presence in the dio?
681 if ( (dio
->cur_page
== page
) &&
682 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
683 (dio
->cur_page_block
+
684 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
685 dio
->cur_page_len
+= len
;
688 * If dio->boundary then we want to schedule the IO now to
689 * avoid metadata seeks.
692 ret
= dio_send_cur_page(dio
);
693 page_cache_release(dio
->cur_page
);
694 dio
->cur_page
= NULL
;
700 * If there's a deferred page already there then send it.
703 ret
= dio_send_cur_page(dio
);
704 page_cache_release(dio
->cur_page
);
705 dio
->cur_page
= NULL
;
710 page_cache_get(page
); /* It is in dio */
711 dio
->cur_page
= page
;
712 dio
->cur_page_offset
= offset
;
713 dio
->cur_page_len
= len
;
714 dio
->cur_page_block
= blocknr
;
720 * Clean any dirty buffers in the blockdev mapping which alias newly-created
721 * file blocks. Only called for S_ISREG files - blockdevs do not set
724 static void clean_blockdev_aliases(struct dio
*dio
)
729 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
731 for (i
= 0; i
< nblocks
; i
++) {
732 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
733 dio
->map_bh
.b_blocknr
+ i
);
738 * If we are not writing the entire block and get_block() allocated
739 * the block for us, we need to fill-in the unused portion of the
740 * block with zeros. This happens only if user-buffer, fileoffset or
741 * io length is not filesystem block-size multiple.
743 * `end' is zero if we're doing the start of the IO, 1 at the end of the
746 static void dio_zero_block(struct dio
*dio
, int end
)
748 unsigned dio_blocks_per_fs_block
;
749 unsigned this_chunk_blocks
; /* In dio_blocks */
750 unsigned this_chunk_bytes
;
753 dio
->start_zero_done
= 1;
754 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
757 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
758 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
760 if (!this_chunk_blocks
)
764 * We need to zero out part of an fs block. It is either at the
765 * beginning or the end of the fs block.
768 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
770 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
772 page
= ZERO_PAGE(dio
->curr_user_address
);
773 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
774 dio
->next_block_for_io
))
777 dio
->next_block_for_io
+= this_chunk_blocks
;
781 * Walk the user pages, and the file, mapping blocks to disk and generating
782 * a sequence of (page,offset,len,block) mappings. These mappings are injected
783 * into submit_page_section(), which takes care of the next stage of submission
785 * Direct IO against a blockdev is different from a file. Because we can
786 * happily perform page-sized but 512-byte aligned IOs. It is important that
787 * blockdev IO be able to have fine alignment and large sizes.
789 * So what we do is to permit the ->get_block function to populate bh.b_size
790 * with the size of IO which is permitted at this offset and this i_blkbits.
792 * For best results, the blockdev should be set up with 512-byte i_blkbits and
793 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
794 * fine alignment but still allows this function to work in PAGE_SIZE units.
796 static int do_direct_IO(struct dio
*dio
)
798 const unsigned blkbits
= dio
->blkbits
;
799 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
801 unsigned block_in_page
;
802 struct buffer_head
*map_bh
= &dio
->map_bh
;
805 /* The I/O can start at any block offset within the first page */
806 block_in_page
= dio
->first_block_in_page
;
808 while (dio
->block_in_file
< dio
->final_block_in_request
) {
809 page
= dio_get_page(dio
);
815 while (block_in_page
< blocks_per_page
) {
816 unsigned offset_in_page
= block_in_page
<< blkbits
;
817 unsigned this_chunk_bytes
; /* # of bytes mapped */
818 unsigned this_chunk_blocks
; /* # of blocks */
821 if (dio
->blocks_available
== 0) {
823 * Need to go and map some more disk
825 unsigned long blkmask
;
826 unsigned long dio_remainder
;
828 ret
= get_more_blocks(dio
);
830 page_cache_release(page
);
833 if (!buffer_mapped(map_bh
))
836 dio
->blocks_available
=
837 map_bh
->b_size
>> dio
->blkbits
;
838 dio
->next_block_for_io
=
839 map_bh
->b_blocknr
<< dio
->blkfactor
;
840 if (buffer_new(map_bh
))
841 clean_blockdev_aliases(dio
);
846 blkmask
= (1 << dio
->blkfactor
) - 1;
847 dio_remainder
= (dio
->block_in_file
& blkmask
);
850 * If we are at the start of IO and that IO
851 * starts partway into a fs-block,
852 * dio_remainder will be non-zero. If the IO
853 * is a read then we can simply advance the IO
854 * cursor to the first block which is to be
855 * read. But if the IO is a write and the
856 * block was newly allocated we cannot do that;
857 * the start of the fs block must be zeroed out
860 if (!buffer_new(map_bh
))
861 dio
->next_block_for_io
+= dio_remainder
;
862 dio
->blocks_available
-= dio_remainder
;
866 if (!buffer_mapped(map_bh
)) {
868 loff_t i_size_aligned
;
870 /* AKPM: eargh, -ENOTBLK is a hack */
871 if (dio
->rw
& WRITE
) {
872 page_cache_release(page
);
877 * Be sure to account for a partial block as the
878 * last block in the file
880 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
882 if (dio
->block_in_file
>=
883 i_size_aligned
>> blkbits
) {
885 page_cache_release(page
);
888 kaddr
= kmap_atomic(page
, KM_USER0
);
889 memset(kaddr
+ (block_in_page
<< blkbits
),
891 flush_dcache_page(page
);
892 kunmap_atomic(kaddr
, KM_USER0
);
893 dio
->block_in_file
++;
899 * If we're performing IO which has an alignment which
900 * is finer than the underlying fs, go check to see if
901 * we must zero out the start of this block.
903 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
904 dio_zero_block(dio
, 0);
907 * Work out, in this_chunk_blocks, how much disk we
908 * can add to this page
910 this_chunk_blocks
= dio
->blocks_available
;
911 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
912 if (this_chunk_blocks
> u
)
913 this_chunk_blocks
= u
;
914 u
= dio
->final_block_in_request
- dio
->block_in_file
;
915 if (this_chunk_blocks
> u
)
916 this_chunk_blocks
= u
;
917 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
918 BUG_ON(this_chunk_bytes
== 0);
920 dio
->boundary
= buffer_boundary(map_bh
);
921 ret
= submit_page_section(dio
, page
, offset_in_page
,
922 this_chunk_bytes
, dio
->next_block_for_io
);
924 page_cache_release(page
);
927 dio
->next_block_for_io
+= this_chunk_blocks
;
929 dio
->block_in_file
+= this_chunk_blocks
;
930 block_in_page
+= this_chunk_blocks
;
931 dio
->blocks_available
-= this_chunk_blocks
;
933 BUG_ON(dio
->block_in_file
> dio
->final_block_in_request
);
934 if (dio
->block_in_file
== dio
->final_block_in_request
)
938 /* Drop the ref which was taken in get_user_pages() */
939 page_cache_release(page
);
947 * Releases both i_mutex and i_alloc_sem
950 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
951 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
952 unsigned blkbits
, get_block_t get_block
, dio_iodone_t end_io
,
955 unsigned long user_addr
;
964 dio
->blkbits
= blkbits
;
965 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
966 dio
->start_zero_done
= 0;
968 dio
->block_in_file
= offset
>> blkbits
;
969 dio
->blocks_available
= 0;
970 dio
->cur_page
= NULL
;
973 dio
->reap_counter
= 0;
974 dio
->get_block
= get_block
;
975 dio
->end_io
= end_io
;
976 dio
->map_bh
.b_private
= NULL
;
977 dio
->final_block_in_bio
= -1;
978 dio
->next_block_for_io
= -1;
980 dio
->page_errors
= 0;
984 dio
->i_size
= i_size_read(inode
);
987 * BIO completion state.
989 * ->bio_count starts out at one, and we decrement it to zero after all
990 * BIOs are submitted. This to avoid the situation where a really fast
991 * (or synchronous) device could take the count to zero while we're
992 * still submitting BIOs.
995 dio
->bios_in_flight
= 0;
996 spin_lock_init(&dio
->bio_lock
);
997 dio
->bio_list
= NULL
;
1001 * In case of non-aligned buffers, we may need 2 more
1002 * pages since we need to zero out first and last block.
1004 if (unlikely(dio
->blkfactor
))
1005 dio
->pages_in_io
= 2;
1007 dio
->pages_in_io
= 0;
1009 for (seg
= 0; seg
< nr_segs
; seg
++) {
1010 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1012 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
1013 - user_addr
/PAGE_SIZE
);
1016 for (seg
= 0; seg
< nr_segs
; seg
++) {
1017 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1018 dio
->size
+= bytes
= iov
[seg
].iov_len
;
1020 /* Index into the first page of the first block */
1021 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
1022 dio
->final_block_in_request
= dio
->block_in_file
+
1024 /* Page fetching state */
1029 dio
->total_pages
= 0;
1030 if (user_addr
& (PAGE_SIZE
-1)) {
1032 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1034 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1035 dio
->curr_user_address
= user_addr
;
1037 ret
= do_direct_IO(dio
);
1039 dio
->result
+= iov
[seg
].iov_len
-
1040 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1047 } /* end iovec loop */
1049 if (ret
== -ENOTBLK
&& (rw
& WRITE
)) {
1051 * The remaining part of the request will be
1052 * be handled by buffered I/O when we return
1057 * There may be some unwritten disk at the end of a part-written
1058 * fs-block-sized block. Go zero that now.
1060 dio_zero_block(dio
, 1);
1062 if (dio
->cur_page
) {
1063 ret2
= dio_send_cur_page(dio
);
1066 page_cache_release(dio
->cur_page
);
1067 dio
->cur_page
= NULL
;
1070 dio_bio_submit(dio
);
1073 * It is possible that, we return short IO due to end of file.
1074 * In that case, we need to release all the pages we got hold on.
1079 * All block lookups have been performed. For READ requests
1080 * we can let i_mutex go now that its achieved its purpose
1081 * of protecting us from looking up uninitialized blocks.
1083 if ((rw
== READ
) && (dio
->lock_type
== DIO_LOCKING
))
1084 mutex_unlock(&dio
->inode
->i_mutex
);
1087 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1088 * reflect the number of to-be-processed BIOs.
1090 if (dio
->is_async
) {
1091 int should_wait
= 0;
1093 if (dio
->result
< dio
->size
&& (rw
& WRITE
)) {
1094 dio
->waiter
= current
;
1099 finished_one_bio(dio
); /* This can free the dio */
1100 blk_run_address_space(inode
->i_mapping
);
1102 unsigned long flags
;
1104 * Wait for already issued I/O to drain out and
1105 * release its references to user-space pages
1106 * before returning to fallback on buffered I/O
1109 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1110 set_current_state(TASK_UNINTERRUPTIBLE
);
1111 while (dio
->bio_count
) {
1112 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1114 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1115 set_current_state(TASK_UNINTERRUPTIBLE
);
1117 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1118 set_current_state(TASK_RUNNING
);
1122 ssize_t transferred
= 0;
1124 finished_one_bio(dio
);
1125 ret2
= dio_await_completion(dio
);
1129 ret
= dio
->page_errors
;
1131 loff_t i_size
= i_size_read(inode
);
1133 transferred
= dio
->result
;
1135 * Adjust the return value if the read crossed a
1136 * non-block-aligned EOF.
1138 if (rw
== READ
&& (offset
+ transferred
> i_size
))
1139 transferred
= i_size
- offset
;
1141 dio_complete(dio
, offset
, transferred
);
1145 /* We could have also come here on an AIO file extend */
1146 if (!is_sync_kiocb(iocb
) && (rw
& WRITE
) &&
1147 ret
>= 0 && dio
->result
== dio
->size
)
1149 * For AIO writes where we have completed the
1150 * i/o, we have to mark the the aio complete.
1152 aio_complete(iocb
, ret
, 0);
1159 * This is a library function for use by filesystem drivers.
1160 * The locking rules are governed by the dio_lock_type parameter.
1162 * DIO_NO_LOCKING (no locking, for raw block device access)
1163 * For writes, i_mutex is not held on entry; it is never taken.
1165 * DIO_LOCKING (simple locking for regular files)
1166 * For writes we are called under i_mutex and return with i_mutex held, even
1167 * though it is internally dropped.
1168 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1171 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1172 * uninitialised data, allowing parallel direct readers and writers)
1173 * For writes we are called without i_mutex, return without it, never touch it.
1174 * For reads we are called under i_mutex and return with i_mutex held, even
1175 * though it may be internally dropped.
1177 * Additional i_alloc_sem locking requirements described inline below.
1180 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1181 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1182 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1188 unsigned blkbits
= inode
->i_blkbits
;
1189 unsigned bdev_blkbits
= 0;
1190 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1191 ssize_t retval
= -EINVAL
;
1192 loff_t end
= offset
;
1194 int release_i_mutex
= 0;
1195 int acquire_i_mutex
= 0;
1201 bdev_blkbits
= blksize_bits(bdev_hardsect_size(bdev
));
1203 if (offset
& blocksize_mask
) {
1205 blkbits
= bdev_blkbits
;
1206 blocksize_mask
= (1 << blkbits
) - 1;
1207 if (offset
& blocksize_mask
)
1211 /* Check the memory alignment. Blocks cannot straddle pages */
1212 for (seg
= 0; seg
< nr_segs
; seg
++) {
1213 addr
= (unsigned long)iov
[seg
].iov_base
;
1214 size
= iov
[seg
].iov_len
;
1216 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1218 blkbits
= bdev_blkbits
;
1219 blocksize_mask
= (1 << blkbits
) - 1;
1220 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1225 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1231 * For block device access DIO_NO_LOCKING is used,
1232 * neither readers nor writers do any locking at all
1233 * For regular files using DIO_LOCKING,
1234 * readers need to grab i_mutex and i_alloc_sem
1235 * writers need to grab i_alloc_sem only (i_mutex is already held)
1236 * For regular files using DIO_OWN_LOCKING,
1237 * neither readers nor writers take any locks here
1239 dio
->lock_type
= dio_lock_type
;
1240 if (dio_lock_type
!= DIO_NO_LOCKING
) {
1241 /* watch out for a 0 len io from a tricksy fs */
1242 if (rw
== READ
&& end
> offset
) {
1243 struct address_space
*mapping
;
1245 mapping
= iocb
->ki_filp
->f_mapping
;
1246 if (dio_lock_type
!= DIO_OWN_LOCKING
) {
1247 mutex_lock(&inode
->i_mutex
);
1248 release_i_mutex
= 1;
1251 retval
= filemap_write_and_wait_range(mapping
, offset
,
1258 if (dio_lock_type
== DIO_OWN_LOCKING
) {
1259 mutex_unlock(&inode
->i_mutex
);
1260 acquire_i_mutex
= 1;
1264 if (dio_lock_type
== DIO_LOCKING
)
1265 /* lockdep: not the owner will release it */
1266 down_read_non_owner(&inode
->i_alloc_sem
);
1270 * For file extending writes updating i_size before data
1271 * writeouts complete can expose uninitialized blocks. So
1272 * even for AIO, we need to wait for i/o to complete before
1273 * returning in this case.
1275 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1276 (end
> i_size_read(inode
)));
1278 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1279 nr_segs
, blkbits
, get_block
, end_io
, dio
);
1281 if (rw
== READ
&& dio_lock_type
== DIO_LOCKING
)
1282 release_i_mutex
= 0;
1285 if (release_i_mutex
)
1286 mutex_unlock(&inode
->i_mutex
);
1287 else if (acquire_i_mutex
)
1288 mutex_lock(&inode
->i_mutex
);
1291 EXPORT_SYMBOL(__blockdev_direct_IO
);