Partial rewrite.
[linux-2.6/linux-mips.git] / lib / inflate.c
blob4d48e61c2490ae35f7f983556c0c7073b977ca7e
1 #define DEBG(x)
2 #define DEBG1(x)
3 /* inflate.c -- Not copyrighted 1992 by Mark Adler
4 version c10p1, 10 January 1993 */
6 /*
7 * Adapted for booting Linux by Hannu Savolainen 1993
8 * based on gzip-1.0.3
10 * Nicolas Pitre <nico@cam.org>, 1999/04/14 :
11 * Little mods for all variable to reside either into rodata or bss segments
12 * by marking constant variables with 'const' and initializing all the others
13 * at run-time only. This allows for the kernel uncompressor to run
14 * directly from Flash or ROM memory on embedded systems.
18 Inflate deflated (PKZIP's method 8 compressed) data. The compression
19 method searches for as much of the current string of bytes (up to a
20 length of 258) in the previous 32 K bytes. If it doesn't find any
21 matches (of at least length 3), it codes the next byte. Otherwise, it
22 codes the length of the matched string and its distance backwards from
23 the current position. There is a single Huffman code that codes both
24 single bytes (called "literals") and match lengths. A second Huffman
25 code codes the distance information, which follows a length code. Each
26 length or distance code actually represents a base value and a number
27 of "extra" (sometimes zero) bits to get to add to the base value. At
28 the end of each deflated block is a special end-of-block (EOB) literal/
29 length code. The decoding process is basically: get a literal/length
30 code; if EOB then done; if a literal, emit the decoded byte; if a
31 length then get the distance and emit the referred-to bytes from the
32 sliding window of previously emitted data.
34 There are (currently) three kinds of inflate blocks: stored, fixed, and
35 dynamic. The compressor deals with some chunk of data at a time, and
36 decides which method to use on a chunk-by-chunk basis. A chunk might
37 typically be 32 K or 64 K. If the chunk is incompressible, then the
38 "stored" method is used. In this case, the bytes are simply stored as
39 is, eight bits per byte, with none of the above coding. The bytes are
40 preceded by a count, since there is no longer an EOB code.
42 If the data is compressible, then either the fixed or dynamic methods
43 are used. In the dynamic method, the compressed data is preceded by
44 an encoding of the literal/length and distance Huffman codes that are
45 to be used to decode this block. The representation is itself Huffman
46 coded, and so is preceded by a description of that code. These code
47 descriptions take up a little space, and so for small blocks, there is
48 a predefined set of codes, called the fixed codes. The fixed method is
49 used if the block codes up smaller that way (usually for quite small
50 chunks), otherwise the dynamic method is used. In the latter case, the
51 codes are customized to the probabilities in the current block, and so
52 can code it much better than the pre-determined fixed codes.
54 The Huffman codes themselves are decoded using a multi-level table
55 lookup, in order to maximize the speed of decoding plus the speed of
56 building the decoding tables. See the comments below that precede the
57 lbits and dbits tuning parameters.
62 Notes beyond the 1.93a appnote.txt:
64 1. Distance pointers never point before the beginning of the output
65 stream.
66 2. Distance pointers can point back across blocks, up to 32k away.
67 3. There is an implied maximum of 7 bits for the bit length table and
68 15 bits for the actual data.
69 4. If only one code exists, then it is encoded using one bit. (Zero
70 would be more efficient, but perhaps a little confusing.) If two
71 codes exist, they are coded using one bit each (0 and 1).
72 5. There is no way of sending zero distance codes--a dummy must be
73 sent if there are none. (History: a pre 2.0 version of PKZIP would
74 store blocks with no distance codes, but this was discovered to be
75 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
76 zero distance codes, which is sent as one code of zero bits in
77 length.
78 6. There are up to 286 literal/length codes. Code 256 represents the
79 end-of-block. Note however that the static length tree defines
80 288 codes just to fill out the Huffman codes. Codes 286 and 287
81 cannot be used though, since there is no length base or extra bits
82 defined for them. Similarly, there are up to 30 distance codes.
83 However, static trees define 32 codes (all 5 bits) to fill out the
84 Huffman codes, but the last two had better not show up in the data.
85 7. Unzip can check dynamic Huffman blocks for complete code sets.
86 The exception is that a single code would not be complete (see #4).
87 8. The five bits following the block type is really the number of
88 literal codes sent minus 257.
89 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
90 (1+6+6). Therefore, to output three times the length, you output
91 three codes (1+1+1), whereas to output four times the same length,
92 you only need two codes (1+3). Hmm.
93 10. In the tree reconstruction algorithm, Code = Code + Increment
94 only if BitLength(i) is not zero. (Pretty obvious.)
95 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
96 12. Note: length code 284 can represent 227-258, but length code 285
97 really is 258. The last length deserves its own, short code
98 since it gets used a lot in very redundant files. The length
99 258 is special since 258 - 3 (the min match length) is 255.
100 13. The literal/length and distance code bit lengths are read as a
101 single stream of lengths. It is possible (and advantageous) for
102 a repeat code (16, 17, or 18) to go across the boundary between
103 the two sets of lengths.
106 #ifdef RCSID
107 static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
108 #endif
110 #ifndef STATIC
112 #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
113 # include <sys/types.h>
114 # include <stdlib.h>
115 #endif
117 #include "gzip.h"
118 #define STATIC
119 #endif /* !STATIC */
121 #define slide window
123 /* Huffman code lookup table entry--this entry is four bytes for machines
124 that have 16-bit pointers (e.g. PC's in the small or medium model).
125 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
126 means that v is a literal, 16 < e < 32 means that v is a pointer to
127 the next table, which codes e - 16 bits, and lastly e == 99 indicates
128 an unused code. If a code with e == 99 is looked up, this implies an
129 error in the data. */
130 struct huft {
131 uch e; /* number of extra bits or operation */
132 uch b; /* number of bits in this code or subcode */
133 union {
134 ush n; /* literal, length base, or distance base */
135 struct huft *t; /* pointer to next level of table */
136 } v;
140 /* Function prototypes */
141 STATIC int huft_build OF((unsigned *, unsigned, unsigned,
142 const ush *, const ush *, struct huft **, int *));
143 STATIC int huft_free OF((struct huft *));
144 STATIC int inflate_codes OF((struct huft *, struct huft *, int, int));
145 STATIC int inflate_stored OF((void));
146 STATIC int inflate_fixed OF((void));
147 STATIC int inflate_dynamic OF((void));
148 STATIC int inflate_block OF((int *));
149 STATIC int inflate OF((void));
152 /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
153 stream to find repeated byte strings. This is implemented here as a
154 circular buffer. The index is updated simply by incrementing and then
155 ANDing with 0x7fff (32K-1). */
156 /* It is left to other modules to supply the 32 K area. It is assumed
157 to be usable as if it were declared "uch slide[32768];" or as just
158 "uch *slide;" and then malloc'ed in the latter case. The definition
159 must be in unzip.h, included above. */
160 /* unsigned wp; current position in slide */
161 #define wp outcnt
162 #define flush_output(w) (wp=(w),flush_window())
164 /* Tables for deflate from PKZIP's appnote.txt. */
165 static const unsigned border[] = { /* Order of the bit length code lengths */
166 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
167 static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
168 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
169 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
170 /* note: see note #13 above about the 258 in this list. */
171 static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
172 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
173 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
174 static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
175 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
176 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
177 8193, 12289, 16385, 24577};
178 static const ush cpdext[] = { /* Extra bits for distance codes */
179 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
180 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
181 12, 12, 13, 13};
185 /* Macros for inflate() bit peeking and grabbing.
186 The usage is:
188 NEEDBITS(j)
189 x = b & mask_bits[j];
190 DUMPBITS(j)
192 where NEEDBITS makes sure that b has at least j bits in it, and
193 DUMPBITS removes the bits from b. The macros use the variable k
194 for the number of bits in b. Normally, b and k are register
195 variables for speed, and are initialized at the beginning of a
196 routine that uses these macros from a global bit buffer and count.
198 If we assume that EOB will be the longest code, then we will never
199 ask for bits with NEEDBITS that are beyond the end of the stream.
200 So, NEEDBITS should not read any more bytes than are needed to
201 meet the request. Then no bytes need to be "returned" to the buffer
202 at the end of the last block.
204 However, this assumption is not true for fixed blocks--the EOB code
205 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
206 (The EOB code is shorter than other codes because fixed blocks are
207 generally short. So, while a block always has an EOB, many other
208 literal/length codes have a significantly lower probability of
209 showing up at all.) However, by making the first table have a
210 lookup of seven bits, the EOB code will be found in that first
211 lookup, and so will not require that too many bits be pulled from
212 the stream.
215 STATIC ulg bb; /* bit buffer */
216 STATIC unsigned bk; /* bits in bit buffer */
218 STATIC const ush mask_bits[] = {
219 0x0000,
220 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
221 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
224 #define NEXTBYTE() (uch)get_byte()
225 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
226 #define DUMPBITS(n) {b>>=(n);k-=(n);}
230 Huffman code decoding is performed using a multi-level table lookup.
231 The fastest way to decode is to simply build a lookup table whose
232 size is determined by the longest code. However, the time it takes
233 to build this table can also be a factor if the data being decoded
234 is not very long. The most common codes are necessarily the
235 shortest codes, so those codes dominate the decoding time, and hence
236 the speed. The idea is you can have a shorter table that decodes the
237 shorter, more probable codes, and then point to subsidiary tables for
238 the longer codes. The time it costs to decode the longer codes is
239 then traded against the time it takes to make longer tables.
241 This results of this trade are in the variables lbits and dbits
242 below. lbits is the number of bits the first level table for literal/
243 length codes can decode in one step, and dbits is the same thing for
244 the distance codes. Subsequent tables are also less than or equal to
245 those sizes. These values may be adjusted either when all of the
246 codes are shorter than that, in which case the longest code length in
247 bits is used, or when the shortest code is *longer* than the requested
248 table size, in which case the length of the shortest code in bits is
249 used.
251 There are two different values for the two tables, since they code a
252 different number of possibilities each. The literal/length table
253 codes 286 possible values, or in a flat code, a little over eight
254 bits. The distance table codes 30 possible values, or a little less
255 than five bits, flat. The optimum values for speed end up being
256 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
257 The optimum values may differ though from machine to machine, and
258 possibly even between compilers. Your mileage may vary.
262 STATIC const int lbits = 9; /* bits in base literal/length lookup table */
263 STATIC const int dbits = 6; /* bits in base distance lookup table */
266 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
267 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
268 #define N_MAX 288 /* maximum number of codes in any set */
271 STATIC unsigned hufts; /* track memory usage */
274 STATIC int huft_build(
275 unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
276 unsigned n, /* number of codes (assumed <= N_MAX) */
277 unsigned s, /* number of simple-valued codes (0..s-1) */
278 const ush *d, /* list of base values for non-simple codes */
279 const ush *e, /* list of extra bits for non-simple codes */
280 struct huft **t, /* result: starting table */
281 int *m /* maximum lookup bits, returns actual */
283 /* Given a list of code lengths and a maximum table size, make a set of
284 tables to decode that set of codes. Return zero on success, one if
285 the given code set is incomplete (the tables are still built in this
286 case), two if the input is invalid (all zero length codes or an
287 oversubscribed set of lengths), and three if not enough memory. */
289 unsigned a; /* counter for codes of length k */
290 unsigned c[BMAX+1]; /* bit length count table */
291 unsigned f; /* i repeats in table every f entries */
292 int g; /* maximum code length */
293 int h; /* table level */
294 register unsigned i; /* counter, current code */
295 register unsigned j; /* counter */
296 register int k; /* number of bits in current code */
297 int l; /* bits per table (returned in m) */
298 register unsigned *p; /* pointer into c[], b[], or v[] */
299 register struct huft *q; /* points to current table */
300 struct huft r; /* table entry for structure assignment */
301 struct huft *u[BMAX]; /* table stack */
302 unsigned v[N_MAX]; /* values in order of bit length */
303 register int w; /* bits before this table == (l * h) */
304 unsigned x[BMAX+1]; /* bit offsets, then code stack */
305 unsigned *xp; /* pointer into x */
306 int y; /* number of dummy codes added */
307 unsigned z; /* number of entries in current table */
309 DEBG("huft1 ");
311 /* Generate counts for each bit length */
312 memzero(c, sizeof(c));
313 p = b; i = n;
314 do {
315 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
316 n-i, *p));
317 c[*p]++; /* assume all entries <= BMAX */
318 p++; /* Can't combine with above line (Solaris bug) */
319 } while (--i);
320 if (c[0] == n) /* null input--all zero length codes */
322 *t = (struct huft *)NULL;
323 *m = 0;
324 return 0;
327 DEBG("huft2 ");
329 /* Find minimum and maximum length, bound *m by those */
330 l = *m;
331 for (j = 1; j <= BMAX; j++)
332 if (c[j])
333 break;
334 k = j; /* minimum code length */
335 if ((unsigned)l < j)
336 l = j;
337 for (i = BMAX; i; i--)
338 if (c[i])
339 break;
340 g = i; /* maximum code length */
341 if ((unsigned)l > i)
342 l = i;
343 *m = l;
345 DEBG("huft3 ");
347 /* Adjust last length count to fill out codes, if needed */
348 for (y = 1 << j; j < i; j++, y <<= 1)
349 if ((y -= c[j]) < 0)
350 return 2; /* bad input: more codes than bits */
351 if ((y -= c[i]) < 0)
352 return 2;
353 c[i] += y;
355 DEBG("huft4 ");
357 /* Generate starting offsets into the value table for each length */
358 x[1] = j = 0;
359 p = c + 1; xp = x + 2;
360 while (--i) { /* note that i == g from above */
361 *xp++ = (j += *p++);
364 DEBG("huft5 ");
366 /* Make a table of values in order of bit lengths */
367 p = b; i = 0;
368 do {
369 if ((j = *p++) != 0)
370 v[x[j]++] = i;
371 } while (++i < n);
373 DEBG("h6 ");
375 /* Generate the Huffman codes and for each, make the table entries */
376 x[0] = i = 0; /* first Huffman code is zero */
377 p = v; /* grab values in bit order */
378 h = -1; /* no tables yet--level -1 */
379 w = -l; /* bits decoded == (l * h) */
380 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
381 q = (struct huft *)NULL; /* ditto */
382 z = 0; /* ditto */
383 DEBG("h6a ");
385 /* go through the bit lengths (k already is bits in shortest code) */
386 for (; k <= g; k++)
388 DEBG("h6b ");
389 a = c[k];
390 while (a--)
392 DEBG("h6b1 ");
393 /* here i is the Huffman code of length k bits for value *p */
394 /* make tables up to required level */
395 while (k > w + l)
397 DEBG1("1 ");
398 h++;
399 w += l; /* previous table always l bits */
401 /* compute minimum size table less than or equal to l bits */
402 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
403 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
404 { /* too few codes for k-w bit table */
405 DEBG1("2 ");
406 f -= a + 1; /* deduct codes from patterns left */
407 xp = c + k;
408 while (++j < z) /* try smaller tables up to z bits */
410 if ((f <<= 1) <= *++xp)
411 break; /* enough codes to use up j bits */
412 f -= *xp; /* else deduct codes from patterns */
415 DEBG1("3 ");
416 z = 1 << j; /* table entries for j-bit table */
418 /* allocate and link in new table */
419 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
420 (struct huft *)NULL)
422 if (h)
423 huft_free(u[0]);
424 return 3; /* not enough memory */
426 DEBG1("4 ");
427 hufts += z + 1; /* track memory usage */
428 *t = q + 1; /* link to list for huft_free() */
429 *(t = &(q->v.t)) = (struct huft *)NULL;
430 u[h] = ++q; /* table starts after link */
432 DEBG1("5 ");
433 /* connect to last table, if there is one */
434 if (h)
436 x[h] = i; /* save pattern for backing up */
437 r.b = (uch)l; /* bits to dump before this table */
438 r.e = (uch)(16 + j); /* bits in this table */
439 r.v.t = q; /* pointer to this table */
440 j = i >> (w - l); /* (get around Turbo C bug) */
441 u[h-1][j] = r; /* connect to last table */
443 DEBG1("6 ");
445 DEBG("h6c ");
447 /* set up table entry in r */
448 r.b = (uch)(k - w);
449 if (p >= v + n)
450 r.e = 99; /* out of values--invalid code */
451 else if (*p < s)
453 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
454 r.v.n = (ush)(*p); /* simple code is just the value */
455 p++; /* one compiler does not like *p++ */
457 else
459 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
460 r.v.n = d[*p++ - s];
462 DEBG("h6d ");
464 /* fill code-like entries with r */
465 f = 1 << (k - w);
466 for (j = i >> w; j < z; j += f)
467 q[j] = r;
469 /* backwards increment the k-bit code i */
470 for (j = 1 << (k - 1); i & j; j >>= 1)
471 i ^= j;
472 i ^= j;
474 /* backup over finished tables */
475 while ((i & ((1 << w) - 1)) != x[h])
477 h--; /* don't need to update q */
478 w -= l;
480 DEBG("h6e ");
482 DEBG("h6f ");
485 DEBG("huft7 ");
487 /* Return true (1) if we were given an incomplete table */
488 return y != 0 && g != 1;
493 STATIC int huft_free(
494 struct huft *t /* table to free */
496 /* Free the malloc'ed tables built by huft_build(), which makes a linked
497 list of the tables it made, with the links in a dummy first entry of
498 each table. */
500 register struct huft *p, *q;
503 /* Go through linked list, freeing from the malloced (t[-1]) address. */
504 p = t;
505 while (p != (struct huft *)NULL)
507 q = (--p)->v.t;
508 free((char*)p);
509 p = q;
511 return 0;
515 STATIC int inflate_codes(
516 struct huft *tl, /* literal/length decoder tables */
517 struct huft *td, /* distance decoder tables */
518 int bl, /* number of bits decoded by tl[] */
519 int bd /* number of bits decoded by td[] */
521 /* inflate (decompress) the codes in a deflated (compressed) block.
522 Return an error code or zero if it all goes ok. */
524 register unsigned e; /* table entry flag/number of extra bits */
525 unsigned n, d; /* length and index for copy */
526 unsigned w; /* current window position */
527 struct huft *t; /* pointer to table entry */
528 unsigned ml, md; /* masks for bl and bd bits */
529 register ulg b; /* bit buffer */
530 register unsigned k; /* number of bits in bit buffer */
533 /* make local copies of globals */
534 b = bb; /* initialize bit buffer */
535 k = bk;
536 w = wp; /* initialize window position */
538 /* inflate the coded data */
539 ml = mask_bits[bl]; /* precompute masks for speed */
540 md = mask_bits[bd];
541 for (;;) /* do until end of block */
543 NEEDBITS((unsigned)bl)
544 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
545 do {
546 if (e == 99)
547 return 1;
548 DUMPBITS(t->b)
549 e -= 16;
550 NEEDBITS(e)
551 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
552 DUMPBITS(t->b)
553 if (e == 16) /* then it's a literal */
555 slide[w++] = (uch)t->v.n;
556 Tracevv((stderr, "%c", slide[w-1]));
557 if (w == WSIZE)
559 flush_output(w);
560 w = 0;
563 else /* it's an EOB or a length */
565 /* exit if end of block */
566 if (e == 15)
567 break;
569 /* get length of block to copy */
570 NEEDBITS(e)
571 n = t->v.n + ((unsigned)b & mask_bits[e]);
572 DUMPBITS(e);
574 /* decode distance of block to copy */
575 NEEDBITS((unsigned)bd)
576 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
577 do {
578 if (e == 99)
579 return 1;
580 DUMPBITS(t->b)
581 e -= 16;
582 NEEDBITS(e)
583 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
584 DUMPBITS(t->b)
585 NEEDBITS(e)
586 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
587 DUMPBITS(e)
588 Tracevv((stderr,"\\[%d,%d]", w-d, n));
590 /* do the copy */
591 do {
592 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
593 #if !defined(NOMEMCPY) && !defined(DEBUG)
594 if (w - d >= e) /* (this test assumes unsigned comparison) */
596 memcpy(slide + w, slide + d, e);
597 w += e;
598 d += e;
600 else /* do it slow to avoid memcpy() overlap */
601 #endif /* !NOMEMCPY */
602 do {
603 slide[w++] = slide[d++];
604 Tracevv((stderr, "%c", slide[w-1]));
605 } while (--e);
606 if (w == WSIZE)
608 flush_output(w);
609 w = 0;
611 } while (n);
616 /* restore the globals from the locals */
617 wp = w; /* restore global window pointer */
618 bb = b; /* restore global bit buffer */
619 bk = k;
621 /* done */
622 return 0;
627 STATIC int inflate_stored(void)
628 /* "decompress" an inflated type 0 (stored) block. */
630 unsigned n; /* number of bytes in block */
631 unsigned w; /* current window position */
632 register ulg b; /* bit buffer */
633 register unsigned k; /* number of bits in bit buffer */
635 DEBG("<stor");
637 /* make local copies of globals */
638 b = bb; /* initialize bit buffer */
639 k = bk;
640 w = wp; /* initialize window position */
643 /* go to byte boundary */
644 n = k & 7;
645 DUMPBITS(n);
648 /* get the length and its complement */
649 NEEDBITS(16)
650 n = ((unsigned)b & 0xffff);
651 DUMPBITS(16)
652 NEEDBITS(16)
653 if (n != (unsigned)((~b) & 0xffff))
654 return 1; /* error in compressed data */
655 DUMPBITS(16)
658 /* read and output the compressed data */
659 while (n--)
661 NEEDBITS(8)
662 slide[w++] = (uch)b;
663 if (w == WSIZE)
665 flush_output(w);
666 w = 0;
668 DUMPBITS(8)
672 /* restore the globals from the locals */
673 wp = w; /* restore global window pointer */
674 bb = b; /* restore global bit buffer */
675 bk = k;
677 DEBG(">");
678 return 0;
683 STATIC int inflate_fixed(void)
684 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
685 either replace this with a custom decoder, or at least precompute the
686 Huffman tables. */
688 int i; /* temporary variable */
689 struct huft *tl; /* literal/length code table */
690 struct huft *td; /* distance code table */
691 int bl; /* lookup bits for tl */
692 int bd; /* lookup bits for td */
693 unsigned l[288]; /* length list for huft_build */
695 DEBG("<fix");
697 /* set up literal table */
698 for (i = 0; i < 144; i++)
699 l[i] = 8;
700 for (; i < 256; i++)
701 l[i] = 9;
702 for (; i < 280; i++)
703 l[i] = 7;
704 for (; i < 288; i++) /* make a complete, but wrong code set */
705 l[i] = 8;
706 bl = 7;
707 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
708 return i;
711 /* set up distance table */
712 for (i = 0; i < 30; i++) /* make an incomplete code set */
713 l[i] = 5;
714 bd = 5;
715 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
717 huft_free(tl);
719 DEBG(">");
720 return i;
724 /* decompress until an end-of-block code */
725 if (inflate_codes(tl, td, bl, bd))
726 return 1;
729 /* free the decoding tables, return */
730 huft_free(tl);
731 huft_free(td);
732 return 0;
737 STATIC int inflate_dynamic(void)
738 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
740 int i; /* temporary variables */
741 unsigned j;
742 unsigned l; /* last length */
743 unsigned m; /* mask for bit lengths table */
744 unsigned n; /* number of lengths to get */
745 struct huft *tl; /* literal/length code table */
746 struct huft *td; /* distance code table */
747 int bl; /* lookup bits for tl */
748 int bd; /* lookup bits for td */
749 unsigned nb; /* number of bit length codes */
750 unsigned nl; /* number of literal/length codes */
751 unsigned nd; /* number of distance codes */
752 #ifdef PKZIP_BUG_WORKAROUND
753 unsigned ll[288+32]; /* literal/length and distance code lengths */
754 #else
755 unsigned ll[286+30]; /* literal/length and distance code lengths */
756 #endif
757 register ulg b; /* bit buffer */
758 register unsigned k; /* number of bits in bit buffer */
760 DEBG("<dyn");
762 /* make local bit buffer */
763 b = bb;
764 k = bk;
767 /* read in table lengths */
768 NEEDBITS(5)
769 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
770 DUMPBITS(5)
771 NEEDBITS(5)
772 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
773 DUMPBITS(5)
774 NEEDBITS(4)
775 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
776 DUMPBITS(4)
777 #ifdef PKZIP_BUG_WORKAROUND
778 if (nl > 288 || nd > 32)
779 #else
780 if (nl > 286 || nd > 30)
781 #endif
782 return 1; /* bad lengths */
784 DEBG("dyn1 ");
786 /* read in bit-length-code lengths */
787 for (j = 0; j < nb; j++)
789 NEEDBITS(3)
790 ll[border[j]] = (unsigned)b & 7;
791 DUMPBITS(3)
793 for (; j < 19; j++)
794 ll[border[j]] = 0;
796 DEBG("dyn2 ");
798 /* build decoding table for trees--single level, 7 bit lookup */
799 bl = 7;
800 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
802 if (i == 1)
803 huft_free(tl);
804 return i; /* incomplete code set */
807 DEBG("dyn3 ");
809 /* read in literal and distance code lengths */
810 n = nl + nd;
811 m = mask_bits[bl];
812 i = l = 0;
813 while ((unsigned)i < n)
815 NEEDBITS((unsigned)bl)
816 j = (td = tl + ((unsigned)b & m))->b;
817 DUMPBITS(j)
818 j = td->v.n;
819 if (j < 16) /* length of code in bits (0..15) */
820 ll[i++] = l = j; /* save last length in l */
821 else if (j == 16) /* repeat last length 3 to 6 times */
823 NEEDBITS(2)
824 j = 3 + ((unsigned)b & 3);
825 DUMPBITS(2)
826 if ((unsigned)i + j > n)
827 return 1;
828 while (j--)
829 ll[i++] = l;
831 else if (j == 17) /* 3 to 10 zero length codes */
833 NEEDBITS(3)
834 j = 3 + ((unsigned)b & 7);
835 DUMPBITS(3)
836 if ((unsigned)i + j > n)
837 return 1;
838 while (j--)
839 ll[i++] = 0;
840 l = 0;
842 else /* j == 18: 11 to 138 zero length codes */
844 NEEDBITS(7)
845 j = 11 + ((unsigned)b & 0x7f);
846 DUMPBITS(7)
847 if ((unsigned)i + j > n)
848 return 1;
849 while (j--)
850 ll[i++] = 0;
851 l = 0;
855 DEBG("dyn4 ");
857 /* free decoding table for trees */
858 huft_free(tl);
860 DEBG("dyn5 ");
862 /* restore the global bit buffer */
863 bb = b;
864 bk = k;
866 DEBG("dyn5a ");
868 /* build the decoding tables for literal/length and distance codes */
869 bl = lbits;
870 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
872 DEBG("dyn5b ");
873 if (i == 1) {
874 error(" incomplete literal tree\n");
875 huft_free(tl);
877 return i; /* incomplete code set */
879 DEBG("dyn5c ");
880 bd = dbits;
881 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
883 DEBG("dyn5d ");
884 if (i == 1) {
885 error(" incomplete distance tree\n");
886 #ifdef PKZIP_BUG_WORKAROUND
887 i = 0;
889 #else
890 huft_free(td);
892 huft_free(tl);
893 return i; /* incomplete code set */
894 #endif
897 DEBG("dyn6 ");
899 /* decompress until an end-of-block code */
900 if (inflate_codes(tl, td, bl, bd))
901 return 1;
903 DEBG("dyn7 ");
905 /* free the decoding tables, return */
906 huft_free(tl);
907 huft_free(td);
909 DEBG(">");
910 return 0;
915 STATIC int inflate_block(
916 int *e /* last block flag */
918 /* decompress an inflated block */
920 unsigned t; /* block type */
921 register ulg b; /* bit buffer */
922 register unsigned k; /* number of bits in bit buffer */
924 DEBG("<blk");
926 /* make local bit buffer */
927 b = bb;
928 k = bk;
931 /* read in last block bit */
932 NEEDBITS(1)
933 *e = (int)b & 1;
934 DUMPBITS(1)
937 /* read in block type */
938 NEEDBITS(2)
939 t = (unsigned)b & 3;
940 DUMPBITS(2)
943 /* restore the global bit buffer */
944 bb = b;
945 bk = k;
947 /* inflate that block type */
948 if (t == 2)
949 return inflate_dynamic();
950 if (t == 0)
951 return inflate_stored();
952 if (t == 1)
953 return inflate_fixed();
955 DEBG(">");
957 /* bad block type */
958 return 2;
963 STATIC int inflate(void)
964 /* decompress an inflated entry */
966 int e; /* last block flag */
967 int r; /* result code */
968 unsigned h; /* maximum struct huft's malloc'ed */
969 void *ptr;
971 /* initialize window, bit buffer */
972 wp = 0;
973 bk = 0;
974 bb = 0;
977 /* decompress until the last block */
978 h = 0;
979 do {
980 hufts = 0;
981 gzip_mark(&ptr);
982 if ((r = inflate_block(&e)) != 0) {
983 gzip_release(&ptr);
984 return r;
986 gzip_release(&ptr);
987 if (hufts > h)
988 h = hufts;
989 } while (!e);
991 /* Undo too much lookahead. The next read will be byte aligned so we
992 * can discard unused bits in the last meaningful byte.
994 while (bk >= 8) {
995 bk -= 8;
996 inptr--;
999 /* flush out slide */
1000 flush_output(wp);
1003 /* return success */
1004 #ifdef DEBUG
1005 fprintf(stderr, "<%u> ", h);
1006 #endif /* DEBUG */
1007 return 0;
1010 /**********************************************************************
1012 * The following are support routines for inflate.c
1014 **********************************************************************/
1016 static ulg crc_32_tab[256];
1017 static ulg crc; /* initialized in makecrc() so it'll reside in bss */
1018 #define CRC_VALUE (crc ^ 0xffffffffUL)
1021 * Code to compute the CRC-32 table. Borrowed from
1022 * gzip-1.0.3/makecrc.c.
1025 static void
1026 makecrc(void)
1028 /* Not copyrighted 1990 Mark Adler */
1030 unsigned long c; /* crc shift register */
1031 unsigned long e; /* polynomial exclusive-or pattern */
1032 int i; /* counter for all possible eight bit values */
1033 int k; /* byte being shifted into crc apparatus */
1035 /* terms of polynomial defining this crc (except x^32): */
1036 static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1038 /* Make exclusive-or pattern from polynomial */
1039 e = 0;
1040 for (i = 0; i < sizeof(p)/sizeof(int); i++)
1041 e |= 1L << (31 - p[i]);
1043 crc_32_tab[0] = 0;
1045 for (i = 1; i < 256; i++)
1047 c = 0;
1048 for (k = i | 256; k != 1; k >>= 1)
1050 c = c & 1 ? (c >> 1) ^ e : c >> 1;
1051 if (k & 1)
1052 c ^= e;
1054 crc_32_tab[i] = c;
1057 /* this is initialized here so this code could reside in ROM */
1058 crc = (ulg)0xffffffffUL; /* shift register contents */
1061 /* gzip flag byte */
1062 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
1063 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1064 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
1065 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
1066 #define COMMENT 0x10 /* bit 4 set: file comment present */
1067 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
1068 #define RESERVED 0xC0 /* bit 6,7: reserved */
1071 * Do the uncompression!
1073 static int gunzip(void)
1075 uch flags;
1076 unsigned char magic[2]; /* magic header */
1077 char method;
1078 ulg orig_crc = 0; /* original crc */
1079 ulg orig_len = 0; /* original uncompressed length */
1080 int res;
1082 magic[0] = (unsigned char)get_byte();
1083 magic[1] = (unsigned char)get_byte();
1084 method = (unsigned char)get_byte();
1086 if (magic[0] != 037 ||
1087 ((magic[1] != 0213) && (magic[1] != 0236))) {
1088 error("bad gzip magic numbers");
1089 return -1;
1092 /* We only support method #8, DEFLATED */
1093 if (method != 8) {
1094 error("internal error, invalid method");
1095 return -1;
1098 flags = (uch)get_byte();
1099 if ((flags & ENCRYPTED) != 0) {
1100 error("Input is encrypted\n");
1101 return -1;
1103 if ((flags & CONTINUATION) != 0) {
1104 error("Multi part input\n");
1105 return -1;
1107 if ((flags & RESERVED) != 0) {
1108 error("Input has invalid flags\n");
1109 return -1;
1111 (ulg)get_byte(); /* Get timestamp */
1112 ((ulg)get_byte()) << 8;
1113 ((ulg)get_byte()) << 16;
1114 ((ulg)get_byte()) << 24;
1116 (void)get_byte(); /* Ignore extra flags for the moment */
1117 (void)get_byte(); /* Ignore OS type for the moment */
1119 if ((flags & EXTRA_FIELD) != 0) {
1120 unsigned len = (unsigned)get_byte();
1121 len |= ((unsigned)get_byte())<<8;
1122 while (len--) (void)get_byte();
1125 /* Get original file name if it was truncated */
1126 if ((flags & ORIG_NAME) != 0) {
1127 /* Discard the old name */
1128 while (get_byte() != 0) /* null */ ;
1131 /* Discard file comment if any */
1132 if ((flags & COMMENT) != 0) {
1133 while (get_byte() != 0) /* null */ ;
1136 /* Decompress */
1137 if ((res = inflate())) {
1138 switch (res) {
1139 case 0:
1140 break;
1141 case 1:
1142 error("invalid compressed format (err=1)");
1143 break;
1144 case 2:
1145 error("invalid compressed format (err=2)");
1146 break;
1147 case 3:
1148 error("out of memory");
1149 break;
1150 default:
1151 error("invalid compressed format (other)");
1153 return -1;
1156 /* Get the crc and original length */
1157 /* crc32 (see algorithm.doc)
1158 * uncompressed input size modulo 2^32
1160 orig_crc = (ulg) get_byte();
1161 orig_crc |= (ulg) get_byte() << 8;
1162 orig_crc |= (ulg) get_byte() << 16;
1163 orig_crc |= (ulg) get_byte() << 24;
1165 orig_len = (ulg) get_byte();
1166 orig_len |= (ulg) get_byte() << 8;
1167 orig_len |= (ulg) get_byte() << 16;
1168 orig_len |= (ulg) get_byte() << 24;
1170 /* Validate decompression */
1171 if (orig_crc != CRC_VALUE) {
1172 error("crc error");
1173 return -1;
1175 if (orig_len != bytes_out) {
1176 error("length error");
1177 return -1;
1179 return 0;