4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
56 #include <linux/kmod.h>
60 char core_pattern
[65] = "core";
61 int suid_dumpable
= 0;
63 EXPORT_SYMBOL(suid_dumpable
);
64 /* The maximal length of core_pattern is also specified in sysctl.c */
66 static struct linux_binfmt
*formats
;
67 static DEFINE_RWLOCK(binfmt_lock
);
69 int register_binfmt(struct linux_binfmt
* fmt
)
71 struct linux_binfmt
** tmp
= &formats
;
77 write_lock(&binfmt_lock
);
80 write_unlock(&binfmt_lock
);
87 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(register_binfmt
);
93 int unregister_binfmt(struct linux_binfmt
* fmt
)
95 struct linux_binfmt
** tmp
= &formats
;
97 write_lock(&binfmt_lock
);
101 write_unlock(&binfmt_lock
);
106 write_unlock(&binfmt_lock
);
110 EXPORT_SYMBOL(unregister_binfmt
);
112 static inline void put_binfmt(struct linux_binfmt
* fmt
)
114 module_put(fmt
->module
);
118 * Note that a shared library must be both readable and executable due to
121 * Also note that we take the address to load from from the file itself.
123 asmlinkage
long sys_uselib(const char __user
* library
)
129 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
);
134 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
137 error
= permission(nd
.dentry
->d_inode
, MAY_READ
| MAY_EXEC
, &nd
);
141 file
= nameidata_to_filp(&nd
, O_RDONLY
);
142 error
= PTR_ERR(file
);
148 struct linux_binfmt
* fmt
;
150 read_lock(&binfmt_lock
);
151 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
152 if (!fmt
->load_shlib
)
154 if (!try_module_get(fmt
->module
))
156 read_unlock(&binfmt_lock
);
157 error
= fmt
->load_shlib(file
);
158 read_lock(&binfmt_lock
);
160 if (error
!= -ENOEXEC
)
163 read_unlock(&binfmt_lock
);
169 release_open_intent(&nd
);
175 * count() counts the number of strings in array ARGV.
177 static int count(char __user
* __user
* argv
, int max
)
185 if (get_user(p
, argv
))
199 * 'copy_strings()' copies argument/environment strings from user
200 * memory to free pages in kernel mem. These are in a format ready
201 * to be put directly into the top of new user memory.
203 static int copy_strings(int argc
, char __user
* __user
* argv
,
204 struct linux_binprm
*bprm
)
206 struct page
*kmapped_page
= NULL
;
215 if (get_user(str
, argv
+argc
) ||
216 !(len
= strnlen_user(str
, bprm
->p
))) {
227 /* XXX: add architecture specific overflow check here. */
232 int offset
, bytes_to_copy
;
235 offset
= pos
% PAGE_SIZE
;
237 page
= bprm
->page
[i
];
240 page
= alloc_page(GFP_HIGHUSER
);
241 bprm
->page
[i
] = page
;
249 if (page
!= kmapped_page
) {
251 kunmap(kmapped_page
);
253 kaddr
= kmap(kmapped_page
);
256 memset(kaddr
, 0, offset
);
257 bytes_to_copy
= PAGE_SIZE
- offset
;
258 if (bytes_to_copy
> len
) {
261 memset(kaddr
+offset
+len
, 0,
262 PAGE_SIZE
-offset
-len
);
264 err
= copy_from_user(kaddr
+offset
, str
, bytes_to_copy
);
270 pos
+= bytes_to_copy
;
271 str
+= bytes_to_copy
;
272 len
-= bytes_to_copy
;
278 kunmap(kmapped_page
);
283 * Like copy_strings, but get argv and its values from kernel memory.
285 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
288 mm_segment_t oldfs
= get_fs();
290 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
295 EXPORT_SYMBOL(copy_strings_kernel
);
299 * This routine is used to map in a page into an address space: needed by
300 * execve() for the initial stack and environment pages.
302 * vma->vm_mm->mmap_sem is held for writing.
304 void install_arg_page(struct vm_area_struct
*vma
,
305 struct page
*page
, unsigned long address
)
307 struct mm_struct
*mm
= vma
->vm_mm
;
313 if (unlikely(anon_vma_prepare(vma
)))
316 flush_dcache_page(page
);
317 pgd
= pgd_offset(mm
, address
);
319 spin_lock(&mm
->page_table_lock
);
320 pud
= pud_alloc(mm
, pgd
, address
);
323 pmd
= pmd_alloc(mm
, pud
, address
);
326 pte
= pte_alloc_map(mm
, pmd
, address
);
329 if (!pte_none(*pte
)) {
333 inc_mm_counter(mm
, rss
);
334 lru_cache_add_active(page
);
335 set_pte_at(mm
, address
, pte
, pte_mkdirty(pte_mkwrite(mk_pte(
336 page
, vma
->vm_page_prot
))));
337 page_add_anon_rmap(page
, vma
, address
);
339 spin_unlock(&mm
->page_table_lock
);
341 /* no need for flush_tlb */
344 spin_unlock(&mm
->page_table_lock
);
347 force_sig(SIGKILL
, current
);
350 #define EXTRA_STACK_VM_PAGES 20 /* random */
352 int setup_arg_pages(struct linux_binprm
*bprm
,
353 unsigned long stack_top
,
354 int executable_stack
)
356 unsigned long stack_base
;
357 struct vm_area_struct
*mpnt
;
358 struct mm_struct
*mm
= current
->mm
;
362 #ifdef CONFIG_STACK_GROWSUP
363 /* Move the argument and environment strings to the bottom of the
369 /* Start by shifting all the pages down */
371 for (j
= 0; j
< MAX_ARG_PAGES
; j
++) {
372 struct page
*page
= bprm
->page
[j
];
375 bprm
->page
[i
++] = page
;
378 /* Now move them within their pages */
379 offset
= bprm
->p
% PAGE_SIZE
;
380 to
= kmap(bprm
->page
[0]);
381 for (j
= 1; j
< i
; j
++) {
382 memmove(to
, to
+ offset
, PAGE_SIZE
- offset
);
383 from
= kmap(bprm
->page
[j
]);
384 memcpy(to
+ PAGE_SIZE
- offset
, from
, offset
);
385 kunmap(bprm
->page
[j
- 1]);
388 memmove(to
, to
+ offset
, PAGE_SIZE
- offset
);
389 kunmap(bprm
->page
[j
- 1]);
391 /* Limit stack size to 1GB */
392 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
393 if (stack_base
> (1 << 30))
394 stack_base
= 1 << 30;
395 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
397 /* Adjust bprm->p to point to the end of the strings. */
398 bprm
->p
= stack_base
+ PAGE_SIZE
* i
- offset
;
400 mm
->arg_start
= stack_base
;
401 arg_size
= i
<< PAGE_SHIFT
;
403 /* zero pages that were copied above */
404 while (i
< MAX_ARG_PAGES
)
405 bprm
->page
[i
++] = NULL
;
407 stack_base
= arch_align_stack(stack_top
- MAX_ARG_PAGES
*PAGE_SIZE
);
408 stack_base
= PAGE_ALIGN(stack_base
);
409 bprm
->p
+= stack_base
;
410 mm
->arg_start
= bprm
->p
;
411 arg_size
= stack_top
- (PAGE_MASK
& (unsigned long) mm
->arg_start
);
414 arg_size
+= EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
417 bprm
->loader
+= stack_base
;
418 bprm
->exec
+= stack_base
;
420 mpnt
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
424 memset(mpnt
, 0, sizeof(*mpnt
));
426 down_write(&mm
->mmap_sem
);
429 #ifdef CONFIG_STACK_GROWSUP
430 mpnt
->vm_start
= stack_base
;
431 mpnt
->vm_end
= stack_base
+ arg_size
;
433 mpnt
->vm_end
= stack_top
;
434 mpnt
->vm_start
= mpnt
->vm_end
- arg_size
;
436 /* Adjust stack execute permissions; explicitly enable
437 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
438 * and leave alone (arch default) otherwise. */
439 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
440 mpnt
->vm_flags
= VM_STACK_FLAGS
| VM_EXEC
;
441 else if (executable_stack
== EXSTACK_DISABLE_X
)
442 mpnt
->vm_flags
= VM_STACK_FLAGS
& ~VM_EXEC
;
444 mpnt
->vm_flags
= VM_STACK_FLAGS
;
445 mpnt
->vm_flags
|= mm
->def_flags
;
446 mpnt
->vm_page_prot
= protection_map
[mpnt
->vm_flags
& 0x7];
447 if ((ret
= insert_vm_struct(mm
, mpnt
))) {
448 up_write(&mm
->mmap_sem
);
449 kmem_cache_free(vm_area_cachep
, mpnt
);
452 mm
->stack_vm
= mm
->total_vm
= vma_pages(mpnt
);
455 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
456 struct page
*page
= bprm
->page
[i
];
458 bprm
->page
[i
] = NULL
;
459 install_arg_page(mpnt
, page
, stack_base
);
461 stack_base
+= PAGE_SIZE
;
463 up_write(&mm
->mmap_sem
);
468 EXPORT_SYMBOL(setup_arg_pages
);
470 #define free_arg_pages(bprm) do { } while (0)
474 static inline void free_arg_pages(struct linux_binprm
*bprm
)
478 for (i
= 0; i
< MAX_ARG_PAGES
; i
++) {
480 __free_page(bprm
->page
[i
]);
481 bprm
->page
[i
] = NULL
;
485 #endif /* CONFIG_MMU */
487 struct file
*open_exec(const char *name
)
493 err
= path_lookup_open(name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
);
497 struct inode
*inode
= nd
.dentry
->d_inode
;
498 file
= ERR_PTR(-EACCES
);
499 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
500 S_ISREG(inode
->i_mode
)) {
501 int err
= permission(inode
, MAY_EXEC
, &nd
);
502 if (!err
&& !(inode
->i_mode
& 0111))
506 file
= nameidata_to_filp(&nd
, O_RDONLY
);
508 err
= deny_write_access(file
);
518 release_open_intent(&nd
);
524 EXPORT_SYMBOL(open_exec
);
526 int kernel_read(struct file
*file
, unsigned long offset
,
527 char *addr
, unsigned long count
)
535 /* The cast to a user pointer is valid due to the set_fs() */
536 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
541 EXPORT_SYMBOL(kernel_read
);
543 static int exec_mmap(struct mm_struct
*mm
)
545 struct task_struct
*tsk
;
546 struct mm_struct
* old_mm
, *active_mm
;
548 /* Notify parent that we're no longer interested in the old VM */
550 old_mm
= current
->mm
;
551 mm_release(tsk
, old_mm
);
555 * Make sure that if there is a core dump in progress
556 * for the old mm, we get out and die instead of going
557 * through with the exec. We must hold mmap_sem around
558 * checking core_waiters and changing tsk->mm. The
559 * core-inducing thread will increment core_waiters for
560 * each thread whose ->mm == old_mm.
562 down_read(&old_mm
->mmap_sem
);
563 if (unlikely(old_mm
->core_waiters
)) {
564 up_read(&old_mm
->mmap_sem
);
569 active_mm
= tsk
->active_mm
;
572 activate_mm(active_mm
, mm
);
574 arch_pick_mmap_layout(mm
);
576 up_read(&old_mm
->mmap_sem
);
577 if (active_mm
!= old_mm
) BUG();
586 * This function makes sure the current process has its own signal table,
587 * so that flush_signal_handlers can later reset the handlers without
588 * disturbing other processes. (Other processes might share the signal
589 * table via the CLONE_SIGHAND option to clone().)
591 static inline int de_thread(struct task_struct
*tsk
)
593 struct signal_struct
*sig
= tsk
->signal
;
594 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
595 spinlock_t
*lock
= &oldsighand
->siglock
;
599 * If we don't share sighandlers, then we aren't sharing anything
600 * and we can just re-use it all.
602 if (atomic_read(&oldsighand
->count
) <= 1) {
603 BUG_ON(atomic_read(&sig
->count
) != 1);
608 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
612 if (thread_group_empty(current
))
613 goto no_thread_group
;
616 * Kill all other threads in the thread group.
617 * We must hold tasklist_lock to call zap_other_threads.
619 read_lock(&tasklist_lock
);
621 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
623 * Another group action in progress, just
624 * return so that the signal is processed.
626 spin_unlock_irq(lock
);
627 read_unlock(&tasklist_lock
);
628 kmem_cache_free(sighand_cachep
, newsighand
);
631 zap_other_threads(current
);
632 read_unlock(&tasklist_lock
);
635 * Account for the thread group leader hanging around:
638 if (thread_group_leader(current
))
642 * The SIGALRM timer survives the exec, but needs to point
643 * at us as the new group leader now. We have a race with
644 * a timer firing now getting the old leader, so we need to
645 * synchronize with any firing (by calling del_timer_sync)
646 * before we can safely let the old group leader die.
648 sig
->real_timer
.data
= (unsigned long)current
;
649 if (del_timer_sync(&sig
->real_timer
))
650 add_timer(&sig
->real_timer
);
652 while (atomic_read(&sig
->count
) > count
) {
653 sig
->group_exit_task
= current
;
654 sig
->notify_count
= count
;
655 __set_current_state(TASK_UNINTERRUPTIBLE
);
656 spin_unlock_irq(lock
);
660 sig
->group_exit_task
= NULL
;
661 sig
->notify_count
= 0;
662 sig
->real_timer
.data
= (unsigned long)current
;
663 spin_unlock_irq(lock
);
666 * At this point all other threads have exited, all we have to
667 * do is to wait for the thread group leader to become inactive,
668 * and to assume its PID:
670 if (!thread_group_leader(current
)) {
671 struct task_struct
*leader
= current
->group_leader
, *parent
;
672 struct dentry
*proc_dentry1
, *proc_dentry2
;
673 unsigned long exit_state
, ptrace
;
676 * Wait for the thread group leader to be a zombie.
677 * It should already be zombie at this point, most
680 while (leader
->exit_state
!= EXIT_ZOMBIE
)
683 spin_lock(&leader
->proc_lock
);
684 spin_lock(¤t
->proc_lock
);
685 proc_dentry1
= proc_pid_unhash(current
);
686 proc_dentry2
= proc_pid_unhash(leader
);
687 write_lock_irq(&tasklist_lock
);
689 BUG_ON(leader
->tgid
!= current
->tgid
);
690 BUG_ON(current
->pid
== current
->tgid
);
692 * An exec() starts a new thread group with the
693 * TGID of the previous thread group. Rehash the
694 * two threads with a switched PID, and release
695 * the former thread group leader:
697 ptrace
= leader
->ptrace
;
698 parent
= leader
->parent
;
699 if (unlikely(ptrace
) && unlikely(parent
== current
)) {
701 * Joker was ptracing his own group leader,
702 * and now he wants to be his own parent!
703 * We can't have that.
708 ptrace_unlink(current
);
709 ptrace_unlink(leader
);
710 remove_parent(current
);
711 remove_parent(leader
);
713 switch_exec_pids(leader
, current
);
715 current
->parent
= current
->real_parent
= leader
->real_parent
;
716 leader
->parent
= leader
->real_parent
= child_reaper
;
717 current
->group_leader
= current
;
718 leader
->group_leader
= leader
;
720 add_parent(current
, current
->parent
);
721 add_parent(leader
, leader
->parent
);
723 current
->ptrace
= ptrace
;
724 __ptrace_link(current
, parent
);
727 list_del(¤t
->tasks
);
728 list_add_tail(¤t
->tasks
, &init_task
.tasks
);
729 current
->exit_signal
= SIGCHLD
;
730 exit_state
= leader
->exit_state
;
732 write_unlock_irq(&tasklist_lock
);
733 spin_unlock(&leader
->proc_lock
);
734 spin_unlock(¤t
->proc_lock
);
735 proc_pid_flush(proc_dentry1
);
736 proc_pid_flush(proc_dentry2
);
738 BUG_ON(exit_state
!= EXIT_ZOMBIE
);
739 release_task(leader
);
743 * There may be one thread left which is just exiting,
744 * but it's safe to stop telling the group to kill themselves.
749 BUG_ON(atomic_read(&sig
->count
) != 1);
752 if (atomic_read(&oldsighand
->count
) == 1) {
754 * Now that we nuked the rest of the thread group,
755 * it turns out we are not sharing sighand any more either.
756 * So we can just keep it.
758 kmem_cache_free(sighand_cachep
, newsighand
);
761 * Move our state over to newsighand and switch it in.
763 spin_lock_init(&newsighand
->siglock
);
764 atomic_set(&newsighand
->count
, 1);
765 memcpy(newsighand
->action
, oldsighand
->action
,
766 sizeof(newsighand
->action
));
768 write_lock_irq(&tasklist_lock
);
769 spin_lock(&oldsighand
->siglock
);
770 spin_lock(&newsighand
->siglock
);
772 current
->sighand
= newsighand
;
775 spin_unlock(&newsighand
->siglock
);
776 spin_unlock(&oldsighand
->siglock
);
777 write_unlock_irq(&tasklist_lock
);
779 if (atomic_dec_and_test(&oldsighand
->count
))
780 kmem_cache_free(sighand_cachep
, oldsighand
);
783 BUG_ON(!thread_group_leader(current
));
788 * These functions flushes out all traces of the currently running executable
789 * so that a new one can be started
792 static inline void flush_old_files(struct files_struct
* files
)
797 spin_lock(&files
->file_lock
);
799 unsigned long set
, i
;
803 fdt
= files_fdtable(files
);
804 if (i
>= fdt
->max_fds
|| i
>= fdt
->max_fdset
)
806 set
= fdt
->close_on_exec
->fds_bits
[j
];
809 fdt
->close_on_exec
->fds_bits
[j
] = 0;
810 spin_unlock(&files
->file_lock
);
811 for ( ; set
; i
++,set
>>= 1) {
816 spin_lock(&files
->file_lock
);
819 spin_unlock(&files
->file_lock
);
822 void get_task_comm(char *buf
, struct task_struct
*tsk
)
824 /* buf must be at least sizeof(tsk->comm) in size */
826 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
830 void set_task_comm(struct task_struct
*tsk
, char *buf
)
833 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
837 int flush_old_exec(struct linux_binprm
* bprm
)
841 struct files_struct
*files
;
842 char tcomm
[sizeof(current
->comm
)];
845 * Make sure we have a private signal table and that
846 * we are unassociated from the previous thread group.
848 retval
= de_thread(current
);
853 * Make sure we have private file handles. Ask the
854 * fork helper to do the work for us and the exit
855 * helper to do the cleanup of the old one.
857 files
= current
->files
; /* refcounted so safe to hold */
858 retval
= unshare_files();
862 * Release all of the old mmap stuff
864 retval
= exec_mmap(bprm
->mm
);
868 bprm
->mm
= NULL
; /* We're using it now */
870 /* This is the point of no return */
872 put_files_struct(files
);
874 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
876 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
877 current
->mm
->dumpable
= 1;
879 current
->mm
->dumpable
= suid_dumpable
;
881 name
= bprm
->filename
;
883 /* Copies the binary name from after last slash */
884 for (i
=0; (ch
= *(name
++)) != '\0';) {
886 i
= 0; /* overwrite what we wrote */
888 if (i
< (sizeof(tcomm
) - 1))
892 set_task_comm(current
, tcomm
);
894 current
->flags
&= ~PF_RANDOMIZE
;
897 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
||
898 permission(bprm
->file
->f_dentry
->d_inode
,MAY_READ
, NULL
) ||
899 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
901 current
->mm
->dumpable
= suid_dumpable
;
904 /* An exec changes our domain. We are no longer part of the thread
907 current
->self_exec_id
++;
909 flush_signal_handlers(current
, 0);
910 flush_old_files(current
->files
);
915 put_files_struct(current
->files
);
916 current
->files
= files
;
921 EXPORT_SYMBOL(flush_old_exec
);
924 * Fill the binprm structure from the inode.
925 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
927 int prepare_binprm(struct linux_binprm
*bprm
)
930 struct inode
* inode
= bprm
->file
->f_dentry
->d_inode
;
933 mode
= inode
->i_mode
;
935 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
936 * generic_permission lets a non-executable through
938 if (!(mode
& 0111)) /* with at least _one_ execute bit set */
940 if (bprm
->file
->f_op
== NULL
)
943 bprm
->e_uid
= current
->euid
;
944 bprm
->e_gid
= current
->egid
;
946 if(!(bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)) {
948 if (mode
& S_ISUID
) {
949 current
->personality
&= ~PER_CLEAR_ON_SETID
;
950 bprm
->e_uid
= inode
->i_uid
;
955 * If setgid is set but no group execute bit then this
956 * is a candidate for mandatory locking, not a setgid
959 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
960 current
->personality
&= ~PER_CLEAR_ON_SETID
;
961 bprm
->e_gid
= inode
->i_gid
;
965 /* fill in binprm security blob */
966 retval
= security_bprm_set(bprm
);
970 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
971 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
974 EXPORT_SYMBOL(prepare_binprm
);
976 static inline int unsafe_exec(struct task_struct
*p
)
979 if (p
->ptrace
& PT_PTRACED
) {
980 if (p
->ptrace
& PT_PTRACE_CAP
)
981 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
983 unsafe
|= LSM_UNSAFE_PTRACE
;
985 if (atomic_read(&p
->fs
->count
) > 1 ||
986 atomic_read(&p
->files
->count
) > 1 ||
987 atomic_read(&p
->sighand
->count
) > 1)
988 unsafe
|= LSM_UNSAFE_SHARE
;
993 void compute_creds(struct linux_binprm
*bprm
)
997 if (bprm
->e_uid
!= current
->uid
)
1002 unsafe
= unsafe_exec(current
);
1003 security_bprm_apply_creds(bprm
, unsafe
);
1004 task_unlock(current
);
1005 security_bprm_post_apply_creds(bprm
);
1008 EXPORT_SYMBOL(compute_creds
);
1010 void remove_arg_zero(struct linux_binprm
*bprm
)
1013 unsigned long offset
;
1017 offset
= bprm
->p
% PAGE_SIZE
;
1020 while (bprm
->p
++, *(kaddr
+offset
++)) {
1021 if (offset
!= PAGE_SIZE
)
1024 kunmap_atomic(kaddr
, KM_USER0
);
1026 page
= bprm
->page
[bprm
->p
/PAGE_SIZE
];
1027 kaddr
= kmap_atomic(page
, KM_USER0
);
1029 kunmap_atomic(kaddr
, KM_USER0
);
1034 EXPORT_SYMBOL(remove_arg_zero
);
1037 * cycle the list of binary formats handler, until one recognizes the image
1039 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1042 struct linux_binfmt
*fmt
;
1044 /* handle /sbin/loader.. */
1046 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1048 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1049 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1052 unsigned long loader
;
1054 allow_write_access(bprm
->file
);
1058 loader
= PAGE_SIZE
*MAX_ARG_PAGES
-sizeof(void *);
1060 file
= open_exec("/sbin/loader");
1061 retval
= PTR_ERR(file
);
1065 /* Remember if the application is TASO. */
1066 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1069 bprm
->loader
= loader
;
1070 retval
= prepare_binprm(bprm
);
1073 /* should call search_binary_handler recursively here,
1074 but it does not matter */
1078 retval
= security_bprm_check(bprm
);
1082 /* kernel module loader fixup */
1083 /* so we don't try to load run modprobe in kernel space. */
1086 for (try=0; try<2; try++) {
1087 read_lock(&binfmt_lock
);
1088 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
1089 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1092 if (!try_module_get(fmt
->module
))
1094 read_unlock(&binfmt_lock
);
1095 retval
= fn(bprm
, regs
);
1098 allow_write_access(bprm
->file
);
1102 current
->did_exec
= 1;
1105 read_lock(&binfmt_lock
);
1107 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1110 read_unlock(&binfmt_lock
);
1114 read_unlock(&binfmt_lock
);
1115 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1119 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1120 if (printable(bprm
->buf
[0]) &&
1121 printable(bprm
->buf
[1]) &&
1122 printable(bprm
->buf
[2]) &&
1123 printable(bprm
->buf
[3]))
1124 break; /* -ENOEXEC */
1125 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1132 EXPORT_SYMBOL(search_binary_handler
);
1135 * sys_execve() executes a new program.
1137 int do_execve(char * filename
,
1138 char __user
*__user
*argv
,
1139 char __user
*__user
*envp
,
1140 struct pt_regs
* regs
)
1142 struct linux_binprm
*bprm
;
1148 bprm
= kmalloc(sizeof(*bprm
), GFP_KERNEL
);
1151 memset(bprm
, 0, sizeof(*bprm
));
1153 file
= open_exec(filename
);
1154 retval
= PTR_ERR(file
);
1160 bprm
->p
= PAGE_SIZE
*MAX_ARG_PAGES
-sizeof(void *);
1163 bprm
->filename
= filename
;
1164 bprm
->interp
= filename
;
1165 bprm
->mm
= mm_alloc();
1170 retval
= init_new_context(current
, bprm
->mm
);
1174 bprm
->argc
= count(argv
, bprm
->p
/ sizeof(void *));
1175 if ((retval
= bprm
->argc
) < 0)
1178 bprm
->envc
= count(envp
, bprm
->p
/ sizeof(void *));
1179 if ((retval
= bprm
->envc
) < 0)
1182 retval
= security_bprm_alloc(bprm
);
1186 retval
= prepare_binprm(bprm
);
1190 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1194 bprm
->exec
= bprm
->p
;
1195 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1199 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1203 retval
= search_binary_handler(bprm
,regs
);
1205 free_arg_pages(bprm
);
1207 /* execve success */
1208 security_bprm_free(bprm
);
1209 acct_update_integrals(current
);
1210 update_mem_hiwater(current
);
1216 /* Something went wrong, return the inode and free the argument pages*/
1217 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1218 struct page
* page
= bprm
->page
[i
];
1224 security_bprm_free(bprm
);
1232 allow_write_access(bprm
->file
);
1243 int set_binfmt(struct linux_binfmt
*new)
1245 struct linux_binfmt
*old
= current
->binfmt
;
1248 if (!try_module_get(new->module
))
1251 current
->binfmt
= new;
1253 module_put(old
->module
);
1257 EXPORT_SYMBOL(set_binfmt
);
1259 #define CORENAME_MAX_SIZE 64
1261 /* format_corename will inspect the pattern parameter, and output a
1262 * name into corename, which must have space for at least
1263 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1265 static void format_corename(char *corename
, const char *pattern
, long signr
)
1267 const char *pat_ptr
= pattern
;
1268 char *out_ptr
= corename
;
1269 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1271 int pid_in_pattern
= 0;
1273 /* Repeat as long as we have more pattern to process and more output
1276 if (*pat_ptr
!= '%') {
1277 if (out_ptr
== out_end
)
1279 *out_ptr
++ = *pat_ptr
++;
1281 switch (*++pat_ptr
) {
1284 /* Double percent, output one percent */
1286 if (out_ptr
== out_end
)
1293 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1294 "%d", current
->tgid
);
1295 if (rc
> out_end
- out_ptr
)
1301 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1302 "%d", current
->uid
);
1303 if (rc
> out_end
- out_ptr
)
1309 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1310 "%d", current
->gid
);
1311 if (rc
> out_end
- out_ptr
)
1315 /* signal that caused the coredump */
1317 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1319 if (rc
> out_end
- out_ptr
)
1323 /* UNIX time of coredump */
1326 do_gettimeofday(&tv
);
1327 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1329 if (rc
> out_end
- out_ptr
)
1336 down_read(&uts_sem
);
1337 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1338 "%s", system_utsname
.nodename
);
1340 if (rc
> out_end
- out_ptr
)
1346 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1347 "%s", current
->comm
);
1348 if (rc
> out_end
- out_ptr
)
1358 /* Backward compatibility with core_uses_pid:
1360 * If core_pattern does not include a %p (as is the default)
1361 * and core_uses_pid is set, then .%pid will be appended to
1364 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1365 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1366 ".%d", current
->tgid
);
1367 if (rc
> out_end
- out_ptr
)
1375 static void zap_threads (struct mm_struct
*mm
)
1377 struct task_struct
*g
, *p
;
1378 struct task_struct
*tsk
= current
;
1379 struct completion
*vfork_done
= tsk
->vfork_done
;
1383 * Make sure nobody is waiting for us to release the VM,
1384 * otherwise we can deadlock when we wait on each other
1387 tsk
->vfork_done
= NULL
;
1388 complete(vfork_done
);
1391 read_lock(&tasklist_lock
);
1393 if (mm
== p
->mm
&& p
!= tsk
) {
1394 force_sig_specific(SIGKILL
, p
);
1396 if (unlikely(p
->ptrace
) &&
1397 unlikely(p
->parent
->mm
== mm
))
1400 while_each_thread(g
,p
);
1402 read_unlock(&tasklist_lock
);
1404 if (unlikely(traced
)) {
1406 * We are zapping a thread and the thread it ptraces.
1407 * If the tracee went into a ptrace stop for exit tracing,
1408 * we could deadlock since the tracer is waiting for this
1409 * coredump to finish. Detach them so they can both die.
1411 write_lock_irq(&tasklist_lock
);
1412 do_each_thread(g
,p
) {
1413 if (mm
== p
->mm
&& p
!= tsk
&&
1414 p
->ptrace
&& p
->parent
->mm
== mm
) {
1417 } while_each_thread(g
,p
);
1418 write_unlock_irq(&tasklist_lock
);
1422 static void coredump_wait(struct mm_struct
*mm
)
1424 DECLARE_COMPLETION(startup_done
);
1426 mm
->core_waiters
++; /* let other threads block */
1427 mm
->core_startup_done
= &startup_done
;
1429 /* give other threads a chance to run: */
1433 if (--mm
->core_waiters
) {
1434 up_write(&mm
->mmap_sem
);
1435 wait_for_completion(&startup_done
);
1437 up_write(&mm
->mmap_sem
);
1438 BUG_ON(mm
->core_waiters
);
1441 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1443 char corename
[CORENAME_MAX_SIZE
+ 1];
1444 struct mm_struct
*mm
= current
->mm
;
1445 struct linux_binfmt
* binfmt
;
1446 struct inode
* inode
;
1449 int fsuid
= current
->fsuid
;
1452 binfmt
= current
->binfmt
;
1453 if (!binfmt
|| !binfmt
->core_dump
)
1455 down_write(&mm
->mmap_sem
);
1456 if (!mm
->dumpable
) {
1457 up_write(&mm
->mmap_sem
);
1462 * We cannot trust fsuid as being the "true" uid of the
1463 * process nor do we know its entire history. We only know it
1464 * was tainted so we dump it as root in mode 2.
1466 if (mm
->dumpable
== 2) { /* Setuid core dump mode */
1467 flag
= O_EXCL
; /* Stop rewrite attacks */
1468 current
->fsuid
= 0; /* Dump root private */
1471 init_completion(&mm
->core_done
);
1472 spin_lock_irq(¤t
->sighand
->siglock
);
1473 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1474 current
->signal
->group_exit_code
= exit_code
;
1475 spin_unlock_irq(¤t
->sighand
->siglock
);
1479 * Clear any false indication of pending signals that might
1480 * be seen by the filesystem code called to write the core file.
1482 current
->signal
->group_stop_count
= 0;
1483 clear_thread_flag(TIF_SIGPENDING
);
1485 if (current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
< binfmt
->min_coredump
)
1489 * lock_kernel() because format_corename() is controlled by sysctl, which
1490 * uses lock_kernel()
1493 format_corename(corename
, core_pattern
, signr
);
1495 file
= filp_open(corename
, O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
, 0600);
1498 inode
= file
->f_dentry
->d_inode
;
1499 if (inode
->i_nlink
> 1)
1500 goto close_fail
; /* multiple links - don't dump */
1501 if (d_unhashed(file
->f_dentry
))
1504 if (!S_ISREG(inode
->i_mode
))
1508 if (!file
->f_op
->write
)
1510 if (do_truncate(file
->f_dentry
, 0) != 0)
1513 retval
= binfmt
->core_dump(signr
, regs
, file
);
1516 current
->signal
->group_exit_code
|= 0x80;
1518 filp_close(file
, NULL
);
1520 current
->fsuid
= fsuid
;
1521 complete_all(&mm
->core_done
);