[MIPS] Stacktrace build-fix and improvement
[linux-2.6/linux-mips.git] / drivers / atm / firestream.c
blob38fc054bd6715246f261f5a2e88e432026ef92eb
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/capability.h>
48 #include <linux/bitops.h>
49 #include <asm/byteorder.h>
50 #include <asm/system.h>
51 #include <asm/string.h>
52 #include <asm/io.h>
53 #include <asm/atomic.h>
54 #include <asm/uaccess.h>
55 #include <linux/wait.h>
57 #include "firestream.h"
59 static int loopback = 0;
60 static int num=0x5a;
62 /* According to measurements (but they look suspicious to me!) done in
63 * '97, 37% of the packets are one cell in size. So it pays to have
64 * buffers allocated at that size. A large jump in percentage of
65 * packets occurs at packets around 536 bytes in length. So it also
66 * pays to have those pre-allocated. Unfortunately, we can't fully
67 * take advantage of this as the majority of the packets is likely to
68 * be TCP/IP (As where obviously the measurement comes from) There the
69 * link would be opened with say a 1500 byte MTU, and we can't handle
70 * smaller buffers more efficiently than the larger ones. -- REW
73 /* Due to the way Linux memory management works, specifying "576" as
74 * an allocation size here isn't going to help. They are allocated
75 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
76 * large), it doesn't pay to allocate the smallest size (64) -- REW */
78 /* This is all guesswork. Hard numbers to back this up or disprove this,
79 * are appreciated. -- REW */
81 /* The last entry should be about 64k. However, the "buffer size" is
82 * passed to the chip in a 16 bit field. I don't know how "65536"
83 * would be interpreted. -- REW */
85 #define NP FS_NR_FREE_POOLS
86 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
87 /* log2: 7 8 9 10 11 12 14 16 */
89 #if 0
90 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
91 #else
92 /* debug */
93 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
94 #endif
95 /* log2: 10 10 9 8 7 6 5 5 */
96 /* sumlog2: 17 18 18 18 18 18 19 21 */
97 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
98 /* tot mem: almost 4M */
100 /* NP is shorter, so that it fits on a single line. */
101 #undef NP
104 /* Small hardware gotcha:
106 The FS50 CAM (VP/VC match registers) always take the lowest channel
107 number that matches. This is not a problem.
109 However, they also ignore whether the channel is enabled or
110 not. This means that if you allocate channel 0 to 1.2 and then
111 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
112 match channel for channel 0 will "steal" the traffic from channel
113 1, even if you correctly disable channel 0.
115 Workaround:
117 - When disabling channels, write an invalid VP/VC value to the
118 match register. (We use 0xffffffff, which in the worst case
119 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
120 anything as some "when not in use, program to 0" bits are now
121 programmed to 1...)
123 - Don't initialize the match registers to 0, as 0.0 is a valid
124 channel.
128 /* Optimization hints and tips.
130 The FireStream chips are very capable of reducing the amount of
131 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
132 action. You could try to minimize this a bit.
134 Besides that, the userspace->kernel copy and the PCI bus are the
135 performance limiting issues for this driver.
137 You could queue up a bunch of outgoing packets without telling the
138 FireStream. I'm not sure that's going to win you much though. The
139 Linux layer won't tell us in advance when it's not going to give us
140 any more packets in a while. So this is tricky to implement right without
141 introducing extra delays.
143 -- REW
149 /* The strings that define what the RX queue entry is all about. */
150 /* Fujitsu: Please tell me which ones can have a pointer to a
151 freepool descriptor! */
152 static char *res_strings[] = {
153 "RX OK: streaming not EOP",
154 "RX OK: streaming EOP",
155 "RX OK: Single buffer packet",
156 "RX OK: packet mode",
157 "RX OK: F4 OAM (end to end)",
158 "RX OK: F4 OAM (Segment)",
159 "RX OK: F5 OAM (end to end)",
160 "RX OK: F5 OAM (Segment)",
161 "RX OK: RM cell",
162 "RX OK: TRANSP cell",
163 "RX OK: TRANSPC cell",
164 "Unmatched cell",
165 "reserved 12",
166 "reserved 13",
167 "reserved 14",
168 "Unrecognized cell",
169 "reserved 16",
170 "reassemby abort: AAL5 abort",
171 "packet purged",
172 "packet ageing timeout",
173 "channel ageing timeout",
174 "calculated lenght error",
175 "programmed lenght limit error",
176 "aal5 crc32 error",
177 "oam transp or transpc crc10 error",
178 "reserved 25",
179 "reserved 26",
180 "reserved 27",
181 "reserved 28",
182 "reserved 29",
183 "reserved 30",
184 "reassembly abort: no buffers",
185 "receive buffer overflow",
186 "change in GFC",
187 "receive buffer full",
188 "low priority discard - no receive descriptor",
189 "low priority discard - missing end of packet",
190 "reserved 41",
191 "reserved 42",
192 "reserved 43",
193 "reserved 44",
194 "reserved 45",
195 "reserved 46",
196 "reserved 47",
197 "reserved 48",
198 "reserved 49",
199 "reserved 50",
200 "reserved 51",
201 "reserved 52",
202 "reserved 53",
203 "reserved 54",
204 "reserved 55",
205 "reserved 56",
206 "reserved 57",
207 "reserved 58",
208 "reserved 59",
209 "reserved 60",
210 "reserved 61",
211 "reserved 62",
212 "reserved 63",
215 static char *irq_bitname[] = {
216 "LPCO",
217 "DPCO",
218 "RBRQ0_W",
219 "RBRQ1_W",
220 "RBRQ2_W",
221 "RBRQ3_W",
222 "RBRQ0_NF",
223 "RBRQ1_NF",
224 "RBRQ2_NF",
225 "RBRQ3_NF",
226 "BFP_SC",
227 "INIT",
228 "INIT_ERR",
229 "USCEO",
230 "UPEC0",
231 "VPFCO",
232 "CRCCO",
233 "HECO",
234 "TBRQ_W",
235 "TBRQ_NF",
236 "CTPQ_E",
237 "GFC_C0",
238 "PCI_FTL",
239 "CSQ_W",
240 "CSQ_NF",
241 "EXT_INT",
242 "RXDMA_S"
246 #define PHY_EOF -1
247 #define PHY_CLEARALL -2
249 struct reginit_item {
250 int reg, val;
254 static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
255 { PHY_CLEARALL, 0x40 },
256 { 0x12, 0x0001 },
257 { 0x13, 0x7605 },
258 { 0x1A, 0x0001 },
259 { 0x1B, 0x0005 },
260 { 0x38, 0x0003 },
261 { 0x39, 0x0006 }, /* changed here to make loopback */
262 { 0x01, 0x5262 },
263 { 0x15, 0x0213 },
264 { 0x00, 0x0003 },
265 { PHY_EOF, 0}, /* -1 signals end of list */
269 /* Safetyfeature: If the card interrupts more than this number of times
270 in a jiffy (1/100th of a second) then we just disable the interrupt and
271 print a message. This prevents the system from hanging.
273 150000 packets per second is close to the limit a PC is going to have
274 anyway. We therefore have to disable this for production. -- REW */
275 #undef IRQ_RATE_LIMIT // 100
277 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
278 that great without interrupts. -- REW */
279 #undef FS_POLL_FREQ // 100
282 This driver can spew a whole lot of debugging output at you. If you
283 need maximum performance, you should disable the DEBUG define. To
284 aid in debugging in the field, I'm leaving the compile-time debug
285 features enabled, and disable them "runtime". That allows me to
286 instruct people with problems to enable debugging without requiring
287 them to recompile... -- REW
289 #define DEBUG
291 #ifdef DEBUG
292 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
293 #else
294 #define fs_dprintk(f, str...) /* nothing */
295 #endif
298 static int fs_keystream = 0;
300 #ifdef DEBUG
301 /* I didn't forget to set this to zero before shipping. Hit me with a stick
302 if you get this with the debug default not set to zero again. -- REW */
303 static int fs_debug = 0;
304 #else
305 #define fs_debug 0
306 #endif
308 #ifdef MODULE
309 #ifdef DEBUG
310 module_param(fs_debug, int, 0644);
311 #endif
312 module_param(loopback, int, 0);
313 module_param(num, int, 0);
314 module_param(fs_keystream, int, 0);
315 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
316 #endif
319 #define FS_DEBUG_FLOW 0x00000001
320 #define FS_DEBUG_OPEN 0x00000002
321 #define FS_DEBUG_QUEUE 0x00000004
322 #define FS_DEBUG_IRQ 0x00000008
323 #define FS_DEBUG_INIT 0x00000010
324 #define FS_DEBUG_SEND 0x00000020
325 #define FS_DEBUG_PHY 0x00000040
326 #define FS_DEBUG_CLEANUP 0x00000080
327 #define FS_DEBUG_QOS 0x00000100
328 #define FS_DEBUG_TXQ 0x00000200
329 #define FS_DEBUG_ALLOC 0x00000400
330 #define FS_DEBUG_TXMEM 0x00000800
331 #define FS_DEBUG_QSIZE 0x00001000
334 #define func_enter() fs_dprintk (FS_DEBUG_FLOW, "fs: enter %s\n", __FUNCTION__)
335 #define func_exit() fs_dprintk (FS_DEBUG_FLOW, "fs: exit %s\n", __FUNCTION__)
338 static struct fs_dev *fs_boards = NULL;
340 #ifdef DEBUG
342 static void my_hd (void *addr, int len)
344 int j, ch;
345 unsigned char *ptr = addr;
347 while (len > 0) {
348 printk ("%p ", ptr);
349 for (j=0;j < ((len < 16)?len:16);j++) {
350 printk ("%02x %s", ptr[j], (j==7)?" ":"");
352 for ( ;j < 16;j++) {
353 printk (" %s", (j==7)?" ":"");
355 for (j=0;j < ((len < 16)?len:16);j++) {
356 ch = ptr[j];
357 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
359 printk ("\n");
360 ptr += 16;
361 len -= 16;
364 #else /* DEBUG */
365 static void my_hd (void *addr, int len){}
366 #endif /* DEBUG */
368 /********** free an skb (as per ATM device driver documentation) **********/
370 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
371 * I copied it over from the ambassador driver. -- REW */
373 static inline void fs_kfree_skb (struct sk_buff * skb)
375 if (ATM_SKB(skb)->vcc->pop)
376 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
377 else
378 dev_kfree_skb_any (skb);
384 /* It seems the ATM forum recommends this horribly complicated 16bit
385 * floating point format. Turns out the Ambassador uses the exact same
386 * encoding. I just copied it over. If Mitch agrees, I'll move it over
387 * to the atm_misc file or something like that. (and remove it from
388 * here and the ambassador driver) -- REW
391 /* The good thing about this format is that it is monotonic. So,
392 a conversion routine need not be very complicated. To be able to
393 round "nearest" we need to take along a few extra bits. Lets
394 put these after 16 bits, so that we can just return the top 16
395 bits of the 32bit number as the result:
397 int mr (unsigned int rate, int r)
399 int e = 16+9;
400 static int round[4]={0, 0, 0xffff, 0x8000};
401 if (!rate) return 0;
402 while (rate & 0xfc000000) {
403 rate >>= 1;
404 e++;
406 while (! (rate & 0xfe000000)) {
407 rate <<= 1;
408 e--;
411 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
412 rate &= ~0x02000000;
413 // Next add in the exponent
414 rate |= e << (16+9);
415 // And perform the rounding:
416 return (rate + round[r]) >> 16;
419 14 lines-of-code. Compare that with the 120 that the Ambassador
420 guys needed. (would be 8 lines shorter if I'd try to really reduce
421 the number of lines:
423 int mr (unsigned int rate, int r)
425 int e = 16+9;
426 static int round[4]={0, 0, 0xffff, 0x8000};
427 if (!rate) return 0;
428 for (; rate & 0xfc000000 ;rate >>= 1, e++);
429 for (;!(rate & 0xfe000000);rate <<= 1, e--);
430 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
433 Exercise for the reader: Remove one more line-of-code, without
434 cheating. (Just joining two lines is cheating). (I know it's
435 possible, don't think you've beat me if you found it... If you
436 manage to lose two lines or more, keep me updated! ;-)
438 -- REW */
441 #define ROUND_UP 1
442 #define ROUND_DOWN 2
443 #define ROUND_NEAREST 3
444 /********** make rate (not quite as much fun as Horizon) **********/
446 static unsigned int make_rate (unsigned int rate, int r,
447 u16 * bits, unsigned int * actual)
449 unsigned char exp = -1; /* hush gcc */
450 unsigned int man = -1; /* hush gcc */
452 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
454 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
455 given 5-bit e and 9-bit m:
456 rate = EITHER (1+m/2^9)*2^e OR 0
457 bits = EITHER 1<<14 | e<<9 | m OR 0
458 (bit 15 is "reserved", bit 14 "non-zero")
459 smallest rate is 0 (special representation)
460 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
461 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
462 simple algorithm:
463 find position of top bit, this gives e
464 remove top bit and shift (rounding if feeling clever) by 9-e
466 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
467 representable. // This should move into the ambassador driver
468 when properly merged. -- REW */
470 if (rate > 0xffc00000U) {
471 /* larger than largest representable rate */
473 if (r == ROUND_UP) {
474 return -EINVAL;
475 } else {
476 exp = 31;
477 man = 511;
480 } else if (rate) {
481 /* representable rate */
483 exp = 31;
484 man = rate;
486 /* invariant: rate = man*2^(exp-31) */
487 while (!(man & (1<<31))) {
488 exp = exp - 1;
489 man = man<<1;
492 /* man has top bit set
493 rate = (2^31+(man-2^31))*2^(exp-31)
494 rate = (1+(man-2^31)/2^31)*2^exp
496 man = man<<1;
497 man &= 0xffffffffU; /* a nop on 32-bit systems */
498 /* rate = (1+man/2^32)*2^exp
500 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
501 time to lose significance... we want m in the range 0 to 2^9-1
502 rounding presents a minor problem... we first decide which way
503 we are rounding (based on given rounding direction and possibly
504 the bits of the mantissa that are to be discarded).
507 switch (r) {
508 case ROUND_DOWN: {
509 /* just truncate */
510 man = man>>(32-9);
511 break;
513 case ROUND_UP: {
514 /* check all bits that we are discarding */
515 if (man & (-1>>9)) {
516 man = (man>>(32-9)) + 1;
517 if (man == (1<<9)) {
518 /* no need to check for round up outside of range */
519 man = 0;
520 exp += 1;
522 } else {
523 man = (man>>(32-9));
525 break;
527 case ROUND_NEAREST: {
528 /* check msb that we are discarding */
529 if (man & (1<<(32-9-1))) {
530 man = (man>>(32-9)) + 1;
531 if (man == (1<<9)) {
532 /* no need to check for round up outside of range */
533 man = 0;
534 exp += 1;
536 } else {
537 man = (man>>(32-9));
539 break;
543 } else {
544 /* zero rate - not representable */
546 if (r == ROUND_DOWN) {
547 return -EINVAL;
548 } else {
549 exp = 0;
550 man = 0;
554 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
556 if (bits)
557 *bits = /* (1<<14) | */ (exp<<9) | man;
559 if (actual)
560 *actual = (exp >= 9)
561 ? (1 << exp) + (man << (exp-9))
562 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
564 return 0;
570 /* FireStream access routines */
571 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
572 certain registers or to just log all accesses. */
574 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
576 writel (val, dev->base + offset);
580 static inline u32 read_fs (struct fs_dev *dev, int offset)
582 return readl (dev->base + offset);
587 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
589 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
593 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
595 u32 wp;
596 struct FS_QENTRY *cqe;
598 /* XXX Sanity check: the write pointer can be checked to be
599 still the same as the value passed as qe... -- REW */
600 /* udelay (5); */
601 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
602 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
603 q->offset);
604 schedule ();
607 wp &= ~0xf;
608 cqe = bus_to_virt (wp);
609 if (qe != cqe) {
610 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
613 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
616 static int c;
617 if (!(c++ % 100))
619 int rp, wp;
620 rp = read_fs (dev, Q_RP(q->offset));
621 wp = read_fs (dev, Q_WP(q->offset));
622 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
623 q->offset, rp, wp, wp-rp);
628 #ifdef DEBUG_EXTRA
629 static struct FS_QENTRY pq[60];
630 static int qp;
632 static struct FS_BPENTRY dq[60];
633 static int qd;
634 static void *da[60];
635 #endif
637 static void submit_queue (struct fs_dev *dev, struct queue *q,
638 u32 cmd, u32 p1, u32 p2, u32 p3)
640 struct FS_QENTRY *qe;
642 qe = get_qentry (dev, q);
643 qe->cmd = cmd;
644 qe->p0 = p1;
645 qe->p1 = p2;
646 qe->p2 = p3;
647 submit_qentry (dev, q, qe);
649 #ifdef DEBUG_EXTRA
650 pq[qp].cmd = cmd;
651 pq[qp].p0 = p1;
652 pq[qp].p1 = p2;
653 pq[qp].p2 = p3;
654 qp++;
655 if (qp >= 60) qp = 0;
656 #endif
659 /* Test the "other" way one day... -- REW */
660 #if 1
661 #define submit_command submit_queue
662 #else
664 static void submit_command (struct fs_dev *dev, struct queue *q,
665 u32 cmd, u32 p1, u32 p2, u32 p3)
667 write_fs (dev, CMDR0, cmd);
668 write_fs (dev, CMDR1, p1);
669 write_fs (dev, CMDR2, p2);
670 write_fs (dev, CMDR3, p3);
672 #endif
676 static void process_return_queue (struct fs_dev *dev, struct queue *q)
678 long rq;
679 struct FS_QENTRY *qe;
680 void *tc;
682 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
683 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
684 qe = bus_to_virt (rq);
686 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
687 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
689 switch (STATUS_CODE (qe)) {
690 case 5:
691 tc = bus_to_virt (qe->p0);
692 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
693 kfree (tc);
694 break;
697 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
702 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
704 long rq;
705 long tmp;
706 struct FS_QENTRY *qe;
707 struct sk_buff *skb;
708 struct FS_BPENTRY *td;
710 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
711 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
712 qe = bus_to_virt (rq);
714 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
715 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
717 if (STATUS_CODE (qe) != 2)
718 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
719 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
722 switch (STATUS_CODE (qe)) {
723 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
724 /* Fall through */
725 case 0x02:
726 /* Process a real txdone entry. */
727 tmp = qe->p0;
728 if (tmp & 0x0f)
729 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
730 tmp &= ~0x0f;
731 td = bus_to_virt (tmp);
733 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
734 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
736 skb = td->skb;
737 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
738 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
739 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
741 td->dev->ntxpckts--;
744 static int c=0;
746 if (!(c++ % 100)) {
747 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
751 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
753 fs_dprintk (FS_DEBUG_TXMEM, "i");
754 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
755 fs_kfree_skb (skb);
757 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
758 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
759 kfree (td);
760 break;
761 default:
762 /* Here we get the tx purge inhibit command ... */
763 /* Action, I believe, is "don't do anything". -- REW */
767 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
772 static void process_incoming (struct fs_dev *dev, struct queue *q)
774 long rq;
775 struct FS_QENTRY *qe;
776 struct FS_BPENTRY *pe;
777 struct sk_buff *skb;
778 unsigned int channo;
779 struct atm_vcc *atm_vcc;
781 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
782 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
783 qe = bus_to_virt (rq);
785 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
786 qe->cmd, qe->p0, qe->p1, qe->p2);
788 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
789 STATUS_CODE (qe),
790 res_strings[STATUS_CODE(qe)]);
792 pe = bus_to_virt (qe->p0);
793 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
794 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
795 pe->skb, pe->fp);
797 channo = qe->cmd & 0xffff;
799 if (channo < dev->nchannels)
800 atm_vcc = dev->atm_vccs[channo];
801 else
802 atm_vcc = NULL;
804 /* Single buffer packet */
805 switch (STATUS_CODE (qe)) {
806 case 0x1:
807 /* Fall through for streaming mode */
808 case 0x2:/* Packet received OK.... */
809 if (atm_vcc) {
810 skb = pe->skb;
811 pe->fp->n--;
812 #if 0
813 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
814 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
815 #endif
816 skb_put (skb, qe->p1 & 0xffff);
817 ATM_SKB(skb)->vcc = atm_vcc;
818 atomic_inc(&atm_vcc->stats->rx);
819 __net_timestamp(skb);
820 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
821 atm_vcc->push (atm_vcc, skb);
822 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
823 kfree (pe);
824 } else {
825 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
827 break;
828 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
829 has been consumed and needs to be processed. -- REW */
830 if (qe->p1 & 0xffff) {
831 pe = bus_to_virt (qe->p0);
832 pe->fp->n--;
833 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
834 dev_kfree_skb_any (pe->skb);
835 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
836 kfree (pe);
838 if (atm_vcc)
839 atomic_inc(&atm_vcc->stats->rx_drop);
840 break;
841 case 0x1f: /* Reassembly abort: no buffers. */
842 /* Silently increment error counter. */
843 if (atm_vcc)
844 atomic_inc(&atm_vcc->stats->rx_drop);
845 break;
846 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
847 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
848 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
850 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
856 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
858 static int fs_open(struct atm_vcc *atm_vcc)
860 struct fs_dev *dev;
861 struct fs_vcc *vcc;
862 struct fs_transmit_config *tc;
863 struct atm_trafprm * txtp;
864 struct atm_trafprm * rxtp;
865 /* struct fs_receive_config *rc;*/
866 /* struct FS_QENTRY *qe; */
867 int error;
868 int bfp;
869 int to;
870 unsigned short tmc0;
871 short vpi = atm_vcc->vpi;
872 int vci = atm_vcc->vci;
874 func_enter ();
876 dev = FS_DEV(atm_vcc->dev);
877 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
878 dev, atm_vcc);
880 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
881 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
883 if ((atm_vcc->qos.aal != ATM_AAL5) &&
884 (atm_vcc->qos.aal != ATM_AAL2))
885 return -EINVAL; /* XXX AAL0 */
887 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
888 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
890 /* XXX handle qos parameters (rate limiting) ? */
892 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
893 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
894 if (!vcc) {
895 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
896 return -ENOMEM;
899 atm_vcc->dev_data = vcc;
900 vcc->last_skb = NULL;
902 init_waitqueue_head (&vcc->close_wait);
904 txtp = &atm_vcc->qos.txtp;
905 rxtp = &atm_vcc->qos.rxtp;
907 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
908 if (IS_FS50(dev)) {
909 /* Increment the channel numer: take a free one next time. */
910 for (to=33;to;to--, dev->channo++) {
911 /* We only have 32 channels */
912 if (dev->channo >= 32)
913 dev->channo = 0;
914 /* If we need to do RX, AND the RX is inuse, try the next */
915 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
916 continue;
917 /* If we need to do TX, AND the TX is inuse, try the next */
918 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
919 continue;
920 /* Ok, both are free! (or not needed) */
921 break;
923 if (!to) {
924 printk ("No more free channels for FS50..\n");
925 return -EBUSY;
927 vcc->channo = dev->channo;
928 dev->channo &= dev->channel_mask;
930 } else {
931 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
932 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
933 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
934 printk ("Channel is in use for FS155.\n");
935 return -EBUSY;
938 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
939 vcc->channo, vcc->channo);
942 if (DO_DIRECTION (txtp)) {
943 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
944 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
945 tc, sizeof (struct fs_transmit_config));
946 if (!tc) {
947 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
948 return -ENOMEM;
951 /* Allocate the "open" entry from the high priority txq. This makes
952 it most likely that the chip will notice it. It also prevents us
953 from having to wait for completion. On the other hand, we may
954 need to wait for completion anyway, to see if it completed
955 successfully. */
957 switch (atm_vcc->qos.aal) {
958 case ATM_AAL2:
959 case ATM_AAL0:
960 tc->flags = 0
961 | TC_FLAGS_TRANSPARENT_PAYLOAD
962 | TC_FLAGS_PACKET
963 | (1 << 28)
964 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
965 | TC_FLAGS_CAL0;
966 break;
967 case ATM_AAL5:
968 tc->flags = 0
969 | TC_FLAGS_AAL5
970 | TC_FLAGS_PACKET /* ??? */
971 | TC_FLAGS_TYPE_CBR
972 | TC_FLAGS_CAL0;
973 break;
974 default:
975 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
976 tc->flags = 0;
978 /* Docs are vague about this atm_hdr field. By the way, the FS
979 * chip makes odd errors if lower bits are set.... -- REW */
980 tc->atm_hdr = (vpi << 20) | (vci << 4);
982 int pcr = atm_pcr_goal (txtp);
984 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
986 /* XXX Hmm. officially we're only allowed to do this if rounding
987 is round_down -- REW */
988 if (IS_FS50(dev)) {
989 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
990 } else {
991 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
993 if (!pcr) {
994 /* no rate cap */
995 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
996 } else {
997 int r;
998 if (pcr < 0) {
999 r = ROUND_DOWN;
1000 pcr = -pcr;
1001 } else {
1002 r = ROUND_UP;
1004 error = make_rate (pcr, r, &tmc0, NULL);
1006 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1009 tc->TMC[0] = tmc0 | 0x4000;
1010 tc->TMC[1] = 0; /* Unused */
1011 tc->TMC[2] = 0; /* Unused */
1012 tc->TMC[3] = 0; /* Unused */
1014 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1015 tc->rtag[0] = 0; /* What should I do with routing tags???
1016 -- Not used -- AS -- Thanks -- REW*/
1017 tc->rtag[1] = 0;
1018 tc->rtag[2] = 0;
1020 if (fs_debug & FS_DEBUG_OPEN) {
1021 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1022 my_hd (tc, sizeof (*tc));
1025 /* We now use the "submit_command" function to submit commands to
1026 the firestream. There is a define up near the definition of
1027 that routine that switches this routine between immediate write
1028 to the immediate comamnd registers and queuing the commands in
1029 the HPTXQ for execution. This last technique might be more
1030 efficient if we know we're going to submit a whole lot of
1031 commands in one go, but this driver is not setup to be able to
1032 use such a construct. So it probably doen't matter much right
1033 now. -- REW */
1035 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1036 submit_command (dev, &dev->hp_txq,
1037 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1038 virt_to_bus (tc), 0, 0);
1040 submit_command (dev, &dev->hp_txq,
1041 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1042 0, 0, 0);
1043 set_bit (vcc->channo, dev->tx_inuse);
1046 if (DO_DIRECTION (rxtp)) {
1047 dev->atm_vccs[vcc->channo] = atm_vcc;
1049 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1050 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1051 if (bfp >= FS_NR_FREE_POOLS) {
1052 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1053 atm_vcc->qos.rxtp.max_sdu);
1054 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1056 /* XXX clear tx inuse. Close TX part? */
1057 dev->atm_vccs[vcc->channo] = NULL;
1058 kfree (vcc);
1059 return -EINVAL;
1062 switch (atm_vcc->qos.aal) {
1063 case ATM_AAL0:
1064 case ATM_AAL2:
1065 submit_command (dev, &dev->hp_txq,
1066 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1067 RC_FLAGS_TRANSP |
1068 RC_FLAGS_BFPS_BFP * bfp |
1069 RC_FLAGS_RXBM_PSB, 0, 0);
1070 break;
1071 case ATM_AAL5:
1072 submit_command (dev, &dev->hp_txq,
1073 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1074 RC_FLAGS_AAL5 |
1075 RC_FLAGS_BFPS_BFP * bfp |
1076 RC_FLAGS_RXBM_PSB, 0, 0);
1077 break;
1079 if (IS_FS50 (dev)) {
1080 submit_command (dev, &dev->hp_txq,
1081 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1082 0x80 + vcc->channo,
1083 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1085 submit_command (dev, &dev->hp_txq,
1086 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1087 0, 0, 0);
1090 /* Indicate we're done! */
1091 set_bit(ATM_VF_READY, &atm_vcc->flags);
1093 func_exit ();
1094 return 0;
1098 static void fs_close(struct atm_vcc *atm_vcc)
1100 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1101 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1102 struct atm_trafprm * txtp;
1103 struct atm_trafprm * rxtp;
1105 func_enter ();
1107 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1109 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1110 if (vcc->last_skb) {
1111 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1112 vcc->last_skb);
1113 /* We're going to wait for the last packet to get sent on this VC. It would
1114 be impolite not to send them don't you think?
1116 We don't know which packets didn't get sent. So if we get interrupted in
1117 this sleep_on, we'll lose any reference to these packets. Memory leak!
1118 On the other hand, it's awfully convenient that we can abort a "close" that
1119 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1120 interruptible_sleep_on (& vcc->close_wait);
1123 txtp = &atm_vcc->qos.txtp;
1124 rxtp = &atm_vcc->qos.rxtp;
1127 /* See App note XXX (Unpublished as of now) for the reason for the
1128 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1130 if (DO_DIRECTION (txtp)) {
1131 submit_command (dev, &dev->hp_txq,
1132 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1133 clear_bit (vcc->channo, dev->tx_inuse);
1136 if (DO_DIRECTION (rxtp)) {
1137 submit_command (dev, &dev->hp_txq,
1138 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1139 dev->atm_vccs [vcc->channo] = NULL;
1141 /* This means that this is configured as a receive channel */
1142 if (IS_FS50 (dev)) {
1143 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1144 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1145 (0xfff...) -- REW */
1146 submit_command (dev, &dev->hp_txq,
1147 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1148 0x80 + vcc->channo, -1, 0 );
1152 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1153 kfree (vcc);
1155 func_exit ();
1159 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1161 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1162 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1163 struct FS_BPENTRY *td;
1165 func_enter ();
1167 fs_dprintk (FS_DEBUG_TXMEM, "I");
1168 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1169 atm_vcc, skb, vcc, dev);
1171 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1173 ATM_SKB(skb)->vcc = atm_vcc;
1175 vcc->last_skb = skb;
1177 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1178 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1179 if (!td) {
1180 /* Oops out of mem */
1181 return -ENOMEM;
1184 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1185 *(int *) skb->data);
1187 td->flags = TD_EPI | TD_DATA | skb->len;
1188 td->next = 0;
1189 td->bsa = virt_to_bus (skb->data);
1190 td->skb = skb;
1191 td->dev = dev;
1192 dev->ntxpckts++;
1194 #ifdef DEBUG_EXTRA
1195 da[qd] = td;
1196 dq[qd].flags = td->flags;
1197 dq[qd].next = td->next;
1198 dq[qd].bsa = td->bsa;
1199 dq[qd].skb = td->skb;
1200 dq[qd].dev = td->dev;
1201 qd++;
1202 if (qd >= 60) qd = 0;
1203 #endif
1205 submit_queue (dev, &dev->hp_txq,
1206 QE_TRANSMIT_DE | vcc->channo,
1207 virt_to_bus (td), 0,
1208 virt_to_bus (td));
1210 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1211 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1212 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1213 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1214 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1216 func_exit ();
1217 return 0;
1221 /* Some function placeholders for functions we don't yet support. */
1223 #if 0
1224 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1226 func_enter ();
1227 func_exit ();
1228 return -ENOIOCTLCMD;
1232 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1233 void __user *optval,int optlen)
1235 func_enter ();
1236 func_exit ();
1237 return 0;
1241 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1242 void __user *optval,int optlen)
1244 func_enter ();
1245 func_exit ();
1246 return 0;
1250 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1251 unsigned long addr)
1253 func_enter ();
1254 func_exit ();
1258 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1260 func_enter ();
1261 func_exit ();
1262 return 0;
1266 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1268 func_enter ();
1269 func_exit ();
1270 return 0;
1273 #endif
1276 static const struct atmdev_ops ops = {
1277 .open = fs_open,
1278 .close = fs_close,
1279 .send = fs_send,
1280 .owner = THIS_MODULE,
1281 /* ioctl: fs_ioctl, */
1282 /* getsockopt: fs_getsockopt, */
1283 /* setsockopt: fs_setsockopt, */
1284 /* change_qos: fs_change_qos, */
1286 /* For now implement these internally here... */
1287 /* phy_put: fs_phy_put, */
1288 /* phy_get: fs_phy_get, */
1292 static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1294 int tint;
1296 /* The Windows driver says: */
1297 /* Switch off FireStream Retry Limit Threshold
1300 /* The register at 0x28 is documented as "reserved", no further
1301 comments. */
1303 pci_read_config_dword (pdev, 0x28, &tint);
1304 if (tint != 0x80) {
1305 tint = 0x80;
1306 pci_write_config_dword (pdev, 0x28, tint);
1312 /**************************************************************************
1313 * PHY routines *
1314 **************************************************************************/
1316 static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1318 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1319 regnum, val, 0);
1322 static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1324 int i;
1326 func_enter ();
1327 while (reginit->reg != PHY_EOF) {
1328 if (reginit->reg == PHY_CLEARALL) {
1329 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1330 for (i=0;i<reginit->val;i++) {
1331 write_phy (dev, i, 0);
1333 } else {
1334 write_phy (dev, reginit->reg, reginit->val);
1336 reginit++;
1338 func_exit ();
1339 return 0;
1342 static void reset_chip (struct fs_dev *dev)
1344 int i;
1346 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1348 /* Undocumented delay */
1349 udelay (128);
1351 /* The "internal registers are documented to all reset to zero, but
1352 comments & code in the Windows driver indicates that the pools are
1353 NOT reset. */
1354 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1355 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1356 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1357 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1358 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1359 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1362 /* The same goes for the match channel registers, although those are
1363 NOT documented that way in the Windows driver. -- REW */
1364 /* The Windows driver DOES write 0 to these registers somewhere in
1365 the init sequence. However, a small hardware-feature, will
1366 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1367 allocated happens to have no disabled channels that have a lower
1368 number. -- REW */
1370 /* Clear the match channel registers. */
1371 if (IS_FS50 (dev)) {
1372 for (i=0;i<FS50_NR_CHANNELS;i++) {
1373 write_fs (dev, 0x200 + i * 4, -1);
1378 static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1380 void *t;
1382 if (alignment <= 0x10) {
1383 t = kmalloc (size, flags);
1384 if ((unsigned long)t & (alignment-1)) {
1385 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1386 kfree (t);
1387 return aligned_kmalloc (size, flags, alignment * 4);
1389 return t;
1391 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1392 return NULL;
1395 static int __devinit init_q (struct fs_dev *dev,
1396 struct queue *txq, int queue, int nentries, int is_rq)
1398 int sz = nentries * sizeof (struct FS_QENTRY);
1399 struct FS_QENTRY *p;
1401 func_enter ();
1403 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1404 queue, nentries);
1406 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1407 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1409 if (!p) return 0;
1411 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1412 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1413 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1414 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1415 if (is_rq) {
1416 /* Configuration for the receive queue: 0: interrupt immediately,
1417 no pre-warning to empty queues: We do our best to keep the
1418 queue filled anyway. */
1419 write_fs (dev, Q_CNF(queue), 0 );
1422 txq->sa = p;
1423 txq->ea = p;
1424 txq->offset = queue;
1426 func_exit ();
1427 return 1;
1431 static int __devinit init_fp (struct fs_dev *dev,
1432 struct freepool *fp, int queue, int bufsize, int nr_buffers)
1434 func_enter ();
1436 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1438 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1439 write_fs (dev, FP_SA(queue), 0);
1440 write_fs (dev, FP_EA(queue), 0);
1441 write_fs (dev, FP_CTU(queue), 0);
1442 write_fs (dev, FP_CNT(queue), 0);
1444 fp->offset = queue;
1445 fp->bufsize = bufsize;
1446 fp->nr_buffers = nr_buffers;
1448 func_exit ();
1449 return 1;
1453 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1455 #if 0
1456 /* This seems to be unreliable.... */
1457 return read_fs (dev, FP_CNT (fp->offset));
1458 #else
1459 return fp->n;
1460 #endif
1464 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1465 does. I've seen "receive abort: no buffers" and things started
1466 working again after that... -- REW */
1468 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1469 gfp_t gfp_flags)
1471 struct FS_BPENTRY *qe, *ne;
1472 struct sk_buff *skb;
1473 int n = 0;
1475 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1476 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1477 fp->nr_buffers);
1478 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1480 skb = alloc_skb (fp->bufsize, gfp_flags);
1481 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1482 if (!skb) break;
1483 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1484 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1485 if (!ne) {
1486 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1487 dev_kfree_skb_any (skb);
1488 break;
1491 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1492 skb, ne, skb->data, skb->head);
1493 n++;
1494 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1495 ne->next = virt_to_bus (NULL);
1496 ne->bsa = virt_to_bus (skb->data);
1497 ne->aal_bufsize = fp->bufsize;
1498 ne->skb = skb;
1499 ne->fp = fp;
1501 qe = (struct FS_BPENTRY *) (read_fs (dev, FP_EA(fp->offset)));
1502 fs_dprintk (FS_DEBUG_QUEUE, "link at %p\n", qe);
1503 if (qe) {
1504 qe = bus_to_virt ((long) qe);
1505 qe->next = virt_to_bus(ne);
1506 qe->flags &= ~FP_FLAGS_EPI;
1507 } else
1508 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1510 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1511 fp->n++; /* XXX Atomic_inc? */
1512 write_fs (dev, FP_CTU(fp->offset), 1);
1515 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1518 static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1520 func_enter ();
1522 write_fs (dev, Q_SA(txq->offset), 0);
1523 write_fs (dev, Q_EA(txq->offset), 0);
1524 write_fs (dev, Q_RP(txq->offset), 0);
1525 write_fs (dev, Q_WP(txq->offset), 0);
1526 /* Configuration ? */
1528 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1529 kfree (txq->sa);
1531 func_exit ();
1534 static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1536 func_enter ();
1538 write_fs (dev, FP_CNF(fp->offset), 0);
1539 write_fs (dev, FP_SA (fp->offset), 0);
1540 write_fs (dev, FP_EA (fp->offset), 0);
1541 write_fs (dev, FP_CNT(fp->offset), 0);
1542 write_fs (dev, FP_CTU(fp->offset), 0);
1544 func_exit ();
1549 static irqreturn_t fs_irq (int irq, void *dev_id, struct pt_regs * pt_regs)
1551 int i;
1552 u32 status;
1553 struct fs_dev *dev = dev_id;
1555 status = read_fs (dev, ISR);
1556 if (!status)
1557 return IRQ_NONE;
1559 func_enter ();
1561 #ifdef IRQ_RATE_LIMIT
1562 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1563 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1565 static int lastjif;
1566 static int nintr=0;
1568 if (lastjif == jiffies) {
1569 if (++nintr > IRQ_RATE_LIMIT) {
1570 free_irq (dev->irq, dev_id);
1571 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1572 dev->irq);
1574 } else {
1575 lastjif = jiffies;
1576 nintr = 0;
1579 #endif
1580 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1581 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1582 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1583 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1584 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1586 /* print the bits in the ISR register. */
1587 if (fs_debug & FS_DEBUG_IRQ) {
1588 /* The FS_DEBUG things are unneccesary here. But this way it is
1589 clear for grep that these are debug prints. */
1590 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1591 for (i=0;i<27;i++)
1592 if (status & (1 << i))
1593 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1594 fs_dprintk (FS_DEBUG_IRQ, "\n");
1597 if (status & ISR_RBRQ0_W) {
1598 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1599 process_incoming (dev, &dev->rx_rq[0]);
1600 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1601 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1602 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1605 if (status & ISR_RBRQ1_W) {
1606 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1607 process_incoming (dev, &dev->rx_rq[1]);
1608 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1609 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1612 if (status & ISR_RBRQ2_W) {
1613 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1614 process_incoming (dev, &dev->rx_rq[2]);
1615 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1616 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1619 if (status & ISR_RBRQ3_W) {
1620 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1621 process_incoming (dev, &dev->rx_rq[3]);
1622 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1623 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1626 if (status & ISR_CSQ_W) {
1627 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1628 process_return_queue (dev, &dev->st_q);
1631 if (status & ISR_TBRQ_W) {
1632 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1633 process_txdone_queue (dev, &dev->tx_relq);
1636 func_exit ();
1637 return IRQ_HANDLED;
1641 #ifdef FS_POLL_FREQ
1642 static void fs_poll (unsigned long data)
1644 struct fs_dev *dev = (struct fs_dev *) data;
1646 fs_irq (0, dev, NULL);
1647 dev->timer.expires = jiffies + FS_POLL_FREQ;
1648 add_timer (&dev->timer);
1650 #endif
1652 static int __devinit fs_init (struct fs_dev *dev)
1654 struct pci_dev *pci_dev;
1655 int isr, to;
1656 int i;
1658 func_enter ();
1659 pci_dev = dev->pci_dev;
1661 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1662 IS_FS50(dev)?50:155,
1663 (unsigned long long)pci_resource_start(pci_dev, 0),
1664 dev->pci_dev->irq);
1666 if (fs_debug & FS_DEBUG_INIT)
1667 my_hd ((unsigned char *) dev, sizeof (*dev));
1669 undocumented_pci_fix (pci_dev);
1671 dev->hw_base = pci_resource_start(pci_dev, 0);
1673 dev->base = ioremap(dev->hw_base, 0x1000);
1675 reset_chip (dev);
1677 write_fs (dev, SARMODE0, 0
1678 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1679 | (1 * SARMODE0_INTMODE_READCLEAR)
1680 | (1 * SARMODE0_CWRE)
1681 | IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1682 SARMODE0_PRPWT_FS155_3
1683 | (1 * SARMODE0_CALSUP_1)
1684 | IS_FS50 (dev)?(0
1685 | SARMODE0_RXVCS_32
1686 | SARMODE0_ABRVCS_32
1687 | SARMODE0_TXVCS_32):
1689 | SARMODE0_RXVCS_1k
1690 | SARMODE0_ABRVCS_1k
1691 | SARMODE0_TXVCS_1k));
1693 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1694 1ms. */
1695 to = 100;
1696 while (--to) {
1697 isr = read_fs (dev, ISR);
1699 /* This bit is documented as "RESERVED" */
1700 if (isr & ISR_INIT_ERR) {
1701 printk (KERN_ERR "Error initializing the FS... \n");
1702 return 1;
1704 if (isr & ISR_INIT) {
1705 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1706 break;
1709 /* Try again after 10ms. */
1710 msleep(10);
1713 if (!to) {
1714 printk (KERN_ERR "timeout initializing the FS... \n");
1715 return 1;
1718 /* XXX fix for fs155 */
1719 dev->channel_mask = 0x1f;
1720 dev->channo = 0;
1722 /* AN3: 10 */
1723 write_fs (dev, SARMODE1, 0
1724 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1725 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1726 | (1 * SARMODE1_DCRM)
1727 | (1 * SARMODE1_DCOAM)
1728 | (0 * SARMODE1_OAMCRC)
1729 | (0 * SARMODE1_DUMPE)
1730 | (0 * SARMODE1_GPLEN)
1731 | (0 * SARMODE1_GNAM)
1732 | (0 * SARMODE1_GVAS)
1733 | (0 * SARMODE1_GPAS)
1734 | (1 * SARMODE1_GPRI)
1735 | (0 * SARMODE1_PMS)
1736 | (0 * SARMODE1_GFCR)
1737 | (1 * SARMODE1_HECM2)
1738 | (1 * SARMODE1_HECM1)
1739 | (1 * SARMODE1_HECM0)
1740 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1741 | (0 * 0xff) /* XXX FS155 */);
1744 /* Cal prescale etc */
1746 /* AN3: 11 */
1747 write_fs (dev, TMCONF, 0x0000000f);
1748 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1749 write_fs (dev, 0x80, 0x000F00E4);
1751 /* AN3: 12 */
1752 write_fs (dev, CELLOSCONF, 0
1753 | ( 0 * CELLOSCONF_CEN)
1754 | ( CELLOSCONF_SC1)
1755 | (0x80 * CELLOSCONF_COBS)
1756 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1757 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1758 * performance jumped 50->70... */
1760 /* Magic value by Hang */
1761 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1763 if (IS_FS50 (dev)) {
1764 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1765 dev->atm_dev->ci_range.vpi_bits = 12;
1766 dev->atm_dev->ci_range.vci_bits = 16;
1767 dev->nchannels = FS50_NR_CHANNELS;
1768 } else {
1769 write_fs (dev, RAS0, RAS0_DCD_XHLT
1770 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1771 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1772 /* We can chose the split arbitarily. We might be able to
1773 support more. Whatever. This should do for now. */
1774 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1775 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1777 /* Address bits we can't use should be compared to 0. */
1778 write_fs (dev, RAC, 0);
1780 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1781 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1782 * other bits, then compare with 0, which is exactly what we
1783 * want. */
1784 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1785 dev->nchannels = FS155_NR_CHANNELS;
1787 dev->atm_vccs = kmalloc (dev->nchannels * sizeof (struct atm_vcc *),
1788 GFP_KERNEL);
1789 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1790 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1792 if (!dev->atm_vccs) {
1793 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1794 /* XXX Clean up..... */
1795 return 1;
1797 memset (dev->atm_vccs, 0, dev->nchannels * sizeof (struct atm_vcc *));
1799 dev->tx_inuse = kmalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1800 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1801 dev->atm_vccs, dev->nchannels / 8);
1803 if (!dev->tx_inuse) {
1804 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1805 /* XXX Clean up..... */
1806 return 1;
1808 memset (dev->tx_inuse, 0, dev->nchannels / 8);
1810 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1811 /* -- RAS2 : FS50 only: Default is OK. */
1813 /* DMAMODE, default should be OK. -- REW */
1814 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1816 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1817 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1818 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1819 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1821 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1822 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1823 rx_buf_sizes[i], rx_pool_sizes[i]);
1824 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1828 for (i=0;i < FS_NR_RX_QUEUES;i++)
1829 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1831 dev->irq = pci_dev->irq;
1832 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1833 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1834 /* XXX undo all previous stuff... */
1835 return 1;
1837 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1839 /* We want to be notified of most things. Just the statistics count
1840 overflows are not interesting */
1841 write_fs (dev, IMR, 0
1842 | ISR_RBRQ0_W
1843 | ISR_RBRQ1_W
1844 | ISR_RBRQ2_W
1845 | ISR_RBRQ3_W
1846 | ISR_TBRQ_W
1847 | ISR_CSQ_W);
1849 write_fs (dev, SARMODE0, 0
1850 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1851 | (1 * SARMODE0_GINT)
1852 | (1 * SARMODE0_INTMODE_READCLEAR)
1853 | (0 * SARMODE0_CWRE)
1854 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1855 SARMODE0_PRPWT_FS155_3)
1856 | (1 * SARMODE0_CALSUP_1)
1857 | (IS_FS50 (dev)?(0
1858 | SARMODE0_RXVCS_32
1859 | SARMODE0_ABRVCS_32
1860 | SARMODE0_TXVCS_32):
1862 | SARMODE0_RXVCS_1k
1863 | SARMODE0_ABRVCS_1k
1864 | SARMODE0_TXVCS_1k))
1865 | (1 * SARMODE0_RUN));
1867 init_phy (dev, PHY_NTC_INIT);
1869 if (loopback == 2) {
1870 write_phy (dev, 0x39, 0x000e);
1873 #ifdef FS_POLL_FREQ
1874 init_timer (&dev->timer);
1875 dev->timer.data = (unsigned long) dev;
1876 dev->timer.function = fs_poll;
1877 dev->timer.expires = jiffies + FS_POLL_FREQ;
1878 add_timer (&dev->timer);
1879 #endif
1881 dev->atm_dev->dev_data = dev;
1883 func_exit ();
1884 return 0;
1887 static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1888 const struct pci_device_id *ent)
1890 struct atm_dev *atm_dev;
1891 struct fs_dev *fs_dev;
1893 if (pci_enable_device(pci_dev))
1894 goto err_out;
1896 fs_dev = kmalloc (sizeof (struct fs_dev), GFP_KERNEL);
1897 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1898 fs_dev, sizeof (struct fs_dev));
1899 if (!fs_dev)
1900 goto err_out;
1902 memset (fs_dev, 0, sizeof (struct fs_dev));
1904 atm_dev = atm_dev_register("fs", &ops, -1, NULL);
1905 if (!atm_dev)
1906 goto err_out_free_fs_dev;
1908 fs_dev->pci_dev = pci_dev;
1909 fs_dev->atm_dev = atm_dev;
1910 fs_dev->flags = ent->driver_data;
1912 if (fs_init(fs_dev))
1913 goto err_out_free_atm_dev;
1915 fs_dev->next = fs_boards;
1916 fs_boards = fs_dev;
1917 return 0;
1919 err_out_free_atm_dev:
1920 atm_dev_deregister(atm_dev);
1921 err_out_free_fs_dev:
1922 kfree(fs_dev);
1923 err_out:
1924 return -ENODEV;
1927 static void __devexit firestream_remove_one (struct pci_dev *pdev)
1929 int i;
1930 struct fs_dev *dev, *nxtdev;
1931 struct fs_vcc *vcc;
1932 struct FS_BPENTRY *fp, *nxt;
1934 func_enter ();
1936 #if 0
1937 printk ("hptxq:\n");
1938 for (i=0;i<60;i++) {
1939 printk ("%d: %08x %08x %08x %08x \n",
1940 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1941 qp++;
1942 if (qp >= 60) qp = 0;
1945 printk ("descriptors:\n");
1946 for (i=0;i<60;i++) {
1947 printk ("%d: %p: %08x %08x %p %p\n",
1948 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1949 qd++;
1950 if (qd >= 60) qd = 0;
1952 #endif
1954 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1955 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1957 /* XXX Hit all the tx channels too! */
1959 for (i=0;i < dev->nchannels;i++) {
1960 if (dev->atm_vccs[i]) {
1961 vcc = FS_VCC (dev->atm_vccs[i]);
1962 submit_command (dev, &dev->hp_txq,
1963 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1964 submit_command (dev, &dev->hp_txq,
1965 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1970 /* XXX Wait a while for the chip to release all buffers. */
1972 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1973 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1974 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1975 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1976 dev_kfree_skb_any (fp->skb);
1977 nxt = bus_to_virt (fp->next);
1978 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1979 kfree (fp);
1981 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1982 dev_kfree_skb_any (fp->skb);
1983 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1984 kfree (fp);
1987 /* Hang the chip in "reset", prevent it clobbering memory that is
1988 no longer ours. */
1989 reset_chip (dev);
1991 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1992 free_irq (dev->irq, dev);
1993 del_timer (&dev->timer);
1995 atm_dev_deregister(dev->atm_dev);
1996 free_queue (dev, &dev->hp_txq);
1997 free_queue (dev, &dev->lp_txq);
1998 free_queue (dev, &dev->tx_relq);
1999 free_queue (dev, &dev->st_q);
2001 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2002 kfree (dev->atm_vccs);
2004 for (i=0;i< FS_NR_FREE_POOLS;i++)
2005 free_freepool (dev, &dev->rx_fp[i]);
2007 for (i=0;i < FS_NR_RX_QUEUES;i++)
2008 free_queue (dev, &dev->rx_rq[i]);
2010 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2011 nxtdev = dev->next;
2012 kfree (dev);
2015 func_exit ();
2018 static struct pci_device_id firestream_pci_tbl[] = {
2019 { PCI_VENDOR_ID_FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50,
2020 PCI_ANY_ID, PCI_ANY_ID, 0, 0, FS_IS50},
2021 { PCI_VENDOR_ID_FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155,
2022 PCI_ANY_ID, PCI_ANY_ID, 0, 0, FS_IS155},
2023 { 0, }
2026 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2028 static struct pci_driver firestream_driver = {
2029 .name = "firestream",
2030 .id_table = firestream_pci_tbl,
2031 .probe = firestream_init_one,
2032 .remove = __devexit_p(firestream_remove_one),
2035 static int __init firestream_init_module (void)
2037 int error;
2039 func_enter ();
2040 error = pci_register_driver(&firestream_driver);
2041 func_exit ();
2042 return error;
2045 static void __exit firestream_cleanup_module(void)
2047 pci_unregister_driver(&firestream_driver);
2050 module_init(firestream_init_module);
2051 module_exit(firestream_cleanup_module);
2053 MODULE_LICENSE("GPL");