2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
25 * Pedro Roque : Fast Retransmit/Recovery.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
58 * J Hadi Salim: ECN support
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps
= 1;
76 int sysctl_tcp_window_scaling
= 1;
77 int sysctl_tcp_sack
= 1;
78 int sysctl_tcp_fack
= 1;
79 int sysctl_tcp_reordering
= TCP_FASTRETRANS_THRESH
;
81 int sysctl_tcp_dsack
= 1;
82 int sysctl_tcp_app_win
= 31;
83 int sysctl_tcp_adv_win_scale
= 2;
85 int sysctl_tcp_stdurg
;
86 int sysctl_tcp_rfc1337
;
87 int sysctl_tcp_max_orphans
= NR_FILE
;
89 int sysctl_tcp_nometrics_save
;
91 int sysctl_tcp_moderate_rcvbuf
= 1;
93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
99 #define FLAG_ECE 0x40 /* ECE in this ACK */
100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 /* Adapt the MSS value used to make delayed ack decision to the
117 static inline void tcp_measure_rcv_mss(struct sock
*sk
,
118 const struct sk_buff
*skb
)
120 struct inet_connection_sock
*icsk
= inet_csk(sk
);
121 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
124 icsk
->icsk_ack
.last_seg_size
= 0;
126 /* skb->len may jitter because of SACKs, even if peer
127 * sends good full-sized frames.
130 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
131 icsk
->icsk_ack
.rcv_mss
= len
;
133 /* Otherwise, we make more careful check taking into account,
134 * that SACKs block is variable.
136 * "len" is invariant segment length, including TCP header.
138 len
+= skb
->data
- skb
->h
.raw
;
139 if (len
>= TCP_MIN_RCVMSS
+ sizeof(struct tcphdr
) ||
140 /* If PSH is not set, packet should be
141 * full sized, provided peer TCP is not badly broken.
142 * This observation (if it is correct 8)) allows
143 * to handle super-low mtu links fairly.
145 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
146 !(tcp_flag_word(skb
->h
.th
)&TCP_REMNANT
))) {
147 /* Subtract also invariant (if peer is RFC compliant),
148 * tcp header plus fixed timestamp option length.
149 * Resulting "len" is MSS free of SACK jitter.
151 len
-= tcp_sk(sk
)->tcp_header_len
;
152 icsk
->icsk_ack
.last_seg_size
= len
;
154 icsk
->icsk_ack
.rcv_mss
= len
;
158 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
162 static void tcp_incr_quickack(struct sock
*sk
)
164 struct inet_connection_sock
*icsk
= inet_csk(sk
);
165 unsigned quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
169 if (quickacks
> icsk
->icsk_ack
.quick
)
170 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
173 void tcp_enter_quickack_mode(struct sock
*sk
)
175 struct inet_connection_sock
*icsk
= inet_csk(sk
);
176 tcp_incr_quickack(sk
);
177 icsk
->icsk_ack
.pingpong
= 0;
178 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
181 /* Send ACKs quickly, if "quick" count is not exhausted
182 * and the session is not interactive.
185 static inline int tcp_in_quickack_mode(const struct sock
*sk
)
187 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
188 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
191 /* Buffer size and advertised window tuning.
193 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
196 static void tcp_fixup_sndbuf(struct sock
*sk
)
198 int sndmem
= tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
+ 16 +
199 sizeof(struct sk_buff
);
201 if (sk
->sk_sndbuf
< 3 * sndmem
)
202 sk
->sk_sndbuf
= min(3 * sndmem
, sysctl_tcp_wmem
[2]);
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207 * All tcp_full_space() is split to two parts: "network" buffer, allocated
208 * forward and advertised in receiver window (tp->rcv_wnd) and
209 * "application buffer", required to isolate scheduling/application
210 * latencies from network.
211 * window_clamp is maximal advertised window. It can be less than
212 * tcp_full_space(), in this case tcp_full_space() - window_clamp
213 * is reserved for "application" buffer. The less window_clamp is
214 * the smoother our behaviour from viewpoint of network, but the lower
215 * throughput and the higher sensitivity of the connection to losses. 8)
217 * rcv_ssthresh is more strict window_clamp used at "slow start"
218 * phase to predict further behaviour of this connection.
219 * It is used for two goals:
220 * - to enforce header prediction at sender, even when application
221 * requires some significant "application buffer". It is check #1.
222 * - to prevent pruning of receive queue because of misprediction
223 * of receiver window. Check #2.
225 * The scheme does not work when sender sends good segments opening
226 * window and then starts to feed us spagetti. But it should work
227 * in common situations. Otherwise, we have to rely on queue collapsing.
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock
*sk
, struct tcp_sock
*tp
,
232 const struct sk_buff
*skb
)
235 int truesize
= tcp_win_from_space(skb
->truesize
)/2;
236 int window
= tcp_full_space(sk
)/2;
238 while (tp
->rcv_ssthresh
<= window
) {
239 if (truesize
<= skb
->len
)
240 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
248 static inline void tcp_grow_window(struct sock
*sk
, struct tcp_sock
*tp
,
252 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
253 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
254 !tcp_memory_pressure
) {
257 /* Check #2. Increase window, if skb with such overhead
258 * will fit to rcvbuf in future.
260 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
263 incr
= __tcp_grow_window(sk
, tp
, skb
);
266 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
, tp
->window_clamp
);
267 inet_csk(sk
)->icsk_ack
.quick
|= 1;
272 /* 3. Tuning rcvbuf, when connection enters established state. */
274 static void tcp_fixup_rcvbuf(struct sock
*sk
)
276 struct tcp_sock
*tp
= tcp_sk(sk
);
277 int rcvmem
= tp
->advmss
+ MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
);
279 /* Try to select rcvbuf so that 4 mss-sized segments
280 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
285 if (sk
->sk_rcvbuf
< 4 * rcvmem
)
286 sk
->sk_rcvbuf
= min(4 * rcvmem
, sysctl_tcp_rmem
[2]);
289 /* 4. Try to fixup all. It is made iimediately after connection enters
292 static void tcp_init_buffer_space(struct sock
*sk
)
294 struct tcp_sock
*tp
= tcp_sk(sk
);
297 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
298 tcp_fixup_rcvbuf(sk
);
299 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
300 tcp_fixup_sndbuf(sk
);
302 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
304 maxwin
= tcp_full_space(sk
);
306 if (tp
->window_clamp
>= maxwin
) {
307 tp
->window_clamp
= maxwin
;
309 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
310 tp
->window_clamp
= max(maxwin
-
311 (maxwin
>> sysctl_tcp_app_win
),
315 /* Force reservation of one segment. */
316 if (sysctl_tcp_app_win
&&
317 tp
->window_clamp
> 2 * tp
->advmss
&&
318 tp
->window_clamp
+ tp
->advmss
> maxwin
)
319 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
321 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
322 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock
*sk
, struct tcp_sock
*tp
)
329 unsigned int app_win
= tp
->rcv_nxt
- tp
->copied_seq
;
332 inet_csk(sk
)->icsk_ack
.quick
= 0;
334 skb_queue_walk(&tp
->out_of_order_queue
, skb
) {
338 /* If overcommit is due to out of order segments,
339 * do not clamp window. Try to expand rcvbuf instead.
342 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
343 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
344 !tcp_memory_pressure
&&
345 atomic_read(&tcp_memory_allocated
) < sysctl_tcp_mem
[0])
346 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
349 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
) {
351 if (atomic_read(&sk
->sk_rmem_alloc
) >= 2 * sk
->sk_rcvbuf
)
353 if (app_win
> inet_csk(sk
)->icsk_ack
.rcv_mss
)
354 app_win
-= inet_csk(sk
)->icsk_ack
.rcv_mss
;
355 app_win
= max(app_win
, 2U*tp
->advmss
);
358 tp
->window_clamp
= min(tp
->window_clamp
, app_win
);
359 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U*tp
->advmss
);
363 /* Receiver "autotuning" code.
365 * The algorithm for RTT estimation w/o timestamps is based on
366 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
367 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
369 * More detail on this code can be found at
370 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
371 * though this reference is out of date. A new paper
374 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
376 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
382 if (new_sample
!= 0) {
383 /* If we sample in larger samples in the non-timestamp
384 * case, we could grossly overestimate the RTT especially
385 * with chatty applications or bulk transfer apps which
386 * are stalled on filesystem I/O.
388 * Also, since we are only going for a minimum in the
389 * non-timestamp case, we do not smoothe things out
390 * else with timestamps disabled convergance takes too
394 m
-= (new_sample
>> 3);
396 } else if (m
< new_sample
)
399 /* No previous mesaure. */
403 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
404 tp
->rcv_rtt_est
.rtt
= new_sample
;
407 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
409 if (tp
->rcv_rtt_est
.time
== 0)
411 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
413 tcp_rcv_rtt_update(tp
,
414 jiffies
- tp
->rcv_rtt_est
.time
,
418 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
419 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
422 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
, const struct sk_buff
*skb
)
424 struct tcp_sock
*tp
= tcp_sk(sk
);
425 if (tp
->rx_opt
.rcv_tsecr
&&
426 (TCP_SKB_CB(skb
)->end_seq
-
427 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
428 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
432 * This function should be called every time data is copied to user space.
433 * It calculates the appropriate TCP receive buffer space.
435 void tcp_rcv_space_adjust(struct sock
*sk
)
437 struct tcp_sock
*tp
= tcp_sk(sk
);
441 if (tp
->rcvq_space
.time
== 0)
444 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
445 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) ||
446 tp
->rcv_rtt_est
.rtt
== 0)
449 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
451 space
= max(tp
->rcvq_space
.space
, space
);
453 if (tp
->rcvq_space
.space
!= space
) {
456 tp
->rcvq_space
.space
= space
;
458 if (sysctl_tcp_moderate_rcvbuf
) {
459 int new_clamp
= space
;
461 /* Receive space grows, normalize in order to
462 * take into account packet headers and sk_buff
463 * structure overhead.
468 rcvmem
= (tp
->advmss
+ MAX_TCP_HEADER
+
469 16 + sizeof(struct sk_buff
));
470 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
473 space
= min(space
, sysctl_tcp_rmem
[2]);
474 if (space
> sk
->sk_rcvbuf
) {
475 sk
->sk_rcvbuf
= space
;
477 /* Make the window clamp follow along. */
478 tp
->window_clamp
= new_clamp
;
484 tp
->rcvq_space
.seq
= tp
->copied_seq
;
485 tp
->rcvq_space
.time
= tcp_time_stamp
;
488 /* There is something which you must keep in mind when you analyze the
489 * behavior of the tp->ato delayed ack timeout interval. When a
490 * connection starts up, we want to ack as quickly as possible. The
491 * problem is that "good" TCP's do slow start at the beginning of data
492 * transmission. The means that until we send the first few ACK's the
493 * sender will sit on his end and only queue most of his data, because
494 * he can only send snd_cwnd unacked packets at any given time. For
495 * each ACK we send, he increments snd_cwnd and transmits more of his
498 static void tcp_event_data_recv(struct sock
*sk
, struct tcp_sock
*tp
, struct sk_buff
*skb
)
500 struct inet_connection_sock
*icsk
= inet_csk(sk
);
503 inet_csk_schedule_ack(sk
);
505 tcp_measure_rcv_mss(sk
, skb
);
507 tcp_rcv_rtt_measure(tp
);
509 now
= tcp_time_stamp
;
511 if (!icsk
->icsk_ack
.ato
) {
512 /* The _first_ data packet received, initialize
513 * delayed ACK engine.
515 tcp_incr_quickack(sk
);
516 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
518 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
520 if (m
<= TCP_ATO_MIN
/2) {
521 /* The fastest case is the first. */
522 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
523 } else if (m
< icsk
->icsk_ack
.ato
) {
524 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
525 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
526 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
527 } else if (m
> icsk
->icsk_rto
) {
528 /* Too long gap. Apparently sender falled to
529 * restart window, so that we send ACKs quickly.
531 tcp_incr_quickack(sk
);
532 sk_stream_mem_reclaim(sk
);
535 icsk
->icsk_ack
.lrcvtime
= now
;
537 TCP_ECN_check_ce(tp
, skb
);
540 tcp_grow_window(sk
, tp
, skb
);
543 /* Called to compute a smoothed rtt estimate. The data fed to this
544 * routine either comes from timestamps, or from segments that were
545 * known _not_ to have been retransmitted [see Karn/Partridge
546 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
547 * piece by Van Jacobson.
548 * NOTE: the next three routines used to be one big routine.
549 * To save cycles in the RFC 1323 implementation it was better to break
550 * it up into three procedures. -- erics
552 static void tcp_rtt_estimator(struct tcp_sock
*tp
, __u32 mrtt
, u32
*usrtt
)
554 long m
= mrtt
; /* RTT */
556 /* The following amusing code comes from Jacobson's
557 * article in SIGCOMM '88. Note that rtt and mdev
558 * are scaled versions of rtt and mean deviation.
559 * This is designed to be as fast as possible
560 * m stands for "measurement".
562 * On a 1990 paper the rto value is changed to:
563 * RTO = rtt + 4 * mdev
565 * Funny. This algorithm seems to be very broken.
566 * These formulae increase RTO, when it should be decreased, increase
567 * too slowly, when it should be incresed fastly, decrease too fastly
568 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
569 * does not matter how to _calculate_ it. Seems, it was trap
570 * that VJ failed to avoid. 8)
575 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
576 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
578 m
= -m
; /* m is now abs(error) */
579 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
580 /* This is similar to one of Eifel findings.
581 * Eifel blocks mdev updates when rtt decreases.
582 * This solution is a bit different: we use finer gain
583 * for mdev in this case (alpha*beta).
584 * Like Eifel it also prevents growth of rto,
585 * but also it limits too fast rto decreases,
586 * happening in pure Eifel.
591 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
593 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
594 if (tp
->mdev
> tp
->mdev_max
) {
595 tp
->mdev_max
= tp
->mdev
;
596 if (tp
->mdev_max
> tp
->rttvar
)
597 tp
->rttvar
= tp
->mdev_max
;
599 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
600 if (tp
->mdev_max
< tp
->rttvar
)
601 tp
->rttvar
-= (tp
->rttvar
-tp
->mdev_max
)>>2;
602 tp
->rtt_seq
= tp
->snd_nxt
;
603 tp
->mdev_max
= TCP_RTO_MIN
;
606 /* no previous measure. */
607 tp
->srtt
= m
<<3; /* take the measured time to be rtt */
608 tp
->mdev
= m
<<1; /* make sure rto = 3*rtt */
609 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
610 tp
->rtt_seq
= tp
->snd_nxt
;
613 if (tp
->ca_ops
->rtt_sample
)
614 tp
->ca_ops
->rtt_sample(tp
, *usrtt
);
617 /* Calculate rto without backoff. This is the second half of Van Jacobson's
618 * routine referred to above.
620 static inline void tcp_set_rto(struct sock
*sk
)
622 const struct tcp_sock
*tp
= tcp_sk(sk
);
623 /* Old crap is replaced with new one. 8)
626 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 * It cannot be less due to utterly erratic ACK generation made
628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 * to do with delayed acks, because at cwnd>2 true delack timeout
630 * is invisible. Actually, Linux-2.4 also generates erratic
631 * ACKs in some curcumstances.
633 inet_csk(sk
)->icsk_rto
= (tp
->srtt
>> 3) + tp
->rttvar
;
635 /* 2. Fixups made earlier cannot be right.
636 * If we do not estimate RTO correctly without them,
637 * all the algo is pure shit and should be replaced
638 * with correct one. It is exaclty, which we pretend to do.
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643 * guarantees that rto is higher.
645 static inline void tcp_bound_rto(struct sock
*sk
)
647 if (inet_csk(sk
)->icsk_rto
> TCP_RTO_MAX
)
648 inet_csk(sk
)->icsk_rto
= TCP_RTO_MAX
;
651 /* Save metrics learned by this TCP session.
652 This function is called only, when TCP finishes successfully
653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
655 void tcp_update_metrics(struct sock
*sk
)
657 struct tcp_sock
*tp
= tcp_sk(sk
);
658 struct dst_entry
*dst
= __sk_dst_get(sk
);
660 if (sysctl_tcp_nometrics_save
)
665 if (dst
&& (dst
->flags
&DST_HOST
)) {
668 if (inet_csk(sk
)->icsk_backoff
|| !tp
->srtt
) {
669 /* This session failed to estimate rtt. Why?
670 * Probably, no packets returned in time.
673 if (!(dst_metric_locked(dst
, RTAX_RTT
)))
674 dst
->metrics
[RTAX_RTT
-1] = 0;
678 m
= dst_metric(dst
, RTAX_RTT
) - tp
->srtt
;
680 /* If newly calculated rtt larger than stored one,
681 * store new one. Otherwise, use EWMA. Remember,
682 * rtt overestimation is always better than underestimation.
684 if (!(dst_metric_locked(dst
, RTAX_RTT
))) {
686 dst
->metrics
[RTAX_RTT
-1] = tp
->srtt
;
688 dst
->metrics
[RTAX_RTT
-1] -= (m
>>3);
691 if (!(dst_metric_locked(dst
, RTAX_RTTVAR
))) {
695 /* Scale deviation to rttvar fixed point */
700 if (m
>= dst_metric(dst
, RTAX_RTTVAR
))
701 dst
->metrics
[RTAX_RTTVAR
-1] = m
;
703 dst
->metrics
[RTAX_RTTVAR
-1] -=
704 (dst
->metrics
[RTAX_RTTVAR
-1] - m
)>>2;
707 if (tp
->snd_ssthresh
>= 0xFFFF) {
708 /* Slow start still did not finish. */
709 if (dst_metric(dst
, RTAX_SSTHRESH
) &&
710 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
711 (tp
->snd_cwnd
>> 1) > dst_metric(dst
, RTAX_SSTHRESH
))
712 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_cwnd
>> 1;
713 if (!dst_metric_locked(dst
, RTAX_CWND
) &&
714 tp
->snd_cwnd
> dst_metric(dst
, RTAX_CWND
))
715 dst
->metrics
[RTAX_CWND
-1] = tp
->snd_cwnd
;
716 } else if (tp
->snd_cwnd
> tp
->snd_ssthresh
&&
717 tp
->ca_state
== TCP_CA_Open
) {
718 /* Cong. avoidance phase, cwnd is reliable. */
719 if (!dst_metric_locked(dst
, RTAX_SSTHRESH
))
720 dst
->metrics
[RTAX_SSTHRESH
-1] =
721 max(tp
->snd_cwnd
>> 1, tp
->snd_ssthresh
);
722 if (!dst_metric_locked(dst
, RTAX_CWND
))
723 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_cwnd
) >> 1;
725 /* Else slow start did not finish, cwnd is non-sense,
726 ssthresh may be also invalid.
728 if (!dst_metric_locked(dst
, RTAX_CWND
))
729 dst
->metrics
[RTAX_CWND
-1] = (dst
->metrics
[RTAX_CWND
-1] + tp
->snd_ssthresh
) >> 1;
730 if (dst
->metrics
[RTAX_SSTHRESH
-1] &&
731 !dst_metric_locked(dst
, RTAX_SSTHRESH
) &&
732 tp
->snd_ssthresh
> dst
->metrics
[RTAX_SSTHRESH
-1])
733 dst
->metrics
[RTAX_SSTHRESH
-1] = tp
->snd_ssthresh
;
736 if (!dst_metric_locked(dst
, RTAX_REORDERING
)) {
737 if (dst
->metrics
[RTAX_REORDERING
-1] < tp
->reordering
&&
738 tp
->reordering
!= sysctl_tcp_reordering
)
739 dst
->metrics
[RTAX_REORDERING
-1] = tp
->reordering
;
744 /* Numbers are taken from RFC2414. */
745 __u32
tcp_init_cwnd(struct tcp_sock
*tp
, struct dst_entry
*dst
)
747 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
750 if (tp
->mss_cache
> 1460)
753 cwnd
= (tp
->mss_cache
> 1095) ? 3 : 4;
755 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
758 /* Initialize metrics on socket. */
760 static void tcp_init_metrics(struct sock
*sk
)
762 struct tcp_sock
*tp
= tcp_sk(sk
);
763 struct dst_entry
*dst
= __sk_dst_get(sk
);
770 if (dst_metric_locked(dst
, RTAX_CWND
))
771 tp
->snd_cwnd_clamp
= dst_metric(dst
, RTAX_CWND
);
772 if (dst_metric(dst
, RTAX_SSTHRESH
)) {
773 tp
->snd_ssthresh
= dst_metric(dst
, RTAX_SSTHRESH
);
774 if (tp
->snd_ssthresh
> tp
->snd_cwnd_clamp
)
775 tp
->snd_ssthresh
= tp
->snd_cwnd_clamp
;
777 if (dst_metric(dst
, RTAX_REORDERING
) &&
778 tp
->reordering
!= dst_metric(dst
, RTAX_REORDERING
)) {
779 tp
->rx_opt
.sack_ok
&= ~2;
780 tp
->reordering
= dst_metric(dst
, RTAX_REORDERING
);
783 if (dst_metric(dst
, RTAX_RTT
) == 0)
786 if (!tp
->srtt
&& dst_metric(dst
, RTAX_RTT
) < (TCP_TIMEOUT_INIT
<< 3))
789 /* Initial rtt is determined from SYN,SYN-ACK.
790 * The segment is small and rtt may appear much
791 * less than real one. Use per-dst memory
792 * to make it more realistic.
794 * A bit of theory. RTT is time passed after "normal" sized packet
795 * is sent until it is ACKed. In normal curcumstances sending small
796 * packets force peer to delay ACKs and calculation is correct too.
797 * The algorithm is adaptive and, provided we follow specs, it
798 * NEVER underestimate RTT. BUT! If peer tries to make some clever
799 * tricks sort of "quick acks" for time long enough to decrease RTT
800 * to low value, and then abruptly stops to do it and starts to delay
801 * ACKs, wait for troubles.
803 if (dst_metric(dst
, RTAX_RTT
) > tp
->srtt
) {
804 tp
->srtt
= dst_metric(dst
, RTAX_RTT
);
805 tp
->rtt_seq
= tp
->snd_nxt
;
807 if (dst_metric(dst
, RTAX_RTTVAR
) > tp
->mdev
) {
808 tp
->mdev
= dst_metric(dst
, RTAX_RTTVAR
);
809 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, TCP_RTO_MIN
);
813 if (inet_csk(sk
)->icsk_rto
< TCP_TIMEOUT_INIT
&& !tp
->rx_opt
.saw_tstamp
)
815 tp
->snd_cwnd
= tcp_init_cwnd(tp
, dst
);
816 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
820 /* Play conservative. If timestamps are not
821 * supported, TCP will fail to recalculate correct
822 * rtt, if initial rto is too small. FORGET ALL AND RESET!
824 if (!tp
->rx_opt
.saw_tstamp
&& tp
->srtt
) {
826 tp
->mdev
= tp
->mdev_max
= tp
->rttvar
= TCP_TIMEOUT_INIT
;
827 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
831 static void tcp_update_reordering(struct tcp_sock
*tp
, int metric
, int ts
)
833 if (metric
> tp
->reordering
) {
834 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
836 /* This exciting event is worth to be remembered. 8) */
838 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER
);
840 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER
);
842 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER
);
844 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER
);
845 #if FASTRETRANS_DEBUG > 1
846 printk(KERN_DEBUG
"Disorder%d %d %u f%u s%u rr%d\n",
847 tp
->rx_opt
.sack_ok
, tp
->ca_state
,
851 tp
->undo_marker
? tp
->undo_retrans
: 0);
853 /* Disable FACK yet. */
854 tp
->rx_opt
.sack_ok
&= ~2;
858 /* This procedure tags the retransmission queue when SACKs arrive.
860 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
861 * Packets in queue with these bits set are counted in variables
862 * sacked_out, retrans_out and lost_out, correspondingly.
864 * Valid combinations are:
865 * Tag InFlight Description
866 * 0 1 - orig segment is in flight.
867 * S 0 - nothing flies, orig reached receiver.
868 * L 0 - nothing flies, orig lost by net.
869 * R 2 - both orig and retransmit are in flight.
870 * L|R 1 - orig is lost, retransmit is in flight.
871 * S|R 1 - orig reached receiver, retrans is still in flight.
872 * (L|S|R is logically valid, it could occur when L|R is sacked,
873 * but it is equivalent to plain S and code short-curcuits it to S.
874 * L|S is logically invalid, it would mean -1 packet in flight 8))
876 * These 6 states form finite state machine, controlled by the following events:
877 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
878 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
879 * 3. Loss detection event of one of three flavors:
880 * A. Scoreboard estimator decided the packet is lost.
881 * A'. Reno "three dupacks" marks head of queue lost.
882 * A''. Its FACK modfication, head until snd.fack is lost.
883 * B. SACK arrives sacking data transmitted after never retransmitted
885 * C. SACK arrives sacking SND.NXT at the moment, when the
886 * segment was retransmitted.
887 * 4. D-SACK added new rule: D-SACK changes any tag to S.
889 * It is pleasant to note, that state diagram turns out to be commutative,
890 * so that we are allowed not to be bothered by order of our actions,
891 * when multiple events arrive simultaneously. (see the function below).
893 * Reordering detection.
894 * --------------------
895 * Reordering metric is maximal distance, which a packet can be displaced
896 * in packet stream. With SACKs we can estimate it:
898 * 1. SACK fills old hole and the corresponding segment was not
899 * ever retransmitted -> reordering. Alas, we cannot use it
900 * when segment was retransmitted.
901 * 2. The last flaw is solved with D-SACK. D-SACK arrives
902 * for retransmitted and already SACKed segment -> reordering..
903 * Both of these heuristics are not used in Loss state, when we cannot
904 * account for retransmits accurately.
907 tcp_sacktag_write_queue(struct sock
*sk
, struct sk_buff
*ack_skb
, u32 prior_snd_una
)
909 struct tcp_sock
*tp
= tcp_sk(sk
);
910 unsigned char *ptr
= ack_skb
->h
.raw
+ TCP_SKB_CB(ack_skb
)->sacked
;
911 struct tcp_sack_block
*sp
= (struct tcp_sack_block
*)(ptr
+2);
912 int num_sacks
= (ptr
[1] - TCPOLEN_SACK_BASE
)>>3;
913 int reord
= tp
->packets_out
;
915 u32 lost_retrans
= 0;
919 /* So, SACKs for already sent large segments will be lost.
920 * Not good, but alternative is to resegment the queue. */
921 if (sk
->sk_route_caps
& NETIF_F_TSO
) {
922 sk
->sk_route_caps
&= ~NETIF_F_TSO
;
923 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
924 tp
->mss_cache
= tp
->mss_cache
;
929 prior_fackets
= tp
->fackets_out
;
931 for (i
=0; i
<num_sacks
; i
++, sp
++) {
933 __u32 start_seq
= ntohl(sp
->start_seq
);
934 __u32 end_seq
= ntohl(sp
->end_seq
);
938 /* Check for D-SACK. */
940 u32 ack
= TCP_SKB_CB(ack_skb
)->ack_seq
;
942 if (before(start_seq
, ack
)) {
944 tp
->rx_opt
.sack_ok
|= 4;
945 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV
);
946 } else if (num_sacks
> 1 &&
947 !after(end_seq
, ntohl(sp
[1].end_seq
)) &&
948 !before(start_seq
, ntohl(sp
[1].start_seq
))) {
950 tp
->rx_opt
.sack_ok
|= 4;
951 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV
);
954 /* D-SACK for already forgotten data...
955 * Do dumb counting. */
957 !after(end_seq
, prior_snd_una
) &&
958 after(end_seq
, tp
->undo_marker
))
961 /* Eliminate too old ACKs, but take into
962 * account more or less fresh ones, they can
963 * contain valid SACK info.
965 if (before(ack
, prior_snd_una
- tp
->max_window
))
969 /* Event "B" in the comment above. */
970 if (after(end_seq
, tp
->high_seq
))
971 flag
|= FLAG_DATA_LOST
;
973 sk_stream_for_retrans_queue(skb
, sk
) {
974 u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
977 /* The retransmission queue is always in order, so
978 * we can short-circuit the walk early.
980 if(!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
983 fack_count
+= tcp_skb_pcount(skb
);
985 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
986 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
988 /* Account D-SACK for retransmitted packet. */
989 if ((dup_sack
&& in_sack
) &&
990 (sacked
& TCPCB_RETRANS
) &&
991 after(TCP_SKB_CB(skb
)->end_seq
, tp
->undo_marker
))
994 /* The frame is ACKed. */
995 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
)) {
996 if (sacked
&TCPCB_RETRANS
) {
997 if ((dup_sack
&& in_sack
) &&
998 (sacked
&TCPCB_SACKED_ACKED
))
999 reord
= min(fack_count
, reord
);
1001 /* If it was in a hole, we detected reordering. */
1002 if (fack_count
< prior_fackets
&&
1003 !(sacked
&TCPCB_SACKED_ACKED
))
1004 reord
= min(fack_count
, reord
);
1007 /* Nothing to do; acked frame is about to be dropped. */
1011 if ((sacked
&TCPCB_SACKED_RETRANS
) &&
1012 after(end_seq
, TCP_SKB_CB(skb
)->ack_seq
) &&
1013 (!lost_retrans
|| after(end_seq
, lost_retrans
)))
1014 lost_retrans
= end_seq
;
1019 if (!(sacked
&TCPCB_SACKED_ACKED
)) {
1020 if (sacked
& TCPCB_SACKED_RETRANS
) {
1021 /* If the segment is not tagged as lost,
1022 * we do not clear RETRANS, believing
1023 * that retransmission is still in flight.
1025 if (sacked
& TCPCB_LOST
) {
1026 TCP_SKB_CB(skb
)->sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1027 tp
->lost_out
-= tcp_skb_pcount(skb
);
1028 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1031 /* New sack for not retransmitted frame,
1032 * which was in hole. It is reordering.
1034 if (!(sacked
& TCPCB_RETRANS
) &&
1035 fack_count
< prior_fackets
)
1036 reord
= min(fack_count
, reord
);
1038 if (sacked
& TCPCB_LOST
) {
1039 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1040 tp
->lost_out
-= tcp_skb_pcount(skb
);
1044 TCP_SKB_CB(skb
)->sacked
|= TCPCB_SACKED_ACKED
;
1045 flag
|= FLAG_DATA_SACKED
;
1046 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1048 if (fack_count
> tp
->fackets_out
)
1049 tp
->fackets_out
= fack_count
;
1051 if (dup_sack
&& (sacked
&TCPCB_RETRANS
))
1052 reord
= min(fack_count
, reord
);
1055 /* D-SACK. We can detect redundant retransmission
1056 * in S|R and plain R frames and clear it.
1057 * undo_retrans is decreased above, L|R frames
1058 * are accounted above as well.
1061 (TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
)) {
1062 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1063 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1068 /* Check for lost retransmit. This superb idea is
1069 * borrowed from "ratehalving". Event "C".
1070 * Later note: FACK people cheated me again 8),
1071 * we have to account for reordering! Ugly,
1074 if (lost_retrans
&& tp
->ca_state
== TCP_CA_Recovery
) {
1075 struct sk_buff
*skb
;
1077 sk_stream_for_retrans_queue(skb
, sk
) {
1078 if (after(TCP_SKB_CB(skb
)->seq
, lost_retrans
))
1080 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1082 if ((TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_RETRANS
) &&
1083 after(lost_retrans
, TCP_SKB_CB(skb
)->ack_seq
) &&
1085 !before(lost_retrans
,
1086 TCP_SKB_CB(skb
)->ack_seq
+ tp
->reordering
*
1088 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1089 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1091 if (!(TCP_SKB_CB(skb
)->sacked
&(TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
1092 tp
->lost_out
+= tcp_skb_pcount(skb
);
1093 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1094 flag
|= FLAG_DATA_SACKED
;
1095 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT
);
1101 tp
->left_out
= tp
->sacked_out
+ tp
->lost_out
;
1103 if ((reord
< tp
->fackets_out
) && tp
->ca_state
!= TCP_CA_Loss
)
1104 tcp_update_reordering(tp
, ((tp
->fackets_out
+ 1) - reord
), 0);
1106 #if FASTRETRANS_DEBUG > 0
1107 BUG_TRAP((int)tp
->sacked_out
>= 0);
1108 BUG_TRAP((int)tp
->lost_out
>= 0);
1109 BUG_TRAP((int)tp
->retrans_out
>= 0);
1110 BUG_TRAP((int)tcp_packets_in_flight(tp
) >= 0);
1115 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1116 * segments to see from the next ACKs whether any data was really missing.
1117 * If the RTO was spurious, new ACKs should arrive.
1119 void tcp_enter_frto(struct sock
*sk
)
1121 struct tcp_sock
*tp
= tcp_sk(sk
);
1122 struct sk_buff
*skb
;
1124 tp
->frto_counter
= 1;
1126 if (tp
->ca_state
<= TCP_CA_Disorder
||
1127 tp
->snd_una
== tp
->high_seq
||
1128 (tp
->ca_state
== TCP_CA_Loss
&& !inet_csk(sk
)->icsk_retransmits
)) {
1129 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1130 tp
->snd_ssthresh
= tp
->ca_ops
->ssthresh(tp
);
1131 tcp_ca_event(tp
, CA_EVENT_FRTO
);
1134 /* Have to clear retransmission markers here to keep the bookkeeping
1135 * in shape, even though we are not yet in Loss state.
1136 * If something was really lost, it is eventually caught up
1137 * in tcp_enter_frto_loss.
1139 tp
->retrans_out
= 0;
1140 tp
->undo_marker
= tp
->snd_una
;
1141 tp
->undo_retrans
= 0;
1143 sk_stream_for_retrans_queue(skb
, sk
) {
1144 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_RETRANS
;
1146 tcp_sync_left_out(tp
);
1148 tcp_set_ca_state(tp
, TCP_CA_Open
);
1149 tp
->frto_highmark
= tp
->snd_nxt
;
1152 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1153 * which indicates that we should follow the traditional RTO recovery,
1154 * i.e. mark everything lost and do go-back-N retransmission.
1156 static void tcp_enter_frto_loss(struct sock
*sk
)
1158 struct tcp_sock
*tp
= tcp_sk(sk
);
1159 struct sk_buff
*skb
;
1164 tp
->fackets_out
= 0;
1166 sk_stream_for_retrans_queue(skb
, sk
) {
1167 cnt
+= tcp_skb_pcount(skb
);
1168 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1169 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
)) {
1171 /* Do not mark those segments lost that were
1172 * forward transmitted after RTO
1174 if (!after(TCP_SKB_CB(skb
)->end_seq
,
1175 tp
->frto_highmark
)) {
1176 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1177 tp
->lost_out
+= tcp_skb_pcount(skb
);
1180 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1181 tp
->fackets_out
= cnt
;
1184 tcp_sync_left_out(tp
);
1186 tp
->snd_cwnd
= tp
->frto_counter
+ tcp_packets_in_flight(tp
)+1;
1187 tp
->snd_cwnd_cnt
= 0;
1188 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1189 tp
->undo_marker
= 0;
1190 tp
->frto_counter
= 0;
1192 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1193 sysctl_tcp_reordering
);
1194 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1195 tp
->high_seq
= tp
->frto_highmark
;
1196 TCP_ECN_queue_cwr(tp
);
1199 void tcp_clear_retrans(struct tcp_sock
*tp
)
1202 tp
->retrans_out
= 0;
1204 tp
->fackets_out
= 0;
1208 tp
->undo_marker
= 0;
1209 tp
->undo_retrans
= 0;
1212 /* Enter Loss state. If "how" is not zero, forget all SACK information
1213 * and reset tags completely, otherwise preserve SACKs. If receiver
1214 * dropped its ofo queue, we will know this due to reneging detection.
1216 void tcp_enter_loss(struct sock
*sk
, int how
)
1218 struct tcp_sock
*tp
= tcp_sk(sk
);
1219 struct sk_buff
*skb
;
1222 /* Reduce ssthresh if it has not yet been made inside this window. */
1223 if (tp
->ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
1224 (tp
->ca_state
== TCP_CA_Loss
&& !inet_csk(sk
)->icsk_retransmits
)) {
1225 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1226 tp
->snd_ssthresh
= tp
->ca_ops
->ssthresh(tp
);
1227 tcp_ca_event(tp
, CA_EVENT_LOSS
);
1230 tp
->snd_cwnd_cnt
= 0;
1231 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1233 tcp_clear_retrans(tp
);
1235 /* Push undo marker, if it was plain RTO and nothing
1236 * was retransmitted. */
1238 tp
->undo_marker
= tp
->snd_una
;
1240 sk_stream_for_retrans_queue(skb
, sk
) {
1241 cnt
+= tcp_skb_pcount(skb
);
1242 if (TCP_SKB_CB(skb
)->sacked
&TCPCB_RETRANS
)
1243 tp
->undo_marker
= 0;
1244 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1245 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
1246 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1247 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1248 tp
->lost_out
+= tcp_skb_pcount(skb
);
1250 tp
->sacked_out
+= tcp_skb_pcount(skb
);
1251 tp
->fackets_out
= cnt
;
1254 tcp_sync_left_out(tp
);
1256 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1257 sysctl_tcp_reordering
);
1258 tcp_set_ca_state(tp
, TCP_CA_Loss
);
1259 tp
->high_seq
= tp
->snd_nxt
;
1260 TCP_ECN_queue_cwr(tp
);
1263 static int tcp_check_sack_reneging(struct sock
*sk
)
1265 struct sk_buff
*skb
;
1267 /* If ACK arrived pointing to a remembered SACK,
1268 * it means that our remembered SACKs do not reflect
1269 * real state of receiver i.e.
1270 * receiver _host_ is heavily congested (or buggy).
1271 * Do processing similar to RTO timeout.
1273 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
&&
1274 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1275 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING
);
1277 tcp_enter_loss(sk
, 1);
1278 inet_csk(sk
)->icsk_retransmits
++;
1279 tcp_retransmit_skb(sk
, skb_peek(&sk
->sk_write_queue
));
1280 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
1281 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
1287 static inline int tcp_fackets_out(struct tcp_sock
*tp
)
1289 return IsReno(tp
) ? tp
->sacked_out
+1 : tp
->fackets_out
;
1292 static inline int tcp_skb_timedout(struct sock
*sk
, struct sk_buff
*skb
)
1294 return (tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
);
1297 static inline int tcp_head_timedout(struct sock
*sk
, struct tcp_sock
*tp
)
1299 return tp
->packets_out
&&
1300 tcp_skb_timedout(sk
, skb_peek(&sk
->sk_write_queue
));
1303 /* Linux NewReno/SACK/FACK/ECN state machine.
1304 * --------------------------------------
1306 * "Open" Normal state, no dubious events, fast path.
1307 * "Disorder" In all the respects it is "Open",
1308 * but requires a bit more attention. It is entered when
1309 * we see some SACKs or dupacks. It is split of "Open"
1310 * mainly to move some processing from fast path to slow one.
1311 * "CWR" CWND was reduced due to some Congestion Notification event.
1312 * It can be ECN, ICMP source quench, local device congestion.
1313 * "Recovery" CWND was reduced, we are fast-retransmitting.
1314 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1316 * tcp_fastretrans_alert() is entered:
1317 * - each incoming ACK, if state is not "Open"
1318 * - when arrived ACK is unusual, namely:
1323 * Counting packets in flight is pretty simple.
1325 * in_flight = packets_out - left_out + retrans_out
1327 * packets_out is SND.NXT-SND.UNA counted in packets.
1329 * retrans_out is number of retransmitted segments.
1331 * left_out is number of segments left network, but not ACKed yet.
1333 * left_out = sacked_out + lost_out
1335 * sacked_out: Packets, which arrived to receiver out of order
1336 * and hence not ACKed. With SACKs this number is simply
1337 * amount of SACKed data. Even without SACKs
1338 * it is easy to give pretty reliable estimate of this number,
1339 * counting duplicate ACKs.
1341 * lost_out: Packets lost by network. TCP has no explicit
1342 * "loss notification" feedback from network (for now).
1343 * It means that this number can be only _guessed_.
1344 * Actually, it is the heuristics to predict lossage that
1345 * distinguishes different algorithms.
1347 * F.e. after RTO, when all the queue is considered as lost,
1348 * lost_out = packets_out and in_flight = retrans_out.
1350 * Essentially, we have now two algorithms counting
1353 * FACK: It is the simplest heuristics. As soon as we decided
1354 * that something is lost, we decide that _all_ not SACKed
1355 * packets until the most forward SACK are lost. I.e.
1356 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1357 * It is absolutely correct estimate, if network does not reorder
1358 * packets. And it loses any connection to reality when reordering
1359 * takes place. We use FACK by default until reordering
1360 * is suspected on the path to this destination.
1362 * NewReno: when Recovery is entered, we assume that one segment
1363 * is lost (classic Reno). While we are in Recovery and
1364 * a partial ACK arrives, we assume that one more packet
1365 * is lost (NewReno). This heuristics are the same in NewReno
1368 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1369 * deflation etc. CWND is real congestion window, never inflated, changes
1370 * only according to classic VJ rules.
1372 * Really tricky (and requiring careful tuning) part of algorithm
1373 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1374 * The first determines the moment _when_ we should reduce CWND and,
1375 * hence, slow down forward transmission. In fact, it determines the moment
1376 * when we decide that hole is caused by loss, rather than by a reorder.
1378 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1379 * holes, caused by lost packets.
1381 * And the most logically complicated part of algorithm is undo
1382 * heuristics. We detect false retransmits due to both too early
1383 * fast retransmit (reordering) and underestimated RTO, analyzing
1384 * timestamps and D-SACKs. When we detect that some segments were
1385 * retransmitted by mistake and CWND reduction was wrong, we undo
1386 * window reduction and abort recovery phase. This logic is hidden
1387 * inside several functions named tcp_try_undo_<something>.
1390 /* This function decides, when we should leave Disordered state
1391 * and enter Recovery phase, reducing congestion window.
1393 * Main question: may we further continue forward transmission
1394 * with the same cwnd?
1396 static int tcp_time_to_recover(struct sock
*sk
, struct tcp_sock
*tp
)
1400 /* Trick#1: The loss is proven. */
1404 /* Not-A-Trick#2 : Classic rule... */
1405 if (tcp_fackets_out(tp
) > tp
->reordering
)
1408 /* Trick#3 : when we use RFC2988 timer restart, fast
1409 * retransmit can be triggered by timeout of queue head.
1411 if (tcp_head_timedout(sk
, tp
))
1414 /* Trick#4: It is still not OK... But will it be useful to delay
1417 packets_out
= tp
->packets_out
;
1418 if (packets_out
<= tp
->reordering
&&
1419 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
1420 !tcp_may_send_now(sk
, tp
)) {
1421 /* We have nothing to send. This connection is limited
1422 * either by receiver window or by application.
1430 /* If we receive more dupacks than we expected counting segments
1431 * in assumption of absent reordering, interpret this as reordering.
1432 * The only another reason could be bug in receiver TCP.
1434 static void tcp_check_reno_reordering(struct tcp_sock
*tp
, int addend
)
1438 holes
= max(tp
->lost_out
, 1U);
1439 holes
= min(holes
, tp
->packets_out
);
1441 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1442 tp
->sacked_out
= tp
->packets_out
- holes
;
1443 tcp_update_reordering(tp
, tp
->packets_out
+addend
, 0);
1447 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1449 static void tcp_add_reno_sack(struct tcp_sock
*tp
)
1452 tcp_check_reno_reordering(tp
, 0);
1453 tcp_sync_left_out(tp
);
1456 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1458 static void tcp_remove_reno_sacks(struct sock
*sk
, struct tcp_sock
*tp
, int acked
)
1461 /* One ACK acked hole. The rest eat duplicate ACKs. */
1462 if (acked
-1 >= tp
->sacked_out
)
1465 tp
->sacked_out
-= acked
-1;
1467 tcp_check_reno_reordering(tp
, acked
);
1468 tcp_sync_left_out(tp
);
1471 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1474 tp
->left_out
= tp
->lost_out
;
1477 /* Mark head of queue up as lost. */
1478 static void tcp_mark_head_lost(struct sock
*sk
, struct tcp_sock
*tp
,
1479 int packets
, u32 high_seq
)
1481 struct sk_buff
*skb
;
1484 BUG_TRAP(cnt
<= tp
->packets_out
);
1486 sk_stream_for_retrans_queue(skb
, sk
) {
1487 cnt
-= tcp_skb_pcount(skb
);
1488 if (cnt
< 0 || after(TCP_SKB_CB(skb
)->end_seq
, high_seq
))
1490 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1491 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1492 tp
->lost_out
+= tcp_skb_pcount(skb
);
1495 tcp_sync_left_out(tp
);
1498 /* Account newly detected lost packet(s) */
1500 static void tcp_update_scoreboard(struct sock
*sk
, struct tcp_sock
*tp
)
1503 int lost
= tp
->fackets_out
- tp
->reordering
;
1506 tcp_mark_head_lost(sk
, tp
, lost
, tp
->high_seq
);
1508 tcp_mark_head_lost(sk
, tp
, 1, tp
->high_seq
);
1511 /* New heuristics: it is possible only after we switched
1512 * to restart timer each time when something is ACKed.
1513 * Hence, we can detect timed out packets during fast
1514 * retransmit without falling to slow start.
1516 if (tcp_head_timedout(sk
, tp
)) {
1517 struct sk_buff
*skb
;
1519 sk_stream_for_retrans_queue(skb
, sk
) {
1520 if (tcp_skb_timedout(sk
, skb
) &&
1521 !(TCP_SKB_CB(skb
)->sacked
&TCPCB_TAGBITS
)) {
1522 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1523 tp
->lost_out
+= tcp_skb_pcount(skb
);
1526 tcp_sync_left_out(tp
);
1530 /* CWND moderation, preventing bursts due to too big ACKs
1531 * in dubious situations.
1533 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
1535 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
1536 tcp_packets_in_flight(tp
)+tcp_max_burst(tp
));
1537 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1540 /* Decrease cwnd each second ack. */
1541 static void tcp_cwnd_down(struct tcp_sock
*tp
)
1543 int decr
= tp
->snd_cwnd_cnt
+ 1;
1545 tp
->snd_cwnd_cnt
= decr
&1;
1548 if (decr
&& tp
->snd_cwnd
> tp
->ca_ops
->min_cwnd(tp
))
1549 tp
->snd_cwnd
-= decr
;
1551 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
)+1);
1552 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1555 /* Nothing was retransmitted or returned timestamp is less
1556 * than timestamp of the first retransmission.
1558 static inline int tcp_packet_delayed(struct tcp_sock
*tp
)
1560 return !tp
->retrans_stamp
||
1561 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
1562 (__s32
)(tp
->rx_opt
.rcv_tsecr
- tp
->retrans_stamp
) < 0);
1565 /* Undo procedures. */
1567 #if FASTRETRANS_DEBUG > 1
1568 static void DBGUNDO(struct sock
*sk
, struct tcp_sock
*tp
, const char *msg
)
1570 struct inet_sock
*inet
= inet_sk(sk
);
1571 printk(KERN_DEBUG
"Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1573 NIPQUAD(inet
->daddr
), ntohs(inet
->dport
),
1574 tp
->snd_cwnd
, tp
->left_out
,
1575 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
1579 #define DBGUNDO(x...) do { } while (0)
1582 static void tcp_undo_cwr(struct tcp_sock
*tp
, int undo
)
1584 if (tp
->prior_ssthresh
) {
1585 if (tp
->ca_ops
->undo_cwnd
)
1586 tp
->snd_cwnd
= tp
->ca_ops
->undo_cwnd(tp
);
1588 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<<1);
1590 if (undo
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
1591 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
1592 TCP_ECN_withdraw_cwr(tp
);
1595 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1597 tcp_moderate_cwnd(tp
);
1598 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1601 static inline int tcp_may_undo(struct tcp_sock
*tp
)
1603 return tp
->undo_marker
&&
1604 (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
1607 /* People celebrate: "We love our President!" */
1608 static int tcp_try_undo_recovery(struct sock
*sk
, struct tcp_sock
*tp
)
1610 if (tcp_may_undo(tp
)) {
1611 /* Happy end! We did not retransmit anything
1612 * or our original transmission succeeded.
1614 DBGUNDO(sk
, tp
, tp
->ca_state
== TCP_CA_Loss
? "loss" : "retrans");
1615 tcp_undo_cwr(tp
, 1);
1616 if (tp
->ca_state
== TCP_CA_Loss
)
1617 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1619 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO
);
1620 tp
->undo_marker
= 0;
1622 if (tp
->snd_una
== tp
->high_seq
&& IsReno(tp
)) {
1623 /* Hold old state until something *above* high_seq
1624 * is ACKed. For Reno it is MUST to prevent false
1625 * fast retransmits (RFC2582). SACK TCP is safe. */
1626 tcp_moderate_cwnd(tp
);
1629 tcp_set_ca_state(tp
, TCP_CA_Open
);
1633 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1634 static void tcp_try_undo_dsack(struct sock
*sk
, struct tcp_sock
*tp
)
1636 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
1637 DBGUNDO(sk
, tp
, "D-SACK");
1638 tcp_undo_cwr(tp
, 1);
1639 tp
->undo_marker
= 0;
1640 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO
);
1644 /* Undo during fast recovery after partial ACK. */
1646 static int tcp_try_undo_partial(struct sock
*sk
, struct tcp_sock
*tp
,
1649 /* Partial ACK arrived. Force Hoe's retransmit. */
1650 int failed
= IsReno(tp
) || tp
->fackets_out
>tp
->reordering
;
1652 if (tcp_may_undo(tp
)) {
1653 /* Plain luck! Hole if filled with delayed
1654 * packet, rather than with a retransmit.
1656 if (tp
->retrans_out
== 0)
1657 tp
->retrans_stamp
= 0;
1659 tcp_update_reordering(tp
, tcp_fackets_out(tp
)+acked
, 1);
1661 DBGUNDO(sk
, tp
, "Hoe");
1662 tcp_undo_cwr(tp
, 0);
1663 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO
);
1665 /* So... Do not make Hoe's retransmit yet.
1666 * If the first packet was delayed, the rest
1667 * ones are most probably delayed as well.
1674 /* Undo during loss recovery after partial ACK. */
1675 static int tcp_try_undo_loss(struct sock
*sk
, struct tcp_sock
*tp
)
1677 if (tcp_may_undo(tp
)) {
1678 struct sk_buff
*skb
;
1679 sk_stream_for_retrans_queue(skb
, sk
) {
1680 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1682 DBGUNDO(sk
, tp
, "partial loss");
1684 tp
->left_out
= tp
->sacked_out
;
1685 tcp_undo_cwr(tp
, 1);
1686 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO
);
1687 inet_csk(sk
)->icsk_retransmits
= 0;
1688 tp
->undo_marker
= 0;
1690 tcp_set_ca_state(tp
, TCP_CA_Open
);
1696 static inline void tcp_complete_cwr(struct tcp_sock
*tp
)
1698 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
1699 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1700 tcp_ca_event(tp
, CA_EVENT_COMPLETE_CWR
);
1703 static void tcp_try_to_open(struct sock
*sk
, struct tcp_sock
*tp
, int flag
)
1705 tp
->left_out
= tp
->sacked_out
;
1707 if (tp
->retrans_out
== 0)
1708 tp
->retrans_stamp
= 0;
1713 if (tp
->ca_state
!= TCP_CA_CWR
) {
1714 int state
= TCP_CA_Open
;
1716 if (tp
->left_out
|| tp
->retrans_out
|| tp
->undo_marker
)
1717 state
= TCP_CA_Disorder
;
1719 if (tp
->ca_state
!= state
) {
1720 tcp_set_ca_state(tp
, state
);
1721 tp
->high_seq
= tp
->snd_nxt
;
1723 tcp_moderate_cwnd(tp
);
1729 /* Process an event, which can update packets-in-flight not trivially.
1730 * Main goal of this function is to calculate new estimate for left_out,
1731 * taking into account both packets sitting in receiver's buffer and
1732 * packets lost by network.
1734 * Besides that it does CWND reduction, when packet loss is detected
1735 * and changes state of machine.
1737 * It does _not_ decide what to send, it is made in function
1738 * tcp_xmit_retransmit_queue().
1741 tcp_fastretrans_alert(struct sock
*sk
, u32 prior_snd_una
,
1742 int prior_packets
, int flag
)
1744 struct tcp_sock
*tp
= tcp_sk(sk
);
1745 int is_dupack
= (tp
->snd_una
== prior_snd_una
&& !(flag
&FLAG_NOT_DUP
));
1747 /* Some technical things:
1748 * 1. Reno does not count dupacks (sacked_out) automatically. */
1749 if (!tp
->packets_out
)
1751 /* 2. SACK counts snd_fack in packets inaccurately. */
1752 if (tp
->sacked_out
== 0)
1753 tp
->fackets_out
= 0;
1755 /* Now state machine starts.
1756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1758 tp
->prior_ssthresh
= 0;
1760 /* B. In all the states check for reneging SACKs. */
1761 if (tp
->sacked_out
&& tcp_check_sack_reneging(sk
))
1764 /* C. Process data loss notification, provided it is valid. */
1765 if ((flag
&FLAG_DATA_LOST
) &&
1766 before(tp
->snd_una
, tp
->high_seq
) &&
1767 tp
->ca_state
!= TCP_CA_Open
&&
1768 tp
->fackets_out
> tp
->reordering
) {
1769 tcp_mark_head_lost(sk
, tp
, tp
->fackets_out
-tp
->reordering
, tp
->high_seq
);
1770 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS
);
1773 /* D. Synchronize left_out to current state. */
1774 tcp_sync_left_out(tp
);
1776 /* E. Check state exit conditions. State can be terminated
1777 * when high_seq is ACKed. */
1778 if (tp
->ca_state
== TCP_CA_Open
) {
1779 if (!sysctl_tcp_frto
)
1780 BUG_TRAP(tp
->retrans_out
== 0);
1781 tp
->retrans_stamp
= 0;
1782 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
1783 switch (tp
->ca_state
) {
1785 inet_csk(sk
)->icsk_retransmits
= 0;
1786 if (tcp_try_undo_recovery(sk
, tp
))
1791 /* CWR is to be held something *above* high_seq
1792 * is ACKed for CWR bit to reach receiver. */
1793 if (tp
->snd_una
!= tp
->high_seq
) {
1794 tcp_complete_cwr(tp
);
1795 tcp_set_ca_state(tp
, TCP_CA_Open
);
1799 case TCP_CA_Disorder
:
1800 tcp_try_undo_dsack(sk
, tp
);
1801 if (!tp
->undo_marker
||
1802 /* For SACK case do not Open to allow to undo
1803 * catching for all duplicate ACKs. */
1804 IsReno(tp
) || tp
->snd_una
!= tp
->high_seq
) {
1805 tp
->undo_marker
= 0;
1806 tcp_set_ca_state(tp
, TCP_CA_Open
);
1810 case TCP_CA_Recovery
:
1812 tcp_reset_reno_sack(tp
);
1813 if (tcp_try_undo_recovery(sk
, tp
))
1815 tcp_complete_cwr(tp
);
1820 /* F. Process state. */
1821 switch (tp
->ca_state
) {
1822 case TCP_CA_Recovery
:
1823 if (prior_snd_una
== tp
->snd_una
) {
1824 if (IsReno(tp
) && is_dupack
)
1825 tcp_add_reno_sack(tp
);
1827 int acked
= prior_packets
- tp
->packets_out
;
1829 tcp_remove_reno_sacks(sk
, tp
, acked
);
1830 is_dupack
= tcp_try_undo_partial(sk
, tp
, acked
);
1834 if (flag
&FLAG_DATA_ACKED
)
1835 inet_csk(sk
)->icsk_retransmits
= 0;
1836 if (!tcp_try_undo_loss(sk
, tp
)) {
1837 tcp_moderate_cwnd(tp
);
1838 tcp_xmit_retransmit_queue(sk
);
1841 if (tp
->ca_state
!= TCP_CA_Open
)
1843 /* Loss is undone; fall through to processing in Open state. */
1846 if (tp
->snd_una
!= prior_snd_una
)
1847 tcp_reset_reno_sack(tp
);
1849 tcp_add_reno_sack(tp
);
1852 if (tp
->ca_state
== TCP_CA_Disorder
)
1853 tcp_try_undo_dsack(sk
, tp
);
1855 if (!tcp_time_to_recover(sk
, tp
)) {
1856 tcp_try_to_open(sk
, tp
, flag
);
1860 /* Otherwise enter Recovery state */
1863 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY
);
1865 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY
);
1867 tp
->high_seq
= tp
->snd_nxt
;
1868 tp
->prior_ssthresh
= 0;
1869 tp
->undo_marker
= tp
->snd_una
;
1870 tp
->undo_retrans
= tp
->retrans_out
;
1872 if (tp
->ca_state
< TCP_CA_CWR
) {
1873 if (!(flag
&FLAG_ECE
))
1874 tp
->prior_ssthresh
= tcp_current_ssthresh(tp
);
1875 tp
->snd_ssthresh
= tp
->ca_ops
->ssthresh(tp
);
1876 TCP_ECN_queue_cwr(tp
);
1879 tp
->snd_cwnd_cnt
= 0;
1880 tcp_set_ca_state(tp
, TCP_CA_Recovery
);
1883 if (is_dupack
|| tcp_head_timedout(sk
, tp
))
1884 tcp_update_scoreboard(sk
, tp
);
1886 tcp_xmit_retransmit_queue(sk
);
1889 /* Read draft-ietf-tcplw-high-performance before mucking
1890 * with this code. (Superceeds RFC1323)
1892 static void tcp_ack_saw_tstamp(struct sock
*sk
, u32
*usrtt
, int flag
)
1894 /* RTTM Rule: A TSecr value received in a segment is used to
1895 * update the averaged RTT measurement only if the segment
1896 * acknowledges some new data, i.e., only if it advances the
1897 * left edge of the send window.
1899 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1900 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1902 * Changed: reset backoff as soon as we see the first valid sample.
1903 * If we do not, we get strongly overstimated rto. With timestamps
1904 * samples are accepted even from very old segments: f.e., when rtt=1
1905 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1906 * answer arrives rto becomes 120 seconds! If at least one of segments
1907 * in window is lost... Voila. --ANK (010210)
1909 struct tcp_sock
*tp
= tcp_sk(sk
);
1910 const __u32 seq_rtt
= tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
;
1911 tcp_rtt_estimator(tp
, seq_rtt
, usrtt
);
1913 inet_csk(sk
)->icsk_backoff
= 0;
1917 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, u32
*usrtt
, int flag
)
1919 /* We don't have a timestamp. Can only use
1920 * packets that are not retransmitted to determine
1921 * rtt estimates. Also, we must not reset the
1922 * backoff for rto until we get a non-retransmitted
1923 * packet. This allows us to deal with a situation
1924 * where the network delay has increased suddenly.
1925 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1928 if (flag
& FLAG_RETRANS_DATA_ACKED
)
1931 tcp_rtt_estimator(tcp_sk(sk
), seq_rtt
, usrtt
);
1933 inet_csk(sk
)->icsk_backoff
= 0;
1937 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
1938 const s32 seq_rtt
, u32
*usrtt
)
1940 const struct tcp_sock
*tp
= tcp_sk(sk
);
1941 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1942 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
1943 tcp_ack_saw_tstamp(sk
, usrtt
, flag
);
1944 else if (seq_rtt
>= 0)
1945 tcp_ack_no_tstamp(sk
, seq_rtt
, usrtt
, flag
);
1948 static inline void tcp_cong_avoid(struct tcp_sock
*tp
, u32 ack
, u32 rtt
,
1949 u32 in_flight
, int good
)
1951 tp
->ca_ops
->cong_avoid(tp
, ack
, rtt
, in_flight
, good
);
1952 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1955 /* Restart timer after forward progress on connection.
1956 * RFC2988 recommends to restart timer to now+rto.
1959 static inline void tcp_ack_packets_out(struct sock
*sk
, struct tcp_sock
*tp
)
1961 if (!tp
->packets_out
) {
1962 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
1964 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
1968 static int tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
,
1969 __u32 now
, __s32
*seq_rtt
)
1971 struct tcp_sock
*tp
= tcp_sk(sk
);
1972 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
1973 __u32 seq
= tp
->snd_una
;
1974 __u32 packets_acked
;
1977 /* If we get here, the whole TSO packet has not been
1980 BUG_ON(!after(scb
->end_seq
, seq
));
1982 packets_acked
= tcp_skb_pcount(skb
);
1983 if (tcp_trim_head(sk
, skb
, seq
- scb
->seq
))
1985 packets_acked
-= tcp_skb_pcount(skb
);
1987 if (packets_acked
) {
1988 __u8 sacked
= scb
->sacked
;
1990 acked
|= FLAG_DATA_ACKED
;
1992 if (sacked
& TCPCB_RETRANS
) {
1993 if (sacked
& TCPCB_SACKED_RETRANS
)
1994 tp
->retrans_out
-= packets_acked
;
1995 acked
|= FLAG_RETRANS_DATA_ACKED
;
1997 } else if (*seq_rtt
< 0)
1998 *seq_rtt
= now
- scb
->when
;
1999 if (sacked
& TCPCB_SACKED_ACKED
)
2000 tp
->sacked_out
-= packets_acked
;
2001 if (sacked
& TCPCB_LOST
)
2002 tp
->lost_out
-= packets_acked
;
2003 if (sacked
& TCPCB_URG
) {
2005 !before(seq
, tp
->snd_up
))
2008 } else if (*seq_rtt
< 0)
2009 *seq_rtt
= now
- scb
->when
;
2011 if (tp
->fackets_out
) {
2012 __u32 dval
= min(tp
->fackets_out
, packets_acked
);
2013 tp
->fackets_out
-= dval
;
2015 tp
->packets_out
-= packets_acked
;
2017 BUG_ON(tcp_skb_pcount(skb
) == 0);
2018 BUG_ON(!before(scb
->seq
, scb
->end_seq
));
2025 /* Remove acknowledged frames from the retransmission queue. */
2026 static int tcp_clean_rtx_queue(struct sock
*sk
, __s32
*seq_rtt_p
, s32
*seq_usrtt
)
2028 struct tcp_sock
*tp
= tcp_sk(sk
);
2029 struct sk_buff
*skb
;
2030 __u32 now
= tcp_time_stamp
;
2033 struct timeval usnow
;
2037 do_gettimeofday(&usnow
);
2039 while ((skb
= skb_peek(&sk
->sk_write_queue
)) &&
2040 skb
!= sk
->sk_send_head
) {
2041 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
2042 __u8 sacked
= scb
->sacked
;
2044 /* If our packet is before the ack sequence we can
2045 * discard it as it's confirmed to have arrived at
2048 if (after(scb
->end_seq
, tp
->snd_una
)) {
2049 if (tcp_skb_pcount(skb
) > 1 &&
2050 after(tp
->snd_una
, scb
->seq
))
2051 acked
|= tcp_tso_acked(sk
, skb
,
2056 /* Initial outgoing SYN's get put onto the write_queue
2057 * just like anything else we transmit. It is not
2058 * true data, and if we misinform our callers that
2059 * this ACK acks real data, we will erroneously exit
2060 * connection startup slow start one packet too
2061 * quickly. This is severely frowned upon behavior.
2063 if (!(scb
->flags
& TCPCB_FLAG_SYN
)) {
2064 acked
|= FLAG_DATA_ACKED
;
2067 acked
|= FLAG_SYN_ACKED
;
2068 tp
->retrans_stamp
= 0;
2072 if (sacked
& TCPCB_RETRANS
) {
2073 if(sacked
& TCPCB_SACKED_RETRANS
)
2074 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2075 acked
|= FLAG_RETRANS_DATA_ACKED
;
2077 } else if (seq_rtt
< 0)
2078 seq_rtt
= now
- scb
->when
;
2080 *seq_usrtt
= (usnow
.tv_sec
- skb
->stamp
.tv_sec
) * 1000000
2081 + (usnow
.tv_usec
- skb
->stamp
.tv_usec
);
2083 if (sacked
& TCPCB_SACKED_ACKED
)
2084 tp
->sacked_out
-= tcp_skb_pcount(skb
);
2085 if (sacked
& TCPCB_LOST
)
2086 tp
->lost_out
-= tcp_skb_pcount(skb
);
2087 if (sacked
& TCPCB_URG
) {
2089 !before(scb
->end_seq
, tp
->snd_up
))
2092 } else if (seq_rtt
< 0)
2093 seq_rtt
= now
- scb
->when
;
2094 tcp_dec_pcount_approx(&tp
->fackets_out
, skb
);
2095 tcp_packets_out_dec(tp
, skb
);
2096 __skb_unlink(skb
, &sk
->sk_write_queue
);
2097 sk_stream_free_skb(sk
, skb
);
2100 if (acked
&FLAG_ACKED
) {
2101 tcp_ack_update_rtt(sk
, acked
, seq_rtt
, seq_usrtt
);
2102 tcp_ack_packets_out(sk
, tp
);
2104 if (tp
->ca_ops
->pkts_acked
)
2105 tp
->ca_ops
->pkts_acked(tp
, pkts_acked
);
2108 #if FASTRETRANS_DEBUG > 0
2109 BUG_TRAP((int)tp
->sacked_out
>= 0);
2110 BUG_TRAP((int)tp
->lost_out
>= 0);
2111 BUG_TRAP((int)tp
->retrans_out
>= 0);
2112 if (!tp
->packets_out
&& tp
->rx_opt
.sack_ok
) {
2114 printk(KERN_DEBUG
"Leak l=%u %d\n",
2115 tp
->lost_out
, tp
->ca_state
);
2118 if (tp
->sacked_out
) {
2119 printk(KERN_DEBUG
"Leak s=%u %d\n",
2120 tp
->sacked_out
, tp
->ca_state
);
2123 if (tp
->retrans_out
) {
2124 printk(KERN_DEBUG
"Leak r=%u %d\n",
2125 tp
->retrans_out
, tp
->ca_state
);
2126 tp
->retrans_out
= 0;
2130 *seq_rtt_p
= seq_rtt
;
2134 static void tcp_ack_probe(struct sock
*sk
)
2136 const struct tcp_sock
*tp
= tcp_sk(sk
);
2137 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2139 /* Was it a usable window open? */
2141 if (!after(TCP_SKB_CB(sk
->sk_send_head
)->end_seq
,
2142 tp
->snd_una
+ tp
->snd_wnd
)) {
2143 icsk
->icsk_backoff
= 0;
2144 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
2145 /* Socket must be waked up by subsequent tcp_data_snd_check().
2146 * This function is not for random using!
2149 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2150 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2155 static inline int tcp_ack_is_dubious(struct tcp_sock
*tp
, int flag
)
2157 return (!(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
2158 tp
->ca_state
!= TCP_CA_Open
);
2161 static inline int tcp_may_raise_cwnd(struct tcp_sock
*tp
, int flag
)
2163 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
2164 !((1<<tp
->ca_state
)&(TCPF_CA_Recovery
|TCPF_CA_CWR
));
2167 /* Check that window update is acceptable.
2168 * The function assumes that snd_una<=ack<=snd_next.
2170 static inline int tcp_may_update_window(const struct tcp_sock
*tp
, const u32 ack
,
2171 const u32 ack_seq
, const u32 nwin
)
2173 return (after(ack
, tp
->snd_una
) ||
2174 after(ack_seq
, tp
->snd_wl1
) ||
2175 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
));
2178 /* Update our send window.
2180 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2181 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2183 static int tcp_ack_update_window(struct sock
*sk
, struct tcp_sock
*tp
,
2184 struct sk_buff
*skb
, u32 ack
, u32 ack_seq
)
2187 u32 nwin
= ntohs(skb
->h
.th
->window
);
2189 if (likely(!skb
->h
.th
->syn
))
2190 nwin
<<= tp
->rx_opt
.snd_wscale
;
2192 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
2193 flag
|= FLAG_WIN_UPDATE
;
2194 tcp_update_wl(tp
, ack
, ack_seq
);
2196 if (tp
->snd_wnd
!= nwin
) {
2199 /* Note, it is the only place, where
2200 * fast path is recovered for sending TCP.
2202 tcp_fast_path_check(sk
, tp
);
2204 if (nwin
> tp
->max_window
) {
2205 tp
->max_window
= nwin
;
2206 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
2216 static void tcp_process_frto(struct sock
*sk
, u32 prior_snd_una
)
2218 struct tcp_sock
*tp
= tcp_sk(sk
);
2220 tcp_sync_left_out(tp
);
2222 if (tp
->snd_una
== prior_snd_una
||
2223 !before(tp
->snd_una
, tp
->frto_highmark
)) {
2224 /* RTO was caused by loss, start retransmitting in
2225 * go-back-N slow start
2227 tcp_enter_frto_loss(sk
);
2231 if (tp
->frto_counter
== 1) {
2232 /* First ACK after RTO advances the window: allow two new
2235 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
2237 /* Also the second ACK after RTO advances the window.
2238 * The RTO was likely spurious. Reduce cwnd and continue
2239 * in congestion avoidance
2241 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2242 tcp_moderate_cwnd(tp
);
2245 /* F-RTO affects on two new ACKs following RTO.
2246 * At latest on third ACK the TCP behavor is back to normal.
2248 tp
->frto_counter
= (tp
->frto_counter
+ 1) % 3;
2251 /* This routine deals with incoming acks, but not outgoing ones. */
2252 static int tcp_ack(struct sock
*sk
, struct sk_buff
*skb
, int flag
)
2254 struct tcp_sock
*tp
= tcp_sk(sk
);
2255 u32 prior_snd_una
= tp
->snd_una
;
2256 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
2257 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2258 u32 prior_in_flight
;
2263 /* If the ack is newer than sent or older than previous acks
2264 * then we can probably ignore it.
2266 if (after(ack
, tp
->snd_nxt
))
2267 goto uninteresting_ack
;
2269 if (before(ack
, prior_snd_una
))
2272 if (!(flag
&FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
2273 /* Window is constant, pure forward advance.
2274 * No more checks are required.
2275 * Note, we use the fact that SND.UNA>=SND.WL2.
2277 tcp_update_wl(tp
, ack
, ack_seq
);
2279 flag
|= FLAG_WIN_UPDATE
;
2281 tcp_ca_event(tp
, CA_EVENT_FAST_ACK
);
2283 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS
);
2285 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
2288 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS
);
2290 flag
|= tcp_ack_update_window(sk
, tp
, skb
, ack
, ack_seq
);
2292 if (TCP_SKB_CB(skb
)->sacked
)
2293 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2295 if (TCP_ECN_rcv_ecn_echo(tp
, skb
->h
.th
))
2298 tcp_ca_event(tp
, CA_EVENT_SLOW_ACK
);
2301 /* We passed data and got it acked, remove any soft error
2302 * log. Something worked...
2304 sk
->sk_err_soft
= 0;
2305 tp
->rcv_tstamp
= tcp_time_stamp
;
2306 prior_packets
= tp
->packets_out
;
2310 prior_in_flight
= tcp_packets_in_flight(tp
);
2312 /* See if we can take anything off of the retransmit queue. */
2313 flag
|= tcp_clean_rtx_queue(sk
, &seq_rtt
,
2314 tp
->ca_ops
->rtt_sample
? &seq_usrtt
: NULL
);
2316 if (tp
->frto_counter
)
2317 tcp_process_frto(sk
, prior_snd_una
);
2319 if (tcp_ack_is_dubious(tp
, flag
)) {
2320 /* Advanve CWND, if state allows this. */
2321 if ((flag
& FLAG_DATA_ACKED
) && tcp_may_raise_cwnd(tp
, flag
))
2322 tcp_cong_avoid(tp
, ack
, seq_rtt
, prior_in_flight
, 0);
2323 tcp_fastretrans_alert(sk
, prior_snd_una
, prior_packets
, flag
);
2325 if ((flag
& FLAG_DATA_ACKED
))
2326 tcp_cong_avoid(tp
, ack
, seq_rtt
, prior_in_flight
, 1);
2329 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
&FLAG_NOT_DUP
))
2330 dst_confirm(sk
->sk_dst_cache
);
2337 /* If this ack opens up a zero window, clear backoff. It was
2338 * being used to time the probes, and is probably far higher than
2339 * it needs to be for normal retransmission.
2341 if (sk
->sk_send_head
)
2346 if (TCP_SKB_CB(skb
)->sacked
)
2347 tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
2350 SOCK_DEBUG(sk
, "Ack %u out of %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
2355 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2356 * But, this can also be called on packets in the established flow when
2357 * the fast version below fails.
2359 void tcp_parse_options(struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
, int estab
)
2362 struct tcphdr
*th
= skb
->h
.th
;
2363 int length
=(th
->doff
*4)-sizeof(struct tcphdr
);
2365 ptr
= (unsigned char *)(th
+ 1);
2366 opt_rx
->saw_tstamp
= 0;
2375 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
2380 if (opsize
< 2) /* "silly options" */
2382 if (opsize
> length
)
2383 return; /* don't parse partial options */
2386 if(opsize
==TCPOLEN_MSS
&& th
->syn
&& !estab
) {
2387 u16 in_mss
= ntohs(get_unaligned((__u16
*)ptr
));
2389 if (opt_rx
->user_mss
&& opt_rx
->user_mss
< in_mss
)
2390 in_mss
= opt_rx
->user_mss
;
2391 opt_rx
->mss_clamp
= in_mss
;
2396 if(opsize
==TCPOLEN_WINDOW
&& th
->syn
&& !estab
)
2397 if (sysctl_tcp_window_scaling
) {
2398 __u8 snd_wscale
= *(__u8
*) ptr
;
2399 opt_rx
->wscale_ok
= 1;
2400 if (snd_wscale
> 14) {
2402 printk(KERN_INFO
"tcp_parse_options: Illegal window "
2403 "scaling value %d >14 received.\n",
2407 opt_rx
->snd_wscale
= snd_wscale
;
2410 case TCPOPT_TIMESTAMP
:
2411 if(opsize
==TCPOLEN_TIMESTAMP
) {
2412 if ((estab
&& opt_rx
->tstamp_ok
) ||
2413 (!estab
&& sysctl_tcp_timestamps
)) {
2414 opt_rx
->saw_tstamp
= 1;
2415 opt_rx
->rcv_tsval
= ntohl(get_unaligned((__u32
*)ptr
));
2416 opt_rx
->rcv_tsecr
= ntohl(get_unaligned((__u32
*)(ptr
+4)));
2420 case TCPOPT_SACK_PERM
:
2421 if(opsize
==TCPOLEN_SACK_PERM
&& th
->syn
&& !estab
) {
2422 if (sysctl_tcp_sack
) {
2423 opt_rx
->sack_ok
= 1;
2424 tcp_sack_reset(opt_rx
);
2430 if((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
2431 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
2433 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
2442 /* Fast parse options. This hopes to only see timestamps.
2443 * If it is wrong it falls back on tcp_parse_options().
2445 static inline int tcp_fast_parse_options(struct sk_buff
*skb
, struct tcphdr
*th
,
2446 struct tcp_sock
*tp
)
2448 if (th
->doff
== sizeof(struct tcphdr
)>>2) {
2449 tp
->rx_opt
.saw_tstamp
= 0;
2451 } else if (tp
->rx_opt
.tstamp_ok
&&
2452 th
->doff
== (sizeof(struct tcphdr
)>>2)+(TCPOLEN_TSTAMP_ALIGNED
>>2)) {
2453 __u32
*ptr
= (__u32
*)(th
+ 1);
2454 if (*ptr
== ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
2455 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
2456 tp
->rx_opt
.saw_tstamp
= 1;
2458 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
2460 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
2464 tcp_parse_options(skb
, &tp
->rx_opt
, 1);
2468 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
2470 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
2471 tp
->rx_opt
.ts_recent_stamp
= xtime
.tv_sec
;
2474 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
2476 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
2477 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2478 * extra check below makes sure this can only happen
2479 * for pure ACK frames. -DaveM
2481 * Not only, also it occurs for expired timestamps.
2484 if((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) >= 0 ||
2485 xtime
.tv_sec
>= tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
)
2486 tcp_store_ts_recent(tp
);
2490 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2492 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2493 * it can pass through stack. So, the following predicate verifies that
2494 * this segment is not used for anything but congestion avoidance or
2495 * fast retransmit. Moreover, we even are able to eliminate most of such
2496 * second order effects, if we apply some small "replay" window (~RTO)
2497 * to timestamp space.
2499 * All these measures still do not guarantee that we reject wrapped ACKs
2500 * on networks with high bandwidth, when sequence space is recycled fastly,
2501 * but it guarantees that such events will be very rare and do not affect
2502 * connection seriously. This doesn't look nice, but alas, PAWS is really
2505 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2506 * states that events when retransmit arrives after original data are rare.
2507 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2508 * the biggest problem on large power networks even with minor reordering.
2509 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2510 * up to bandwidth of 18Gigabit/sec. 8) ]
2513 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
2515 struct tcp_sock
*tp
= tcp_sk(sk
);
2516 struct tcphdr
*th
= skb
->h
.th
;
2517 u32 seq
= TCP_SKB_CB(skb
)->seq
;
2518 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
2520 return (/* 1. Pure ACK with correct sequence number. */
2521 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
2523 /* 2. ... and duplicate ACK. */
2524 ack
== tp
->snd_una
&&
2526 /* 3. ... and does not update window. */
2527 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
2529 /* 4. ... and sits in replay window. */
2530 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
2533 static inline int tcp_paws_discard(const struct sock
*sk
, const struct sk_buff
*skb
)
2535 const struct tcp_sock
*tp
= tcp_sk(sk
);
2536 return ((s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) > TCP_PAWS_WINDOW
&&
2537 xtime
.tv_sec
< tp
->rx_opt
.ts_recent_stamp
+ TCP_PAWS_24DAYS
&&
2538 !tcp_disordered_ack(sk
, skb
));
2541 /* Check segment sequence number for validity.
2543 * Segment controls are considered valid, if the segment
2544 * fits to the window after truncation to the window. Acceptability
2545 * of data (and SYN, FIN, of course) is checked separately.
2546 * See tcp_data_queue(), for example.
2548 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2549 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2550 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2551 * (borrowed from freebsd)
2554 static inline int tcp_sequence(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2556 return !before(end_seq
, tp
->rcv_wup
) &&
2557 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
2560 /* When we get a reset we do this. */
2561 static void tcp_reset(struct sock
*sk
)
2563 /* We want the right error as BSD sees it (and indeed as we do). */
2564 switch (sk
->sk_state
) {
2566 sk
->sk_err
= ECONNREFUSED
;
2568 case TCP_CLOSE_WAIT
:
2574 sk
->sk_err
= ECONNRESET
;
2577 if (!sock_flag(sk
, SOCK_DEAD
))
2578 sk
->sk_error_report(sk
);
2584 * Process the FIN bit. This now behaves as it is supposed to work
2585 * and the FIN takes effect when it is validly part of sequence
2586 * space. Not before when we get holes.
2588 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2589 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2592 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2593 * close and we go into CLOSING (and later onto TIME-WAIT)
2595 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2597 static void tcp_fin(struct sk_buff
*skb
, struct sock
*sk
, struct tcphdr
*th
)
2599 struct tcp_sock
*tp
= tcp_sk(sk
);
2601 inet_csk_schedule_ack(sk
);
2603 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
2604 sock_set_flag(sk
, SOCK_DONE
);
2606 switch (sk
->sk_state
) {
2608 case TCP_ESTABLISHED
:
2609 /* Move to CLOSE_WAIT */
2610 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
2611 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
2614 case TCP_CLOSE_WAIT
:
2616 /* Received a retransmission of the FIN, do
2621 /* RFC793: Remain in the LAST-ACK state. */
2625 /* This case occurs when a simultaneous close
2626 * happens, we must ack the received FIN and
2627 * enter the CLOSING state.
2630 tcp_set_state(sk
, TCP_CLOSING
);
2633 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2635 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
2638 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2639 * cases we should never reach this piece of code.
2641 printk(KERN_ERR
"%s: Impossible, sk->sk_state=%d\n",
2642 __FUNCTION__
, sk
->sk_state
);
2646 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2647 * Probably, we should reset in this case. For now drop them.
2649 __skb_queue_purge(&tp
->out_of_order_queue
);
2650 if (tp
->rx_opt
.sack_ok
)
2651 tcp_sack_reset(&tp
->rx_opt
);
2652 sk_stream_mem_reclaim(sk
);
2654 if (!sock_flag(sk
, SOCK_DEAD
)) {
2655 sk
->sk_state_change(sk
);
2657 /* Do not send POLL_HUP for half duplex close. */
2658 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
2659 sk
->sk_state
== TCP_CLOSE
)
2660 sk_wake_async(sk
, 1, POLL_HUP
);
2662 sk_wake_async(sk
, 1, POLL_IN
);
2666 static __inline__
int
2667 tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
, u32 end_seq
)
2669 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
2670 if (before(seq
, sp
->start_seq
))
2671 sp
->start_seq
= seq
;
2672 if (after(end_seq
, sp
->end_seq
))
2673 sp
->end_seq
= end_seq
;
2679 static inline void tcp_dsack_set(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2681 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
2682 if (before(seq
, tp
->rcv_nxt
))
2683 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT
);
2685 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT
);
2687 tp
->rx_opt
.dsack
= 1;
2688 tp
->duplicate_sack
[0].start_seq
= seq
;
2689 tp
->duplicate_sack
[0].end_seq
= end_seq
;
2690 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ 1, 4 - tp
->rx_opt
.tstamp_ok
);
2694 static inline void tcp_dsack_extend(struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
2696 if (!tp
->rx_opt
.dsack
)
2697 tcp_dsack_set(tp
, seq
, end_seq
);
2699 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
2702 static void tcp_send_dupack(struct sock
*sk
, struct sk_buff
*skb
)
2704 struct tcp_sock
*tp
= tcp_sk(sk
);
2706 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
2707 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
2708 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
2709 tcp_enter_quickack_mode(sk
);
2711 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_dsack
) {
2712 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
2714 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
2715 end_seq
= tp
->rcv_nxt
;
2716 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, end_seq
);
2723 /* These routines update the SACK block as out-of-order packets arrive or
2724 * in-order packets close up the sequence space.
2726 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
2729 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
2730 struct tcp_sack_block
*swalk
= sp
+1;
2732 /* See if the recent change to the first SACK eats into
2733 * or hits the sequence space of other SACK blocks, if so coalesce.
2735 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
; ) {
2736 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
2739 /* Zap SWALK, by moving every further SACK up by one slot.
2740 * Decrease num_sacks.
2742 tp
->rx_opt
.num_sacks
--;
2743 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
2744 for(i
=this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
2748 this_sack
++, swalk
++;
2752 static __inline__
void tcp_sack_swap(struct tcp_sack_block
*sack1
, struct tcp_sack_block
*sack2
)
2756 tmp
= sack1
->start_seq
;
2757 sack1
->start_seq
= sack2
->start_seq
;
2758 sack2
->start_seq
= tmp
;
2760 tmp
= sack1
->end_seq
;
2761 sack1
->end_seq
= sack2
->end_seq
;
2762 sack2
->end_seq
= tmp
;
2765 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
2767 struct tcp_sock
*tp
= tcp_sk(sk
);
2768 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
2769 int cur_sacks
= tp
->rx_opt
.num_sacks
;
2775 for (this_sack
=0; this_sack
<cur_sacks
; this_sack
++, sp
++) {
2776 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
2777 /* Rotate this_sack to the first one. */
2778 for (; this_sack
>0; this_sack
--, sp
--)
2779 tcp_sack_swap(sp
, sp
-1);
2781 tcp_sack_maybe_coalesce(tp
);
2786 /* Could not find an adjacent existing SACK, build a new one,
2787 * put it at the front, and shift everyone else down. We
2788 * always know there is at least one SACK present already here.
2790 * If the sack array is full, forget about the last one.
2792 if (this_sack
>= 4) {
2794 tp
->rx_opt
.num_sacks
--;
2797 for(; this_sack
> 0; this_sack
--, sp
--)
2801 /* Build the new head SACK, and we're done. */
2802 sp
->start_seq
= seq
;
2803 sp
->end_seq
= end_seq
;
2804 tp
->rx_opt
.num_sacks
++;
2805 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
2808 /* RCV.NXT advances, some SACKs should be eaten. */
2810 static void tcp_sack_remove(struct tcp_sock
*tp
)
2812 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
2813 int num_sacks
= tp
->rx_opt
.num_sacks
;
2816 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2817 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
2818 tp
->rx_opt
.num_sacks
= 0;
2819 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.dsack
;
2823 for(this_sack
= 0; this_sack
< num_sacks
; ) {
2824 /* Check if the start of the sack is covered by RCV.NXT. */
2825 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
2828 /* RCV.NXT must cover all the block! */
2829 BUG_TRAP(!before(tp
->rcv_nxt
, sp
->end_seq
));
2831 /* Zap this SACK, by moving forward any other SACKS. */
2832 for (i
=this_sack
+1; i
< num_sacks
; i
++)
2833 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
2840 if (num_sacks
!= tp
->rx_opt
.num_sacks
) {
2841 tp
->rx_opt
.num_sacks
= num_sacks
;
2842 tp
->rx_opt
.eff_sacks
= min(tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
, 4 - tp
->rx_opt
.tstamp_ok
);
2846 /* This one checks to see if we can put data from the
2847 * out_of_order queue into the receive_queue.
2849 static void tcp_ofo_queue(struct sock
*sk
)
2851 struct tcp_sock
*tp
= tcp_sk(sk
);
2852 __u32 dsack_high
= tp
->rcv_nxt
;
2853 struct sk_buff
*skb
;
2855 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
2856 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
2859 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
2860 __u32 dsack
= dsack_high
;
2861 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
2862 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
2863 tcp_dsack_extend(tp
, TCP_SKB_CB(skb
)->seq
, dsack
);
2866 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
2867 SOCK_DEBUG(sk
, "ofo packet was already received \n");
2868 __skb_unlink(skb
, &tp
->out_of_order_queue
);
2872 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
2873 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
2874 TCP_SKB_CB(skb
)->end_seq
);
2876 __skb_unlink(skb
, &tp
->out_of_order_queue
);
2877 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
2878 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
2880 tcp_fin(skb
, sk
, skb
->h
.th
);
2884 static int tcp_prune_queue(struct sock
*sk
);
2886 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
2888 struct tcphdr
*th
= skb
->h
.th
;
2889 struct tcp_sock
*tp
= tcp_sk(sk
);
2892 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
2895 __skb_pull(skb
, th
->doff
*4);
2897 TCP_ECN_accept_cwr(tp
, skb
);
2899 if (tp
->rx_opt
.dsack
) {
2900 tp
->rx_opt
.dsack
= 0;
2901 tp
->rx_opt
.eff_sacks
= min_t(unsigned int, tp
->rx_opt
.num_sacks
,
2902 4 - tp
->rx_opt
.tstamp_ok
);
2905 /* Queue data for delivery to the user.
2906 * Packets in sequence go to the receive queue.
2907 * Out of sequence packets to the out_of_order_queue.
2909 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
2910 if (tcp_receive_window(tp
) == 0)
2913 /* Ok. In sequence. In window. */
2914 if (tp
->ucopy
.task
== current
&&
2915 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
2916 sock_owned_by_user(sk
) && !tp
->urg_data
) {
2917 int chunk
= min_t(unsigned int, skb
->len
,
2920 __set_current_state(TASK_RUNNING
);
2923 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
2924 tp
->ucopy
.len
-= chunk
;
2925 tp
->copied_seq
+= chunk
;
2926 eaten
= (chunk
== skb
->len
&& !th
->fin
);
2927 tcp_rcv_space_adjust(sk
);
2935 (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
2936 !sk_stream_rmem_schedule(sk
, skb
))) {
2937 if (tcp_prune_queue(sk
) < 0 ||
2938 !sk_stream_rmem_schedule(sk
, skb
))
2941 sk_stream_set_owner_r(skb
, sk
);
2942 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
2944 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
2946 tcp_event_data_recv(sk
, tp
, skb
);
2948 tcp_fin(skb
, sk
, th
);
2950 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
2953 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2954 * gap in queue is filled.
2956 if (skb_queue_empty(&tp
->out_of_order_queue
))
2957 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
2960 if (tp
->rx_opt
.num_sacks
)
2961 tcp_sack_remove(tp
);
2963 tcp_fast_path_check(sk
, tp
);
2967 else if (!sock_flag(sk
, SOCK_DEAD
))
2968 sk
->sk_data_ready(sk
, 0);
2972 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
2973 /* A retransmit, 2nd most common case. Force an immediate ack. */
2974 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST
);
2975 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
2978 tcp_enter_quickack_mode(sk
);
2979 inet_csk_schedule_ack(sk
);
2985 /* Out of window. F.e. zero window probe. */
2986 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
2989 tcp_enter_quickack_mode(sk
);
2991 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
2992 /* Partial packet, seq < rcv_next < end_seq */
2993 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
2994 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
2995 TCP_SKB_CB(skb
)->end_seq
);
2997 tcp_dsack_set(tp
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
2999 /* If window is closed, drop tail of packet. But after
3000 * remembering D-SACK for its head made in previous line.
3002 if (!tcp_receive_window(tp
))
3007 TCP_ECN_check_ce(tp
, skb
);
3009 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
3010 !sk_stream_rmem_schedule(sk
, skb
)) {
3011 if (tcp_prune_queue(sk
) < 0 ||
3012 !sk_stream_rmem_schedule(sk
, skb
))
3016 /* Disable header prediction. */
3018 inet_csk_schedule_ack(sk
);
3020 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
3021 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
3023 sk_stream_set_owner_r(skb
, sk
);
3025 if (!skb_peek(&tp
->out_of_order_queue
)) {
3026 /* Initial out of order segment, build 1 SACK. */
3027 if (tp
->rx_opt
.sack_ok
) {
3028 tp
->rx_opt
.num_sacks
= 1;
3029 tp
->rx_opt
.dsack
= 0;
3030 tp
->rx_opt
.eff_sacks
= 1;
3031 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
3032 tp
->selective_acks
[0].end_seq
=
3033 TCP_SKB_CB(skb
)->end_seq
;
3035 __skb_queue_head(&tp
->out_of_order_queue
,skb
);
3037 struct sk_buff
*skb1
= tp
->out_of_order_queue
.prev
;
3038 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3039 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
3041 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
3042 __skb_append(skb1
, skb
, &tp
->out_of_order_queue
);
3044 if (!tp
->rx_opt
.num_sacks
||
3045 tp
->selective_acks
[0].end_seq
!= seq
)
3048 /* Common case: data arrive in order after hole. */
3049 tp
->selective_acks
[0].end_seq
= end_seq
;
3053 /* Find place to insert this segment. */
3055 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
3057 } while ((skb1
= skb1
->prev
) !=
3058 (struct sk_buff
*)&tp
->out_of_order_queue
);
3060 /* Do skb overlap to previous one? */
3061 if (skb1
!= (struct sk_buff
*)&tp
->out_of_order_queue
&&
3062 before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3063 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3064 /* All the bits are present. Drop. */
3066 tcp_dsack_set(tp
, seq
, end_seq
);
3069 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
3070 /* Partial overlap. */
3071 tcp_dsack_set(tp
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
3076 __skb_insert(skb
, skb1
, skb1
->next
, &tp
->out_of_order_queue
);
3078 /* And clean segments covered by new one as whole. */
3079 while ((skb1
= skb
->next
) !=
3080 (struct sk_buff
*)&tp
->out_of_order_queue
&&
3081 after(end_seq
, TCP_SKB_CB(skb1
)->seq
)) {
3082 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
3083 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, end_seq
);
3086 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
3087 tcp_dsack_extend(tp
, TCP_SKB_CB(skb1
)->seq
, TCP_SKB_CB(skb1
)->end_seq
);
3092 if (tp
->rx_opt
.sack_ok
)
3093 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
3097 /* Collapse contiguous sequence of skbs head..tail with
3098 * sequence numbers start..end.
3099 * Segments with FIN/SYN are not collapsed (only because this
3103 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
3104 struct sk_buff
*head
, struct sk_buff
*tail
,
3107 struct sk_buff
*skb
;
3109 /* First, check that queue is collapsable and find
3110 * the point where collapsing can be useful. */
3111 for (skb
= head
; skb
!= tail
; ) {
3112 /* No new bits? It is possible on ofo queue. */
3113 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3114 struct sk_buff
*next
= skb
->next
;
3115 __skb_unlink(skb
, list
);
3117 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3122 /* The first skb to collapse is:
3124 * - bloated or contains data before "start" or
3125 * overlaps to the next one.
3127 if (!skb
->h
.th
->syn
&& !skb
->h
.th
->fin
&&
3128 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
3129 before(TCP_SKB_CB(skb
)->seq
, start
) ||
3130 (skb
->next
!= tail
&&
3131 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
->next
)->seq
)))
3134 /* Decided to skip this, advance start seq. */
3135 start
= TCP_SKB_CB(skb
)->end_seq
;
3138 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3141 while (before(start
, end
)) {
3142 struct sk_buff
*nskb
;
3143 int header
= skb_headroom(skb
);
3144 int copy
= SKB_MAX_ORDER(header
, 0);
3146 /* Too big header? This can happen with IPv6. */
3149 if (end
-start
< copy
)
3151 nskb
= alloc_skb(copy
+header
, GFP_ATOMIC
);
3154 skb_reserve(nskb
, header
);
3155 memcpy(nskb
->head
, skb
->head
, header
);
3156 nskb
->nh
.raw
= nskb
->head
+ (skb
->nh
.raw
-skb
->head
);
3157 nskb
->h
.raw
= nskb
->head
+ (skb
->h
.raw
-skb
->head
);
3158 nskb
->mac
.raw
= nskb
->head
+ (skb
->mac
.raw
-skb
->head
);
3159 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
3160 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
3161 __skb_insert(nskb
, skb
->prev
, skb
, list
);
3162 sk_stream_set_owner_r(nskb
, sk
);
3164 /* Copy data, releasing collapsed skbs. */
3166 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
3167 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
3169 if (offset
< 0) BUG();
3171 size
= min(copy
, size
);
3172 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
3174 TCP_SKB_CB(nskb
)->end_seq
+= size
;
3178 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
3179 struct sk_buff
*next
= skb
->next
;
3180 __skb_unlink(skb
, list
);
3182 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED
);
3184 if (skb
== tail
|| skb
->h
.th
->syn
|| skb
->h
.th
->fin
)
3191 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3192 * and tcp_collapse() them until all the queue is collapsed.
3194 static void tcp_collapse_ofo_queue(struct sock
*sk
)
3196 struct tcp_sock
*tp
= tcp_sk(sk
);
3197 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
3198 struct sk_buff
*head
;
3204 start
= TCP_SKB_CB(skb
)->seq
;
3205 end
= TCP_SKB_CB(skb
)->end_seq
;
3211 /* Segment is terminated when we see gap or when
3212 * we are at the end of all the queue. */
3213 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
||
3214 after(TCP_SKB_CB(skb
)->seq
, end
) ||
3215 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
3216 tcp_collapse(sk
, &tp
->out_of_order_queue
,
3217 head
, skb
, start
, end
);
3219 if (skb
== (struct sk_buff
*)&tp
->out_of_order_queue
)
3221 /* Start new segment */
3222 start
= TCP_SKB_CB(skb
)->seq
;
3223 end
= TCP_SKB_CB(skb
)->end_seq
;
3225 if (before(TCP_SKB_CB(skb
)->seq
, start
))
3226 start
= TCP_SKB_CB(skb
)->seq
;
3227 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
3228 end
= TCP_SKB_CB(skb
)->end_seq
;
3233 /* Reduce allocated memory if we can, trying to get
3234 * the socket within its memory limits again.
3236 * Return less than zero if we should start dropping frames
3237 * until the socket owning process reads some of the data
3238 * to stabilize the situation.
3240 static int tcp_prune_queue(struct sock
*sk
)
3242 struct tcp_sock
*tp
= tcp_sk(sk
);
3244 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
3246 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED
);
3248 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
3249 tcp_clamp_window(sk
, tp
);
3250 else if (tcp_memory_pressure
)
3251 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
3253 tcp_collapse_ofo_queue(sk
);
3254 tcp_collapse(sk
, &sk
->sk_receive_queue
,
3255 sk
->sk_receive_queue
.next
,
3256 (struct sk_buff
*)&sk
->sk_receive_queue
,
3257 tp
->copied_seq
, tp
->rcv_nxt
);
3258 sk_stream_mem_reclaim(sk
);
3260 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3263 /* Collapsing did not help, destructive actions follow.
3264 * This must not ever occur. */
3266 /* First, purge the out_of_order queue. */
3267 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
3268 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED
);
3269 __skb_queue_purge(&tp
->out_of_order_queue
);
3271 /* Reset SACK state. A conforming SACK implementation will
3272 * do the same at a timeout based retransmit. When a connection
3273 * is in a sad state like this, we care only about integrity
3274 * of the connection not performance.
3276 if (tp
->rx_opt
.sack_ok
)
3277 tcp_sack_reset(&tp
->rx_opt
);
3278 sk_stream_mem_reclaim(sk
);
3281 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
3284 /* If we are really being abused, tell the caller to silently
3285 * drop receive data on the floor. It will get retransmitted
3286 * and hopefully then we'll have sufficient space.
3288 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED
);
3290 /* Massive buffer overcommit. */
3296 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3297 * As additional protections, we do not touch cwnd in retransmission phases,
3298 * and if application hit its sndbuf limit recently.
3300 void tcp_cwnd_application_limited(struct sock
*sk
)
3302 struct tcp_sock
*tp
= tcp_sk(sk
);
3304 if (tp
->ca_state
== TCP_CA_Open
&&
3305 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
3306 /* Limited by application or receiver window. */
3307 u32 win_used
= max(tp
->snd_cwnd_used
, 2U);
3308 if (win_used
< tp
->snd_cwnd
) {
3309 tp
->snd_ssthresh
= tcp_current_ssthresh(tp
);
3310 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
3312 tp
->snd_cwnd_used
= 0;
3314 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3317 static inline int tcp_should_expand_sndbuf(struct sock
*sk
, struct tcp_sock
*tp
)
3319 /* If the user specified a specific send buffer setting, do
3322 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
3325 /* If we are under global TCP memory pressure, do not expand. */
3326 if (tcp_memory_pressure
)
3329 /* If we are under soft global TCP memory pressure, do not expand. */
3330 if (atomic_read(&tcp_memory_allocated
) >= sysctl_tcp_mem
[0])
3333 /* If we filled the congestion window, do not expand. */
3334 if (tp
->packets_out
>= tp
->snd_cwnd
)
3340 /* When incoming ACK allowed to free some skb from write_queue,
3341 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3342 * on the exit from tcp input handler.
3344 * PROBLEM: sndbuf expansion does not work well with largesend.
3346 static void tcp_new_space(struct sock
*sk
)
3348 struct tcp_sock
*tp
= tcp_sk(sk
);
3350 if (tcp_should_expand_sndbuf(sk
, tp
)) {
3351 int sndmem
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
3352 MAX_TCP_HEADER
+ 16 + sizeof(struct sk_buff
),
3353 demanded
= max_t(unsigned int, tp
->snd_cwnd
,
3354 tp
->reordering
+ 1);
3355 sndmem
*= 2*demanded
;
3356 if (sndmem
> sk
->sk_sndbuf
)
3357 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
3358 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
3361 sk
->sk_write_space(sk
);
3364 static inline void tcp_check_space(struct sock
*sk
)
3366 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
3367 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
3368 if (sk
->sk_socket
&&
3369 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
3374 static __inline__
void tcp_data_snd_check(struct sock
*sk
, struct tcp_sock
*tp
)
3376 tcp_push_pending_frames(sk
, tp
);
3377 tcp_check_space(sk
);
3381 * Check if sending an ack is needed.
3383 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
3385 struct tcp_sock
*tp
= tcp_sk(sk
);
3387 /* More than one full frame received... */
3388 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
3389 /* ... and right edge of window advances far enough.
3390 * (tcp_recvmsg() will send ACK otherwise). Or...
3392 && __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
3393 /* We ACK each frame or... */
3394 tcp_in_quickack_mode(sk
) ||
3395 /* We have out of order data. */
3397 skb_peek(&tp
->out_of_order_queue
))) {
3398 /* Then ack it now */
3401 /* Else, send delayed ack. */
3402 tcp_send_delayed_ack(sk
);
3406 static __inline__
void tcp_ack_snd_check(struct sock
*sk
)
3408 if (!inet_csk_ack_scheduled(sk
)) {
3409 /* We sent a data segment already. */
3412 __tcp_ack_snd_check(sk
, 1);
3416 * This routine is only called when we have urgent data
3417 * signalled. Its the 'slow' part of tcp_urg. It could be
3418 * moved inline now as tcp_urg is only called from one
3419 * place. We handle URGent data wrong. We have to - as
3420 * BSD still doesn't use the correction from RFC961.
3421 * For 1003.1g we should support a new option TCP_STDURG to permit
3422 * either form (or just set the sysctl tcp_stdurg).
3425 static void tcp_check_urg(struct sock
* sk
, struct tcphdr
* th
)
3427 struct tcp_sock
*tp
= tcp_sk(sk
);
3428 u32 ptr
= ntohs(th
->urg_ptr
);
3430 if (ptr
&& !sysctl_tcp_stdurg
)
3432 ptr
+= ntohl(th
->seq
);
3434 /* Ignore urgent data that we've already seen and read. */
3435 if (after(tp
->copied_seq
, ptr
))
3438 /* Do not replay urg ptr.
3440 * NOTE: interesting situation not covered by specs.
3441 * Misbehaving sender may send urg ptr, pointing to segment,
3442 * which we already have in ofo queue. We are not able to fetch
3443 * such data and will stay in TCP_URG_NOTYET until will be eaten
3444 * by recvmsg(). Seems, we are not obliged to handle such wicked
3445 * situations. But it is worth to think about possibility of some
3446 * DoSes using some hypothetical application level deadlock.
3448 if (before(ptr
, tp
->rcv_nxt
))
3451 /* Do we already have a newer (or duplicate) urgent pointer? */
3452 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
3455 /* Tell the world about our new urgent pointer. */
3458 /* We may be adding urgent data when the last byte read was
3459 * urgent. To do this requires some care. We cannot just ignore
3460 * tp->copied_seq since we would read the last urgent byte again
3461 * as data, nor can we alter copied_seq until this data arrives
3462 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3464 * NOTE. Double Dutch. Rendering to plain English: author of comment
3465 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3466 * and expect that both A and B disappear from stream. This is _wrong_.
3467 * Though this happens in BSD with high probability, this is occasional.
3468 * Any application relying on this is buggy. Note also, that fix "works"
3469 * only in this artificial test. Insert some normal data between A and B and we will
3470 * decline of BSD again. Verdict: it is better to remove to trap
3473 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
3474 !sock_flag(sk
, SOCK_URGINLINE
) &&
3475 tp
->copied_seq
!= tp
->rcv_nxt
) {
3476 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
3478 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
3479 __skb_unlink(skb
, &sk
->sk_receive_queue
);
3484 tp
->urg_data
= TCP_URG_NOTYET
;
3487 /* Disable header prediction. */
3491 /* This is the 'fast' part of urgent handling. */
3492 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, struct tcphdr
*th
)
3494 struct tcp_sock
*tp
= tcp_sk(sk
);
3496 /* Check if we get a new urgent pointer - normally not. */
3498 tcp_check_urg(sk
,th
);
3500 /* Do we wait for any urgent data? - normally not... */
3501 if (tp
->urg_data
== TCP_URG_NOTYET
) {
3502 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
3505 /* Is the urgent pointer pointing into this packet? */
3506 if (ptr
< skb
->len
) {
3508 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
3510 tp
->urg_data
= TCP_URG_VALID
| tmp
;
3511 if (!sock_flag(sk
, SOCK_DEAD
))
3512 sk
->sk_data_ready(sk
, 0);
3517 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
3519 struct tcp_sock
*tp
= tcp_sk(sk
);
3520 int chunk
= skb
->len
- hlen
;
3524 if (skb
->ip_summed
==CHECKSUM_UNNECESSARY
)
3525 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
3527 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
3531 tp
->ucopy
.len
-= chunk
;
3532 tp
->copied_seq
+= chunk
;
3533 tcp_rcv_space_adjust(sk
);
3540 static int __tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
3544 if (sock_owned_by_user(sk
)) {
3546 result
= __tcp_checksum_complete(skb
);
3549 result
= __tcp_checksum_complete(skb
);
3554 static __inline__
int
3555 tcp_checksum_complete_user(struct sock
*sk
, struct sk_buff
*skb
)
3557 return skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
3558 __tcp_checksum_complete_user(sk
, skb
);
3562 * TCP receive function for the ESTABLISHED state.
3564 * It is split into a fast path and a slow path. The fast path is
3566 * - A zero window was announced from us - zero window probing
3567 * is only handled properly in the slow path.
3568 * - Out of order segments arrived.
3569 * - Urgent data is expected.
3570 * - There is no buffer space left
3571 * - Unexpected TCP flags/window values/header lengths are received
3572 * (detected by checking the TCP header against pred_flags)
3573 * - Data is sent in both directions. Fast path only supports pure senders
3574 * or pure receivers (this means either the sequence number or the ack
3575 * value must stay constant)
3576 * - Unexpected TCP option.
3578 * When these conditions are not satisfied it drops into a standard
3579 * receive procedure patterned after RFC793 to handle all cases.
3580 * The first three cases are guaranteed by proper pred_flags setting,
3581 * the rest is checked inline. Fast processing is turned on in
3582 * tcp_data_queue when everything is OK.
3584 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
3585 struct tcphdr
*th
, unsigned len
)
3587 struct tcp_sock
*tp
= tcp_sk(sk
);
3590 * Header prediction.
3591 * The code loosely follows the one in the famous
3592 * "30 instruction TCP receive" Van Jacobson mail.
3594 * Van's trick is to deposit buffers into socket queue
3595 * on a device interrupt, to call tcp_recv function
3596 * on the receive process context and checksum and copy
3597 * the buffer to user space. smart...
3599 * Our current scheme is not silly either but we take the
3600 * extra cost of the net_bh soft interrupt processing...
3601 * We do checksum and copy also but from device to kernel.
3604 tp
->rx_opt
.saw_tstamp
= 0;
3606 /* pred_flags is 0xS?10 << 16 + snd_wnd
3607 * if header_predition is to be made
3608 * 'S' will always be tp->tcp_header_len >> 2
3609 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3610 * turn it off (when there are holes in the receive
3611 * space for instance)
3612 * PSH flag is ignored.
3615 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
3616 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
3617 int tcp_header_len
= tp
->tcp_header_len
;
3619 /* Timestamp header prediction: tcp_header_len
3620 * is automatically equal to th->doff*4 due to pred_flags
3624 /* Check timestamp */
3625 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
3626 __u32
*ptr
= (__u32
*)(th
+ 1);
3628 /* No? Slow path! */
3629 if (*ptr
!= ntohl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3630 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
))
3633 tp
->rx_opt
.saw_tstamp
= 1;
3635 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3637 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3639 /* If PAWS failed, check it more carefully in slow path */
3640 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
3643 /* DO NOT update ts_recent here, if checksum fails
3644 * and timestamp was corrupted part, it will result
3645 * in a hung connection since we will drop all
3646 * future packets due to the PAWS test.
3650 if (len
<= tcp_header_len
) {
3651 /* Bulk data transfer: sender */
3652 if (len
== tcp_header_len
) {
3653 /* Predicted packet is in window by definition.
3654 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3655 * Hence, check seq<=rcv_wup reduces to:
3657 if (tcp_header_len
==
3658 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
3659 tp
->rcv_nxt
== tp
->rcv_wup
)
3660 tcp_store_ts_recent(tp
);
3662 tcp_rcv_rtt_measure_ts(sk
, skb
);
3664 /* We know that such packets are checksummed
3667 tcp_ack(sk
, skb
, 0);
3669 tcp_data_snd_check(sk
, tp
);
3671 } else { /* Header too small */
3672 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
3678 if (tp
->ucopy
.task
== current
&&
3679 tp
->copied_seq
== tp
->rcv_nxt
&&
3680 len
- tcp_header_len
<= tp
->ucopy
.len
&&
3681 sock_owned_by_user(sk
)) {
3682 __set_current_state(TASK_RUNNING
);
3684 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
3685 /* Predicted packet is in window by definition.
3686 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3687 * Hence, check seq<=rcv_wup reduces to:
3689 if (tcp_header_len
==
3690 (sizeof(struct tcphdr
) +
3691 TCPOLEN_TSTAMP_ALIGNED
) &&
3692 tp
->rcv_nxt
== tp
->rcv_wup
)
3693 tcp_store_ts_recent(tp
);
3695 tcp_rcv_rtt_measure_ts(sk
, skb
);
3697 __skb_pull(skb
, tcp_header_len
);
3698 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3699 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER
);
3704 if (tcp_checksum_complete_user(sk
, skb
))
3707 /* Predicted packet is in window by definition.
3708 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3709 * Hence, check seq<=rcv_wup reduces to:
3711 if (tcp_header_len
==
3712 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
3713 tp
->rcv_nxt
== tp
->rcv_wup
)
3714 tcp_store_ts_recent(tp
);
3716 tcp_rcv_rtt_measure_ts(sk
, skb
);
3718 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
3721 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS
);
3723 /* Bulk data transfer: receiver */
3724 __skb_pull(skb
,tcp_header_len
);
3725 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
3726 sk_stream_set_owner_r(skb
, sk
);
3727 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
3730 tcp_event_data_recv(sk
, tp
, skb
);
3732 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
3733 /* Well, only one small jumplet in fast path... */
3734 tcp_ack(sk
, skb
, FLAG_DATA
);
3735 tcp_data_snd_check(sk
, tp
);
3736 if (!inet_csk_ack_scheduled(sk
))
3740 __tcp_ack_snd_check(sk
, 0);
3745 sk
->sk_data_ready(sk
, 0);
3751 if (len
< (th
->doff
<<2) || tcp_checksum_complete_user(sk
, skb
))
3755 * RFC1323: H1. Apply PAWS check first.
3757 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
3758 tcp_paws_discard(sk
, skb
)) {
3760 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
3761 tcp_send_dupack(sk
, skb
);
3764 /* Resets are accepted even if PAWS failed.
3766 ts_recent update must be made after we are sure
3767 that the packet is in window.
3772 * Standard slow path.
3775 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
3776 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3777 * (RST) segments are validated by checking their SEQ-fields."
3778 * And page 69: "If an incoming segment is not acceptable,
3779 * an acknowledgment should be sent in reply (unless the RST bit
3780 * is set, if so drop the segment and return)".
3783 tcp_send_dupack(sk
, skb
);
3792 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3794 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
3795 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
3796 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
3803 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
3805 tcp_rcv_rtt_measure_ts(sk
, skb
);
3807 /* Process urgent data. */
3808 tcp_urg(sk
, skb
, th
);
3810 /* step 7: process the segment text */
3811 tcp_data_queue(sk
, skb
);
3813 tcp_data_snd_check(sk
, tp
);
3814 tcp_ack_snd_check(sk
);
3818 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
3825 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
3826 struct tcphdr
*th
, unsigned len
)
3828 struct tcp_sock
*tp
= tcp_sk(sk
);
3829 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
3831 tcp_parse_options(skb
, &tp
->rx_opt
, 0);
3834 struct inet_connection_sock
*icsk
;
3836 * "If the state is SYN-SENT then
3837 * first check the ACK bit
3838 * If the ACK bit is set
3839 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3840 * a reset (unless the RST bit is set, if so drop
3841 * the segment and return)"
3843 * We do not send data with SYN, so that RFC-correct
3846 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_nxt
)
3847 goto reset_and_undo
;
3849 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
3850 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
3852 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED
);
3853 goto reset_and_undo
;
3856 /* Now ACK is acceptable.
3858 * "If the RST bit is set
3859 * If the ACK was acceptable then signal the user "error:
3860 * connection reset", drop the segment, enter CLOSED state,
3861 * delete TCB, and return."
3870 * "fifth, if neither of the SYN or RST bits is set then
3871 * drop the segment and return."
3877 goto discard_and_undo
;
3880 * "If the SYN bit is on ...
3881 * are acceptable then ...
3882 * (our SYN has been ACKed), change the connection
3883 * state to ESTABLISHED..."
3886 TCP_ECN_rcv_synack(tp
, th
);
3887 if (tp
->ecn_flags
&TCP_ECN_OK
)
3888 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
3890 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
3891 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
3893 /* Ok.. it's good. Set up sequence numbers and
3894 * move to established.
3896 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
3897 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
3899 /* RFC1323: The window in SYN & SYN/ACK segments is
3902 tp
->snd_wnd
= ntohs(th
->window
);
3903 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
, TCP_SKB_CB(skb
)->seq
);
3905 if (!tp
->rx_opt
.wscale_ok
) {
3906 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
3907 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
3910 if (tp
->rx_opt
.saw_tstamp
) {
3911 tp
->rx_opt
.tstamp_ok
= 1;
3912 tp
->tcp_header_len
=
3913 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
3914 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
3915 tcp_store_ts_recent(tp
);
3917 tp
->tcp_header_len
= sizeof(struct tcphdr
);
3920 if (tp
->rx_opt
.sack_ok
&& sysctl_tcp_fack
)
3921 tp
->rx_opt
.sack_ok
|= 2;
3923 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
3924 tcp_initialize_rcv_mss(sk
);
3926 /* Remember, tcp_poll() does not lock socket!
3927 * Change state from SYN-SENT only after copied_seq
3928 * is initialized. */
3929 tp
->copied_seq
= tp
->rcv_nxt
;
3931 tcp_set_state(sk
, TCP_ESTABLISHED
);
3933 /* Make sure socket is routed, for correct metrics. */
3934 tp
->af_specific
->rebuild_header(sk
);
3936 tcp_init_metrics(sk
);
3938 tcp_init_congestion_control(tp
);
3940 /* Prevent spurious tcp_cwnd_restart() on first data
3943 tp
->lsndtime
= tcp_time_stamp
;
3945 tcp_init_buffer_space(sk
);
3947 if (sock_flag(sk
, SOCK_KEEPOPEN
))
3948 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
3950 if (!tp
->rx_opt
.snd_wscale
)
3951 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
3955 if (!sock_flag(sk
, SOCK_DEAD
)) {
3956 sk
->sk_state_change(sk
);
3957 sk_wake_async(sk
, 0, POLL_OUT
);
3960 icsk
= inet_csk(sk
);
3962 if (sk
->sk_write_pending
||
3963 icsk
->icsk_accept_queue
.rskq_defer_accept
||
3964 icsk
->icsk_ack
.pingpong
) {
3965 /* Save one ACK. Data will be ready after
3966 * several ticks, if write_pending is set.
3968 * It may be deleted, but with this feature tcpdumps
3969 * look so _wonderfully_ clever, that I was not able
3970 * to stand against the temptation 8) --ANK
3972 inet_csk_schedule_ack(sk
);
3973 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
3974 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
3975 tcp_incr_quickack(sk
);
3976 tcp_enter_quickack_mode(sk
);
3977 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3978 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3989 /* No ACK in the segment */
3993 * "If the RST bit is set
3995 * Otherwise (no ACK) drop the segment and return."
3998 goto discard_and_undo
;
4002 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&& tcp_paws_check(&tp
->rx_opt
, 0))
4003 goto discard_and_undo
;
4006 /* We see SYN without ACK. It is attempt of
4007 * simultaneous connect with crossed SYNs.
4008 * Particularly, it can be connect to self.
4010 tcp_set_state(sk
, TCP_SYN_RECV
);
4012 if (tp
->rx_opt
.saw_tstamp
) {
4013 tp
->rx_opt
.tstamp_ok
= 1;
4014 tcp_store_ts_recent(tp
);
4015 tp
->tcp_header_len
=
4016 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
4018 tp
->tcp_header_len
= sizeof(struct tcphdr
);
4021 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
4022 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
4024 /* RFC1323: The window in SYN & SYN/ACK segments is
4027 tp
->snd_wnd
= ntohs(th
->window
);
4028 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
4029 tp
->max_window
= tp
->snd_wnd
;
4031 TCP_ECN_rcv_syn(tp
, th
);
4032 if (tp
->ecn_flags
&TCP_ECN_OK
)
4033 sock_set_flag(sk
, SOCK_NO_LARGESEND
);
4035 tcp_sync_mss(sk
, tp
->pmtu_cookie
);
4036 tcp_initialize_rcv_mss(sk
);
4039 tcp_send_synack(sk
);
4041 /* Note, we could accept data and URG from this segment.
4042 * There are no obstacles to make this.
4044 * However, if we ignore data in ACKless segments sometimes,
4045 * we have no reasons to accept it sometimes.
4046 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4047 * is not flawless. So, discard packet for sanity.
4048 * Uncomment this return to process the data.
4055 /* "fifth, if neither of the SYN or RST bits is set then
4056 * drop the segment and return."
4060 tcp_clear_options(&tp
->rx_opt
);
4061 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4065 tcp_clear_options(&tp
->rx_opt
);
4066 tp
->rx_opt
.mss_clamp
= saved_clamp
;
4072 * This function implements the receiving procedure of RFC 793 for
4073 * all states except ESTABLISHED and TIME_WAIT.
4074 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4075 * address independent.
4078 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
4079 struct tcphdr
*th
, unsigned len
)
4081 struct tcp_sock
*tp
= tcp_sk(sk
);
4084 tp
->rx_opt
.saw_tstamp
= 0;
4086 switch (sk
->sk_state
) {
4098 if(tp
->af_specific
->conn_request(sk
, skb
) < 0)
4101 /* Now we have several options: In theory there is
4102 * nothing else in the frame. KA9Q has an option to
4103 * send data with the syn, BSD accepts data with the
4104 * syn up to the [to be] advertised window and
4105 * Solaris 2.1 gives you a protocol error. For now
4106 * we just ignore it, that fits the spec precisely
4107 * and avoids incompatibilities. It would be nice in
4108 * future to drop through and process the data.
4110 * Now that TTCP is starting to be used we ought to
4112 * But, this leaves one open to an easy denial of
4113 * service attack, and SYN cookies can't defend
4114 * against this problem. So, we drop the data
4115 * in the interest of security over speed.
4122 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
4126 /* Do step6 onward by hand. */
4127 tcp_urg(sk
, skb
, th
);
4129 tcp_data_snd_check(sk
, tp
);
4133 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
4134 tcp_paws_discard(sk
, skb
)) {
4136 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED
);
4137 tcp_send_dupack(sk
, skb
);
4140 /* Reset is accepted even if it did not pass PAWS. */
4143 /* step 1: check sequence number */
4144 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
4146 tcp_send_dupack(sk
, skb
);
4150 /* step 2: check RST bit */
4156 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
4158 /* step 3: check security and precedence [ignored] */
4162 * Check for a SYN in window.
4164 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4165 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN
);
4170 /* step 5: check the ACK field */
4172 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
4174 switch(sk
->sk_state
) {
4177 tp
->copied_seq
= tp
->rcv_nxt
;
4179 tcp_set_state(sk
, TCP_ESTABLISHED
);
4180 sk
->sk_state_change(sk
);
4182 /* Note, that this wakeup is only for marginal
4183 * crossed SYN case. Passively open sockets
4184 * are not waked up, because sk->sk_sleep ==
4185 * NULL and sk->sk_socket == NULL.
4187 if (sk
->sk_socket
) {
4188 sk_wake_async(sk
,0,POLL_OUT
);
4191 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
4192 tp
->snd_wnd
= ntohs(th
->window
) <<
4193 tp
->rx_opt
.snd_wscale
;
4194 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->ack_seq
,
4195 TCP_SKB_CB(skb
)->seq
);
4197 /* tcp_ack considers this ACK as duplicate
4198 * and does not calculate rtt.
4199 * Fix it at least with timestamps.
4201 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
4203 tcp_ack_saw_tstamp(sk
, 0, 0);
4205 if (tp
->rx_opt
.tstamp_ok
)
4206 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
4208 /* Make sure socket is routed, for
4211 tp
->af_specific
->rebuild_header(sk
);
4213 tcp_init_metrics(sk
);
4215 tcp_init_congestion_control(tp
);
4217 /* Prevent spurious tcp_cwnd_restart() on
4218 * first data packet.
4220 tp
->lsndtime
= tcp_time_stamp
;
4222 tcp_initialize_rcv_mss(sk
);
4223 tcp_init_buffer_space(sk
);
4224 tcp_fast_path_on(tp
);
4231 if (tp
->snd_una
== tp
->write_seq
) {
4232 tcp_set_state(sk
, TCP_FIN_WAIT2
);
4233 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
4234 dst_confirm(sk
->sk_dst_cache
);
4236 if (!sock_flag(sk
, SOCK_DEAD
))
4237 /* Wake up lingering close() */
4238 sk
->sk_state_change(sk
);
4242 if (tp
->linger2
< 0 ||
4243 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4244 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
4246 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4250 tmo
= tcp_fin_time(sk
);
4251 if (tmo
> TCP_TIMEWAIT_LEN
) {
4252 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
4253 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
4254 /* Bad case. We could lose such FIN otherwise.
4255 * It is not a big problem, but it looks confusing
4256 * and not so rare event. We still can lose it now,
4257 * if it spins in bh_lock_sock(), but it is really
4260 inet_csk_reset_keepalive_timer(sk
, tmo
);
4262 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
4270 if (tp
->snd_una
== tp
->write_seq
) {
4271 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4277 if (tp
->snd_una
== tp
->write_seq
) {
4278 tcp_update_metrics(sk
);
4287 /* step 6: check the URG bit */
4288 tcp_urg(sk
, skb
, th
);
4290 /* step 7: process the segment text */
4291 switch (sk
->sk_state
) {
4292 case TCP_CLOSE_WAIT
:
4295 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4299 /* RFC 793 says to queue data in these states,
4300 * RFC 1122 says we MUST send a reset.
4301 * BSD 4.4 also does reset.
4303 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
4304 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4305 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
4306 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA
);
4312 case TCP_ESTABLISHED
:
4313 tcp_data_queue(sk
, skb
);
4318 /* tcp_data could move socket to TIME-WAIT */
4319 if (sk
->sk_state
!= TCP_CLOSE
) {
4320 tcp_data_snd_check(sk
, tp
);
4321 tcp_ack_snd_check(sk
);
4331 EXPORT_SYMBOL(sysctl_tcp_ecn
);
4332 EXPORT_SYMBOL(sysctl_tcp_reordering
);
4333 EXPORT_SYMBOL(tcp_parse_options
);
4334 EXPORT_SYMBOL(tcp_rcv_established
);
4335 EXPORT_SYMBOL(tcp_rcv_state_process
);