Fix the fix.
[linux-2.6/linux-mips.git] / fs / exec.c
blob204d0a3a156574df87cb7f8ce040e5e51f897e50
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/module.h>
42 #include <linux/namei.h>
43 #include <linux/proc_fs.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/rmap-locking.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgalloc.h>
51 #include <asm/mmu_context.h>
53 #ifdef CONFIG_KMOD
54 #include <linux/kmod.h>
55 #endif
57 int core_uses_pid;
58 char core_pattern[65] = "core";
59 /* The maximal length of core_pattern is also specified in sysctl.c */
61 static struct linux_binfmt *formats;
62 static rwlock_t binfmt_lock = RW_LOCK_UNLOCKED;
64 int register_binfmt(struct linux_binfmt * fmt)
66 struct linux_binfmt ** tmp = &formats;
68 if (!fmt)
69 return -EINVAL;
70 if (fmt->next)
71 return -EBUSY;
72 write_lock(&binfmt_lock);
73 while (*tmp) {
74 if (fmt == *tmp) {
75 write_unlock(&binfmt_lock);
76 return -EBUSY;
78 tmp = &(*tmp)->next;
80 fmt->next = formats;
81 formats = fmt;
82 write_unlock(&binfmt_lock);
83 return 0;
86 int unregister_binfmt(struct linux_binfmt * fmt)
88 struct linux_binfmt ** tmp = &formats;
90 write_lock(&binfmt_lock);
91 while (*tmp) {
92 if (fmt == *tmp) {
93 *tmp = fmt->next;
94 write_unlock(&binfmt_lock);
95 return 0;
97 tmp = &(*tmp)->next;
99 write_unlock(&binfmt_lock);
100 return -EINVAL;
103 static inline void put_binfmt(struct linux_binfmt * fmt)
105 module_put(fmt->module);
109 * Note that a shared library must be both readable and executable due to
110 * security reasons.
112 * Also note that we take the address to load from from the file itself.
114 asmlinkage long sys_uselib(const char __user * library)
116 struct file * file;
117 struct nameidata nd;
118 int error;
120 error = user_path_walk(library, &nd);
121 if (error)
122 goto out;
124 error = -EINVAL;
125 if (!S_ISREG(nd.dentry->d_inode->i_mode))
126 goto exit;
128 error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC);
129 if (error)
130 goto exit;
132 file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
137 error = -ENOEXEC;
138 if(file->f_op) {
139 struct linux_binfmt * fmt;
141 read_lock(&binfmt_lock);
142 for (fmt = formats ; fmt ; fmt = fmt->next) {
143 if (!fmt->load_shlib)
144 continue;
145 if (!try_module_get(fmt->module))
146 continue;
147 read_unlock(&binfmt_lock);
148 error = fmt->load_shlib(file);
149 read_lock(&binfmt_lock);
150 put_binfmt(fmt);
151 if (error != -ENOEXEC)
152 break;
154 read_unlock(&binfmt_lock);
156 fput(file);
157 out:
158 return error;
159 exit:
160 path_release(&nd);
161 goto out;
165 * count() counts the number of strings in array ARGV.
167 static int count(char __user * __user * argv, int max)
169 int i = 0;
171 if (argv != NULL) {
172 for (;;) {
173 char __user * p;
175 if (get_user(p, argv))
176 return -EFAULT;
177 if (!p)
178 break;
179 argv++;
180 if(++i > max)
181 return -E2BIG;
184 return i;
188 * 'copy_strings()' copies argument/environment strings from user
189 * memory to free pages in kernel mem. These are in a format ready
190 * to be put directly into the top of new user memory.
192 int copy_strings(int argc,char __user * __user * argv, struct linux_binprm *bprm)
194 struct page *kmapped_page = NULL;
195 char *kaddr = NULL;
196 int ret;
198 while (argc-- > 0) {
199 char __user *str;
200 int len;
201 unsigned long pos;
203 if (get_user(str, argv+argc) ||
204 !(len = strnlen_user(str, bprm->p))) {
205 ret = -EFAULT;
206 goto out;
209 if (bprm->p < len) {
210 ret = -E2BIG;
211 goto out;
214 bprm->p -= len;
215 /* XXX: add architecture specific overflow check here. */
216 pos = bprm->p;
218 while (len > 0) {
219 int i, new, err;
220 int offset, bytes_to_copy;
221 struct page *page;
223 offset = pos % PAGE_SIZE;
224 i = pos/PAGE_SIZE;
225 page = bprm->page[i];
226 new = 0;
227 if (!page) {
228 page = alloc_page(GFP_HIGHUSER);
229 bprm->page[i] = page;
230 if (!page) {
231 ret = -ENOMEM;
232 goto out;
234 new = 1;
237 if (page != kmapped_page) {
238 if (kmapped_page)
239 kunmap(kmapped_page);
240 kmapped_page = page;
241 kaddr = kmap(kmapped_page);
243 if (new && offset)
244 memset(kaddr, 0, offset);
245 bytes_to_copy = PAGE_SIZE - offset;
246 if (bytes_to_copy > len) {
247 bytes_to_copy = len;
248 if (new)
249 memset(kaddr+offset+len, 0,
250 PAGE_SIZE-offset-len);
252 err = copy_from_user(kaddr+offset, str, bytes_to_copy);
253 if (err) {
254 ret = -EFAULT;
255 goto out;
258 pos += bytes_to_copy;
259 str += bytes_to_copy;
260 len -= bytes_to_copy;
263 ret = 0;
264 out:
265 if (kmapped_page)
266 kunmap(kmapped_page);
267 return ret;
271 * Like copy_strings, but get argv and its values from kernel memory.
273 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
275 int r;
276 mm_segment_t oldfs = get_fs();
277 set_fs(KERNEL_DS);
278 r = copy_strings(argc, (char __user * __user *)argv, bprm);
279 set_fs(oldfs);
280 return r;
283 #ifdef CONFIG_MMU
285 * This routine is used to map in a page into an address space: needed by
286 * execve() for the initial stack and environment pages.
288 * tsk->mmap_sem is held for writing.
290 void put_dirty_page(struct task_struct *tsk, struct page *page,
291 unsigned long address, pgprot_t prot)
293 pgd_t * pgd;
294 pmd_t * pmd;
295 pte_t * pte;
296 struct pte_chain *pte_chain;
298 if (page_count(page) != 1)
299 printk(KERN_ERR "mem_map disagrees with %p at %08lx\n",
300 page, address);
302 pgd = pgd_offset(tsk->mm, address);
303 pte_chain = pte_chain_alloc(GFP_KERNEL);
304 if (!pte_chain)
305 goto out_sig;
306 spin_lock(&tsk->mm->page_table_lock);
307 pmd = pmd_alloc(tsk->mm, pgd, address);
308 if (!pmd)
309 goto out;
310 pte = pte_alloc_map(tsk->mm, pmd, address);
311 if (!pte)
312 goto out;
313 if (!pte_none(*pte)) {
314 pte_unmap(pte);
315 goto out;
317 lru_cache_add_active(page);
318 flush_dcache_page(page);
319 set_pte(pte, pte_mkdirty(pte_mkwrite(mk_pte(page, prot))));
320 pte_chain = page_add_rmap(page, pte, pte_chain);
321 pte_unmap(pte);
322 tsk->mm->rss++;
323 spin_unlock(&tsk->mm->page_table_lock);
325 /* no need for flush_tlb */
326 pte_chain_free(pte_chain);
327 return;
328 out:
329 spin_unlock(&tsk->mm->page_table_lock);
330 out_sig:
331 __free_page(page);
332 force_sig(SIGKILL, tsk);
333 pte_chain_free(pte_chain);
334 return;
337 int setup_arg_pages(struct linux_binprm *bprm)
339 unsigned long stack_base;
340 struct vm_area_struct *mpnt;
341 struct mm_struct *mm = current->mm;
342 int i;
344 #ifdef CONFIG_STACK_GROWSUP
345 /* Move the argument and environment strings to the bottom of the
346 * stack space.
348 int offset, j;
349 char *to, *from;
351 /* Start by shifting all the pages down */
352 i = 0;
353 for (j = 0; j < MAX_ARG_PAGES; j++) {
354 struct page *page = bprm->page[j];
355 if (!page)
356 continue;
357 bprm->page[i++] = page;
360 /* Now move them within their pages */
361 offset = bprm->p % PAGE_SIZE;
362 to = kmap(bprm->page[0]);
363 for (j = 1; j < i; j++) {
364 memmove(to, to + offset, PAGE_SIZE - offset);
365 from = kmap(bprm->page[j]);
366 memcpy(to + PAGE_SIZE - offset, from, offset);
367 kunmap(bprm->page[j - 1]);
368 to = from;
370 memmove(to, to + offset, PAGE_SIZE - offset);
371 kunmap(bprm->page[j - 1]);
373 /* Adjust bprm->p to point to the end of the strings. */
374 bprm->p = PAGE_SIZE * i - offset;
375 stack_base = STACK_TOP - current->rlim[RLIMIT_STACK].rlim_max;
376 mm->arg_start = stack_base;
378 /* zero pages that were copied above */
379 while (i < MAX_ARG_PAGES)
380 bprm->page[i++] = NULL;
381 #else
382 stack_base = STACK_TOP - MAX_ARG_PAGES * PAGE_SIZE;
383 mm->arg_start = bprm->p + stack_base;
384 #endif
386 bprm->p += stack_base;
387 if (bprm->loader)
388 bprm->loader += stack_base;
389 bprm->exec += stack_base;
391 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
392 if (!mpnt)
393 return -ENOMEM;
395 if (!vm_enough_memory((STACK_TOP - (PAGE_MASK & (unsigned long) bprm->p))>>PAGE_SHIFT)) {
396 kmem_cache_free(vm_area_cachep, mpnt);
397 return -ENOMEM;
400 down_write(&mm->mmap_sem);
402 mpnt->vm_mm = mm;
403 #ifdef CONFIG_STACK_GROWSUP
404 mpnt->vm_start = stack_base;
405 mpnt->vm_end = PAGE_MASK &
406 (PAGE_SIZE - 1 + (unsigned long) bprm->p);
407 #else
408 mpnt->vm_start = PAGE_MASK & (unsigned long) bprm->p;
409 mpnt->vm_end = STACK_TOP;
410 #endif
411 mpnt->vm_page_prot = protection_map[VM_STACK_FLAGS & 0x7];
412 mpnt->vm_flags = VM_STACK_FLAGS;
413 mpnt->vm_ops = NULL;
414 mpnt->vm_pgoff = 0;
415 mpnt->vm_file = NULL;
416 INIT_LIST_HEAD(&mpnt->shared);
417 mpnt->vm_private_data = (void *) 0;
418 insert_vm_struct(mm, mpnt);
419 mm->total_vm = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
422 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
423 struct page *page = bprm->page[i];
424 if (page) {
425 bprm->page[i] = NULL;
426 put_dirty_page(current, page, stack_base,
427 mpnt->vm_page_prot);
429 stack_base += PAGE_SIZE;
431 up_write(&mm->mmap_sem);
433 return 0;
436 #define free_arg_pages(bprm) do { } while (0)
438 #else
440 static inline void free_arg_pages(struct linux_binprm *bprm)
442 int i;
444 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
445 if (bprm->page[i])
446 __free_page(bprm->page[i]);
447 bprm->page[i] = NULL;
451 #endif /* CONFIG_MMU */
453 struct file *open_exec(const char *name)
455 struct nameidata nd;
456 int err = path_lookup(name, LOOKUP_FOLLOW, &nd);
457 struct file *file = ERR_PTR(err);
459 if (!err) {
460 struct inode *inode = nd.dentry->d_inode;
461 file = ERR_PTR(-EACCES);
462 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
463 S_ISREG(inode->i_mode)) {
464 int err = permission(inode, MAY_EXEC);
465 if (!err && !(inode->i_mode & 0111))
466 err = -EACCES;
467 file = ERR_PTR(err);
468 if (!err) {
469 file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
470 if (!IS_ERR(file)) {
471 err = deny_write_access(file);
472 if (err) {
473 fput(file);
474 file = ERR_PTR(err);
477 out:
478 return file;
481 path_release(&nd);
483 goto out;
486 int kernel_read(struct file *file, unsigned long offset,
487 char *addr, unsigned long count)
489 mm_segment_t old_fs;
490 loff_t pos = offset;
491 int result;
493 old_fs = get_fs();
494 set_fs(get_ds());
495 /* The cast to a user pointer is valid due to the set_fs() */
496 result = vfs_read(file, (void __user *)addr, count, &pos);
497 set_fs(old_fs);
498 return result;
501 static int exec_mmap(struct mm_struct *mm)
503 struct task_struct *tsk;
504 struct mm_struct * old_mm, *active_mm;
506 /* Add it to the list of mm's */
507 spin_lock(&mmlist_lock);
508 list_add(&mm->mmlist, &init_mm.mmlist);
509 mmlist_nr++;
510 spin_unlock(&mmlist_lock);
512 /* Notify parent that we're no longer interested in the old VM */
513 tsk = current;
514 old_mm = current->mm;
515 mm_release(tsk, old_mm);
517 task_lock(tsk);
518 active_mm = tsk->active_mm;
519 tsk->mm = mm;
520 tsk->active_mm = mm;
521 activate_mm(active_mm, mm);
522 task_unlock(tsk);
523 if (old_mm) {
524 if (active_mm != old_mm) BUG();
525 mmput(old_mm);
526 return 0;
528 mmdrop(active_mm);
529 return 0;
533 * This function makes sure the current process has its own signal table,
534 * so that flush_signal_handlers can later reset the handlers without
535 * disturbing other processes. (Other processes might share the signal
536 * table via the CLONE_SIGHAND option to clone().)
538 static inline int de_thread(struct task_struct *tsk)
540 struct signal_struct *newsig, *oldsig = tsk->signal;
541 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
542 spinlock_t *lock = &oldsighand->siglock;
543 int count;
546 * If we don't share sighandlers, then we aren't sharing anything
547 * and we can just re-use it all.
549 if (atomic_read(&oldsighand->count) <= 1)
550 return 0;
552 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
553 if (!newsighand)
554 return -ENOMEM;
556 spin_lock_init(&newsighand->siglock);
557 atomic_set(&newsighand->count, 1);
558 memcpy(newsighand->action, oldsighand->action, sizeof(newsighand->action));
561 * See if we need to allocate a new signal structure
563 newsig = NULL;
564 if (atomic_read(&oldsig->count) > 1) {
565 newsig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
566 if (!newsig) {
567 kmem_cache_free(sighand_cachep, newsighand);
568 return -ENOMEM;
570 atomic_set(&newsig->count, 1);
571 newsig->group_exit = 0;
572 newsig->group_exit_code = 0;
573 newsig->group_exit_task = NULL;
574 newsig->group_stop_count = 0;
575 newsig->curr_target = NULL;
576 init_sigpending(&newsig->shared_pending);
579 if (thread_group_empty(current))
580 goto no_thread_group;
583 * Kill all other threads in the thread group.
584 * We must hold tasklist_lock to call zap_other_threads.
586 read_lock(&tasklist_lock);
587 spin_lock_irq(lock);
588 if (oldsig->group_exit) {
590 * Another group action in progress, just
591 * return so that the signal is processed.
593 spin_unlock_irq(lock);
594 read_unlock(&tasklist_lock);
595 kmem_cache_free(sighand_cachep, newsighand);
596 if (newsig)
597 kmem_cache_free(signal_cachep, newsig);
598 return -EAGAIN;
600 oldsig->group_exit = 1;
601 zap_other_threads(current);
602 read_unlock(&tasklist_lock);
605 * Account for the thread group leader hanging around:
607 count = 2;
608 if (current->pid == current->tgid)
609 count = 1;
610 while (atomic_read(&oldsig->count) > count) {
611 oldsig->group_exit_task = current;
612 oldsig->notify_count = count;
613 __set_current_state(TASK_UNINTERRUPTIBLE);
614 spin_unlock_irq(lock);
615 schedule();
616 spin_lock_irq(lock);
618 spin_unlock_irq(lock);
621 * At this point all other threads have exited, all we have to
622 * do is to wait for the thread group leader to become inactive,
623 * and to assume its PID:
625 if (current->pid != current->tgid) {
626 struct task_struct *leader = current->group_leader, *parent;
627 struct dentry *proc_dentry1, *proc_dentry2;
628 unsigned long state, ptrace;
631 * Wait for the thread group leader to be a zombie.
632 * It should already be zombie at this point, most
633 * of the time.
635 while (leader->state != TASK_ZOMBIE)
636 yield();
638 spin_lock(&leader->proc_lock);
639 spin_lock(&current->proc_lock);
640 proc_dentry1 = proc_pid_unhash(current);
641 proc_dentry2 = proc_pid_unhash(leader);
642 write_lock_irq(&tasklist_lock);
644 if (leader->tgid != current->tgid)
645 BUG();
646 if (current->pid == current->tgid)
647 BUG();
649 * An exec() starts a new thread group with the
650 * TGID of the previous thread group. Rehash the
651 * two threads with a switched PID, and release
652 * the former thread group leader:
654 ptrace = leader->ptrace;
655 parent = leader->parent;
657 ptrace_unlink(current);
658 ptrace_unlink(leader);
659 remove_parent(current);
660 remove_parent(leader);
662 switch_exec_pids(leader, current);
664 current->parent = current->real_parent = leader->real_parent;
665 leader->parent = leader->real_parent = child_reaper;
666 current->group_leader = current;
667 leader->group_leader = leader;
669 add_parent(current, current->parent);
670 add_parent(leader, leader->parent);
671 if (ptrace) {
672 current->ptrace = ptrace;
673 __ptrace_link(current, parent);
676 list_del(&current->tasks);
677 list_add_tail(&current->tasks, &init_task.tasks);
678 current->exit_signal = SIGCHLD;
679 state = leader->state;
681 write_unlock_irq(&tasklist_lock);
682 spin_unlock(&leader->proc_lock);
683 spin_unlock(&current->proc_lock);
684 proc_pid_flush(proc_dentry1);
685 proc_pid_flush(proc_dentry2);
687 if (state != TASK_ZOMBIE)
688 BUG();
689 release_task(leader);
692 no_thread_group:
694 write_lock_irq(&tasklist_lock);
695 spin_lock(&oldsighand->siglock);
696 spin_lock(&newsighand->siglock);
698 if (current == oldsig->curr_target)
699 oldsig->curr_target = next_thread(current);
700 if (newsig)
701 current->signal = newsig;
702 current->sighand = newsighand;
703 init_sigpending(&current->pending);
704 recalc_sigpending();
706 spin_unlock(&newsighand->siglock);
707 spin_unlock(&oldsighand->siglock);
708 write_unlock_irq(&tasklist_lock);
710 if (newsig && atomic_dec_and_test(&oldsig->count))
711 kmem_cache_free(signal_cachep, oldsig);
713 if (atomic_dec_and_test(&oldsighand->count))
714 kmem_cache_free(sighand_cachep, oldsighand);
716 if (!thread_group_empty(current))
717 BUG();
718 if (current->tgid != current->pid)
719 BUG();
720 return 0;
724 * These functions flushes out all traces of the currently running executable
725 * so that a new one can be started
728 static inline void flush_old_files(struct files_struct * files)
730 long j = -1;
732 spin_lock(&files->file_lock);
733 for (;;) {
734 unsigned long set, i;
736 j++;
737 i = j * __NFDBITS;
738 if (i >= files->max_fds || i >= files->max_fdset)
739 break;
740 set = files->close_on_exec->fds_bits[j];
741 if (!set)
742 continue;
743 files->close_on_exec->fds_bits[j] = 0;
744 spin_unlock(&files->file_lock);
745 for ( ; set ; i++,set >>= 1) {
746 if (set & 1) {
747 sys_close(i);
750 spin_lock(&files->file_lock);
753 spin_unlock(&files->file_lock);
756 int flush_old_exec(struct linux_binprm * bprm)
758 char * name;
759 int i, ch, retval;
762 * Release all of the old mmap stuff
764 retval = exec_mmap(bprm->mm);
765 if (retval)
766 goto out;
768 * Make sure we have a private signal table and that
769 * we are unassociated from the previous thread group.
771 retval = de_thread(current);
772 if (retval)
773 goto out;
775 /* This is the point of no return */
777 current->sas_ss_sp = current->sas_ss_size = 0;
779 if (current->euid == current->uid && current->egid == current->gid)
780 current->mm->dumpable = 1;
781 name = bprm->filename;
782 for (i=0; (ch = *(name++)) != '\0';) {
783 if (ch == '/')
784 i = 0;
785 else
786 if (i < 15)
787 current->comm[i++] = ch;
789 current->comm[i] = '\0';
791 flush_thread();
793 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
794 permission(bprm->file->f_dentry->d_inode,MAY_READ))
795 current->mm->dumpable = 0;
797 /* An exec changes our domain. We are no longer part of the thread
798 group */
800 current->self_exec_id++;
802 flush_signal_handlers(current, 0);
803 flush_old_files(current->files);
804 exit_itimers(current);
806 return 0;
808 out:
809 return retval;
813 * We mustn't allow tracing of suid binaries, unless
814 * the tracer has the capability to trace anything..
816 static inline int must_not_trace_exec(struct task_struct * p)
818 return (p->ptrace & PT_PTRACED) && !(p->ptrace & PT_PTRACE_CAP);
822 * Fill the binprm structure from the inode.
823 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
825 int prepare_binprm(struct linux_binprm *bprm)
827 int mode;
828 struct inode * inode = bprm->file->f_dentry->d_inode;
829 int retval;
831 mode = inode->i_mode;
833 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
834 * vfs_permission lets a non-executable through
836 if (!(mode & 0111)) /* with at least _one_ execute bit set */
837 return -EACCES;
838 if (bprm->file->f_op == NULL)
839 return -EACCES;
841 bprm->e_uid = current->euid;
842 bprm->e_gid = current->egid;
844 if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
845 /* Set-uid? */
846 if (mode & S_ISUID)
847 bprm->e_uid = inode->i_uid;
849 /* Set-gid? */
851 * If setgid is set but no group execute bit then this
852 * is a candidate for mandatory locking, not a setgid
853 * executable.
855 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
856 bprm->e_gid = inode->i_gid;
859 /* fill in binprm security blob */
860 retval = security_bprm_set(bprm);
861 if (retval)
862 return retval;
864 memset(bprm->buf,0,BINPRM_BUF_SIZE);
865 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
869 * This function is used to produce the new IDs and capabilities
870 * from the old ones and the file's capabilities.
872 * The formula used for evolving capabilities is:
874 * pI' = pI
875 * (***) pP' = (fP & X) | (fI & pI)
876 * pE' = pP' & fE [NB. fE is 0 or ~0]
878 * I=Inheritable, P=Permitted, E=Effective // p=process, f=file
879 * ' indicates post-exec(), and X is the global 'cap_bset'.
883 void compute_creds(struct linux_binprm *bprm)
885 task_lock(current);
886 if (bprm->e_uid != current->uid || bprm->e_gid != current->gid) {
887 current->mm->dumpable = 0;
889 if (must_not_trace_exec(current)
890 || atomic_read(&current->fs->count) > 1
891 || atomic_read(&current->files->count) > 1
892 || atomic_read(&current->sighand->count) > 1) {
893 if(!capable(CAP_SETUID)) {
894 bprm->e_uid = current->uid;
895 bprm->e_gid = current->gid;
900 current->suid = current->euid = current->fsuid = bprm->e_uid;
901 current->sgid = current->egid = current->fsgid = bprm->e_gid;
903 task_unlock(current);
905 security_bprm_compute_creds(bprm);
908 void remove_arg_zero(struct linux_binprm *bprm)
910 if (bprm->argc) {
911 unsigned long offset;
912 char * kaddr;
913 struct page *page;
915 offset = bprm->p % PAGE_SIZE;
916 goto inside;
918 while (bprm->p++, *(kaddr+offset++)) {
919 if (offset != PAGE_SIZE)
920 continue;
921 offset = 0;
922 kunmap(page);
923 inside:
924 page = bprm->page[bprm->p/PAGE_SIZE];
925 kaddr = kmap(page);
927 kunmap(page);
928 bprm->argc--;
933 * cycle the list of binary formats handler, until one recognizes the image
935 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
937 int try,retval=0;
938 struct linux_binfmt *fmt;
939 #ifdef __alpha__
940 /* handle /sbin/loader.. */
942 struct exec * eh = (struct exec *) bprm->buf;
944 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
945 (eh->fh.f_flags & 0x3000) == 0x3000)
947 struct file * file;
948 unsigned long loader;
950 allow_write_access(bprm->file);
951 fput(bprm->file);
952 bprm->file = NULL;
954 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
956 file = open_exec("/sbin/loader");
957 retval = PTR_ERR(file);
958 if (IS_ERR(file))
959 return retval;
961 /* Remember if the application is TASO. */
962 bprm->sh_bang = eh->ah.entry < 0x100000000;
964 bprm->file = file;
965 bprm->loader = loader;
966 retval = prepare_binprm(bprm);
967 if (retval<0)
968 return retval;
969 /* should call search_binary_handler recursively here,
970 but it does not matter */
973 #endif
974 retval = security_bprm_check(bprm);
975 if (retval)
976 return retval;
978 /* kernel module loader fixup */
979 /* so we don't try to load run modprobe in kernel space. */
980 set_fs(USER_DS);
981 for (try=0; try<2; try++) {
982 read_lock(&binfmt_lock);
983 for (fmt = formats ; fmt ; fmt = fmt->next) {
984 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
985 if (!fn)
986 continue;
987 if (!try_module_get(fmt->module))
988 continue;
989 read_unlock(&binfmt_lock);
990 retval = fn(bprm, regs);
991 if (retval >= 0) {
992 put_binfmt(fmt);
993 allow_write_access(bprm->file);
994 if (bprm->file)
995 fput(bprm->file);
996 bprm->file = NULL;
997 current->did_exec = 1;
998 return retval;
1000 read_lock(&binfmt_lock);
1001 put_binfmt(fmt);
1002 if (retval != -ENOEXEC)
1003 break;
1004 if (!bprm->file) {
1005 read_unlock(&binfmt_lock);
1006 return retval;
1009 read_unlock(&binfmt_lock);
1010 if (retval != -ENOEXEC) {
1011 break;
1012 #ifdef CONFIG_KMOD
1013 }else{
1014 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1015 if (printable(bprm->buf[0]) &&
1016 printable(bprm->buf[1]) &&
1017 printable(bprm->buf[2]) &&
1018 printable(bprm->buf[3]))
1019 break; /* -ENOEXEC */
1020 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1021 #endif
1024 return retval;
1028 * sys_execve() executes a new program.
1030 int do_execve(char * filename,
1031 char __user *__user *argv,
1032 char __user *__user *envp,
1033 struct pt_regs * regs)
1035 struct linux_binprm bprm;
1036 struct file *file;
1037 int retval;
1038 int i;
1040 sched_balance_exec();
1042 file = open_exec(filename);
1044 retval = PTR_ERR(file);
1045 if (IS_ERR(file))
1046 return retval;
1048 bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1049 memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));
1051 bprm.file = file;
1052 bprm.filename = filename;
1053 bprm.sh_bang = 0;
1054 bprm.loader = 0;
1055 bprm.exec = 0;
1056 bprm.security = NULL;
1057 bprm.mm = mm_alloc();
1058 retval = -ENOMEM;
1059 if (!bprm.mm)
1060 goto out_file;
1062 retval = init_new_context(current, bprm.mm);
1063 if (retval < 0)
1064 goto out_mm;
1066 bprm.argc = count(argv, bprm.p / sizeof(void *));
1067 if ((retval = bprm.argc) < 0)
1068 goto out_mm;
1070 bprm.envc = count(envp, bprm.p / sizeof(void *));
1071 if ((retval = bprm.envc) < 0)
1072 goto out_mm;
1074 retval = security_bprm_alloc(&bprm);
1075 if (retval)
1076 goto out;
1078 retval = prepare_binprm(&bprm);
1079 if (retval < 0)
1080 goto out;
1082 retval = copy_strings_kernel(1, &bprm.filename, &bprm);
1083 if (retval < 0)
1084 goto out;
1086 bprm.exec = bprm.p;
1087 retval = copy_strings(bprm.envc, envp, &bprm);
1088 if (retval < 0)
1089 goto out;
1091 retval = copy_strings(bprm.argc, argv, &bprm);
1092 if (retval < 0)
1093 goto out;
1095 retval = search_binary_handler(&bprm,regs);
1096 if (retval >= 0) {
1097 free_arg_pages(&bprm);
1099 /* execve success */
1100 security_bprm_free(&bprm);
1101 return retval;
1104 out:
1105 /* Something went wrong, return the inode and free the argument pages*/
1106 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1107 struct page * page = bprm.page[i];
1108 if (page)
1109 __free_page(page);
1112 if (bprm.security)
1113 security_bprm_free(&bprm);
1115 out_mm:
1116 mmdrop(bprm.mm);
1118 out_file:
1119 if (bprm.file) {
1120 allow_write_access(bprm.file);
1121 fput(bprm.file);
1123 return retval;
1126 int set_binfmt(struct linux_binfmt *new)
1128 struct linux_binfmt *old = current->binfmt;
1130 if (new) {
1131 if (!try_module_get(new->module))
1132 return -1;
1134 current->binfmt = new;
1135 if (old)
1136 module_put(old->module);
1137 return 0;
1140 #define CORENAME_MAX_SIZE 64
1142 /* format_corename will inspect the pattern parameter, and output a
1143 * name into corename, which must have space for at least
1144 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1146 void format_corename(char *corename, const char *pattern, long signr)
1148 const char *pat_ptr = pattern;
1149 char *out_ptr = corename;
1150 char *const out_end = corename + CORENAME_MAX_SIZE;
1151 int rc;
1152 int pid_in_pattern = 0;
1154 /* Repeat as long as we have more pattern to process and more output
1155 space */
1156 while (*pat_ptr) {
1157 if (*pat_ptr != '%') {
1158 if (out_ptr == out_end)
1159 goto out;
1160 *out_ptr++ = *pat_ptr++;
1161 } else {
1162 switch (*++pat_ptr) {
1163 case 0:
1164 goto out;
1165 /* Double percent, output one percent */
1166 case '%':
1167 if (out_ptr == out_end)
1168 goto out;
1169 *out_ptr++ = '%';
1170 break;
1171 /* pid */
1172 case 'p':
1173 pid_in_pattern = 1;
1174 rc = snprintf(out_ptr, out_end - out_ptr,
1175 "%d", current->tgid);
1176 if (rc > out_end - out_ptr)
1177 goto out;
1178 out_ptr += rc;
1179 break;
1180 /* uid */
1181 case 'u':
1182 rc = snprintf(out_ptr, out_end - out_ptr,
1183 "%d", current->uid);
1184 if (rc > out_end - out_ptr)
1185 goto out;
1186 out_ptr += rc;
1187 break;
1188 /* gid */
1189 case 'g':
1190 rc = snprintf(out_ptr, out_end - out_ptr,
1191 "%d", current->gid);
1192 if (rc > out_end - out_ptr)
1193 goto out;
1194 out_ptr += rc;
1195 break;
1196 /* signal that caused the coredump */
1197 case 's':
1198 rc = snprintf(out_ptr, out_end - out_ptr,
1199 "%ld", signr);
1200 if (rc > out_end - out_ptr)
1201 goto out;
1202 out_ptr += rc;
1203 break;
1204 /* UNIX time of coredump */
1205 case 't': {
1206 struct timeval tv;
1207 do_gettimeofday(&tv);
1208 rc = snprintf(out_ptr, out_end - out_ptr,
1209 "%lu", tv.tv_sec);
1210 if (rc > out_end - out_ptr)
1211 goto out;
1212 out_ptr += rc;
1213 break;
1215 /* hostname */
1216 case 'h':
1217 down_read(&uts_sem);
1218 rc = snprintf(out_ptr, out_end - out_ptr,
1219 "%s", system_utsname.nodename);
1220 up_read(&uts_sem);
1221 if (rc > out_end - out_ptr)
1222 goto out;
1223 out_ptr += rc;
1224 break;
1225 /* executable */
1226 case 'e':
1227 rc = snprintf(out_ptr, out_end - out_ptr,
1228 "%s", current->comm);
1229 if (rc > out_end - out_ptr)
1230 goto out;
1231 out_ptr += rc;
1232 break;
1233 default:
1234 break;
1236 ++pat_ptr;
1239 /* Backward compatibility with core_uses_pid:
1241 * If core_pattern does not include a %p (as is the default)
1242 * and core_uses_pid is set, then .%pid will be appended to
1243 * the filename */
1244 if (!pid_in_pattern
1245 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1246 rc = snprintf(out_ptr, out_end - out_ptr,
1247 ".%d", current->tgid);
1248 if (rc > out_end - out_ptr)
1249 goto out;
1250 out_ptr += rc;
1252 out:
1253 *out_ptr = 0;
1256 static void zap_threads (struct mm_struct *mm)
1258 struct task_struct *g, *p;
1260 read_lock(&tasklist_lock);
1261 do_each_thread(g,p)
1262 if (mm == p->mm && p != current) {
1263 force_sig_specific(SIGKILL, p);
1264 mm->core_waiters++;
1266 while_each_thread(g,p);
1268 read_unlock(&tasklist_lock);
1271 static void coredump_wait(struct mm_struct *mm)
1273 DECLARE_COMPLETION(startup_done);
1275 mm->core_waiters++; /* let other threads block */
1276 mm->core_startup_done = &startup_done;
1278 /* give other threads a chance to run: */
1279 yield();
1281 zap_threads(mm);
1282 if (--mm->core_waiters) {
1283 up_write(&mm->mmap_sem);
1284 wait_for_completion(&startup_done);
1285 } else
1286 up_write(&mm->mmap_sem);
1287 BUG_ON(mm->core_waiters);
1290 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1292 char corename[CORENAME_MAX_SIZE + 1];
1293 struct mm_struct *mm = current->mm;
1294 struct linux_binfmt * binfmt;
1295 struct inode * inode;
1296 struct file * file;
1297 int retval = 0;
1299 lock_kernel();
1300 binfmt = current->binfmt;
1301 if (!binfmt || !binfmt->core_dump)
1302 goto fail;
1303 down_write(&mm->mmap_sem);
1304 if (!mm->dumpable) {
1305 up_write(&mm->mmap_sem);
1306 goto fail;
1308 mm->dumpable = 0;
1309 init_completion(&mm->core_done);
1310 current->signal->group_exit = 1;
1311 current->signal->group_exit_code = exit_code;
1312 coredump_wait(mm);
1314 if (current->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1315 goto fail_unlock;
1317 format_corename(corename, core_pattern, signr);
1318 file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW, 0600);
1319 if (IS_ERR(file))
1320 goto fail_unlock;
1321 inode = file->f_dentry->d_inode;
1322 if (inode->i_nlink > 1)
1323 goto close_fail; /* multiple links - don't dump */
1324 if (d_unhashed(file->f_dentry))
1325 goto close_fail;
1327 if (!S_ISREG(inode->i_mode))
1328 goto close_fail;
1329 if (!file->f_op)
1330 goto close_fail;
1331 if (!file->f_op->write)
1332 goto close_fail;
1333 if (do_truncate(file->f_dentry, 0) != 0)
1334 goto close_fail;
1336 retval = binfmt->core_dump(signr, regs, file);
1338 current->signal->group_exit_code |= 0x80;
1339 close_fail:
1340 filp_close(file, NULL);
1341 fail_unlock:
1342 complete_all(&mm->core_done);
1343 fail:
1344 unlock_kernel();
1345 return retval;