3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
109 #include <linux/rtmutex.h>
111 #include <asm/uaccess.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 #include <asm/page.h>
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 #ifdef CONFIG_DEBUG_SLAB
130 #define FORCED_DEBUG 1
134 #define FORCED_DEBUG 0
137 /* Shouldn't this be in a header file somewhere? */
138 #define BYTES_PER_WORD sizeof(void *)
140 #ifndef cache_line_size
141 #define cache_line_size() L1_CACHE_BYTES
144 #ifndef ARCH_KMALLOC_MINALIGN
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
153 #define ARCH_KMALLOC_MINALIGN 0
156 #ifndef ARCH_SLAB_MINALIGN
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
164 #define ARCH_SLAB_MINALIGN 0
167 #ifndef ARCH_KMALLOC_FLAGS
168 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 /* Legal flag mask for kmem_cache_create(). */
173 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
180 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
189 * Bufctl's are used for linking objs within a slab
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 typedef unsigned int kmem_bufctl_t
;
206 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
208 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 struct list_head list
;
220 unsigned long colouroff
;
221 void *s_mem
; /* including colour offset */
222 unsigned int inuse
; /* num of objs active in slab */
224 unsigned short nodeid
;
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
241 * We assume struct slab_rcu can overlay struct slab when destroying.
244 struct rcu_head head
;
245 struct kmem_cache
*cachep
;
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
257 * The limit is stored in the per-cpu structure to reduce the data cache
264 unsigned int batchcount
;
265 unsigned int touched
;
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
271 * [0] is for gcc 2.95. It should really be [].
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init
{
281 struct array_cache cache
;
282 void *entries
[BOOT_CPUCACHE_ENTRIES
];
286 * The slab lists for all objects.
289 struct list_head slabs_partial
; /* partial list first, better asm code */
290 struct list_head slabs_full
;
291 struct list_head slabs_free
;
292 unsigned long free_objects
;
293 unsigned int free_limit
;
294 unsigned int colour_next
; /* Per-node cache coloring */
295 spinlock_t list_lock
;
296 struct array_cache
*shared
; /* shared per node */
297 struct array_cache
**alien
; /* on other nodes */
298 unsigned long next_reap
; /* updated without locking */
299 int free_touched
; /* updated without locking */
303 * Need this for bootstrapping a per node allocator.
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
307 #define CACHE_CACHE 0
309 #define SIZE_L3 (1 + MAX_NUMNODES)
311 static int drain_freelist(struct kmem_cache
*cache
,
312 struct kmem_list3
*l3
, int tofree
);
313 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
315 static int enable_cpucache(struct kmem_cache
*cachep
);
316 static void cache_reap(void *unused
);
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
322 static __always_inline
int index_of(const size_t size
)
324 extern void __bad_size(void);
326 if (__builtin_constant_p(size
)) {
334 #include "linux/kmalloc_sizes.h"
342 static int slab_early_init
= 1;
344 #define INDEX_AC index_of(sizeof(struct arraycache_init))
345 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
347 static void kmem_list3_init(struct kmem_list3
*parent
)
349 INIT_LIST_HEAD(&parent
->slabs_full
);
350 INIT_LIST_HEAD(&parent
->slabs_partial
);
351 INIT_LIST_HEAD(&parent
->slabs_free
);
352 parent
->shared
= NULL
;
353 parent
->alien
= NULL
;
354 parent
->colour_next
= 0;
355 spin_lock_init(&parent
->list_lock
);
356 parent
->free_objects
= 0;
357 parent
->free_touched
= 0;
360 #define MAKE_LIST(cachep, listp, slab, nodeid) \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
380 /* 1) per-cpu data, touched during every alloc/free */
381 struct array_cache
*array
[NR_CPUS
];
382 /* 2) Cache tunables. Protected by cache_chain_mutex */
383 unsigned int batchcount
;
387 unsigned int buffer_size
;
388 /* 3) touched by every alloc & free from the backend */
389 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
391 unsigned int flags
; /* constant flags */
392 unsigned int num
; /* # of objs per slab */
394 /* 4) cache_grow/shrink */
395 /* order of pgs per slab (2^n) */
396 unsigned int gfporder
;
398 /* force GFP flags, e.g. GFP_DMA */
401 size_t colour
; /* cache colouring range */
402 unsigned int colour_off
; /* colour offset */
403 struct kmem_cache
*slabp_cache
;
404 unsigned int slab_size
;
405 unsigned int dflags
; /* dynamic flags */
407 /* constructor func */
408 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
410 /* de-constructor func */
411 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
413 /* 5) cache creation/removal */
415 struct list_head next
;
419 unsigned long num_active
;
420 unsigned long num_allocations
;
421 unsigned long high_mark
;
423 unsigned long reaped
;
424 unsigned long errors
;
425 unsigned long max_freeable
;
426 unsigned long node_allocs
;
427 unsigned long node_frees
;
428 unsigned long node_overflow
;
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
446 #define CFLGS_OFF_SLAB (0x80000000UL)
447 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449 #define BATCHREFILL_LIMIT 16
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
454 * OTOH the cpuarrays can contain lots of objects,
455 * which could lock up otherwise freeable slabs.
457 #define REAPTIMEOUT_CPUC (2*HZ)
458 #define REAPTIMEOUT_LIST3 (4*HZ)
461 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
462 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464 #define STATS_INC_GROWN(x) ((x)->grown++)
465 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
466 #define STATS_SET_HIGH(x) \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
471 #define STATS_INC_ERR(x) ((x)->errors++)
472 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
473 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
474 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
475 #define STATS_SET_FREEABLE(x, i) \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
480 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485 #define STATS_INC_ACTIVE(x) do { } while (0)
486 #define STATS_DEC_ACTIVE(x) do { } while (0)
487 #define STATS_INC_ALLOCED(x) do { } while (0)
488 #define STATS_INC_GROWN(x) do { } while (0)
489 #define STATS_ADD_REAPED(x,y) do { } while (0)
490 #define STATS_SET_HIGH(x) do { } while (0)
491 #define STATS_INC_ERR(x) do { } while (0)
492 #define STATS_INC_NODEALLOCS(x) do { } while (0)
493 #define STATS_INC_NODEFREES(x) do { } while (0)
494 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
495 #define STATS_SET_FREEABLE(x, i) do { } while (0)
496 #define STATS_INC_ALLOCHIT(x) do { } while (0)
497 #define STATS_INC_ALLOCMISS(x) do { } while (0)
498 #define STATS_INC_FREEHIT(x) do { } while (0)
499 #define STATS_INC_FREEMISS(x) do { } while (0)
505 * memory layout of objects:
507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
517 static int obj_offset(struct kmem_cache
*cachep
)
519 return cachep
->obj_offset
;
522 static int obj_size(struct kmem_cache
*cachep
)
524 return cachep
->obj_size
;
527 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
529 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
530 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
533 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
535 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
536 if (cachep
->flags
& SLAB_STORE_USER
)
537 return (unsigned long *)(objp
+ cachep
->buffer_size
-
539 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
542 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
544 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
545 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
550 #define obj_offset(x) 0
551 #define obj_size(cachep) (cachep->buffer_size)
552 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
562 #if defined(CONFIG_LARGE_ALLOCS)
563 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
564 #define MAX_GFP_ORDER 13 /* up to 32Mb */
565 #elif defined(CONFIG_MMU)
566 #define MAX_OBJ_ORDER 5 /* 32 pages */
567 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
570 #define MAX_GFP_ORDER 8 /* up to 1Mb */
574 * Do not go above this order unless 0 objects fit into the slab.
576 #define BREAK_GFP_ORDER_HI 1
577 #define BREAK_GFP_ORDER_LO 0
578 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
585 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
587 page
->lru
.next
= (struct list_head
*)cache
;
590 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
592 if (unlikely(PageCompound(page
)))
593 page
= (struct page
*)page_private(page
);
594 BUG_ON(!PageSlab(page
));
595 return (struct kmem_cache
*)page
->lru
.next
;
598 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
600 page
->lru
.prev
= (struct list_head
*)slab
;
603 static inline struct slab
*page_get_slab(struct page
*page
)
605 if (unlikely(PageCompound(page
)))
606 page
= (struct page
*)page_private(page
);
607 BUG_ON(!PageSlab(page
));
608 return (struct slab
*)page
->lru
.prev
;
611 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
613 struct page
*page
= virt_to_page(obj
);
614 return page_get_cache(page
);
617 static inline struct slab
*virt_to_slab(const void *obj
)
619 struct page
*page
= virt_to_page(obj
);
620 return page_get_slab(page
);
623 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
626 return slab
->s_mem
+ cache
->buffer_size
* idx
;
629 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
630 struct slab
*slab
, void *obj
)
632 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 struct cache_sizes malloc_sizes
[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
644 EXPORT_SYMBOL(malloc_sizes
);
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
652 static struct cache_names __initdata cache_names
[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
659 static struct arraycache_init initarray_cache __initdata
=
660 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
661 static struct arraycache_init initarray_generic
=
662 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache
= {
667 .limit
= BOOT_CPUCACHE_ENTRIES
,
669 .buffer_size
= sizeof(struct kmem_cache
),
670 .name
= "kmem_cache",
672 .obj_size
= sizeof(struct kmem_cache
),
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key
;
692 static struct lock_class_key on_slab_alc_key
;
694 static inline void init_lock_keys(void)
698 struct cache_sizes
*s
= malloc_sizes
;
700 while (s
->cs_size
!= ULONG_MAX
) {
702 struct array_cache
**alc
;
704 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
705 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
707 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
720 lockdep_set_class(&alc
[r
]->lock
,
728 static inline void init_lock_keys(void)
733 /* Guard access to the cache-chain. */
734 static DEFINE_MUTEX(cache_chain_mutex
);
735 static struct list_head cache_chain
;
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
749 * used by boot code to determine if it can use slab based allocator
751 int slab_is_available(void)
753 return g_cpucache_up
== FULL
;
756 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
758 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
760 return cachep
->array
[smp_processor_id()];
763 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
766 struct cache_sizes
*csizep
= malloc_sizes
;
769 /* This happens if someone tries to call
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
773 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
775 while (size
> csizep
->cs_size
)
779 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
780 * has cs_{dma,}cachep==NULL. Thus no special case
781 * for large kmalloc calls required.
783 if (unlikely(gfpflags
& GFP_DMA
))
784 return csizep
->cs_dmacachep
;
785 return csizep
->cs_cachep
;
788 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
790 return __find_general_cachep(size
, gfpflags
);
793 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
795 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
799 * Calculate the number of objects and left-over bytes for a given buffer size.
801 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
802 size_t align
, int flags
, size_t *left_over
,
807 size_t slab_size
= PAGE_SIZE
<< gfporder
;
810 * The slab management structure can be either off the slab or
811 * on it. For the latter case, the memory allocated for a
815 * - One kmem_bufctl_t for each object
816 * - Padding to respect alignment of @align
817 * - @buffer_size bytes for each object
819 * If the slab management structure is off the slab, then the
820 * alignment will already be calculated into the size. Because
821 * the slabs are all pages aligned, the objects will be at the
822 * correct alignment when allocated.
824 if (flags
& CFLGS_OFF_SLAB
) {
826 nr_objs
= slab_size
/ buffer_size
;
828 if (nr_objs
> SLAB_LIMIT
)
829 nr_objs
= SLAB_LIMIT
;
832 * Ignore padding for the initial guess. The padding
833 * is at most @align-1 bytes, and @buffer_size is at
834 * least @align. In the worst case, this result will
835 * be one greater than the number of objects that fit
836 * into the memory allocation when taking the padding
839 nr_objs
= (slab_size
- sizeof(struct slab
)) /
840 (buffer_size
+ sizeof(kmem_bufctl_t
));
843 * This calculated number will be either the right
844 * amount, or one greater than what we want.
846 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
850 if (nr_objs
> SLAB_LIMIT
)
851 nr_objs
= SLAB_LIMIT
;
853 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
856 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
859 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
864 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
865 function
, cachep
->name
, msg
);
871 * Special reaping functions for NUMA systems called from cache_reap().
872 * These take care of doing round robin flushing of alien caches (containing
873 * objects freed on different nodes from which they were allocated) and the
874 * flushing of remote pcps by calling drain_node_pages.
876 static DEFINE_PER_CPU(unsigned long, reap_node
);
878 static void init_reap_node(int cpu
)
882 node
= next_node(cpu_to_node(cpu
), node_online_map
);
883 if (node
== MAX_NUMNODES
)
884 node
= first_node(node_online_map
);
886 per_cpu(reap_node
, cpu
) = node
;
889 static void next_reap_node(void)
891 int node
= __get_cpu_var(reap_node
);
894 * Also drain per cpu pages on remote zones
896 if (node
!= numa_node_id())
897 drain_node_pages(node
);
899 node
= next_node(node
, node_online_map
);
900 if (unlikely(node
>= MAX_NUMNODES
))
901 node
= first_node(node_online_map
);
902 __get_cpu_var(reap_node
) = node
;
906 #define init_reap_node(cpu) do { } while (0)
907 #define next_reap_node(void) do { } while (0)
911 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
912 * via the workqueue/eventd.
913 * Add the CPU number into the expiration time to minimize the possibility of
914 * the CPUs getting into lockstep and contending for the global cache chain
917 static void __devinit
start_cpu_timer(int cpu
)
919 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
922 * When this gets called from do_initcalls via cpucache_init(),
923 * init_workqueues() has already run, so keventd will be setup
926 if (keventd_up() && reap_work
->func
== NULL
) {
928 INIT_WORK(reap_work
, cache_reap
, NULL
);
929 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
933 static struct array_cache
*alloc_arraycache(int node
, int entries
,
936 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
937 struct array_cache
*nc
= NULL
;
939 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
943 nc
->batchcount
= batchcount
;
945 spin_lock_init(&nc
->lock
);
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
954 * Return the number of entries transferred.
956 static int transfer_objects(struct array_cache
*to
,
957 struct array_cache
*from
, unsigned int max
)
959 /* Figure out how many entries to transfer */
960 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
965 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
976 #define drain_alien_cache(cachep, alien) do { } while (0)
977 #define reap_alien(cachep, l3) do { } while (0)
979 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
981 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
984 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
988 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
993 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
999 static inline void *__cache_alloc_node(struct kmem_cache
*cachep
,
1000 gfp_t flags
, int nodeid
)
1005 #else /* CONFIG_NUMA */
1007 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1008 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1010 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1012 struct array_cache
**ac_ptr
;
1013 int memsize
= sizeof(void *) * MAX_NUMNODES
;
1018 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1021 if (i
== node
|| !node_online(i
)) {
1025 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1027 for (i
--; i
<= 0; i
--)
1037 static void free_alien_cache(struct array_cache
**ac_ptr
)
1048 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1049 struct array_cache
*ac
, int node
)
1051 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1054 spin_lock(&rl3
->list_lock
);
1056 * Stuff objects into the remote nodes shared array first.
1057 * That way we could avoid the overhead of putting the objects
1058 * into the free lists and getting them back later.
1061 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1063 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1065 spin_unlock(&rl3
->list_lock
);
1070 * Called from cache_reap() to regularly drain alien caches round robin.
1072 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1074 int node
= __get_cpu_var(reap_node
);
1077 struct array_cache
*ac
= l3
->alien
[node
];
1079 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1080 __drain_alien_cache(cachep
, ac
, node
);
1081 spin_unlock_irq(&ac
->lock
);
1086 static void drain_alien_cache(struct kmem_cache
*cachep
,
1087 struct array_cache
**alien
)
1090 struct array_cache
*ac
;
1091 unsigned long flags
;
1093 for_each_online_node(i
) {
1096 spin_lock_irqsave(&ac
->lock
, flags
);
1097 __drain_alien_cache(cachep
, ac
, i
);
1098 spin_unlock_irqrestore(&ac
->lock
, flags
);
1103 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1105 struct slab
*slabp
= virt_to_slab(objp
);
1106 int nodeid
= slabp
->nodeid
;
1107 struct kmem_list3
*l3
;
1108 struct array_cache
*alien
= NULL
;
1111 node
= numa_node_id();
1114 * Make sure we are not freeing a object from another node to the array
1115 * cache on this cpu.
1117 if (likely(slabp
->nodeid
== node
))
1120 l3
= cachep
->nodelists
[node
];
1121 STATS_INC_NODEFREES(cachep
);
1122 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1123 alien
= l3
->alien
[nodeid
];
1124 spin_lock(&alien
->lock
);
1125 if (unlikely(alien
->avail
== alien
->limit
)) {
1126 STATS_INC_ACOVERFLOW(cachep
);
1127 __drain_alien_cache(cachep
, alien
, nodeid
);
1129 alien
->entry
[alien
->avail
++] = objp
;
1130 spin_unlock(&alien
->lock
);
1132 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1133 free_block(cachep
, &objp
, 1, nodeid
);
1134 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1140 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1141 unsigned long action
, void *hcpu
)
1143 long cpu
= (long)hcpu
;
1144 struct kmem_cache
*cachep
;
1145 struct kmem_list3
*l3
= NULL
;
1146 int node
= cpu_to_node(cpu
);
1147 int memsize
= sizeof(struct kmem_list3
);
1150 case CPU_UP_PREPARE
:
1151 mutex_lock(&cache_chain_mutex
);
1153 * We need to do this right in the beginning since
1154 * alloc_arraycache's are going to use this list.
1155 * kmalloc_node allows us to add the slab to the right
1156 * kmem_list3 and not this cpu's kmem_list3
1159 list_for_each_entry(cachep
, &cache_chain
, next
) {
1161 * Set up the size64 kmemlist for cpu before we can
1162 * begin anything. Make sure some other cpu on this
1163 * node has not already allocated this
1165 if (!cachep
->nodelists
[node
]) {
1166 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1169 kmem_list3_init(l3
);
1170 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1171 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1174 * The l3s don't come and go as CPUs come and
1175 * go. cache_chain_mutex is sufficient
1178 cachep
->nodelists
[node
] = l3
;
1181 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1182 cachep
->nodelists
[node
]->free_limit
=
1183 (1 + nr_cpus_node(node
)) *
1184 cachep
->batchcount
+ cachep
->num
;
1185 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1189 * Now we can go ahead with allocating the shared arrays and
1192 list_for_each_entry(cachep
, &cache_chain
, next
) {
1193 struct array_cache
*nc
;
1194 struct array_cache
*shared
;
1195 struct array_cache
**alien
;
1197 nc
= alloc_arraycache(node
, cachep
->limit
,
1198 cachep
->batchcount
);
1201 shared
= alloc_arraycache(node
,
1202 cachep
->shared
* cachep
->batchcount
,
1207 alien
= alloc_alien_cache(node
, cachep
->limit
);
1210 cachep
->array
[cpu
] = nc
;
1211 l3
= cachep
->nodelists
[node
];
1214 spin_lock_irq(&l3
->list_lock
);
1217 * We are serialised from CPU_DEAD or
1218 * CPU_UP_CANCELLED by the cpucontrol lock
1220 l3
->shared
= shared
;
1229 spin_unlock_irq(&l3
->list_lock
);
1231 free_alien_cache(alien
);
1233 mutex_unlock(&cache_chain_mutex
);
1236 start_cpu_timer(cpu
);
1238 #ifdef CONFIG_HOTPLUG_CPU
1241 * Even if all the cpus of a node are down, we don't free the
1242 * kmem_list3 of any cache. This to avoid a race between
1243 * cpu_down, and a kmalloc allocation from another cpu for
1244 * memory from the node of the cpu going down. The list3
1245 * structure is usually allocated from kmem_cache_create() and
1246 * gets destroyed at kmem_cache_destroy().
1249 case CPU_UP_CANCELED
:
1250 mutex_lock(&cache_chain_mutex
);
1251 list_for_each_entry(cachep
, &cache_chain
, next
) {
1252 struct array_cache
*nc
;
1253 struct array_cache
*shared
;
1254 struct array_cache
**alien
;
1257 mask
= node_to_cpumask(node
);
1258 /* cpu is dead; no one can alloc from it. */
1259 nc
= cachep
->array
[cpu
];
1260 cachep
->array
[cpu
] = NULL
;
1261 l3
= cachep
->nodelists
[node
];
1264 goto free_array_cache
;
1266 spin_lock_irq(&l3
->list_lock
);
1268 /* Free limit for this kmem_list3 */
1269 l3
->free_limit
-= cachep
->batchcount
;
1271 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1273 if (!cpus_empty(mask
)) {
1274 spin_unlock_irq(&l3
->list_lock
);
1275 goto free_array_cache
;
1278 shared
= l3
->shared
;
1280 free_block(cachep
, l3
->shared
->entry
,
1281 l3
->shared
->avail
, node
);
1288 spin_unlock_irq(&l3
->list_lock
);
1292 drain_alien_cache(cachep
, alien
);
1293 free_alien_cache(alien
);
1299 * In the previous loop, all the objects were freed to
1300 * the respective cache's slabs, now we can go ahead and
1301 * shrink each nodelist to its limit.
1303 list_for_each_entry(cachep
, &cache_chain
, next
) {
1304 l3
= cachep
->nodelists
[node
];
1307 drain_freelist(cachep
, l3
, l3
->free_objects
);
1309 mutex_unlock(&cache_chain_mutex
);
1315 mutex_unlock(&cache_chain_mutex
);
1319 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1320 &cpuup_callback
, NULL
, 0
1324 * swap the static kmem_list3 with kmalloced memory
1326 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1329 struct kmem_list3
*ptr
;
1331 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1334 local_irq_disable();
1335 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1337 * Do not assume that spinlocks can be initialized via memcpy:
1339 spin_lock_init(&ptr
->list_lock
);
1341 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1342 cachep
->nodelists
[nodeid
] = ptr
;
1347 * Initialisation. Called after the page allocator have been initialised and
1348 * before smp_init().
1350 void __init
kmem_cache_init(void)
1353 struct cache_sizes
*sizes
;
1354 struct cache_names
*names
;
1359 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1360 kmem_list3_init(&initkmem_list3
[i
]);
1361 if (i
< MAX_NUMNODES
)
1362 cache_cache
.nodelists
[i
] = NULL
;
1366 * Fragmentation resistance on low memory - only use bigger
1367 * page orders on machines with more than 32MB of memory.
1369 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1370 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1372 /* Bootstrap is tricky, because several objects are allocated
1373 * from caches that do not exist yet:
1374 * 1) initialize the cache_cache cache: it contains the struct
1375 * kmem_cache structures of all caches, except cache_cache itself:
1376 * cache_cache is statically allocated.
1377 * Initially an __init data area is used for the head array and the
1378 * kmem_list3 structures, it's replaced with a kmalloc allocated
1379 * array at the end of the bootstrap.
1380 * 2) Create the first kmalloc cache.
1381 * The struct kmem_cache for the new cache is allocated normally.
1382 * An __init data area is used for the head array.
1383 * 3) Create the remaining kmalloc caches, with minimally sized
1385 * 4) Replace the __init data head arrays for cache_cache and the first
1386 * kmalloc cache with kmalloc allocated arrays.
1387 * 5) Replace the __init data for kmem_list3 for cache_cache and
1388 * the other cache's with kmalloc allocated memory.
1389 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1392 node
= numa_node_id();
1394 /* 1) create the cache_cache */
1395 INIT_LIST_HEAD(&cache_chain
);
1396 list_add(&cache_cache
.next
, &cache_chain
);
1397 cache_cache
.colour_off
= cache_line_size();
1398 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1399 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
];
1401 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1404 for (order
= 0; order
< MAX_ORDER
; order
++) {
1405 cache_estimate(order
, cache_cache
.buffer_size
,
1406 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1407 if (cache_cache
.num
)
1410 BUG_ON(!cache_cache
.num
);
1411 cache_cache
.gfporder
= order
;
1412 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1413 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1414 sizeof(struct slab
), cache_line_size());
1416 /* 2+3) create the kmalloc caches */
1417 sizes
= malloc_sizes
;
1418 names
= cache_names
;
1421 * Initialize the caches that provide memory for the array cache and the
1422 * kmem_list3 structures first. Without this, further allocations will
1426 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1427 sizes
[INDEX_AC
].cs_size
,
1428 ARCH_KMALLOC_MINALIGN
,
1429 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1432 if (INDEX_AC
!= INDEX_L3
) {
1433 sizes
[INDEX_L3
].cs_cachep
=
1434 kmem_cache_create(names
[INDEX_L3
].name
,
1435 sizes
[INDEX_L3
].cs_size
,
1436 ARCH_KMALLOC_MINALIGN
,
1437 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1441 slab_early_init
= 0;
1443 while (sizes
->cs_size
!= ULONG_MAX
) {
1445 * For performance, all the general caches are L1 aligned.
1446 * This should be particularly beneficial on SMP boxes, as it
1447 * eliminates "false sharing".
1448 * Note for systems short on memory removing the alignment will
1449 * allow tighter packing of the smaller caches.
1451 if (!sizes
->cs_cachep
) {
1452 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1454 ARCH_KMALLOC_MINALIGN
,
1455 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1459 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1461 ARCH_KMALLOC_MINALIGN
,
1462 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1468 /* 4) Replace the bootstrap head arrays */
1470 struct array_cache
*ptr
;
1472 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1474 local_irq_disable();
1475 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1476 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1477 sizeof(struct arraycache_init
));
1479 * Do not assume that spinlocks can be initialized via memcpy:
1481 spin_lock_init(&ptr
->lock
);
1483 cache_cache
.array
[smp_processor_id()] = ptr
;
1486 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1488 local_irq_disable();
1489 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1490 != &initarray_generic
.cache
);
1491 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1492 sizeof(struct arraycache_init
));
1494 * Do not assume that spinlocks can be initialized via memcpy:
1496 spin_lock_init(&ptr
->lock
);
1498 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1502 /* 5) Replace the bootstrap kmem_list3's */
1506 /* Replace the static kmem_list3 structures for the boot cpu */
1507 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
], node
);
1509 for_each_online_node(nid
) {
1510 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1511 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1513 if (INDEX_AC
!= INDEX_L3
) {
1514 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1515 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1520 /* 6) resize the head arrays to their final sizes */
1522 struct kmem_cache
*cachep
;
1523 mutex_lock(&cache_chain_mutex
);
1524 list_for_each_entry(cachep
, &cache_chain
, next
)
1525 if (enable_cpucache(cachep
))
1527 mutex_unlock(&cache_chain_mutex
);
1530 /* Annotate slab for lockdep -- annotate the malloc caches */
1535 g_cpucache_up
= FULL
;
1538 * Register a cpu startup notifier callback that initializes
1539 * cpu_cache_get for all new cpus
1541 register_cpu_notifier(&cpucache_notifier
);
1544 * The reap timers are started later, with a module init call: That part
1545 * of the kernel is not yet operational.
1549 static int __init
cpucache_init(void)
1554 * Register the timers that return unneeded pages to the page allocator
1556 for_each_online_cpu(cpu
)
1557 start_cpu_timer(cpu
);
1560 __initcall(cpucache_init
);
1563 * Interface to system's page allocator. No need to hold the cache-lock.
1565 * If we requested dmaable memory, we will get it. Even if we
1566 * did not request dmaable memory, we might get it, but that
1567 * would be relatively rare and ignorable.
1569 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1577 * Nommu uses slab's for process anonymous memory allocations, and thus
1578 * requires __GFP_COMP to properly refcount higher order allocations
1580 flags
|= __GFP_COMP
;
1584 * Under NUMA we want memory on the indicated node. We will handle
1585 * the needed fallback ourselves since we want to serve from our
1586 * per node object lists first for other nodes.
1588 flags
|= cachep
->gfpflags
| GFP_THISNODE
;
1590 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1594 nr_pages
= (1 << cachep
->gfporder
);
1595 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1596 add_zone_page_state(page_zone(page
),
1597 NR_SLAB_RECLAIMABLE
, nr_pages
);
1599 add_zone_page_state(page_zone(page
),
1600 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1601 for (i
= 0; i
< nr_pages
; i
++)
1602 __SetPageSlab(page
+ i
);
1603 return page_address(page
);
1607 * Interface to system's page release.
1609 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1611 unsigned long i
= (1 << cachep
->gfporder
);
1612 struct page
*page
= virt_to_page(addr
);
1613 const unsigned long nr_freed
= i
;
1615 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1616 sub_zone_page_state(page_zone(page
),
1617 NR_SLAB_RECLAIMABLE
, nr_freed
);
1619 sub_zone_page_state(page_zone(page
),
1620 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1622 BUG_ON(!PageSlab(page
));
1623 __ClearPageSlab(page
);
1626 if (current
->reclaim_state
)
1627 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1628 free_pages((unsigned long)addr
, cachep
->gfporder
);
1631 static void kmem_rcu_free(struct rcu_head
*head
)
1633 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1634 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1636 kmem_freepages(cachep
, slab_rcu
->addr
);
1637 if (OFF_SLAB(cachep
))
1638 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1643 #ifdef CONFIG_DEBUG_PAGEALLOC
1644 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1645 unsigned long caller
)
1647 int size
= obj_size(cachep
);
1649 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1651 if (size
< 5 * sizeof(unsigned long))
1654 *addr
++ = 0x12345678;
1656 *addr
++ = smp_processor_id();
1657 size
-= 3 * sizeof(unsigned long);
1659 unsigned long *sptr
= &caller
;
1660 unsigned long svalue
;
1662 while (!kstack_end(sptr
)) {
1664 if (kernel_text_address(svalue
)) {
1666 size
-= sizeof(unsigned long);
1667 if (size
<= sizeof(unsigned long))
1673 *addr
++ = 0x87654321;
1677 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1679 int size
= obj_size(cachep
);
1680 addr
= &((char *)addr
)[obj_offset(cachep
)];
1682 memset(addr
, val
, size
);
1683 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1686 static void dump_line(char *data
, int offset
, int limit
)
1689 unsigned char error
= 0;
1692 printk(KERN_ERR
"%03x:", offset
);
1693 for (i
= 0; i
< limit
; i
++) {
1694 if (data
[offset
+ i
] != POISON_FREE
) {
1695 error
= data
[offset
+ i
];
1698 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1702 if (bad_count
== 1) {
1703 error
^= POISON_FREE
;
1704 if (!(error
& (error
- 1))) {
1705 printk(KERN_ERR
"Single bit error detected. Probably "
1708 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1711 printk(KERN_ERR
"Run a memory test tool.\n");
1720 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1725 if (cachep
->flags
& SLAB_RED_ZONE
) {
1726 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1727 *dbg_redzone1(cachep
, objp
),
1728 *dbg_redzone2(cachep
, objp
));
1731 if (cachep
->flags
& SLAB_STORE_USER
) {
1732 printk(KERN_ERR
"Last user: [<%p>]",
1733 *dbg_userword(cachep
, objp
));
1734 print_symbol("(%s)",
1735 (unsigned long)*dbg_userword(cachep
, objp
));
1738 realobj
= (char *)objp
+ obj_offset(cachep
);
1739 size
= obj_size(cachep
);
1740 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1743 if (i
+ limit
> size
)
1745 dump_line(realobj
, i
, limit
);
1749 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1755 realobj
= (char *)objp
+ obj_offset(cachep
);
1756 size
= obj_size(cachep
);
1758 for (i
= 0; i
< size
; i
++) {
1759 char exp
= POISON_FREE
;
1762 if (realobj
[i
] != exp
) {
1768 "Slab corruption: start=%p, len=%d\n",
1770 print_objinfo(cachep
, objp
, 0);
1772 /* Hexdump the affected line */
1775 if (i
+ limit
> size
)
1777 dump_line(realobj
, i
, limit
);
1780 /* Limit to 5 lines */
1786 /* Print some data about the neighboring objects, if they
1789 struct slab
*slabp
= virt_to_slab(objp
);
1792 objnr
= obj_to_index(cachep
, slabp
, objp
);
1794 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1795 realobj
= (char *)objp
+ obj_offset(cachep
);
1796 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1798 print_objinfo(cachep
, objp
, 2);
1800 if (objnr
+ 1 < cachep
->num
) {
1801 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1802 realobj
= (char *)objp
+ obj_offset(cachep
);
1803 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1805 print_objinfo(cachep
, objp
, 2);
1813 * slab_destroy_objs - destroy a slab and its objects
1814 * @cachep: cache pointer being destroyed
1815 * @slabp: slab pointer being destroyed
1817 * Call the registered destructor for each object in a slab that is being
1820 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1823 for (i
= 0; i
< cachep
->num
; i
++) {
1824 void *objp
= index_to_obj(cachep
, slabp
, i
);
1826 if (cachep
->flags
& SLAB_POISON
) {
1827 #ifdef CONFIG_DEBUG_PAGEALLOC
1828 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1830 kernel_map_pages(virt_to_page(objp
),
1831 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1833 check_poison_obj(cachep
, objp
);
1835 check_poison_obj(cachep
, objp
);
1838 if (cachep
->flags
& SLAB_RED_ZONE
) {
1839 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1840 slab_error(cachep
, "start of a freed object "
1842 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1843 slab_error(cachep
, "end of a freed object "
1846 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1847 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1851 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1855 for (i
= 0; i
< cachep
->num
; i
++) {
1856 void *objp
= index_to_obj(cachep
, slabp
, i
);
1857 (cachep
->dtor
) (objp
, cachep
, 0);
1864 * slab_destroy - destroy and release all objects in a slab
1865 * @cachep: cache pointer being destroyed
1866 * @slabp: slab pointer being destroyed
1868 * Destroy all the objs in a slab, and release the mem back to the system.
1869 * Before calling the slab must have been unlinked from the cache. The
1870 * cache-lock is not held/needed.
1872 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1874 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1876 slab_destroy_objs(cachep
, slabp
);
1877 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1878 struct slab_rcu
*slab_rcu
;
1880 slab_rcu
= (struct slab_rcu
*)slabp
;
1881 slab_rcu
->cachep
= cachep
;
1882 slab_rcu
->addr
= addr
;
1883 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1885 kmem_freepages(cachep
, addr
);
1886 if (OFF_SLAB(cachep
))
1887 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1892 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1893 * size of kmem_list3.
1895 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1899 for_each_online_node(node
) {
1900 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1901 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1903 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1907 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1910 struct kmem_list3
*l3
;
1912 for_each_online_cpu(i
)
1913 kfree(cachep
->array
[i
]);
1915 /* NUMA: free the list3 structures */
1916 for_each_online_node(i
) {
1917 l3
= cachep
->nodelists
[i
];
1920 free_alien_cache(l3
->alien
);
1924 kmem_cache_free(&cache_cache
, cachep
);
1929 * calculate_slab_order - calculate size (page order) of slabs
1930 * @cachep: pointer to the cache that is being created
1931 * @size: size of objects to be created in this cache.
1932 * @align: required alignment for the objects.
1933 * @flags: slab allocation flags
1935 * Also calculates the number of objects per slab.
1937 * This could be made much more intelligent. For now, try to avoid using
1938 * high order pages for slabs. When the gfp() functions are more friendly
1939 * towards high-order requests, this should be changed.
1941 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1942 size_t size
, size_t align
, unsigned long flags
)
1944 unsigned long offslab_limit
;
1945 size_t left_over
= 0;
1948 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1952 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1956 if (flags
& CFLGS_OFF_SLAB
) {
1958 * Max number of objs-per-slab for caches which
1959 * use off-slab slabs. Needed to avoid a possible
1960 * looping condition in cache_grow().
1962 offslab_limit
= size
- sizeof(struct slab
);
1963 offslab_limit
/= sizeof(kmem_bufctl_t
);
1965 if (num
> offslab_limit
)
1969 /* Found something acceptable - save it away */
1971 cachep
->gfporder
= gfporder
;
1972 left_over
= remainder
;
1975 * A VFS-reclaimable slab tends to have most allocations
1976 * as GFP_NOFS and we really don't want to have to be allocating
1977 * higher-order pages when we are unable to shrink dcache.
1979 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1983 * Large number of objects is good, but very large slabs are
1984 * currently bad for the gfp()s.
1986 if (gfporder
>= slab_break_gfp_order
)
1990 * Acceptable internal fragmentation?
1992 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1998 static int setup_cpu_cache(struct kmem_cache
*cachep
)
2000 if (g_cpucache_up
== FULL
)
2001 return enable_cpucache(cachep
);
2003 if (g_cpucache_up
== NONE
) {
2005 * Note: the first kmem_cache_create must create the cache
2006 * that's used by kmalloc(24), otherwise the creation of
2007 * further caches will BUG().
2009 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2012 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2013 * the first cache, then we need to set up all its list3s,
2014 * otherwise the creation of further caches will BUG().
2016 set_up_list3s(cachep
, SIZE_AC
);
2017 if (INDEX_AC
== INDEX_L3
)
2018 g_cpucache_up
= PARTIAL_L3
;
2020 g_cpucache_up
= PARTIAL_AC
;
2022 cachep
->array
[smp_processor_id()] =
2023 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2025 if (g_cpucache_up
== PARTIAL_AC
) {
2026 set_up_list3s(cachep
, SIZE_L3
);
2027 g_cpucache_up
= PARTIAL_L3
;
2030 for_each_online_node(node
) {
2031 cachep
->nodelists
[node
] =
2032 kmalloc_node(sizeof(struct kmem_list3
),
2034 BUG_ON(!cachep
->nodelists
[node
]);
2035 kmem_list3_init(cachep
->nodelists
[node
]);
2039 cachep
->nodelists
[numa_node_id()]->next_reap
=
2040 jiffies
+ REAPTIMEOUT_LIST3
+
2041 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2043 cpu_cache_get(cachep
)->avail
= 0;
2044 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2045 cpu_cache_get(cachep
)->batchcount
= 1;
2046 cpu_cache_get(cachep
)->touched
= 0;
2047 cachep
->batchcount
= 1;
2048 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2053 * kmem_cache_create - Create a cache.
2054 * @name: A string which is used in /proc/slabinfo to identify this cache.
2055 * @size: The size of objects to be created in this cache.
2056 * @align: The required alignment for the objects.
2057 * @flags: SLAB flags
2058 * @ctor: A constructor for the objects.
2059 * @dtor: A destructor for the objects.
2061 * Returns a ptr to the cache on success, NULL on failure.
2062 * Cannot be called within a int, but can be interrupted.
2063 * The @ctor is run when new pages are allocated by the cache
2064 * and the @dtor is run before the pages are handed back.
2066 * @name must be valid until the cache is destroyed. This implies that
2067 * the module calling this has to destroy the cache before getting unloaded.
2071 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2072 * to catch references to uninitialised memory.
2074 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2075 * for buffer overruns.
2077 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2078 * cacheline. This can be beneficial if you're counting cycles as closely
2082 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2083 unsigned long flags
,
2084 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
2085 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
2087 size_t left_over
, slab_size
, ralign
;
2088 struct kmem_cache
*cachep
= NULL
, *pc
;
2091 * Sanity checks... these are all serious usage bugs.
2093 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2094 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
2095 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2101 * Prevent CPUs from coming and going.
2102 * lock_cpu_hotplug() nests outside cache_chain_mutex
2106 mutex_lock(&cache_chain_mutex
);
2108 list_for_each_entry(pc
, &cache_chain
, next
) {
2109 mm_segment_t old_fs
= get_fs();
2114 * This happens when the module gets unloaded and doesn't
2115 * destroy its slab cache and no-one else reuses the vmalloc
2116 * area of the module. Print a warning.
2119 res
= __get_user(tmp
, pc
->name
);
2122 printk("SLAB: cache with size %d has lost its name\n",
2127 if (!strcmp(pc
->name
, name
)) {
2128 printk("kmem_cache_create: duplicate cache %s\n", name
);
2135 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2136 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
2137 /* No constructor, but inital state check requested */
2138 printk(KERN_ERR
"%s: No con, but init state check "
2139 "requested - %s\n", __FUNCTION__
, name
);
2140 flags
&= ~SLAB_DEBUG_INITIAL
;
2144 * Enable redzoning and last user accounting, except for caches with
2145 * large objects, if the increased size would increase the object size
2146 * above the next power of two: caches with object sizes just above a
2147 * power of two have a significant amount of internal fragmentation.
2149 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2150 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2151 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2152 flags
|= SLAB_POISON
;
2154 if (flags
& SLAB_DESTROY_BY_RCU
)
2155 BUG_ON(flags
& SLAB_POISON
);
2157 if (flags
& SLAB_DESTROY_BY_RCU
)
2161 * Always checks flags, a caller might be expecting debug support which
2164 BUG_ON(flags
& ~CREATE_MASK
);
2167 * Check that size is in terms of words. This is needed to avoid
2168 * unaligned accesses for some archs when redzoning is used, and makes
2169 * sure any on-slab bufctl's are also correctly aligned.
2171 if (size
& (BYTES_PER_WORD
- 1)) {
2172 size
+= (BYTES_PER_WORD
- 1);
2173 size
&= ~(BYTES_PER_WORD
- 1);
2176 /* calculate the final buffer alignment: */
2178 /* 1) arch recommendation: can be overridden for debug */
2179 if (flags
& SLAB_HWCACHE_ALIGN
) {
2181 * Default alignment: as specified by the arch code. Except if
2182 * an object is really small, then squeeze multiple objects into
2185 ralign
= cache_line_size();
2186 while (size
<= ralign
/ 2)
2189 ralign
= BYTES_PER_WORD
;
2193 * Redzoning and user store require word alignment. Note this will be
2194 * overridden by architecture or caller mandated alignment if either
2195 * is greater than BYTES_PER_WORD.
2197 if (flags
& SLAB_RED_ZONE
|| flags
& SLAB_STORE_USER
)
2198 ralign
= BYTES_PER_WORD
;
2200 /* 2) arch mandated alignment: disables debug if necessary */
2201 if (ralign
< ARCH_SLAB_MINALIGN
) {
2202 ralign
= ARCH_SLAB_MINALIGN
;
2203 if (ralign
> BYTES_PER_WORD
)
2204 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2206 /* 3) caller mandated alignment: disables debug if necessary */
2207 if (ralign
< align
) {
2209 if (ralign
> BYTES_PER_WORD
)
2210 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2217 /* Get cache's description obj. */
2218 cachep
= kmem_cache_zalloc(&cache_cache
, SLAB_KERNEL
);
2223 cachep
->obj_size
= size
;
2226 * Both debugging options require word-alignment which is calculated
2229 if (flags
& SLAB_RED_ZONE
) {
2230 /* add space for red zone words */
2231 cachep
->obj_offset
+= BYTES_PER_WORD
;
2232 size
+= 2 * BYTES_PER_WORD
;
2234 if (flags
& SLAB_STORE_USER
) {
2235 /* user store requires one word storage behind the end of
2238 size
+= BYTES_PER_WORD
;
2240 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2241 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2242 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2243 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2250 * Determine if the slab management is 'on' or 'off' slab.
2251 * (bootstrapping cannot cope with offslab caches so don't do
2254 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2256 * Size is large, assume best to place the slab management obj
2257 * off-slab (should allow better packing of objs).
2259 flags
|= CFLGS_OFF_SLAB
;
2261 size
= ALIGN(size
, align
);
2263 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2266 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2267 kmem_cache_free(&cache_cache
, cachep
);
2271 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2272 + sizeof(struct slab
), align
);
2275 * If the slab has been placed off-slab, and we have enough space then
2276 * move it on-slab. This is at the expense of any extra colouring.
2278 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2279 flags
&= ~CFLGS_OFF_SLAB
;
2280 left_over
-= slab_size
;
2283 if (flags
& CFLGS_OFF_SLAB
) {
2284 /* really off slab. No need for manual alignment */
2286 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2289 cachep
->colour_off
= cache_line_size();
2290 /* Offset must be a multiple of the alignment. */
2291 if (cachep
->colour_off
< align
)
2292 cachep
->colour_off
= align
;
2293 cachep
->colour
= left_over
/ cachep
->colour_off
;
2294 cachep
->slab_size
= slab_size
;
2295 cachep
->flags
= flags
;
2296 cachep
->gfpflags
= 0;
2297 if (flags
& SLAB_CACHE_DMA
)
2298 cachep
->gfpflags
|= GFP_DMA
;
2299 cachep
->buffer_size
= size
;
2301 if (flags
& CFLGS_OFF_SLAB
) {
2302 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2304 * This is a possibility for one of the malloc_sizes caches.
2305 * But since we go off slab only for object size greater than
2306 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2307 * this should not happen at all.
2308 * But leave a BUG_ON for some lucky dude.
2310 BUG_ON(!cachep
->slabp_cache
);
2312 cachep
->ctor
= ctor
;
2313 cachep
->dtor
= dtor
;
2314 cachep
->name
= name
;
2316 if (setup_cpu_cache(cachep
)) {
2317 __kmem_cache_destroy(cachep
);
2322 /* cache setup completed, link it into the list */
2323 list_add(&cachep
->next
, &cache_chain
);
2325 if (!cachep
&& (flags
& SLAB_PANIC
))
2326 panic("kmem_cache_create(): failed to create slab `%s'\n",
2328 mutex_unlock(&cache_chain_mutex
);
2329 unlock_cpu_hotplug();
2332 EXPORT_SYMBOL(kmem_cache_create
);
2335 static void check_irq_off(void)
2337 BUG_ON(!irqs_disabled());
2340 static void check_irq_on(void)
2342 BUG_ON(irqs_disabled());
2345 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2349 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2353 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2357 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2362 #define check_irq_off() do { } while(0)
2363 #define check_irq_on() do { } while(0)
2364 #define check_spinlock_acquired(x) do { } while(0)
2365 #define check_spinlock_acquired_node(x, y) do { } while(0)
2368 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2369 struct array_cache
*ac
,
2370 int force
, int node
);
2372 static void do_drain(void *arg
)
2374 struct kmem_cache
*cachep
= arg
;
2375 struct array_cache
*ac
;
2376 int node
= numa_node_id();
2379 ac
= cpu_cache_get(cachep
);
2380 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2381 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2382 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2386 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2388 struct kmem_list3
*l3
;
2391 on_each_cpu(do_drain
, cachep
, 1, 1);
2393 for_each_online_node(node
) {
2394 l3
= cachep
->nodelists
[node
];
2395 if (l3
&& l3
->alien
)
2396 drain_alien_cache(cachep
, l3
->alien
);
2399 for_each_online_node(node
) {
2400 l3
= cachep
->nodelists
[node
];
2402 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2407 * Remove slabs from the list of free slabs.
2408 * Specify the number of slabs to drain in tofree.
2410 * Returns the actual number of slabs released.
2412 static int drain_freelist(struct kmem_cache
*cache
,
2413 struct kmem_list3
*l3
, int tofree
)
2415 struct list_head
*p
;
2420 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2422 spin_lock_irq(&l3
->list_lock
);
2423 p
= l3
->slabs_free
.prev
;
2424 if (p
== &l3
->slabs_free
) {
2425 spin_unlock_irq(&l3
->list_lock
);
2429 slabp
= list_entry(p
, struct slab
, list
);
2431 BUG_ON(slabp
->inuse
);
2433 list_del(&slabp
->list
);
2435 * Safe to drop the lock. The slab is no longer linked
2438 l3
->free_objects
-= cache
->num
;
2439 spin_unlock_irq(&l3
->list_lock
);
2440 slab_destroy(cache
, slabp
);
2447 static int __cache_shrink(struct kmem_cache
*cachep
)
2450 struct kmem_list3
*l3
;
2452 drain_cpu_caches(cachep
);
2455 for_each_online_node(i
) {
2456 l3
= cachep
->nodelists
[i
];
2460 drain_freelist(cachep
, l3
, l3
->free_objects
);
2462 ret
+= !list_empty(&l3
->slabs_full
) ||
2463 !list_empty(&l3
->slabs_partial
);
2465 return (ret
? 1 : 0);
2469 * kmem_cache_shrink - Shrink a cache.
2470 * @cachep: The cache to shrink.
2472 * Releases as many slabs as possible for a cache.
2473 * To help debugging, a zero exit status indicates all slabs were released.
2475 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2477 BUG_ON(!cachep
|| in_interrupt());
2479 return __cache_shrink(cachep
);
2481 EXPORT_SYMBOL(kmem_cache_shrink
);
2484 * kmem_cache_destroy - delete a cache
2485 * @cachep: the cache to destroy
2487 * Remove a struct kmem_cache object from the slab cache.
2489 * It is expected this function will be called by a module when it is
2490 * unloaded. This will remove the cache completely, and avoid a duplicate
2491 * cache being allocated each time a module is loaded and unloaded, if the
2492 * module doesn't have persistent in-kernel storage across loads and unloads.
2494 * The cache must be empty before calling this function.
2496 * The caller must guarantee that noone will allocate memory from the cache
2497 * during the kmem_cache_destroy().
2499 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2501 BUG_ON(!cachep
|| in_interrupt());
2503 /* Don't let CPUs to come and go */
2506 /* Find the cache in the chain of caches. */
2507 mutex_lock(&cache_chain_mutex
);
2509 * the chain is never empty, cache_cache is never destroyed
2511 list_del(&cachep
->next
);
2512 mutex_unlock(&cache_chain_mutex
);
2514 if (__cache_shrink(cachep
)) {
2515 slab_error(cachep
, "Can't free all objects");
2516 mutex_lock(&cache_chain_mutex
);
2517 list_add(&cachep
->next
, &cache_chain
);
2518 mutex_unlock(&cache_chain_mutex
);
2519 unlock_cpu_hotplug();
2523 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2526 __kmem_cache_destroy(cachep
);
2527 unlock_cpu_hotplug();
2529 EXPORT_SYMBOL(kmem_cache_destroy
);
2532 * Get the memory for a slab management obj.
2533 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2534 * always come from malloc_sizes caches. The slab descriptor cannot
2535 * come from the same cache which is getting created because,
2536 * when we are searching for an appropriate cache for these
2537 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2538 * If we are creating a malloc_sizes cache here it would not be visible to
2539 * kmem_find_general_cachep till the initialization is complete.
2540 * Hence we cannot have slabp_cache same as the original cache.
2542 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2543 int colour_off
, gfp_t local_flags
,
2548 if (OFF_SLAB(cachep
)) {
2549 /* Slab management obj is off-slab. */
2550 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2551 local_flags
, nodeid
);
2555 slabp
= objp
+ colour_off
;
2556 colour_off
+= cachep
->slab_size
;
2559 slabp
->colouroff
= colour_off
;
2560 slabp
->s_mem
= objp
+ colour_off
;
2561 slabp
->nodeid
= nodeid
;
2565 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2567 return (kmem_bufctl_t
*) (slabp
+ 1);
2570 static void cache_init_objs(struct kmem_cache
*cachep
,
2571 struct slab
*slabp
, unsigned long ctor_flags
)
2575 for (i
= 0; i
< cachep
->num
; i
++) {
2576 void *objp
= index_to_obj(cachep
, slabp
, i
);
2578 /* need to poison the objs? */
2579 if (cachep
->flags
& SLAB_POISON
)
2580 poison_obj(cachep
, objp
, POISON_FREE
);
2581 if (cachep
->flags
& SLAB_STORE_USER
)
2582 *dbg_userword(cachep
, objp
) = NULL
;
2584 if (cachep
->flags
& SLAB_RED_ZONE
) {
2585 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2586 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2589 * Constructors are not allowed to allocate memory from the same
2590 * cache which they are a constructor for. Otherwise, deadlock.
2591 * They must also be threaded.
2593 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2594 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2597 if (cachep
->flags
& SLAB_RED_ZONE
) {
2598 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2599 slab_error(cachep
, "constructor overwrote the"
2600 " end of an object");
2601 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2602 slab_error(cachep
, "constructor overwrote the"
2603 " start of an object");
2605 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2606 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2607 kernel_map_pages(virt_to_page(objp
),
2608 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2611 cachep
->ctor(objp
, cachep
, ctor_flags
);
2613 slab_bufctl(slabp
)[i
] = i
+ 1;
2615 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2619 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2621 if (flags
& SLAB_DMA
)
2622 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2624 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2627 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2630 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2634 next
= slab_bufctl(slabp
)[slabp
->free
];
2636 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2637 WARN_ON(slabp
->nodeid
!= nodeid
);
2644 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2645 void *objp
, int nodeid
)
2647 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2650 /* Verify that the slab belongs to the intended node */
2651 WARN_ON(slabp
->nodeid
!= nodeid
);
2653 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2654 printk(KERN_ERR
"slab: double free detected in cache "
2655 "'%s', objp %p\n", cachep
->name
, objp
);
2659 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2660 slabp
->free
= objnr
;
2665 * Map pages beginning at addr to the given cache and slab. This is required
2666 * for the slab allocator to be able to lookup the cache and slab of a
2667 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2669 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2675 page
= virt_to_page(addr
);
2678 if (likely(!PageCompound(page
)))
2679 nr_pages
<<= cache
->gfporder
;
2682 page_set_cache(page
, cache
);
2683 page_set_slab(page
, slab
);
2685 } while (--nr_pages
);
2689 * Grow (by 1) the number of slabs within a cache. This is called by
2690 * kmem_cache_alloc() when there are no active objs left in a cache.
2692 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2698 unsigned long ctor_flags
;
2699 struct kmem_list3
*l3
;
2702 * Be lazy and only check for valid flags here, keeping it out of the
2703 * critical path in kmem_cache_alloc().
2705 BUG_ON(flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
));
2706 if (flags
& SLAB_NO_GROW
)
2709 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2710 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2711 if (!(local_flags
& __GFP_WAIT
))
2713 * Not allowed to sleep. Need to tell a constructor about
2714 * this - it might need to know...
2716 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2718 /* Take the l3 list lock to change the colour_next on this node */
2720 l3
= cachep
->nodelists
[nodeid
];
2721 spin_lock(&l3
->list_lock
);
2723 /* Get colour for the slab, and cal the next value. */
2724 offset
= l3
->colour_next
;
2726 if (l3
->colour_next
>= cachep
->colour
)
2727 l3
->colour_next
= 0;
2728 spin_unlock(&l3
->list_lock
);
2730 offset
*= cachep
->colour_off
;
2732 if (local_flags
& __GFP_WAIT
)
2736 * The test for missing atomic flag is performed here, rather than
2737 * the more obvious place, simply to reduce the critical path length
2738 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2739 * will eventually be caught here (where it matters).
2741 kmem_flagcheck(cachep
, flags
);
2744 * Get mem for the objs. Attempt to allocate a physical page from
2747 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2751 /* Get slab management. */
2752 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
, nodeid
);
2756 slabp
->nodeid
= nodeid
;
2757 slab_map_pages(cachep
, slabp
, objp
);
2759 cache_init_objs(cachep
, slabp
, ctor_flags
);
2761 if (local_flags
& __GFP_WAIT
)
2762 local_irq_disable();
2764 spin_lock(&l3
->list_lock
);
2766 /* Make slab active. */
2767 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2768 STATS_INC_GROWN(cachep
);
2769 l3
->free_objects
+= cachep
->num
;
2770 spin_unlock(&l3
->list_lock
);
2773 kmem_freepages(cachep
, objp
);
2775 if (local_flags
& __GFP_WAIT
)
2776 local_irq_disable();
2783 * Perform extra freeing checks:
2784 * - detect bad pointers.
2785 * - POISON/RED_ZONE checking
2786 * - destructor calls, for caches with POISON+dtor
2788 static void kfree_debugcheck(const void *objp
)
2792 if (!virt_addr_valid(objp
)) {
2793 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2794 (unsigned long)objp
);
2797 page
= virt_to_page(objp
);
2798 if (!PageSlab(page
)) {
2799 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2800 (unsigned long)objp
);
2805 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2807 unsigned long redzone1
, redzone2
;
2809 redzone1
= *dbg_redzone1(cache
, obj
);
2810 redzone2
= *dbg_redzone2(cache
, obj
);
2815 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2818 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2819 slab_error(cache
, "double free detected");
2821 slab_error(cache
, "memory outside object was overwritten");
2823 printk(KERN_ERR
"%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2824 obj
, redzone1
, redzone2
);
2827 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2834 objp
-= obj_offset(cachep
);
2835 kfree_debugcheck(objp
);
2836 page
= virt_to_page(objp
);
2838 slabp
= page_get_slab(page
);
2840 if (cachep
->flags
& SLAB_RED_ZONE
) {
2841 verify_redzone_free(cachep
, objp
);
2842 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2843 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2845 if (cachep
->flags
& SLAB_STORE_USER
)
2846 *dbg_userword(cachep
, objp
) = caller
;
2848 objnr
= obj_to_index(cachep
, slabp
, objp
);
2850 BUG_ON(objnr
>= cachep
->num
);
2851 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2853 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2855 * Need to call the slab's constructor so the caller can
2856 * perform a verify of its state (debugging). Called without
2857 * the cache-lock held.
2859 cachep
->ctor(objp
+ obj_offset(cachep
),
2860 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2862 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2863 /* we want to cache poison the object,
2864 * call the destruction callback
2866 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2868 #ifdef CONFIG_DEBUG_SLAB_LEAK
2869 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2871 if (cachep
->flags
& SLAB_POISON
) {
2872 #ifdef CONFIG_DEBUG_PAGEALLOC
2873 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2874 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2875 kernel_map_pages(virt_to_page(objp
),
2876 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2878 poison_obj(cachep
, objp
, POISON_FREE
);
2881 poison_obj(cachep
, objp
, POISON_FREE
);
2887 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2892 /* Check slab's freelist to see if this obj is there. */
2893 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2895 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2898 if (entries
!= cachep
->num
- slabp
->inuse
) {
2900 printk(KERN_ERR
"slab: Internal list corruption detected in "
2901 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2902 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2904 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2907 printk("\n%03x:", i
);
2908 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2915 #define kfree_debugcheck(x) do { } while(0)
2916 #define cache_free_debugcheck(x,objp,z) (objp)
2917 #define check_slabp(x,y) do { } while(0)
2920 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2923 struct kmem_list3
*l3
;
2924 struct array_cache
*ac
;
2927 node
= numa_node_id();
2930 ac
= cpu_cache_get(cachep
);
2932 batchcount
= ac
->batchcount
;
2933 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2935 * If there was little recent activity on this cache, then
2936 * perform only a partial refill. Otherwise we could generate
2939 batchcount
= BATCHREFILL_LIMIT
;
2941 l3
= cachep
->nodelists
[node
];
2943 BUG_ON(ac
->avail
> 0 || !l3
);
2944 spin_lock(&l3
->list_lock
);
2946 /* See if we can refill from the shared array */
2947 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2950 while (batchcount
> 0) {
2951 struct list_head
*entry
;
2953 /* Get slab alloc is to come from. */
2954 entry
= l3
->slabs_partial
.next
;
2955 if (entry
== &l3
->slabs_partial
) {
2956 l3
->free_touched
= 1;
2957 entry
= l3
->slabs_free
.next
;
2958 if (entry
== &l3
->slabs_free
)
2962 slabp
= list_entry(entry
, struct slab
, list
);
2963 check_slabp(cachep
, slabp
);
2964 check_spinlock_acquired(cachep
);
2965 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2966 STATS_INC_ALLOCED(cachep
);
2967 STATS_INC_ACTIVE(cachep
);
2968 STATS_SET_HIGH(cachep
);
2970 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2973 check_slabp(cachep
, slabp
);
2975 /* move slabp to correct slabp list: */
2976 list_del(&slabp
->list
);
2977 if (slabp
->free
== BUFCTL_END
)
2978 list_add(&slabp
->list
, &l3
->slabs_full
);
2980 list_add(&slabp
->list
, &l3
->slabs_partial
);
2984 l3
->free_objects
-= ac
->avail
;
2986 spin_unlock(&l3
->list_lock
);
2988 if (unlikely(!ac
->avail
)) {
2990 x
= cache_grow(cachep
, flags
, node
);
2992 /* cache_grow can reenable interrupts, then ac could change. */
2993 ac
= cpu_cache_get(cachep
);
2994 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2997 if (!ac
->avail
) /* objects refilled by interrupt? */
3001 return ac
->entry
[--ac
->avail
];
3004 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3007 might_sleep_if(flags
& __GFP_WAIT
);
3009 kmem_flagcheck(cachep
, flags
);
3014 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3015 gfp_t flags
, void *objp
, void *caller
)
3019 if (cachep
->flags
& SLAB_POISON
) {
3020 #ifdef CONFIG_DEBUG_PAGEALLOC
3021 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3022 kernel_map_pages(virt_to_page(objp
),
3023 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3025 check_poison_obj(cachep
, objp
);
3027 check_poison_obj(cachep
, objp
);
3029 poison_obj(cachep
, objp
, POISON_INUSE
);
3031 if (cachep
->flags
& SLAB_STORE_USER
)
3032 *dbg_userword(cachep
, objp
) = caller
;
3034 if (cachep
->flags
& SLAB_RED_ZONE
) {
3035 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3036 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3037 slab_error(cachep
, "double free, or memory outside"
3038 " object was overwritten");
3040 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3041 objp
, *dbg_redzone1(cachep
, objp
),
3042 *dbg_redzone2(cachep
, objp
));
3044 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3045 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3047 #ifdef CONFIG_DEBUG_SLAB_LEAK
3052 slabp
= page_get_slab(virt_to_page(objp
));
3053 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3054 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3057 objp
+= obj_offset(cachep
);
3058 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
3059 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
3061 if (!(flags
& __GFP_WAIT
))
3062 ctor_flags
|= SLAB_CTOR_ATOMIC
;
3064 cachep
->ctor(objp
, cachep
, ctor_flags
);
3069 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3072 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3075 struct array_cache
*ac
;
3078 ac
= cpu_cache_get(cachep
);
3079 if (likely(ac
->avail
)) {
3080 STATS_INC_ALLOCHIT(cachep
);
3082 objp
= ac
->entry
[--ac
->avail
];
3084 STATS_INC_ALLOCMISS(cachep
);
3085 objp
= cache_alloc_refill(cachep
, flags
);
3090 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
3091 gfp_t flags
, void *caller
)
3093 unsigned long save_flags
;
3096 cache_alloc_debugcheck_before(cachep
, flags
);
3098 local_irq_save(save_flags
);
3100 if (unlikely(NUMA_BUILD
&&
3101 current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
)))
3102 objp
= alternate_node_alloc(cachep
, flags
);
3105 objp
= ____cache_alloc(cachep
, flags
);
3107 * We may just have run out of memory on the local node.
3108 * __cache_alloc_node() knows how to locate memory on other nodes
3110 if (NUMA_BUILD
&& !objp
)
3111 objp
= __cache_alloc_node(cachep
, flags
, numa_node_id());
3112 local_irq_restore(save_flags
);
3113 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
3121 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3123 * If we are in_interrupt, then process context, including cpusets and
3124 * mempolicy, may not apply and should not be used for allocation policy.
3126 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3128 int nid_alloc
, nid_here
;
3130 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3132 nid_alloc
= nid_here
= numa_node_id();
3133 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3134 nid_alloc
= cpuset_mem_spread_node();
3135 else if (current
->mempolicy
)
3136 nid_alloc
= slab_node(current
->mempolicy
);
3137 if (nid_alloc
!= nid_here
)
3138 return __cache_alloc_node(cachep
, flags
, nid_alloc
);
3143 * Fallback function if there was no memory available and no objects on a
3144 * certain node and we are allowed to fall back. We mimick the behavior of
3145 * the page allocator. We fall back according to a zonelist determined by
3146 * the policy layer while obeying cpuset constraints.
3148 void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3150 struct zonelist
*zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
3151 ->node_zonelists
[gfp_zone(flags
)];
3155 for (z
= zonelist
->zones
; *z
&& !obj
; z
++) {
3156 int nid
= zone_to_nid(*z
);
3158 if (zone_idx(*z
) <= ZONE_NORMAL
&&
3159 cpuset_zone_allowed(*z
, flags
) &&
3160 cache
->nodelists
[nid
])
3161 obj
= __cache_alloc_node(cache
,
3162 flags
| __GFP_THISNODE
, nid
);
3168 * A interface to enable slab creation on nodeid
3170 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3173 struct list_head
*entry
;
3175 struct kmem_list3
*l3
;
3179 l3
= cachep
->nodelists
[nodeid
];
3184 spin_lock(&l3
->list_lock
);
3185 entry
= l3
->slabs_partial
.next
;
3186 if (entry
== &l3
->slabs_partial
) {
3187 l3
->free_touched
= 1;
3188 entry
= l3
->slabs_free
.next
;
3189 if (entry
== &l3
->slabs_free
)
3193 slabp
= list_entry(entry
, struct slab
, list
);
3194 check_spinlock_acquired_node(cachep
, nodeid
);
3195 check_slabp(cachep
, slabp
);
3197 STATS_INC_NODEALLOCS(cachep
);
3198 STATS_INC_ACTIVE(cachep
);
3199 STATS_SET_HIGH(cachep
);
3201 BUG_ON(slabp
->inuse
== cachep
->num
);
3203 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3204 check_slabp(cachep
, slabp
);
3206 /* move slabp to correct slabp list: */
3207 list_del(&slabp
->list
);
3209 if (slabp
->free
== BUFCTL_END
)
3210 list_add(&slabp
->list
, &l3
->slabs_full
);
3212 list_add(&slabp
->list
, &l3
->slabs_partial
);
3214 spin_unlock(&l3
->list_lock
);
3218 spin_unlock(&l3
->list_lock
);
3219 x
= cache_grow(cachep
, flags
, nodeid
);
3223 if (!(flags
& __GFP_THISNODE
))
3224 /* Unable to grow the cache. Fall back to other nodes. */
3225 return fallback_alloc(cachep
, flags
);
3235 * Caller needs to acquire correct kmem_list's list_lock
3237 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3241 struct kmem_list3
*l3
;
3243 for (i
= 0; i
< nr_objects
; i
++) {
3244 void *objp
= objpp
[i
];
3247 slabp
= virt_to_slab(objp
);
3248 l3
= cachep
->nodelists
[node
];
3249 list_del(&slabp
->list
);
3250 check_spinlock_acquired_node(cachep
, node
);
3251 check_slabp(cachep
, slabp
);
3252 slab_put_obj(cachep
, slabp
, objp
, node
);
3253 STATS_DEC_ACTIVE(cachep
);
3255 check_slabp(cachep
, slabp
);
3257 /* fixup slab chains */
3258 if (slabp
->inuse
== 0) {
3259 if (l3
->free_objects
> l3
->free_limit
) {
3260 l3
->free_objects
-= cachep
->num
;
3261 /* No need to drop any previously held
3262 * lock here, even if we have a off-slab slab
3263 * descriptor it is guaranteed to come from
3264 * a different cache, refer to comments before
3267 slab_destroy(cachep
, slabp
);
3269 list_add(&slabp
->list
, &l3
->slabs_free
);
3272 /* Unconditionally move a slab to the end of the
3273 * partial list on free - maximum time for the
3274 * other objects to be freed, too.
3276 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3281 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3284 struct kmem_list3
*l3
;
3285 int node
= numa_node_id();
3287 batchcount
= ac
->batchcount
;
3289 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3292 l3
= cachep
->nodelists
[node
];
3293 spin_lock(&l3
->list_lock
);
3295 struct array_cache
*shared_array
= l3
->shared
;
3296 int max
= shared_array
->limit
- shared_array
->avail
;
3298 if (batchcount
> max
)
3300 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3301 ac
->entry
, sizeof(void *) * batchcount
);
3302 shared_array
->avail
+= batchcount
;
3307 free_block(cachep
, ac
->entry
, batchcount
, node
);
3312 struct list_head
*p
;
3314 p
= l3
->slabs_free
.next
;
3315 while (p
!= &(l3
->slabs_free
)) {
3318 slabp
= list_entry(p
, struct slab
, list
);
3319 BUG_ON(slabp
->inuse
);
3324 STATS_SET_FREEABLE(cachep
, i
);
3327 spin_unlock(&l3
->list_lock
);
3328 ac
->avail
-= batchcount
;
3329 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3333 * Release an obj back to its cache. If the obj has a constructed state, it must
3334 * be in this state _before_ it is released. Called with disabled ints.
3336 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3338 struct array_cache
*ac
= cpu_cache_get(cachep
);
3341 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3343 if (cache_free_alien(cachep
, objp
))
3346 if (likely(ac
->avail
< ac
->limit
)) {
3347 STATS_INC_FREEHIT(cachep
);
3348 ac
->entry
[ac
->avail
++] = objp
;
3351 STATS_INC_FREEMISS(cachep
);
3352 cache_flusharray(cachep
, ac
);
3353 ac
->entry
[ac
->avail
++] = objp
;
3358 * kmem_cache_alloc - Allocate an object
3359 * @cachep: The cache to allocate from.
3360 * @flags: See kmalloc().
3362 * Allocate an object from this cache. The flags are only relevant
3363 * if the cache has no available objects.
3365 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3367 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3369 EXPORT_SYMBOL(kmem_cache_alloc
);
3372 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3373 * @cache: The cache to allocate from.
3374 * @flags: See kmalloc().
3376 * Allocate an object from this cache and set the allocated memory to zero.
3377 * The flags are only relevant if the cache has no available objects.
3379 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3381 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3383 memset(ret
, 0, obj_size(cache
));
3386 EXPORT_SYMBOL(kmem_cache_zalloc
);
3389 * kmem_ptr_validate - check if an untrusted pointer might
3391 * @cachep: the cache we're checking against
3392 * @ptr: pointer to validate
3394 * This verifies that the untrusted pointer looks sane:
3395 * it is _not_ a guarantee that the pointer is actually
3396 * part of the slab cache in question, but it at least
3397 * validates that the pointer can be dereferenced and
3398 * looks half-way sane.
3400 * Currently only used for dentry validation.
3402 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3404 unsigned long addr
= (unsigned long)ptr
;
3405 unsigned long min_addr
= PAGE_OFFSET
;
3406 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3407 unsigned long size
= cachep
->buffer_size
;
3410 if (unlikely(addr
< min_addr
))
3412 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3414 if (unlikely(addr
& align_mask
))
3416 if (unlikely(!kern_addr_valid(addr
)))
3418 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3420 page
= virt_to_page(ptr
);
3421 if (unlikely(!PageSlab(page
)))
3423 if (unlikely(page_get_cache(page
) != cachep
))
3432 * kmem_cache_alloc_node - Allocate an object on the specified node
3433 * @cachep: The cache to allocate from.
3434 * @flags: See kmalloc().
3435 * @nodeid: node number of the target node.
3437 * Identical to kmem_cache_alloc, except that this function is slow
3438 * and can sleep. And it will allocate memory on the given node, which
3439 * can improve the performance for cpu bound structures.
3440 * New and improved: it will now make sure that the object gets
3441 * put on the correct node list so that there is no false sharing.
3443 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3445 unsigned long save_flags
;
3448 cache_alloc_debugcheck_before(cachep
, flags
);
3449 local_irq_save(save_flags
);
3451 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3452 !cachep
->nodelists
[nodeid
])
3453 ptr
= ____cache_alloc(cachep
, flags
);
3455 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3456 local_irq_restore(save_flags
);
3458 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3459 __builtin_return_address(0));
3463 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3465 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3467 struct kmem_cache
*cachep
;
3469 cachep
= kmem_find_general_cachep(size
, flags
);
3470 if (unlikely(cachep
== NULL
))
3472 return kmem_cache_alloc_node(cachep
, flags
, node
);
3474 EXPORT_SYMBOL(__kmalloc_node
);
3478 * __do_kmalloc - allocate memory
3479 * @size: how many bytes of memory are required.
3480 * @flags: the type of memory to allocate (see kmalloc).
3481 * @caller: function caller for debug tracking of the caller
3483 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3486 struct kmem_cache
*cachep
;
3488 /* If you want to save a few bytes .text space: replace
3490 * Then kmalloc uses the uninlined functions instead of the inline
3493 cachep
= __find_general_cachep(size
, flags
);
3494 if (unlikely(cachep
== NULL
))
3496 return __cache_alloc(cachep
, flags
, caller
);
3500 #ifdef CONFIG_DEBUG_SLAB
3501 void *__kmalloc(size_t size
, gfp_t flags
)
3503 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3505 EXPORT_SYMBOL(__kmalloc
);
3507 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3509 return __do_kmalloc(size
, flags
, caller
);
3511 EXPORT_SYMBOL(__kmalloc_track_caller
);
3514 void *__kmalloc(size_t size
, gfp_t flags
)
3516 return __do_kmalloc(size
, flags
, NULL
);
3518 EXPORT_SYMBOL(__kmalloc
);
3522 * kmem_cache_free - Deallocate an object
3523 * @cachep: The cache the allocation was from.
3524 * @objp: The previously allocated object.
3526 * Free an object which was previously allocated from this
3529 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3531 unsigned long flags
;
3533 BUG_ON(virt_to_cache(objp
) != cachep
);
3535 local_irq_save(flags
);
3536 __cache_free(cachep
, objp
);
3537 local_irq_restore(flags
);
3539 EXPORT_SYMBOL(kmem_cache_free
);
3542 * kfree - free previously allocated memory
3543 * @objp: pointer returned by kmalloc.
3545 * If @objp is NULL, no operation is performed.
3547 * Don't free memory not originally allocated by kmalloc()
3548 * or you will run into trouble.
3550 void kfree(const void *objp
)
3552 struct kmem_cache
*c
;
3553 unsigned long flags
;
3555 if (unlikely(!objp
))
3557 local_irq_save(flags
);
3558 kfree_debugcheck(objp
);
3559 c
= virt_to_cache(objp
);
3560 debug_check_no_locks_freed(objp
, obj_size(c
));
3561 __cache_free(c
, (void *)objp
);
3562 local_irq_restore(flags
);
3564 EXPORT_SYMBOL(kfree
);
3566 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3568 return obj_size(cachep
);
3570 EXPORT_SYMBOL(kmem_cache_size
);
3572 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3574 return cachep
->name
;
3576 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3579 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3581 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3584 struct kmem_list3
*l3
;
3585 struct array_cache
*new_shared
;
3586 struct array_cache
**new_alien
;
3588 for_each_online_node(node
) {
3590 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3594 new_shared
= alloc_arraycache(node
,
3595 cachep
->shared
*cachep
->batchcount
,
3598 free_alien_cache(new_alien
);
3602 l3
= cachep
->nodelists
[node
];
3604 struct array_cache
*shared
= l3
->shared
;
3606 spin_lock_irq(&l3
->list_lock
);
3609 free_block(cachep
, shared
->entry
,
3610 shared
->avail
, node
);
3612 l3
->shared
= new_shared
;
3614 l3
->alien
= new_alien
;
3617 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3618 cachep
->batchcount
+ cachep
->num
;
3619 spin_unlock_irq(&l3
->list_lock
);
3621 free_alien_cache(new_alien
);
3624 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3626 free_alien_cache(new_alien
);
3631 kmem_list3_init(l3
);
3632 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3633 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3634 l3
->shared
= new_shared
;
3635 l3
->alien
= new_alien
;
3636 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3637 cachep
->batchcount
+ cachep
->num
;
3638 cachep
->nodelists
[node
] = l3
;
3643 if (!cachep
->next
.next
) {
3644 /* Cache is not active yet. Roll back what we did */
3647 if (cachep
->nodelists
[node
]) {
3648 l3
= cachep
->nodelists
[node
];
3651 free_alien_cache(l3
->alien
);
3653 cachep
->nodelists
[node
] = NULL
;
3661 struct ccupdate_struct
{
3662 struct kmem_cache
*cachep
;
3663 struct array_cache
*new[NR_CPUS
];
3666 static void do_ccupdate_local(void *info
)
3668 struct ccupdate_struct
*new = info
;
3669 struct array_cache
*old
;
3672 old
= cpu_cache_get(new->cachep
);
3674 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3675 new->new[smp_processor_id()] = old
;
3678 /* Always called with the cache_chain_mutex held */
3679 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3680 int batchcount
, int shared
)
3682 struct ccupdate_struct
*new;
3685 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3689 for_each_online_cpu(i
) {
3690 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3693 for (i
--; i
>= 0; i
--)
3699 new->cachep
= cachep
;
3701 on_each_cpu(do_ccupdate_local
, (void *)new, 1, 1);
3704 cachep
->batchcount
= batchcount
;
3705 cachep
->limit
= limit
;
3706 cachep
->shared
= shared
;
3708 for_each_online_cpu(i
) {
3709 struct array_cache
*ccold
= new->new[i
];
3712 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3713 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3714 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3718 return alloc_kmemlist(cachep
);
3721 /* Called with cache_chain_mutex held always */
3722 static int enable_cpucache(struct kmem_cache
*cachep
)
3728 * The head array serves three purposes:
3729 * - create a LIFO ordering, i.e. return objects that are cache-warm
3730 * - reduce the number of spinlock operations.
3731 * - reduce the number of linked list operations on the slab and
3732 * bufctl chains: array operations are cheaper.
3733 * The numbers are guessed, we should auto-tune as described by
3736 if (cachep
->buffer_size
> 131072)
3738 else if (cachep
->buffer_size
> PAGE_SIZE
)
3740 else if (cachep
->buffer_size
> 1024)
3742 else if (cachep
->buffer_size
> 256)
3748 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3749 * allocation behaviour: Most allocs on one cpu, most free operations
3750 * on another cpu. For these cases, an efficient object passing between
3751 * cpus is necessary. This is provided by a shared array. The array
3752 * replaces Bonwick's magazine layer.
3753 * On uniprocessor, it's functionally equivalent (but less efficient)
3754 * to a larger limit. Thus disabled by default.
3758 if (cachep
->buffer_size
<= PAGE_SIZE
)
3764 * With debugging enabled, large batchcount lead to excessively long
3765 * periods with disabled local interrupts. Limit the batchcount
3770 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3772 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3773 cachep
->name
, -err
);
3778 * Drain an array if it contains any elements taking the l3 lock only if
3779 * necessary. Note that the l3 listlock also protects the array_cache
3780 * if drain_array() is used on the shared array.
3782 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3783 struct array_cache
*ac
, int force
, int node
)
3787 if (!ac
|| !ac
->avail
)
3789 if (ac
->touched
&& !force
) {
3792 spin_lock_irq(&l3
->list_lock
);
3794 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3795 if (tofree
> ac
->avail
)
3796 tofree
= (ac
->avail
+ 1) / 2;
3797 free_block(cachep
, ac
->entry
, tofree
, node
);
3798 ac
->avail
-= tofree
;
3799 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3800 sizeof(void *) * ac
->avail
);
3802 spin_unlock_irq(&l3
->list_lock
);
3807 * cache_reap - Reclaim memory from caches.
3808 * @unused: unused parameter
3810 * Called from workqueue/eventd every few seconds.
3812 * - clear the per-cpu caches for this CPU.
3813 * - return freeable pages to the main free memory pool.
3815 * If we cannot acquire the cache chain mutex then just give up - we'll try
3816 * again on the next iteration.
3818 static void cache_reap(void *unused
)
3820 struct kmem_cache
*searchp
;
3821 struct kmem_list3
*l3
;
3822 int node
= numa_node_id();
3824 if (!mutex_trylock(&cache_chain_mutex
)) {
3825 /* Give up. Setup the next iteration. */
3826 schedule_delayed_work(&__get_cpu_var(reap_work
),
3831 list_for_each_entry(searchp
, &cache_chain
, next
) {
3835 * We only take the l3 lock if absolutely necessary and we
3836 * have established with reasonable certainty that
3837 * we can do some work if the lock was obtained.
3839 l3
= searchp
->nodelists
[node
];
3841 reap_alien(searchp
, l3
);
3843 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3846 * These are racy checks but it does not matter
3847 * if we skip one check or scan twice.
3849 if (time_after(l3
->next_reap
, jiffies
))
3852 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3854 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3856 if (l3
->free_touched
)
3857 l3
->free_touched
= 0;
3861 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
3862 5 * searchp
->num
- 1) / (5 * searchp
->num
));
3863 STATS_ADD_REAPED(searchp
, freed
);
3869 mutex_unlock(&cache_chain_mutex
);
3871 refresh_cpu_vm_stats(smp_processor_id());
3872 /* Set up the next iteration */
3873 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3876 #ifdef CONFIG_PROC_FS
3878 static void print_slabinfo_header(struct seq_file
*m
)
3881 * Output format version, so at least we can change it
3882 * without _too_ many complaints.
3885 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3887 seq_puts(m
, "slabinfo - version: 2.1\n");
3889 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3890 "<objperslab> <pagesperslab>");
3891 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3892 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3894 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3895 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3896 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3901 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3904 struct list_head
*p
;
3906 mutex_lock(&cache_chain_mutex
);
3908 print_slabinfo_header(m
);
3909 p
= cache_chain
.next
;
3912 if (p
== &cache_chain
)
3915 return list_entry(p
, struct kmem_cache
, next
);
3918 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3920 struct kmem_cache
*cachep
= p
;
3922 return cachep
->next
.next
== &cache_chain
?
3923 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3926 static void s_stop(struct seq_file
*m
, void *p
)
3928 mutex_unlock(&cache_chain_mutex
);
3931 static int s_show(struct seq_file
*m
, void *p
)
3933 struct kmem_cache
*cachep
= p
;
3935 unsigned long active_objs
;
3936 unsigned long num_objs
;
3937 unsigned long active_slabs
= 0;
3938 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3942 struct kmem_list3
*l3
;
3946 for_each_online_node(node
) {
3947 l3
= cachep
->nodelists
[node
];
3952 spin_lock_irq(&l3
->list_lock
);
3954 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
3955 if (slabp
->inuse
!= cachep
->num
&& !error
)
3956 error
= "slabs_full accounting error";
3957 active_objs
+= cachep
->num
;
3960 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
3961 if (slabp
->inuse
== cachep
->num
&& !error
)
3962 error
= "slabs_partial inuse accounting error";
3963 if (!slabp
->inuse
&& !error
)
3964 error
= "slabs_partial/inuse accounting error";
3965 active_objs
+= slabp
->inuse
;
3968 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
3969 if (slabp
->inuse
&& !error
)
3970 error
= "slabs_free/inuse accounting error";
3973 free_objects
+= l3
->free_objects
;
3975 shared_avail
+= l3
->shared
->avail
;
3977 spin_unlock_irq(&l3
->list_lock
);
3979 num_slabs
+= active_slabs
;
3980 num_objs
= num_slabs
* cachep
->num
;
3981 if (num_objs
- active_objs
!= free_objects
&& !error
)
3982 error
= "free_objects accounting error";
3984 name
= cachep
->name
;
3986 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3988 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3989 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3990 cachep
->num
, (1 << cachep
->gfporder
));
3991 seq_printf(m
, " : tunables %4u %4u %4u",
3992 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3993 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3994 active_slabs
, num_slabs
, shared_avail
);
3997 unsigned long high
= cachep
->high_mark
;
3998 unsigned long allocs
= cachep
->num_allocations
;
3999 unsigned long grown
= cachep
->grown
;
4000 unsigned long reaped
= cachep
->reaped
;
4001 unsigned long errors
= cachep
->errors
;
4002 unsigned long max_freeable
= cachep
->max_freeable
;
4003 unsigned long node_allocs
= cachep
->node_allocs
;
4004 unsigned long node_frees
= cachep
->node_frees
;
4005 unsigned long overflows
= cachep
->node_overflow
;
4007 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4008 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4009 reaped
, errors
, max_freeable
, node_allocs
,
4010 node_frees
, overflows
);
4014 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4015 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4016 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4017 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4019 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4020 allochit
, allocmiss
, freehit
, freemiss
);
4028 * slabinfo_op - iterator that generates /proc/slabinfo
4037 * num-pages-per-slab
4038 * + further values on SMP and with statistics enabled
4041 struct seq_operations slabinfo_op
= {
4048 #define MAX_SLABINFO_WRITE 128
4050 * slabinfo_write - Tuning for the slab allocator
4052 * @buffer: user buffer
4053 * @count: data length
4056 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4057 size_t count
, loff_t
*ppos
)
4059 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4060 int limit
, batchcount
, shared
, res
;
4061 struct kmem_cache
*cachep
;
4063 if (count
> MAX_SLABINFO_WRITE
)
4065 if (copy_from_user(&kbuf
, buffer
, count
))
4067 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4069 tmp
= strchr(kbuf
, ' ');
4074 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4077 /* Find the cache in the chain of caches. */
4078 mutex_lock(&cache_chain_mutex
);
4080 list_for_each_entry(cachep
, &cache_chain
, next
) {
4081 if (!strcmp(cachep
->name
, kbuf
)) {
4082 if (limit
< 1 || batchcount
< 1 ||
4083 batchcount
> limit
|| shared
< 0) {
4086 res
= do_tune_cpucache(cachep
, limit
,
4087 batchcount
, shared
);
4092 mutex_unlock(&cache_chain_mutex
);
4098 #ifdef CONFIG_DEBUG_SLAB_LEAK
4100 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4103 struct list_head
*p
;
4105 mutex_lock(&cache_chain_mutex
);
4106 p
= cache_chain
.next
;
4109 if (p
== &cache_chain
)
4112 return list_entry(p
, struct kmem_cache
, next
);
4115 static inline int add_caller(unsigned long *n
, unsigned long v
)
4125 unsigned long *q
= p
+ 2 * i
;
4139 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4145 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4151 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4152 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4154 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4159 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4161 #ifdef CONFIG_KALLSYMS
4164 unsigned long offset
, size
;
4165 char namebuf
[KSYM_NAME_LEN
+1];
4167 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4170 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4172 seq_printf(m
, " [%s]", modname
);
4176 seq_printf(m
, "%p", (void *)address
);
4179 static int leaks_show(struct seq_file
*m
, void *p
)
4181 struct kmem_cache
*cachep
= p
;
4183 struct kmem_list3
*l3
;
4185 unsigned long *n
= m
->private;
4189 if (!(cachep
->flags
& SLAB_STORE_USER
))
4191 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4194 /* OK, we can do it */
4198 for_each_online_node(node
) {
4199 l3
= cachep
->nodelists
[node
];
4204 spin_lock_irq(&l3
->list_lock
);
4206 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4207 handle_slab(n
, cachep
, slabp
);
4208 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4209 handle_slab(n
, cachep
, slabp
);
4210 spin_unlock_irq(&l3
->list_lock
);
4212 name
= cachep
->name
;
4214 /* Increase the buffer size */
4215 mutex_unlock(&cache_chain_mutex
);
4216 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4218 /* Too bad, we are really out */
4220 mutex_lock(&cache_chain_mutex
);
4223 *(unsigned long *)m
->private = n
[0] * 2;
4225 mutex_lock(&cache_chain_mutex
);
4226 /* Now make sure this entry will be retried */
4230 for (i
= 0; i
< n
[1]; i
++) {
4231 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4232 show_symbol(m
, n
[2*i
+2]);
4239 struct seq_operations slabstats_op
= {
4240 .start
= leaks_start
,
4249 * ksize - get the actual amount of memory allocated for a given object
4250 * @objp: Pointer to the object
4252 * kmalloc may internally round up allocations and return more memory
4253 * than requested. ksize() can be used to determine the actual amount of
4254 * memory allocated. The caller may use this additional memory, even though
4255 * a smaller amount of memory was initially specified with the kmalloc call.
4256 * The caller must guarantee that objp points to a valid object previously
4257 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4258 * must not be freed during the duration of the call.
4260 unsigned int ksize(const void *objp
)
4262 if (unlikely(objp
== NULL
))
4265 return obj_size(virt_to_cache(objp
));