Get it to compile again ...
[linux-2.6/linux-mips.git] / kernel / posix-timers.c
blob25757200b34da62dbe14ca14595e37d5f2d84aa4
1 /*
2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers by George Anzinger
6 * Copyright (C) 2002 by MontaVista Software.
7 */
9 /* These are all the functions necessary to implement
10 * POSIX clocks & timers
12 #include <linux/mm.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/slab.h>
16 #include <linux/time.h>
18 #include <asm/uaccess.h>
19 #include <asm/semaphore.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/idr.h>
24 #include <linux/posix-timers.h>
25 #include <linux/wait.h>
27 #ifndef div_long_long_rem
28 #include <asm/div64.h>
30 #define div_long_long_rem(dividend,divisor,remainder) ({ \
31 u64 result = dividend; \
32 *remainder = do_div(result,divisor); \
33 result; })
35 #endif
36 #define CLOCK_REALTIME_RES TICK_NSEC(TICK_USEC) // In nano seconds.
38 static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
40 return (u64)mpy1 * mpy2;
43 * Management arrays for POSIX timers. Timers are kept in slab memory
44 * Timer ids are allocated by an external routine that keeps track of the
45 * id and the timer. The external interface is:
47 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
48 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
49 * related it to <ptr>
50 * void idr_remove(struct idr *idp, int id); to release <id>
51 * void idr_init(struct idr *idp); to initialize <idp>
52 * which we supply.
53 * The idr_get_new *may* call slab for more memory so it must not be
54 * called under a spin lock. Likewise idr_remore may release memory
55 * (but it may be ok to do this under a lock...).
56 * idr_find is just a memory look up and is quite fast. A -1 return
57 * indicates that the requested id does not exist.
61 * Lets keep our timers in a slab cache :-)
63 static kmem_cache_t *posix_timers_cache;
64 static struct idr posix_timers_id;
65 static spinlock_t idr_lock = SPIN_LOCK_UNLOCKED;
68 * Just because the timer is not in the timer list does NOT mean it is
69 * inactive. It could be in the "fire" routine getting a new expire time.
71 #define TIMER_INACTIVE 1
72 #define TIMER_RETRY 1
74 #ifdef CONFIG_SMP
75 # define timer_active(tmr) \
76 ((tmr)->it_timer.entry.prev != (void *)TIMER_INACTIVE)
77 # define set_timer_inactive(tmr) \
78 do { \
79 (tmr)->it_timer.entry.prev = (void *)TIMER_INACTIVE; \
80 } while (0)
81 #else
82 # define timer_active(tmr) BARFY // error to use outside of SMP
83 # define set_timer_inactive(tmr) do { } while (0)
84 #endif
87 * For some reason mips/mips64 define the SIGEV constants plus 128.
88 * Here we define a mask to get rid of the common bits. The
89 * optimizer should make this costless to all but mips.
90 * Note that no common bits (the non-mips case) will give 0xffffffff.
92 #define MIPS_SIGEV ~(SIGEV_NONE & \
93 SIGEV_SIGNAL & \
94 SIGEV_THREAD & \
95 SIGEV_THREAD_ID)
97 #define REQUEUE_PENDING 1
99 * The timer ID is turned into a timer address by idr_find().
100 * Verifying a valid ID consists of:
102 * a) checking that idr_find() returns other than -1.
103 * b) checking that the timer id matches the one in the timer itself.
104 * c) that the timer owner is in the callers thread group.
108 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
109 * to implement others. This structure defines the various
110 * clocks and allows the possibility of adding others. We
111 * provide an interface to add clocks to the table and expect
112 * the "arch" code to add at least one clock that is high
113 * resolution. Here we define the standard CLOCK_REALTIME as a
114 * 1/HZ resolution clock.
116 * CPUTIME & THREAD_CPUTIME: We are not, at this time, definding these
117 * two clocks (and the other process related clocks (Std
118 * 1003.1d-1999). The way these should be supported, we think,
119 * is to use large negative numbers for the two clocks that are
120 * pinned to the executing process and to use -pid for clocks
121 * pinned to particular pids. Calls which supported these clock
122 * ids would split early in the function.
124 * RESOLUTION: Clock resolution is used to round up timer and interval
125 * times, NOT to report clock times, which are reported with as
126 * much resolution as the system can muster. In some cases this
127 * resolution may depend on the underlaying clock hardware and
128 * may not be quantifiable until run time, and only then is the
129 * necessary code is written. The standard says we should say
130 * something about this issue in the documentation...
132 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
133 * various clock functions. For clocks that use the standard
134 * system timer code these entries should be NULL. This will
135 * allow dispatch without the overhead of indirect function
136 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
137 * must supply functions here, even if the function just returns
138 * ENOSYS. The standard POSIX timer management code assumes the
139 * following: 1.) The k_itimer struct (sched.h) is used for the
140 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
141 * fields are not modified by timer code.
143 * At this time all functions EXCEPT clock_nanosleep can be
144 * redirected by the CLOCKS structure. Clock_nanosleep is in
145 * there, but the code ignors it.
147 * Permissions: It is assumed that the clock_settime() function defined
148 * for each clock will take care of permission checks. Some
149 * clocks may be set able by any user (i.e. local process
150 * clocks) others not. Currently the only set able clock we
151 * have is CLOCK_REALTIME and its high res counter part, both of
152 * which we beg off on and pass to do_sys_settimeofday().
155 static struct k_clock posix_clocks[MAX_CLOCKS];
157 #define if_clock_do(clock_fun,alt_fun,parms) \
158 (!clock_fun) ? alt_fun parms : clock_fun parms
160 #define p_timer_get(clock,a,b) \
161 if_clock_do((clock)->timer_get,do_timer_gettime, (a,b))
163 #define p_nsleep(clock,a,b,c) \
164 if_clock_do((clock)->nsleep, do_nsleep, (a,b,c))
166 #define p_timer_del(clock,a) \
167 if_clock_do((clock)->timer_del, do_timer_delete, (a))
169 void register_posix_clock(int clock_id, struct k_clock *new_clock);
170 static int do_posix_gettime(struct k_clock *clock, struct timespec *tp);
171 static u64 do_posix_clock_monotonic_gettime_parts(
172 struct timespec *tp, struct timespec *mo);
173 int do_posix_clock_monotonic_gettime(struct timespec *tp);
174 int do_posix_clock_monotonic_settime(struct timespec *tp);
175 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
176 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags);
179 * Initialize everything, well, just everything in Posix clocks/timers ;)
181 static __init int init_posix_timers(void)
183 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES };
184 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
185 .clock_get = do_posix_clock_monotonic_gettime,
186 .clock_set = do_posix_clock_monotonic_settime
189 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
190 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
192 posix_timers_cache = kmem_cache_create("posix_timers_cache",
193 sizeof (struct k_itimer), 0, 0, 0, 0);
194 idr_init(&posix_timers_id);
196 return 0;
199 __initcall(init_posix_timers);
201 static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
203 long sec = tp->tv_sec;
204 long nsec = tp->tv_nsec + res - 1;
206 if (nsec > NSEC_PER_SEC) {
207 sec++;
208 nsec -= NSEC_PER_SEC;
212 * The scaling constants are defined in <linux/time.h>
213 * The difference between there and here is that we do the
214 * res rounding and compute a 64-bit result (well so does that
215 * but it then throws away the high bits).
217 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
218 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
219 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
222 static void schedule_next_timer(struct k_itimer *timr)
224 struct now_struct now;
226 /* Set up the timer for the next interval (if there is one) */
227 if (!timr->it_incr)
228 return;
230 posix_get_now(&now);
231 do {
232 posix_bump_timer(timr);
233 }while (posix_time_before(&timr->it_timer, &now));
235 timr->it_overrun_last = timr->it_overrun;
236 timr->it_overrun = -1;
237 ++timr->it_requeue_pending;
238 add_timer(&timr->it_timer);
242 * This function is exported for use by the signal deliver code. It is
243 * called just prior to the info block being released and passes that
244 * block to us. It's function is to update the overrun entry AND to
245 * restart the timer. It should only be called if the timer is to be
246 * restarted (i.e. we have flagged this in the sys_private entry of the
247 * info block).
249 * To protect aginst the timer going away while the interrupt is queued,
250 * we require that the it_requeue_pending flag be set.
252 void do_schedule_next_timer(struct siginfo *info)
254 struct k_itimer *timr;
255 unsigned long flags;
257 timr = lock_timer(info->si_tid, &flags);
259 if (!timr || timr->it_requeue_pending != info->si_sys_private)
260 goto exit;
262 schedule_next_timer(timr);
263 info->si_overrun = timr->it_overrun_last;
264 exit:
265 if (timr)
266 unlock_timer(timr, flags);
270 * Notify the task and set up the timer for the next expiration (if
271 * applicable). This function requires that the k_itimer structure
272 * it_lock is taken. This code will requeue the timer only if we get
273 * either an error return or a flag (ret > 0) from send_seg_info
274 * indicating that the signal was either not queued or was queued
275 * without an info block. In this case, we will not get a call back to
276 * do_schedule_next_timer() so we do it here. This should be rare...
278 * An interesting problem can occur if, while a signal, and thus a call
279 * back is pending, the timer is rearmed, i.e. stopped and restarted.
280 * We then need to sort out the call back and do the right thing. What
281 * we do is to put a counter in the info block and match it with the
282 * timers copy on the call back. If they don't match, we just ignore
283 * the call back. The counter is local to the timer and we use odd to
284 * indicate a call back is pending. Note that we do allow the timer to
285 * be deleted while a signal is pending. The standard says we can
286 * allow that signal to be delivered, and we do.
289 static void timer_notify_task(struct k_itimer *timr)
291 struct siginfo info;
292 int ret;
294 memset(&info, 0, sizeof (info));
296 /* Send signal to the process that owns this timer. */
297 info.si_signo = timr->it_sigev_signo;
298 info.si_errno = 0;
299 info.si_code = SI_TIMER;
300 info.si_tid = timr->it_id;
301 info.si_value = timr->it_sigev_value;
302 if (timr->it_incr)
303 info.si_sys_private = ++timr->it_requeue_pending;
305 if (timr->it_sigev_notify & SIGEV_THREAD_ID & MIPS_SIGEV)
306 ret = send_sig_info(info.si_signo, &info, timr->it_process);
307 else
308 ret = send_group_sig_info(info.si_signo, &info,
309 timr->it_process);
310 switch (ret) {
312 default:
314 * Signal was not sent. May or may not need to
315 * restart the timer.
317 printk(KERN_WARNING "sending signal failed: %d\n", ret);
318 case 1:
320 * signal was not sent because of sig_ignor or,
321 * possibly no queue memory OR will be sent but,
322 * we will not get a call back to restart it AND
323 * it should be restarted.
325 schedule_next_timer(timr);
326 case 0:
328 * all's well new signal queued
330 break;
335 * This function gets called when a POSIX.1b interval timer expires. It
336 * is used as a callback from the kernel internal timer. The
337 * run_timer_list code ALWAYS calls with interrutps on.
339 static void posix_timer_fn(unsigned long __data)
341 struct k_itimer *timr = (struct k_itimer *) __data;
342 unsigned long flags;
344 spin_lock_irqsave(&timr->it_lock, flags);
345 set_timer_inactive(timr);
346 timer_notify_task(timr);
347 unlock_timer(timr, flags);
351 static inline struct task_struct * good_sigevent(sigevent_t * event)
353 struct task_struct *rtn = current;
355 if ((event->sigev_notify & SIGEV_THREAD_ID & MIPS_SIGEV) &&
356 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
357 rtn->tgid != current->tgid))
358 return NULL;
360 if ((event->sigev_notify & ~SIGEV_NONE & MIPS_SIGEV) &&
361 ((unsigned) (event->sigev_signo > SIGRTMAX)))
362 return NULL;
364 return rtn;
367 void register_posix_clock(int clock_id, struct k_clock *new_clock)
369 if ((unsigned) clock_id >= MAX_CLOCKS) {
370 printk("POSIX clock register failed for clock_id %d\n",
371 clock_id);
372 return;
374 posix_clocks[clock_id] = *new_clock;
377 static struct k_itimer * alloc_posix_timer(void)
379 struct k_itimer *tmr;
380 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
381 memset(tmr, 0, sizeof (struct k_itimer));
383 return tmr;
386 static void release_posix_timer(struct k_itimer *tmr)
388 if (tmr->it_id != -1) {
389 spin_lock_irq(&idr_lock);
390 idr_remove(&posix_timers_id, tmr->it_id);
391 spin_unlock_irq(&idr_lock);
393 kmem_cache_free(posix_timers_cache, tmr);
396 /* Create a POSIX.1b interval timer. */
398 asmlinkage long
399 sys_timer_create(clockid_t which_clock,
400 struct sigevent __user *timer_event_spec,
401 timer_t __user * created_timer_id)
403 int error = 0;
404 struct k_itimer *new_timer = NULL;
405 timer_t new_timer_id;
406 struct task_struct *process = 0;
407 sigevent_t event;
409 if ((unsigned) which_clock >= MAX_CLOCKS ||
410 !posix_clocks[which_clock].res)
411 return -EINVAL;
413 new_timer = alloc_posix_timer();
414 if (unlikely(!new_timer))
415 return -EAGAIN;
417 spin_lock_init(&new_timer->it_lock);
418 do {
419 if (unlikely(!idr_pre_get(&posix_timers_id))) {
420 error = -EAGAIN;
421 new_timer_id = (timer_t)-1;
422 goto out;
424 spin_lock_irq(&idr_lock);
425 new_timer_id = (timer_t) idr_get_new(&posix_timers_id,
426 (void *) new_timer);
427 spin_unlock_irq(&idr_lock);
428 } while (unlikely(new_timer_id == -1));
430 new_timer->it_id = new_timer_id;
432 * return the timer_id now. The next step is hard to
433 * back out if there is an error.
435 if (copy_to_user(created_timer_id,
436 &new_timer_id, sizeof (new_timer_id))) {
437 error = -EFAULT;
438 goto out;
440 if (timer_event_spec) {
441 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
442 error = -EFAULT;
443 goto out;
445 read_lock(&tasklist_lock);
446 if ((process = good_sigevent(&event))) {
448 * We may be setting up this process for another
449 * thread. It may be exiting. To catch this
450 * case the we check the PF_EXITING flag. If
451 * the flag is not set, the task_lock will catch
452 * him before it is too late (in exit_itimers).
454 * The exec case is a bit more invloved but easy
455 * to code. If the process is in our thread
456 * group (and it must be or we would not allow
457 * it here) and is doing an exec, it will cause
458 * us to be killed. In this case it will wait
459 * for us to die which means we can finish this
460 * linkage with our last gasp. I.e. no code :)
462 task_lock(process);
463 if (!(process->flags & PF_EXITING)) {
464 list_add(&new_timer->list,
465 &process->posix_timers);
466 task_unlock(process);
467 } else {
468 task_unlock(process);
469 process = 0;
472 read_unlock(&tasklist_lock);
473 if (!process) {
474 error = -EINVAL;
475 goto out;
477 new_timer->it_sigev_notify = event.sigev_notify;
478 new_timer->it_sigev_signo = event.sigev_signo;
479 new_timer->it_sigev_value = event.sigev_value;
480 } else {
481 new_timer->it_sigev_notify = SIGEV_SIGNAL;
482 new_timer->it_sigev_signo = SIGALRM;
483 new_timer->it_sigev_value.sival_int = new_timer->it_id;
484 process = current;
485 task_lock(process);
486 list_add(&new_timer->list, &process->posix_timers);
487 task_unlock(process);
490 new_timer->it_clock = which_clock;
491 new_timer->it_incr = 0;
492 new_timer->it_overrun = -1;
493 init_timer(&new_timer->it_timer);
494 new_timer->it_timer.expires = 0;
495 new_timer->it_timer.data = (unsigned long) new_timer;
496 new_timer->it_timer.function = posix_timer_fn;
497 set_timer_inactive(new_timer);
500 * Once we set the process, it can be found so do it last...
502 new_timer->it_process = process;
503 out:
504 if (error)
505 release_posix_timer(new_timer);
507 return error;
511 * good_timespec
513 * This function checks the elements of a timespec structure.
515 * Arguments:
516 * ts : Pointer to the timespec structure to check
518 * Return value:
519 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
520 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
521 * this function returns 0. Otherwise it returns 1.
523 static int good_timespec(const struct timespec *ts)
525 if ((!ts) || (ts->tv_sec < 0) ||
526 ((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
527 return 0;
528 return 1;
531 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
533 spin_unlock_irqrestore(&timr->it_lock, flags);
537 * Locking issues: We need to protect the result of the id look up until
538 * we get the timer locked down so it is not deleted under us. The
539 * removal is done under the idr spinlock so we use that here to bridge
540 * the find to the timer lock. To avoid a dead lock, the timer id MUST
541 * be release with out holding the timer lock.
543 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
545 struct k_itimer *timr;
547 * Watch out here. We do a irqsave on the idr_lock and pass the
548 * flags part over to the timer lock. Must not let interrupts in
549 * while we are moving the lock.
552 spin_lock_irqsave(&idr_lock, *flags);
553 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
554 if (timr) {
555 spin_lock(&timr->it_lock);
556 spin_unlock(&idr_lock);
558 if ((timr->it_id != timer_id) || !(timr->it_process) ||
559 timr->it_process->tgid != current->tgid) {
560 unlock_timer(timr, *flags);
561 timr = NULL;
563 } else
564 spin_unlock_irqrestore(&idr_lock, *flags);
566 return timr;
570 * Get the time remaining on a POSIX.1b interval timer. This function
571 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
572 * mess with irq.
574 * We have a couple of messes to clean up here. First there is the case
575 * of a timer that has a requeue pending. These timers should appear to
576 * be in the timer list with an expiry as if we were to requeue them
577 * now.
579 * The second issue is the SIGEV_NONE timer which may be active but is
580 * not really ever put in the timer list (to save system resources).
581 * This timer may be expired, and if so, we will do it here. Otherwise
582 * it is the same as a requeue pending timer WRT to what we should
583 * report.
585 void inline
586 do_timer_gettime(struct k_itimer *timr, struct itimerspec *cur_setting)
588 unsigned long expires;
589 struct now_struct now;
592 expires = timr->it_timer.expires;
593 while ((volatile long) (timr->it_timer.expires) != expires);
595 posix_get_now(&now);
597 if (expires && (timr->it_sigev_notify & SIGEV_NONE) && !timr->it_incr &&
598 posix_time_before(&timr->it_timer, &now))
599 timr->it_timer.expires = expires = 0;
600 if (expires) {
601 if (timr->it_requeue_pending & REQUEUE_PENDING ||
602 (timr->it_sigev_notify & SIGEV_NONE))
603 while (posix_time_before(&timr->it_timer, &now))
604 posix_bump_timer(timr);
605 else
606 if (!timer_pending(&timr->it_timer))
607 expires = 0;
608 if (expires)
609 expires -= now.jiffies;
611 jiffies_to_timespec(expires, &cur_setting->it_value);
612 jiffies_to_timespec(timr->it_incr, &cur_setting->it_interval);
614 if (cur_setting->it_value.tv_sec < 0) {
615 cur_setting->it_value.tv_nsec = 1;
616 cur_setting->it_value.tv_sec = 0;
620 /* Get the time remaining on a POSIX.1b interval timer. */
621 asmlinkage long
622 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
624 struct k_itimer *timr;
625 struct itimerspec cur_setting;
626 unsigned long flags;
628 timr = lock_timer(timer_id, &flags);
629 if (!timr)
630 return -EINVAL;
632 p_timer_get(&posix_clocks[timr->it_clock], timr, &cur_setting);
634 unlock_timer(timr, flags);
636 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
637 return -EFAULT;
639 return 0;
642 * Get the number of overruns of a POSIX.1b interval timer. This is to
643 * be the overrun of the timer last delivered. At the same time we are
644 * accumulating overruns on the next timer. The overrun is frozen when
645 * the signal is delivered, either at the notify time (if the info block
646 * is not queued) or at the actual delivery time (as we are informed by
647 * the call back to do_schedule_next_timer(). So all we need to do is
648 * to pick up the frozen overrun.
651 asmlinkage long
652 sys_timer_getoverrun(timer_t timer_id)
654 struct k_itimer *timr;
655 int overrun;
656 long flags;
658 timr = lock_timer(timer_id, &flags);
659 if (!timr)
660 return -EINVAL;
662 overrun = timr->it_overrun_last;
663 unlock_timer(timr, flags);
665 return overrun;
668 * Adjust for absolute time
670 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
671 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
672 * what ever clock he is using.
674 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
675 * time to it to get the proper time for the timer.
677 static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
678 int abs, u64 *exp)
680 struct timespec now;
681 struct timespec oc = *tp;
682 struct timespec wall_to_mono;
683 u64 jiffies_64_f;
684 int rtn =0;
686 if (abs) {
688 * The mask pick up the 4 basic clocks
690 if (!(clock - &posix_clocks[0]) & ~CLOCKS_MASK) {
691 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
692 &now, &wall_to_mono);
694 * If we are doing a MONOTONIC clock
696 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
697 now.tv_sec += wall_to_mono.tv_sec;
698 now.tv_nsec += wall_to_mono.tv_nsec;
700 } else {
702 * Not one of the basic clocks
704 do_posix_gettime(clock, &now);
705 jiffies_64_f = get_jiffies_64();
708 * Take away now to get delta
710 oc.tv_sec -= now.tv_sec;
711 oc.tv_nsec -= now.tv_nsec;
713 * Normalize...
715 while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) {
716 oc.tv_nsec -= NSEC_PER_SEC;
717 oc.tv_sec++;
719 while ((oc.tv_nsec) < 0) {
720 oc.tv_nsec += NSEC_PER_SEC;
721 oc.tv_sec--;
723 }else{
724 jiffies_64_f = get_jiffies_64();
727 * Check if the requested time is prior to now (if so set now)
729 if (oc.tv_sec < 0)
730 oc.tv_sec = oc.tv_nsec = 0;
731 tstojiffie(&oc, clock->res, exp);
734 * Check if the requested time is more than the timer code
735 * can handle (if so we error out but return the value too).
737 if (*exp > ((u64)MAX_JIFFY_OFFSET))
739 * This is a considered response, not exactly in
740 * line with the standard (in fact it is silent on
741 * possible overflows). We assume such a large
742 * value is ALMOST always a programming error and
743 * try not to compound it by setting a really dumb
744 * value.
746 rtn = -EINVAL;
748 * return the actual jiffies expire time, full 64 bits
750 *exp += jiffies_64_f;
751 return rtn;
754 /* Set a POSIX.1b interval timer. */
755 /* timr->it_lock is taken. */
756 static inline int
757 do_timer_settime(struct k_itimer *timr, int flags,
758 struct itimerspec *new_setting, struct itimerspec *old_setting)
760 struct k_clock *clock = &posix_clocks[timr->it_clock];
761 u64 expire_64;
763 if (old_setting)
764 do_timer_gettime(timr, old_setting);
766 /* disable the timer */
767 timr->it_incr = 0;
769 * careful here. If smp we could be in the "fire" routine which will
770 * be spinning as we hold the lock. But this is ONLY an SMP issue.
772 #ifdef CONFIG_SMP
773 if (timer_active(timr) && !del_timer(&timr->it_timer))
775 * It can only be active if on an other cpu. Since
776 * we have cleared the interval stuff above, it should
777 * clear once we release the spin lock. Of course once
778 * we do that anything could happen, including the
779 * complete melt down of the timer. So return with
780 * a "retry" exit status.
782 return TIMER_RETRY;
784 set_timer_inactive(timr);
785 #else
786 del_timer(&timr->it_timer);
787 #endif
788 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
789 ~REQUEUE_PENDING;
790 timr->it_overrun_last = 0;
791 timr->it_overrun = -1;
793 *switch off the timer when it_value is zero
795 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
796 timr->it_timer.expires = 0;
797 return 0;
800 if (adjust_abs_time(clock,
801 &new_setting->it_value, flags & TIMER_ABSTIME,
802 &expire_64)) {
803 return -EINVAL;
805 timr->it_timer.expires = (unsigned long)expire_64;
806 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
807 timr->it_incr = (unsigned long)expire_64;
811 * For some reason the timer does not fire immediately if expires is
812 * equal to jiffies, so the timer notify function is called directly.
813 * We do not even queue SIGEV_NONE timers!
815 if (!(timr->it_sigev_notify & SIGEV_NONE)) {
816 if (timr->it_timer.expires == jiffies)
817 timer_notify_task(timr);
818 else
819 add_timer(&timr->it_timer);
821 return 0;
824 /* Set a POSIX.1b interval timer */
825 asmlinkage long
826 sys_timer_settime(timer_t timer_id, int flags,
827 const struct itimerspec __user *new_setting,
828 struct itimerspec __user *old_setting)
830 struct k_itimer *timr;
831 struct itimerspec new_spec, old_spec;
832 int error = 0;
833 long flag;
834 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
836 if (!new_setting)
837 return -EINVAL;
839 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
840 return -EFAULT;
842 if ((!good_timespec(&new_spec.it_interval)) ||
843 (!good_timespec(&new_spec.it_value)))
844 return -EINVAL;
845 retry:
846 timr = lock_timer(timer_id, &flag);
847 if (!timr)
848 return -EINVAL;
850 if (!posix_clocks[timr->it_clock].timer_set)
851 error = do_timer_settime(timr, flags, &new_spec, rtn);
852 else
853 error = posix_clocks[timr->it_clock].timer_set(timr,
854 flags,
855 &new_spec, rtn);
856 unlock_timer(timr, flag);
857 if (error == TIMER_RETRY) {
858 rtn = NULL; // We already got the old time...
859 goto retry;
862 if (old_setting && !error && copy_to_user(old_setting,
863 &old_spec, sizeof (old_spec)))
864 error = -EFAULT;
866 return error;
869 static inline int do_timer_delete(struct k_itimer *timer)
871 timer->it_incr = 0;
872 #ifdef CONFIG_SMP
873 if (timer_active(timer) && !del_timer(&timer->it_timer))
875 * It can only be active if on an other cpu. Since
876 * we have cleared the interval stuff above, it should
877 * clear once we release the spin lock. Of course once
878 * we do that anything could happen, including the
879 * complete melt down of the timer. So return with
880 * a "retry" exit status.
882 return TIMER_RETRY;
883 #else
884 del_timer(&timer->it_timer);
885 #endif
886 return 0;
889 /* Delete a POSIX.1b interval timer. */
890 asmlinkage long
891 sys_timer_delete(timer_t timer_id)
893 struct k_itimer *timer;
894 long flags;
896 #ifdef CONFIG_SMP
897 int error;
898 retry_delete:
899 #endif
900 timer = lock_timer(timer_id, &flags);
901 if (!timer)
902 return -EINVAL;
904 #ifdef CONFIG_SMP
905 error = p_timer_del(&posix_clocks[timer->it_clock], timer);
907 if (error == TIMER_RETRY) {
908 unlock_timer(timer, flags);
909 goto retry_delete;
911 #else
912 p_timer_del(&posix_clocks[timer->it_clock], timer);
913 #endif
914 task_lock(timer->it_process);
915 list_del(&timer->list);
916 task_unlock(timer->it_process);
918 * This keeps any tasks waiting on the spin lock from thinking
919 * they got something (see the lock code above).
921 timer->it_process = NULL;
922 unlock_timer(timer, flags);
923 release_posix_timer(timer);
924 return 0;
927 * return timer owned by the process, used by exit_itimers
929 static inline void itimer_delete(struct k_itimer *timer)
931 if (sys_timer_delete(timer->it_id))
932 BUG();
935 * This is exported to exit and exec
937 void exit_itimers(struct task_struct *tsk)
939 struct k_itimer *tmr;
941 task_lock(tsk);
942 while (!list_empty(&tsk->posix_timers)) {
943 tmr = list_entry(tsk->posix_timers.next, struct k_itimer, list);
944 task_unlock(tsk);
945 itimer_delete(tmr);
946 task_lock(tsk);
948 task_unlock(tsk);
952 * And now for the "clock" calls
954 * These functions are called both from timer functions (with the timer
955 * spin_lock_irq() held and from clock calls with no locking. They must
956 * use the save flags versions of locks.
958 static int do_posix_gettime(struct k_clock *clock, struct timespec *tp)
960 if (clock->clock_get)
961 return clock->clock_get(tp);
963 do_gettimeofday((struct timeval *) tp);
964 tp->tv_nsec *= NSEC_PER_USEC;
965 return 0;
969 * We do ticks here to avoid the irq lock ( they take sooo long).
970 * The seqlock is great here. Since we a reader, we don't really care
971 * if we are interrupted since we don't take lock that will stall us or
972 * any other cpu. Voila, no irq lock is needed.
974 * Note also that the while loop assures that the sub_jiff_offset
975 * will be less than a jiffie, thus no need to normalize the result.
976 * Well, not really, if called with ints off :(
979 static u64 do_posix_clock_monotonic_gettime_parts(
980 struct timespec *tp, struct timespec *mo)
982 u64 jiff;
983 struct timeval tpv;
984 unsigned int seq;
986 do {
987 seq = read_seqbegin(&xtime_lock);
988 do_gettimeofday(&tpv);
989 *mo = wall_to_monotonic;
990 jiff = jiffies_64;
992 } while(read_seqretry(&xtime_lock, seq));
995 * Love to get this before it is converted to usec.
996 * It would save a div AND a mpy.
998 tp->tv_sec = tpv.tv_sec;
999 tp->tv_nsec = tpv.tv_usec * NSEC_PER_USEC;
1001 return jiff;
1004 int do_posix_clock_monotonic_gettime(struct timespec *tp)
1006 struct timespec wall_to_mono;
1008 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1010 tp->tv_sec += wall_to_mono.tv_sec;
1011 tp->tv_nsec += wall_to_mono.tv_nsec;
1013 if ((tp->tv_nsec - NSEC_PER_SEC) > 0) {
1014 tp->tv_nsec -= NSEC_PER_SEC;
1015 tp->tv_sec++;
1017 return 0;
1020 int do_posix_clock_monotonic_settime(struct timespec *tp)
1022 return -EINVAL;
1025 asmlinkage long
1026 sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp)
1028 struct timespec new_tp;
1030 if ((unsigned) which_clock >= MAX_CLOCKS ||
1031 !posix_clocks[which_clock].res)
1032 return -EINVAL;
1033 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1034 return -EFAULT;
1035 if (posix_clocks[which_clock].clock_set)
1036 return posix_clocks[which_clock].clock_set(&new_tp);
1038 new_tp.tv_nsec /= NSEC_PER_USEC;
1039 return do_sys_settimeofday((struct timeval *) &new_tp, NULL);
1042 asmlinkage long
1043 sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp)
1045 struct timespec rtn_tp;
1046 int error = 0;
1048 if ((unsigned) which_clock >= MAX_CLOCKS ||
1049 !posix_clocks[which_clock].res)
1050 return -EINVAL;
1052 error = do_posix_gettime(&posix_clocks[which_clock], &rtn_tp);
1054 if (!error && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1055 error = -EFAULT;
1057 return error;
1061 asmlinkage long
1062 sys_clock_getres(clockid_t which_clock, struct timespec __user *tp)
1064 struct timespec rtn_tp;
1066 if ((unsigned) which_clock >= MAX_CLOCKS ||
1067 !posix_clocks[which_clock].res)
1068 return -EINVAL;
1070 rtn_tp.tv_sec = 0;
1071 rtn_tp.tv_nsec = posix_clocks[which_clock].res;
1072 if (tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1073 return -EFAULT;
1075 return 0;
1079 static void nanosleep_wake_up(unsigned long __data)
1081 struct task_struct *p = (struct task_struct *) __data;
1083 wake_up_process(p);
1087 * The standard says that an absolute nanosleep call MUST wake up at
1088 * the requested time in spite of clock settings. Here is what we do:
1089 * For each nanosleep call that needs it (only absolute and not on
1090 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1091 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1092 * When ever the clock is set we just wake up all those tasks. The rest
1093 * is done by the while loop in clock_nanosleep().
1095 * On locking, clock_was_set() is called from update_wall_clock which
1096 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1097 * called from the timer bh code. Thus we need the irq save locks.
1100 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1102 void clock_was_set(void)
1104 wake_up_all(&nanosleep_abs_wqueue);
1107 long clock_nanosleep_restart(struct restart_block *restart_block);
1109 extern long do_clock_nanosleep(clockid_t which_clock, int flags,
1110 struct timespec *t);
1112 #ifdef FOLD_NANO_SLEEP_INTO_CLOCK_NANO_SLEEP
1114 asmlinkage long
1115 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1117 struct timespec t;
1118 long ret;
1120 if (copy_from_user(&t, rqtp, sizeof (t)))
1121 return -EFAULT;
1123 if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
1124 return -EINVAL;
1126 ret = do_clock_nanosleep(CLOCK_REALTIME, 0, &t);
1128 if (ret == -ERESTART_RESTARTBLOCK && rmtp &&
1129 copy_to_user(rmtp, &t, sizeof (t)))
1130 return -EFAULT;
1131 return ret;
1133 #endif // ! FOLD_NANO_SLEEP_INTO_CLOCK_NANO_SLEEP
1135 asmlinkage long
1136 sys_clock_nanosleep(clockid_t which_clock, int flags,
1137 const struct timespec __user *rqtp,
1138 struct timespec __user *rmtp)
1140 struct timespec t;
1141 int ret;
1143 if ((unsigned) which_clock >= MAX_CLOCKS ||
1144 !posix_clocks[which_clock].res)
1145 return -EINVAL;
1147 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1148 return -EFAULT;
1150 if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
1151 return -EINVAL;
1153 ret = do_clock_nanosleep(which_clock, flags, &t);
1155 if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
1156 copy_to_user(rmtp, &t, sizeof (t)))
1157 return -EFAULT;
1158 return ret;
1161 long
1162 do_clock_nanosleep(clockid_t which_clock, int flags, struct timespec *tsave)
1164 struct timespec t;
1165 struct timer_list new_timer;
1166 DECLARE_WAITQUEUE(abs_wqueue, current);
1167 u64 rq_time = (u64)0;
1168 s64 left;
1169 int abs;
1170 struct restart_block *restart_block =
1171 &current_thread_info()->restart_block;
1173 abs_wqueue.flags = 0;
1174 init_timer(&new_timer);
1175 new_timer.expires = 0;
1176 new_timer.data = (unsigned long) current;
1177 new_timer.function = nanosleep_wake_up;
1178 abs = flags & TIMER_ABSTIME;
1180 if (restart_block->fn == clock_nanosleep_restart) {
1182 * Interrupted by a non-delivered signal, pick up remaining
1183 * time and continue.
1185 restart_block->fn = do_no_restart_syscall;
1187 rq_time = restart_block->arg3;
1188 rq_time = (rq_time << 32) + restart_block->arg2;
1189 if (!rq_time)
1190 return -EINTR;
1191 left = rq_time - get_jiffies_64();
1192 if (left <= (s64)0)
1193 return 0; /* Already passed */
1196 if (abs && (posix_clocks[which_clock].clock_get !=
1197 posix_clocks[CLOCK_MONOTONIC].clock_get))
1198 add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
1200 do {
1201 t = *tsave;
1202 if (abs || !rq_time) {
1203 adjust_abs_time(&posix_clocks[which_clock], &t, abs,
1204 &rq_time);
1207 left = rq_time - get_jiffies_64();
1208 if (left >= (s64)MAX_JIFFY_OFFSET)
1209 left = (s64)MAX_JIFFY_OFFSET;
1210 if (left < (s64)0)
1211 break;
1213 new_timer.expires = jiffies + left;
1214 __set_current_state(TASK_INTERRUPTIBLE);
1215 add_timer(&new_timer);
1217 schedule();
1219 del_timer_sync(&new_timer);
1220 left = rq_time - get_jiffies_64();
1221 } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
1223 if (abs_wqueue.task_list.next)
1224 finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
1226 if (left > (s64)0) {
1229 * Always restart abs calls from scratch to pick up any
1230 * clock shifting that happened while we are away.
1232 if (abs)
1233 return -ERESTARTNOHAND;
1235 left *= TICK_NSEC(TICK_USEC);
1236 tsave->tv_sec = div_long_long_rem(left,
1237 NSEC_PER_SEC,
1238 &tsave->tv_nsec);
1239 restart_block->fn = clock_nanosleep_restart;
1240 restart_block->arg0 = which_clock;
1241 restart_block->arg1 = (unsigned long)tsave;
1242 restart_block->arg2 = rq_time & 0xffffffffLL;
1243 restart_block->arg3 = rq_time >> 32;
1245 return -ERESTART_RESTARTBLOCK;
1248 return 0;
1251 * This will restart either clock_nanosleep or clock_nanosleep
1253 long
1254 clock_nanosleep_restart(struct restart_block *restart_block)
1256 struct timespec t;
1257 int ret = do_clock_nanosleep(restart_block->arg0, 0, &t);
1259 if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
1260 copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
1261 sizeof (t)))
1262 return -EFAULT;
1263 return ret;