[TIPC]: Initial activation message now includes TIPC version number
[linux-2.6/linux-mips.git] / kernel / auditsc.c
blobdc5e3f01efe747c9d1816895ae1a1e40fb527489
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/syscalls.h>
69 #include "audit.h"
71 extern struct list_head audit_filter_list[];
73 /* No syscall auditing will take place unless audit_enabled != 0. */
74 extern int audit_enabled;
76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
77 * for saving names from getname(). */
78 #define AUDIT_NAMES 20
80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
81 * audit_context from being used for nameless inodes from
82 * path_lookup. */
83 #define AUDIT_NAMES_RESERVED 7
85 /* Indicates that audit should log the full pathname. */
86 #define AUDIT_NAME_FULL -1
88 /* When fs/namei.c:getname() is called, we store the pointer in name and
89 * we don't let putname() free it (instead we free all of the saved
90 * pointers at syscall exit time).
92 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
93 struct audit_names {
94 const char *name;
95 int name_len; /* number of name's characters to log */
96 unsigned name_put; /* call __putname() for this name */
97 unsigned long ino;
98 dev_t dev;
99 umode_t mode;
100 uid_t uid;
101 gid_t gid;
102 dev_t rdev;
103 u32 osid;
106 struct audit_aux_data {
107 struct audit_aux_data *next;
108 int type;
111 #define AUDIT_AUX_IPCPERM 0
113 struct audit_aux_data_mq_open {
114 struct audit_aux_data d;
115 int oflag;
116 mode_t mode;
117 struct mq_attr attr;
120 struct audit_aux_data_mq_sendrecv {
121 struct audit_aux_data d;
122 mqd_t mqdes;
123 size_t msg_len;
124 unsigned int msg_prio;
125 struct timespec abs_timeout;
128 struct audit_aux_data_mq_notify {
129 struct audit_aux_data d;
130 mqd_t mqdes;
131 struct sigevent notification;
134 struct audit_aux_data_mq_getsetattr {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 struct mq_attr mqstat;
140 struct audit_aux_data_ipcctl {
141 struct audit_aux_data d;
142 struct ipc_perm p;
143 unsigned long qbytes;
144 uid_t uid;
145 gid_t gid;
146 mode_t mode;
147 u32 osid;
150 struct audit_aux_data_execve {
151 struct audit_aux_data d;
152 int argc;
153 int envc;
154 char mem[0];
157 struct audit_aux_data_socketcall {
158 struct audit_aux_data d;
159 int nargs;
160 unsigned long args[0];
163 struct audit_aux_data_sockaddr {
164 struct audit_aux_data d;
165 int len;
166 char a[0];
169 struct audit_aux_data_path {
170 struct audit_aux_data d;
171 struct dentry *dentry;
172 struct vfsmount *mnt;
175 /* The per-task audit context. */
176 struct audit_context {
177 int in_syscall; /* 1 if task is in a syscall */
178 enum audit_state state;
179 unsigned int serial; /* serial number for record */
180 struct timespec ctime; /* time of syscall entry */
181 uid_t loginuid; /* login uid (identity) */
182 int major; /* syscall number */
183 unsigned long argv[4]; /* syscall arguments */
184 int return_valid; /* return code is valid */
185 long return_code;/* syscall return code */
186 int auditable; /* 1 if record should be written */
187 int name_count;
188 struct audit_names names[AUDIT_NAMES];
189 struct dentry * pwd;
190 struct vfsmount * pwdmnt;
191 struct audit_context *previous; /* For nested syscalls */
192 struct audit_aux_data *aux;
194 /* Save things to print about task_struct */
195 pid_t pid, ppid;
196 uid_t uid, euid, suid, fsuid;
197 gid_t gid, egid, sgid, fsgid;
198 unsigned long personality;
199 int arch;
201 #if AUDIT_DEBUG
202 int put_count;
203 int ino_count;
204 #endif
207 /* Determine if any context name data matches a rule's watch data */
208 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
209 * otherwise. */
210 static int audit_filter_rules(struct task_struct *tsk,
211 struct audit_krule *rule,
212 struct audit_context *ctx,
213 struct audit_names *name,
214 enum audit_state *state)
216 int i, j, need_sid = 1;
217 u32 sid;
219 for (i = 0; i < rule->field_count; i++) {
220 struct audit_field *f = &rule->fields[i];
221 int result = 0;
223 switch (f->type) {
224 case AUDIT_PID:
225 result = audit_comparator(tsk->pid, f->op, f->val);
226 break;
227 case AUDIT_PPID:
228 if (ctx)
229 result = audit_comparator(ctx->ppid, f->op, f->val);
230 break;
231 case AUDIT_UID:
232 result = audit_comparator(tsk->uid, f->op, f->val);
233 break;
234 case AUDIT_EUID:
235 result = audit_comparator(tsk->euid, f->op, f->val);
236 break;
237 case AUDIT_SUID:
238 result = audit_comparator(tsk->suid, f->op, f->val);
239 break;
240 case AUDIT_FSUID:
241 result = audit_comparator(tsk->fsuid, f->op, f->val);
242 break;
243 case AUDIT_GID:
244 result = audit_comparator(tsk->gid, f->op, f->val);
245 break;
246 case AUDIT_EGID:
247 result = audit_comparator(tsk->egid, f->op, f->val);
248 break;
249 case AUDIT_SGID:
250 result = audit_comparator(tsk->sgid, f->op, f->val);
251 break;
252 case AUDIT_FSGID:
253 result = audit_comparator(tsk->fsgid, f->op, f->val);
254 break;
255 case AUDIT_PERS:
256 result = audit_comparator(tsk->personality, f->op, f->val);
257 break;
258 case AUDIT_ARCH:
259 if (ctx)
260 result = audit_comparator(ctx->arch, f->op, f->val);
261 break;
263 case AUDIT_EXIT:
264 if (ctx && ctx->return_valid)
265 result = audit_comparator(ctx->return_code, f->op, f->val);
266 break;
267 case AUDIT_SUCCESS:
268 if (ctx && ctx->return_valid) {
269 if (f->val)
270 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
271 else
272 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
274 break;
275 case AUDIT_DEVMAJOR:
276 if (name)
277 result = audit_comparator(MAJOR(name->dev),
278 f->op, f->val);
279 else if (ctx) {
280 for (j = 0; j < ctx->name_count; j++) {
281 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
282 ++result;
283 break;
287 break;
288 case AUDIT_DEVMINOR:
289 if (name)
290 result = audit_comparator(MINOR(name->dev),
291 f->op, f->val);
292 else if (ctx) {
293 for (j = 0; j < ctx->name_count; j++) {
294 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
295 ++result;
296 break;
300 break;
301 case AUDIT_INODE:
302 if (name)
303 result = (name->ino == f->val);
304 else if (ctx) {
305 for (j = 0; j < ctx->name_count; j++) {
306 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
307 ++result;
308 break;
312 break;
313 case AUDIT_WATCH:
314 if (name && rule->watch->ino != (unsigned long)-1)
315 result = (name->dev == rule->watch->dev &&
316 name->ino == rule->watch->ino);
317 break;
318 case AUDIT_LOGINUID:
319 result = 0;
320 if (ctx)
321 result = audit_comparator(ctx->loginuid, f->op, f->val);
322 break;
323 case AUDIT_SE_USER:
324 case AUDIT_SE_ROLE:
325 case AUDIT_SE_TYPE:
326 case AUDIT_SE_SEN:
327 case AUDIT_SE_CLR:
328 /* NOTE: this may return negative values indicating
329 a temporary error. We simply treat this as a
330 match for now to avoid losing information that
331 may be wanted. An error message will also be
332 logged upon error */
333 if (f->se_rule) {
334 if (need_sid) {
335 selinux_task_ctxid(tsk, &sid);
336 need_sid = 0;
338 result = selinux_audit_rule_match(sid, f->type,
339 f->op,
340 f->se_rule,
341 ctx);
343 break;
344 case AUDIT_ARG0:
345 case AUDIT_ARG1:
346 case AUDIT_ARG2:
347 case AUDIT_ARG3:
348 if (ctx)
349 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
350 break;
353 if (!result)
354 return 0;
356 switch (rule->action) {
357 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
358 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
360 return 1;
363 /* At process creation time, we can determine if system-call auditing is
364 * completely disabled for this task. Since we only have the task
365 * structure at this point, we can only check uid and gid.
367 static enum audit_state audit_filter_task(struct task_struct *tsk)
369 struct audit_entry *e;
370 enum audit_state state;
372 rcu_read_lock();
373 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
374 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
375 rcu_read_unlock();
376 return state;
379 rcu_read_unlock();
380 return AUDIT_BUILD_CONTEXT;
383 /* At syscall entry and exit time, this filter is called if the
384 * audit_state is not low enough that auditing cannot take place, but is
385 * also not high enough that we already know we have to write an audit
386 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
388 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
389 struct audit_context *ctx,
390 struct list_head *list)
392 struct audit_entry *e;
393 enum audit_state state;
395 if (audit_pid && tsk->tgid == audit_pid)
396 return AUDIT_DISABLED;
398 rcu_read_lock();
399 if (!list_empty(list)) {
400 int word = AUDIT_WORD(ctx->major);
401 int bit = AUDIT_BIT(ctx->major);
403 list_for_each_entry_rcu(e, list, list) {
404 if ((e->rule.mask[word] & bit) == bit &&
405 audit_filter_rules(tsk, &e->rule, ctx, NULL,
406 &state)) {
407 rcu_read_unlock();
408 return state;
412 rcu_read_unlock();
413 return AUDIT_BUILD_CONTEXT;
416 /* At syscall exit time, this filter is called if any audit_names[] have been
417 * collected during syscall processing. We only check rules in sublists at hash
418 * buckets applicable to the inode numbers in audit_names[].
419 * Regarding audit_state, same rules apply as for audit_filter_syscall().
421 enum audit_state audit_filter_inodes(struct task_struct *tsk,
422 struct audit_context *ctx)
424 int i;
425 struct audit_entry *e;
426 enum audit_state state;
428 if (audit_pid && tsk->tgid == audit_pid)
429 return AUDIT_DISABLED;
431 rcu_read_lock();
432 for (i = 0; i < ctx->name_count; i++) {
433 int word = AUDIT_WORD(ctx->major);
434 int bit = AUDIT_BIT(ctx->major);
435 struct audit_names *n = &ctx->names[i];
436 int h = audit_hash_ino((u32)n->ino);
437 struct list_head *list = &audit_inode_hash[h];
439 if (list_empty(list))
440 continue;
442 list_for_each_entry_rcu(e, list, list) {
443 if ((e->rule.mask[word] & bit) == bit &&
444 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
445 rcu_read_unlock();
446 return state;
450 rcu_read_unlock();
451 return AUDIT_BUILD_CONTEXT;
454 void audit_set_auditable(struct audit_context *ctx)
456 ctx->auditable = 1;
459 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
460 int return_valid,
461 int return_code)
463 struct audit_context *context = tsk->audit_context;
465 if (likely(!context))
466 return NULL;
467 context->return_valid = return_valid;
468 context->return_code = return_code;
470 if (context->in_syscall && !context->auditable) {
471 enum audit_state state;
473 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
474 if (state == AUDIT_RECORD_CONTEXT) {
475 context->auditable = 1;
476 goto get_context;
479 state = audit_filter_inodes(tsk, context);
480 if (state == AUDIT_RECORD_CONTEXT)
481 context->auditable = 1;
485 get_context:
486 context->pid = tsk->pid;
487 context->ppid = sys_getppid(); /* sic. tsk == current in all cases */
488 context->uid = tsk->uid;
489 context->gid = tsk->gid;
490 context->euid = tsk->euid;
491 context->suid = tsk->suid;
492 context->fsuid = tsk->fsuid;
493 context->egid = tsk->egid;
494 context->sgid = tsk->sgid;
495 context->fsgid = tsk->fsgid;
496 context->personality = tsk->personality;
497 tsk->audit_context = NULL;
498 return context;
501 static inline void audit_free_names(struct audit_context *context)
503 int i;
505 #if AUDIT_DEBUG == 2
506 if (context->auditable
507 ||context->put_count + context->ino_count != context->name_count) {
508 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
509 " name_count=%d put_count=%d"
510 " ino_count=%d [NOT freeing]\n",
511 __FILE__, __LINE__,
512 context->serial, context->major, context->in_syscall,
513 context->name_count, context->put_count,
514 context->ino_count);
515 for (i = 0; i < context->name_count; i++) {
516 printk(KERN_ERR "names[%d] = %p = %s\n", i,
517 context->names[i].name,
518 context->names[i].name ?: "(null)");
520 dump_stack();
521 return;
523 #endif
524 #if AUDIT_DEBUG
525 context->put_count = 0;
526 context->ino_count = 0;
527 #endif
529 for (i = 0; i < context->name_count; i++) {
530 if (context->names[i].name && context->names[i].name_put)
531 __putname(context->names[i].name);
533 context->name_count = 0;
534 if (context->pwd)
535 dput(context->pwd);
536 if (context->pwdmnt)
537 mntput(context->pwdmnt);
538 context->pwd = NULL;
539 context->pwdmnt = NULL;
542 static inline void audit_free_aux(struct audit_context *context)
544 struct audit_aux_data *aux;
546 while ((aux = context->aux)) {
547 if (aux->type == AUDIT_AVC_PATH) {
548 struct audit_aux_data_path *axi = (void *)aux;
549 dput(axi->dentry);
550 mntput(axi->mnt);
553 context->aux = aux->next;
554 kfree(aux);
558 static inline void audit_zero_context(struct audit_context *context,
559 enum audit_state state)
561 uid_t loginuid = context->loginuid;
563 memset(context, 0, sizeof(*context));
564 context->state = state;
565 context->loginuid = loginuid;
568 static inline struct audit_context *audit_alloc_context(enum audit_state state)
570 struct audit_context *context;
572 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
573 return NULL;
574 audit_zero_context(context, state);
575 return context;
579 * audit_alloc - allocate an audit context block for a task
580 * @tsk: task
582 * Filter on the task information and allocate a per-task audit context
583 * if necessary. Doing so turns on system call auditing for the
584 * specified task. This is called from copy_process, so no lock is
585 * needed.
587 int audit_alloc(struct task_struct *tsk)
589 struct audit_context *context;
590 enum audit_state state;
592 if (likely(!audit_enabled))
593 return 0; /* Return if not auditing. */
595 state = audit_filter_task(tsk);
596 if (likely(state == AUDIT_DISABLED))
597 return 0;
599 if (!(context = audit_alloc_context(state))) {
600 audit_log_lost("out of memory in audit_alloc");
601 return -ENOMEM;
604 /* Preserve login uid */
605 context->loginuid = -1;
606 if (current->audit_context)
607 context->loginuid = current->audit_context->loginuid;
609 tsk->audit_context = context;
610 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
611 return 0;
614 static inline void audit_free_context(struct audit_context *context)
616 struct audit_context *previous;
617 int count = 0;
619 do {
620 previous = context->previous;
621 if (previous || (count && count < 10)) {
622 ++count;
623 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
624 " freeing multiple contexts (%d)\n",
625 context->serial, context->major,
626 context->name_count, count);
628 audit_free_names(context);
629 audit_free_aux(context);
630 kfree(context);
631 context = previous;
632 } while (context);
633 if (count >= 10)
634 printk(KERN_ERR "audit: freed %d contexts\n", count);
637 static void audit_log_task_context(struct audit_buffer *ab)
639 char *ctx = NULL;
640 ssize_t len = 0;
642 len = security_getprocattr(current, "current", NULL, 0);
643 if (len < 0) {
644 if (len != -EINVAL)
645 goto error_path;
646 return;
649 ctx = kmalloc(len, GFP_KERNEL);
650 if (!ctx)
651 goto error_path;
653 len = security_getprocattr(current, "current", ctx, len);
654 if (len < 0 )
655 goto error_path;
657 audit_log_format(ab, " subj=%s", ctx);
658 return;
660 error_path:
661 kfree(ctx);
662 audit_panic("error in audit_log_task_context");
663 return;
666 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
668 char name[sizeof(tsk->comm)];
669 struct mm_struct *mm = tsk->mm;
670 struct vm_area_struct *vma;
672 /* tsk == current */
674 get_task_comm(name, tsk);
675 audit_log_format(ab, " comm=");
676 audit_log_untrustedstring(ab, name);
678 if (mm) {
679 down_read(&mm->mmap_sem);
680 vma = mm->mmap;
681 while (vma) {
682 if ((vma->vm_flags & VM_EXECUTABLE) &&
683 vma->vm_file) {
684 audit_log_d_path(ab, "exe=",
685 vma->vm_file->f_dentry,
686 vma->vm_file->f_vfsmnt);
687 break;
689 vma = vma->vm_next;
691 up_read(&mm->mmap_sem);
693 audit_log_task_context(ab);
696 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
698 int i, call_panic = 0;
699 struct audit_buffer *ab;
700 struct audit_aux_data *aux;
701 const char *tty;
703 /* tsk == current */
705 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
706 if (!ab)
707 return; /* audit_panic has been called */
708 audit_log_format(ab, "arch=%x syscall=%d",
709 context->arch, context->major);
710 if (context->personality != PER_LINUX)
711 audit_log_format(ab, " per=%lx", context->personality);
712 if (context->return_valid)
713 audit_log_format(ab, " success=%s exit=%ld",
714 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
715 context->return_code);
716 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
717 tty = tsk->signal->tty->name;
718 else
719 tty = "(none)";
720 audit_log_format(ab,
721 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
722 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
723 " euid=%u suid=%u fsuid=%u"
724 " egid=%u sgid=%u fsgid=%u tty=%s",
725 context->argv[0],
726 context->argv[1],
727 context->argv[2],
728 context->argv[3],
729 context->name_count,
730 context->ppid,
731 context->pid,
732 context->loginuid,
733 context->uid,
734 context->gid,
735 context->euid, context->suid, context->fsuid,
736 context->egid, context->sgid, context->fsgid, tty);
737 audit_log_task_info(ab, tsk);
738 audit_log_end(ab);
740 for (aux = context->aux; aux; aux = aux->next) {
742 ab = audit_log_start(context, GFP_KERNEL, aux->type);
743 if (!ab)
744 continue; /* audit_panic has been called */
746 switch (aux->type) {
747 case AUDIT_MQ_OPEN: {
748 struct audit_aux_data_mq_open *axi = (void *)aux;
749 audit_log_format(ab,
750 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
751 "mq_msgsize=%ld mq_curmsgs=%ld",
752 axi->oflag, axi->mode, axi->attr.mq_flags,
753 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
754 axi->attr.mq_curmsgs);
755 break; }
757 case AUDIT_MQ_SENDRECV: {
758 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
759 audit_log_format(ab,
760 "mqdes=%d msg_len=%zd msg_prio=%u "
761 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
762 axi->mqdes, axi->msg_len, axi->msg_prio,
763 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
764 break; }
766 case AUDIT_MQ_NOTIFY: {
767 struct audit_aux_data_mq_notify *axi = (void *)aux;
768 audit_log_format(ab,
769 "mqdes=%d sigev_signo=%d",
770 axi->mqdes,
771 axi->notification.sigev_signo);
772 break; }
774 case AUDIT_MQ_GETSETATTR: {
775 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
776 audit_log_format(ab,
777 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
778 "mq_curmsgs=%ld ",
779 axi->mqdes,
780 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
781 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
782 break; }
784 case AUDIT_IPC: {
785 struct audit_aux_data_ipcctl *axi = (void *)aux;
786 audit_log_format(ab,
787 "ouid=%u ogid=%u mode=%x",
788 axi->uid, axi->gid, axi->mode);
789 if (axi->osid != 0) {
790 char *ctx = NULL;
791 u32 len;
792 if (selinux_ctxid_to_string(
793 axi->osid, &ctx, &len)) {
794 audit_log_format(ab, " osid=%u",
795 axi->osid);
796 call_panic = 1;
797 } else
798 audit_log_format(ab, " obj=%s", ctx);
799 kfree(ctx);
801 break; }
803 case AUDIT_IPC_SET_PERM: {
804 struct audit_aux_data_ipcctl *axi = (void *)aux;
805 audit_log_format(ab,
806 "qbytes=%lx ouid=%u ogid=%u mode=%x",
807 axi->qbytes, axi->uid, axi->gid, axi->mode);
808 break; }
810 case AUDIT_EXECVE: {
811 struct audit_aux_data_execve *axi = (void *)aux;
812 int i;
813 const char *p;
814 for (i = 0, p = axi->mem; i < axi->argc; i++) {
815 audit_log_format(ab, "a%d=", i);
816 p = audit_log_untrustedstring(ab, p);
817 audit_log_format(ab, "\n");
819 break; }
821 case AUDIT_SOCKETCALL: {
822 int i;
823 struct audit_aux_data_socketcall *axs = (void *)aux;
824 audit_log_format(ab, "nargs=%d", axs->nargs);
825 for (i=0; i<axs->nargs; i++)
826 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
827 break; }
829 case AUDIT_SOCKADDR: {
830 struct audit_aux_data_sockaddr *axs = (void *)aux;
832 audit_log_format(ab, "saddr=");
833 audit_log_hex(ab, axs->a, axs->len);
834 break; }
836 case AUDIT_AVC_PATH: {
837 struct audit_aux_data_path *axi = (void *)aux;
838 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
839 break; }
842 audit_log_end(ab);
845 if (context->pwd && context->pwdmnt) {
846 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
847 if (ab) {
848 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
849 audit_log_end(ab);
852 for (i = 0; i < context->name_count; i++) {
853 struct audit_names *n = &context->names[i];
855 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
856 if (!ab)
857 continue; /* audit_panic has been called */
859 audit_log_format(ab, "item=%d", i);
861 if (n->name) {
862 switch(n->name_len) {
863 case AUDIT_NAME_FULL:
864 /* log the full path */
865 audit_log_format(ab, " name=");
866 audit_log_untrustedstring(ab, n->name);
867 break;
868 case 0:
869 /* name was specified as a relative path and the
870 * directory component is the cwd */
871 audit_log_d_path(ab, " name=", context->pwd,
872 context->pwdmnt);
873 break;
874 default:
875 /* log the name's directory component */
876 audit_log_format(ab, " name=");
877 audit_log_n_untrustedstring(ab, n->name_len,
878 n->name);
880 } else
881 audit_log_format(ab, " name=(null)");
883 if (n->ino != (unsigned long)-1) {
884 audit_log_format(ab, " inode=%lu"
885 " dev=%02x:%02x mode=%#o"
886 " ouid=%u ogid=%u rdev=%02x:%02x",
887 n->ino,
888 MAJOR(n->dev),
889 MINOR(n->dev),
890 n->mode,
891 n->uid,
892 n->gid,
893 MAJOR(n->rdev),
894 MINOR(n->rdev));
896 if (n->osid != 0) {
897 char *ctx = NULL;
898 u32 len;
899 if (selinux_ctxid_to_string(
900 n->osid, &ctx, &len)) {
901 audit_log_format(ab, " osid=%u", n->osid);
902 call_panic = 2;
903 } else
904 audit_log_format(ab, " obj=%s", ctx);
905 kfree(ctx);
908 audit_log_end(ab);
910 if (call_panic)
911 audit_panic("error converting sid to string");
915 * audit_free - free a per-task audit context
916 * @tsk: task whose audit context block to free
918 * Called from copy_process and do_exit
920 void audit_free(struct task_struct *tsk)
922 struct audit_context *context;
924 context = audit_get_context(tsk, 0, 0);
925 if (likely(!context))
926 return;
928 /* Check for system calls that do not go through the exit
929 * function (e.g., exit_group), then free context block.
930 * We use GFP_ATOMIC here because we might be doing this
931 * in the context of the idle thread */
932 /* that can happen only if we are called from do_exit() */
933 if (context->in_syscall && context->auditable)
934 audit_log_exit(context, tsk);
936 audit_free_context(context);
940 * audit_syscall_entry - fill in an audit record at syscall entry
941 * @tsk: task being audited
942 * @arch: architecture type
943 * @major: major syscall type (function)
944 * @a1: additional syscall register 1
945 * @a2: additional syscall register 2
946 * @a3: additional syscall register 3
947 * @a4: additional syscall register 4
949 * Fill in audit context at syscall entry. This only happens if the
950 * audit context was created when the task was created and the state or
951 * filters demand the audit context be built. If the state from the
952 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
953 * then the record will be written at syscall exit time (otherwise, it
954 * will only be written if another part of the kernel requests that it
955 * be written).
957 void audit_syscall_entry(int arch, int major,
958 unsigned long a1, unsigned long a2,
959 unsigned long a3, unsigned long a4)
961 struct task_struct *tsk = current;
962 struct audit_context *context = tsk->audit_context;
963 enum audit_state state;
965 BUG_ON(!context);
968 * This happens only on certain architectures that make system
969 * calls in kernel_thread via the entry.S interface, instead of
970 * with direct calls. (If you are porting to a new
971 * architecture, hitting this condition can indicate that you
972 * got the _exit/_leave calls backward in entry.S.)
974 * i386 no
975 * x86_64 no
976 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
978 * This also happens with vm86 emulation in a non-nested manner
979 * (entries without exits), so this case must be caught.
981 if (context->in_syscall) {
982 struct audit_context *newctx;
984 #if AUDIT_DEBUG
985 printk(KERN_ERR
986 "audit(:%d) pid=%d in syscall=%d;"
987 " entering syscall=%d\n",
988 context->serial, tsk->pid, context->major, major);
989 #endif
990 newctx = audit_alloc_context(context->state);
991 if (newctx) {
992 newctx->previous = context;
993 context = newctx;
994 tsk->audit_context = newctx;
995 } else {
996 /* If we can't alloc a new context, the best we
997 * can do is to leak memory (any pending putname
998 * will be lost). The only other alternative is
999 * to abandon auditing. */
1000 audit_zero_context(context, context->state);
1003 BUG_ON(context->in_syscall || context->name_count);
1005 if (!audit_enabled)
1006 return;
1008 context->arch = arch;
1009 context->major = major;
1010 context->argv[0] = a1;
1011 context->argv[1] = a2;
1012 context->argv[2] = a3;
1013 context->argv[3] = a4;
1015 state = context->state;
1016 if (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)
1017 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1018 if (likely(state == AUDIT_DISABLED))
1019 return;
1021 context->serial = 0;
1022 context->ctime = CURRENT_TIME;
1023 context->in_syscall = 1;
1024 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1028 * audit_syscall_exit - deallocate audit context after a system call
1029 * @tsk: task being audited
1030 * @valid: success/failure flag
1031 * @return_code: syscall return value
1033 * Tear down after system call. If the audit context has been marked as
1034 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1035 * filtering, or because some other part of the kernel write an audit
1036 * message), then write out the syscall information. In call cases,
1037 * free the names stored from getname().
1039 void audit_syscall_exit(int valid, long return_code)
1041 struct task_struct *tsk = current;
1042 struct audit_context *context;
1044 context = audit_get_context(tsk, valid, return_code);
1046 if (likely(!context))
1047 return;
1049 if (context->in_syscall && context->auditable)
1050 audit_log_exit(context, tsk);
1052 context->in_syscall = 0;
1053 context->auditable = 0;
1055 if (context->previous) {
1056 struct audit_context *new_context = context->previous;
1057 context->previous = NULL;
1058 audit_free_context(context);
1059 tsk->audit_context = new_context;
1060 } else {
1061 audit_free_names(context);
1062 audit_free_aux(context);
1063 tsk->audit_context = context;
1068 * audit_getname - add a name to the list
1069 * @name: name to add
1071 * Add a name to the list of audit names for this context.
1072 * Called from fs/namei.c:getname().
1074 void __audit_getname(const char *name)
1076 struct audit_context *context = current->audit_context;
1078 if (IS_ERR(name) || !name)
1079 return;
1081 if (!context->in_syscall) {
1082 #if AUDIT_DEBUG == 2
1083 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1084 __FILE__, __LINE__, context->serial, name);
1085 dump_stack();
1086 #endif
1087 return;
1089 BUG_ON(context->name_count >= AUDIT_NAMES);
1090 context->names[context->name_count].name = name;
1091 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1092 context->names[context->name_count].name_put = 1;
1093 context->names[context->name_count].ino = (unsigned long)-1;
1094 ++context->name_count;
1095 if (!context->pwd) {
1096 read_lock(&current->fs->lock);
1097 context->pwd = dget(current->fs->pwd);
1098 context->pwdmnt = mntget(current->fs->pwdmnt);
1099 read_unlock(&current->fs->lock);
1104 /* audit_putname - intercept a putname request
1105 * @name: name to intercept and delay for putname
1107 * If we have stored the name from getname in the audit context,
1108 * then we delay the putname until syscall exit.
1109 * Called from include/linux/fs.h:putname().
1111 void audit_putname(const char *name)
1113 struct audit_context *context = current->audit_context;
1115 BUG_ON(!context);
1116 if (!context->in_syscall) {
1117 #if AUDIT_DEBUG == 2
1118 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1119 __FILE__, __LINE__, context->serial, name);
1120 if (context->name_count) {
1121 int i;
1122 for (i = 0; i < context->name_count; i++)
1123 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1124 context->names[i].name,
1125 context->names[i].name ?: "(null)");
1127 #endif
1128 __putname(name);
1130 #if AUDIT_DEBUG
1131 else {
1132 ++context->put_count;
1133 if (context->put_count > context->name_count) {
1134 printk(KERN_ERR "%s:%d(:%d): major=%d"
1135 " in_syscall=%d putname(%p) name_count=%d"
1136 " put_count=%d\n",
1137 __FILE__, __LINE__,
1138 context->serial, context->major,
1139 context->in_syscall, name, context->name_count,
1140 context->put_count);
1141 dump_stack();
1144 #endif
1147 static void audit_inode_context(int idx, const struct inode *inode)
1149 struct audit_context *context = current->audit_context;
1151 selinux_get_inode_sid(inode, &context->names[idx].osid);
1156 * audit_inode - store the inode and device from a lookup
1157 * @name: name being audited
1158 * @inode: inode being audited
1160 * Called from fs/namei.c:path_lookup().
1162 void __audit_inode(const char *name, const struct inode *inode)
1164 int idx;
1165 struct audit_context *context = current->audit_context;
1167 if (!context->in_syscall)
1168 return;
1169 if (context->name_count
1170 && context->names[context->name_count-1].name
1171 && context->names[context->name_count-1].name == name)
1172 idx = context->name_count - 1;
1173 else if (context->name_count > 1
1174 && context->names[context->name_count-2].name
1175 && context->names[context->name_count-2].name == name)
1176 idx = context->name_count - 2;
1177 else {
1178 /* FIXME: how much do we care about inodes that have no
1179 * associated name? */
1180 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1181 return;
1182 idx = context->name_count++;
1183 context->names[idx].name = NULL;
1184 #if AUDIT_DEBUG
1185 ++context->ino_count;
1186 #endif
1188 context->names[idx].ino = inode->i_ino;
1189 context->names[idx].dev = inode->i_sb->s_dev;
1190 context->names[idx].mode = inode->i_mode;
1191 context->names[idx].uid = inode->i_uid;
1192 context->names[idx].gid = inode->i_gid;
1193 context->names[idx].rdev = inode->i_rdev;
1194 audit_inode_context(idx, inode);
1198 * audit_inode_child - collect inode info for created/removed objects
1199 * @dname: inode's dentry name
1200 * @inode: inode being audited
1201 * @pino: inode number of dentry parent
1203 * For syscalls that create or remove filesystem objects, audit_inode
1204 * can only collect information for the filesystem object's parent.
1205 * This call updates the audit context with the child's information.
1206 * Syscalls that create a new filesystem object must be hooked after
1207 * the object is created. Syscalls that remove a filesystem object
1208 * must be hooked prior, in order to capture the target inode during
1209 * unsuccessful attempts.
1211 void __audit_inode_child(const char *dname, const struct inode *inode,
1212 unsigned long pino)
1214 int idx;
1215 struct audit_context *context = current->audit_context;
1216 const char *found_name = NULL;
1217 int dirlen = 0;
1219 if (!context->in_syscall)
1220 return;
1222 /* determine matching parent */
1223 if (!dname)
1224 goto update_context;
1225 for (idx = 0; idx < context->name_count; idx++)
1226 if (context->names[idx].ino == pino) {
1227 const char *name = context->names[idx].name;
1229 if (!name)
1230 continue;
1232 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1233 context->names[idx].name_len = dirlen;
1234 found_name = name;
1235 break;
1239 update_context:
1240 idx = context->name_count++;
1241 #if AUDIT_DEBUG
1242 context->ino_count++;
1243 #endif
1244 /* Re-use the name belonging to the slot for a matching parent directory.
1245 * All names for this context are relinquished in audit_free_names() */
1246 context->names[idx].name = found_name;
1247 context->names[idx].name_len = AUDIT_NAME_FULL;
1248 context->names[idx].name_put = 0; /* don't call __putname() */
1250 if (inode) {
1251 context->names[idx].ino = inode->i_ino;
1252 context->names[idx].dev = inode->i_sb->s_dev;
1253 context->names[idx].mode = inode->i_mode;
1254 context->names[idx].uid = inode->i_uid;
1255 context->names[idx].gid = inode->i_gid;
1256 context->names[idx].rdev = inode->i_rdev;
1257 audit_inode_context(idx, inode);
1258 } else
1259 context->names[idx].ino = (unsigned long)-1;
1263 * auditsc_get_stamp - get local copies of audit_context values
1264 * @ctx: audit_context for the task
1265 * @t: timespec to store time recorded in the audit_context
1266 * @serial: serial value that is recorded in the audit_context
1268 * Also sets the context as auditable.
1270 void auditsc_get_stamp(struct audit_context *ctx,
1271 struct timespec *t, unsigned int *serial)
1273 if (!ctx->serial)
1274 ctx->serial = audit_serial();
1275 t->tv_sec = ctx->ctime.tv_sec;
1276 t->tv_nsec = ctx->ctime.tv_nsec;
1277 *serial = ctx->serial;
1278 ctx->auditable = 1;
1282 * audit_set_loginuid - set a task's audit_context loginuid
1283 * @task: task whose audit context is being modified
1284 * @loginuid: loginuid value
1286 * Returns 0.
1288 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1290 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1292 struct audit_context *context = task->audit_context;
1294 if (context) {
1295 /* Only log if audit is enabled */
1296 if (context->in_syscall) {
1297 struct audit_buffer *ab;
1299 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1300 if (ab) {
1301 audit_log_format(ab, "login pid=%d uid=%u "
1302 "old auid=%u new auid=%u",
1303 task->pid, task->uid,
1304 context->loginuid, loginuid);
1305 audit_log_end(ab);
1308 context->loginuid = loginuid;
1310 return 0;
1314 * audit_get_loginuid - get the loginuid for an audit_context
1315 * @ctx: the audit_context
1317 * Returns the context's loginuid or -1 if @ctx is NULL.
1319 uid_t audit_get_loginuid(struct audit_context *ctx)
1321 return ctx ? ctx->loginuid : -1;
1325 * __audit_mq_open - record audit data for a POSIX MQ open
1326 * @oflag: open flag
1327 * @mode: mode bits
1328 * @u_attr: queue attributes
1330 * Returns 0 for success or NULL context or < 0 on error.
1332 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1334 struct audit_aux_data_mq_open *ax;
1335 struct audit_context *context = current->audit_context;
1337 if (!audit_enabled)
1338 return 0;
1340 if (likely(!context))
1341 return 0;
1343 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1344 if (!ax)
1345 return -ENOMEM;
1347 if (u_attr != NULL) {
1348 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1349 kfree(ax);
1350 return -EFAULT;
1352 } else
1353 memset(&ax->attr, 0, sizeof(ax->attr));
1355 ax->oflag = oflag;
1356 ax->mode = mode;
1358 ax->d.type = AUDIT_MQ_OPEN;
1359 ax->d.next = context->aux;
1360 context->aux = (void *)ax;
1361 return 0;
1365 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1366 * @mqdes: MQ descriptor
1367 * @msg_len: Message length
1368 * @msg_prio: Message priority
1369 * @u_abs_timeout: Message timeout in absolute time
1371 * Returns 0 for success or NULL context or < 0 on error.
1373 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1374 const struct timespec __user *u_abs_timeout)
1376 struct audit_aux_data_mq_sendrecv *ax;
1377 struct audit_context *context = current->audit_context;
1379 if (!audit_enabled)
1380 return 0;
1382 if (likely(!context))
1383 return 0;
1385 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1386 if (!ax)
1387 return -ENOMEM;
1389 if (u_abs_timeout != NULL) {
1390 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1391 kfree(ax);
1392 return -EFAULT;
1394 } else
1395 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1397 ax->mqdes = mqdes;
1398 ax->msg_len = msg_len;
1399 ax->msg_prio = msg_prio;
1401 ax->d.type = AUDIT_MQ_SENDRECV;
1402 ax->d.next = context->aux;
1403 context->aux = (void *)ax;
1404 return 0;
1408 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1409 * @mqdes: MQ descriptor
1410 * @msg_len: Message length
1411 * @u_msg_prio: Message priority
1412 * @u_abs_timeout: Message timeout in absolute time
1414 * Returns 0 for success or NULL context or < 0 on error.
1416 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1417 unsigned int __user *u_msg_prio,
1418 const struct timespec __user *u_abs_timeout)
1420 struct audit_aux_data_mq_sendrecv *ax;
1421 struct audit_context *context = current->audit_context;
1423 if (!audit_enabled)
1424 return 0;
1426 if (likely(!context))
1427 return 0;
1429 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1430 if (!ax)
1431 return -ENOMEM;
1433 if (u_msg_prio != NULL) {
1434 if (get_user(ax->msg_prio, u_msg_prio)) {
1435 kfree(ax);
1436 return -EFAULT;
1438 } else
1439 ax->msg_prio = 0;
1441 if (u_abs_timeout != NULL) {
1442 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1443 kfree(ax);
1444 return -EFAULT;
1446 } else
1447 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1449 ax->mqdes = mqdes;
1450 ax->msg_len = msg_len;
1452 ax->d.type = AUDIT_MQ_SENDRECV;
1453 ax->d.next = context->aux;
1454 context->aux = (void *)ax;
1455 return 0;
1459 * __audit_mq_notify - record audit data for a POSIX MQ notify
1460 * @mqdes: MQ descriptor
1461 * @u_notification: Notification event
1463 * Returns 0 for success or NULL context or < 0 on error.
1466 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1468 struct audit_aux_data_mq_notify *ax;
1469 struct audit_context *context = current->audit_context;
1471 if (!audit_enabled)
1472 return 0;
1474 if (likely(!context))
1475 return 0;
1477 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1478 if (!ax)
1479 return -ENOMEM;
1481 if (u_notification != NULL) {
1482 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1483 kfree(ax);
1484 return -EFAULT;
1486 } else
1487 memset(&ax->notification, 0, sizeof(ax->notification));
1489 ax->mqdes = mqdes;
1491 ax->d.type = AUDIT_MQ_NOTIFY;
1492 ax->d.next = context->aux;
1493 context->aux = (void *)ax;
1494 return 0;
1498 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1499 * @mqdes: MQ descriptor
1500 * @mqstat: MQ flags
1502 * Returns 0 for success or NULL context or < 0 on error.
1504 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1506 struct audit_aux_data_mq_getsetattr *ax;
1507 struct audit_context *context = current->audit_context;
1509 if (!audit_enabled)
1510 return 0;
1512 if (likely(!context))
1513 return 0;
1515 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1516 if (!ax)
1517 return -ENOMEM;
1519 ax->mqdes = mqdes;
1520 ax->mqstat = *mqstat;
1522 ax->d.type = AUDIT_MQ_GETSETATTR;
1523 ax->d.next = context->aux;
1524 context->aux = (void *)ax;
1525 return 0;
1529 * audit_ipc_obj - record audit data for ipc object
1530 * @ipcp: ipc permissions
1532 * Returns 0 for success or NULL context or < 0 on error.
1534 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1536 struct audit_aux_data_ipcctl *ax;
1537 struct audit_context *context = current->audit_context;
1539 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1540 if (!ax)
1541 return -ENOMEM;
1543 ax->uid = ipcp->uid;
1544 ax->gid = ipcp->gid;
1545 ax->mode = ipcp->mode;
1546 selinux_get_ipc_sid(ipcp, &ax->osid);
1548 ax->d.type = AUDIT_IPC;
1549 ax->d.next = context->aux;
1550 context->aux = (void *)ax;
1551 return 0;
1555 * audit_ipc_set_perm - record audit data for new ipc permissions
1556 * @qbytes: msgq bytes
1557 * @uid: msgq user id
1558 * @gid: msgq group id
1559 * @mode: msgq mode (permissions)
1561 * Returns 0 for success or NULL context or < 0 on error.
1563 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1565 struct audit_aux_data_ipcctl *ax;
1566 struct audit_context *context = current->audit_context;
1568 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1569 if (!ax)
1570 return -ENOMEM;
1572 ax->qbytes = qbytes;
1573 ax->uid = uid;
1574 ax->gid = gid;
1575 ax->mode = mode;
1577 ax->d.type = AUDIT_IPC_SET_PERM;
1578 ax->d.next = context->aux;
1579 context->aux = (void *)ax;
1580 return 0;
1583 int audit_bprm(struct linux_binprm *bprm)
1585 struct audit_aux_data_execve *ax;
1586 struct audit_context *context = current->audit_context;
1587 unsigned long p, next;
1588 void *to;
1590 if (likely(!audit_enabled || !context))
1591 return 0;
1593 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1594 GFP_KERNEL);
1595 if (!ax)
1596 return -ENOMEM;
1598 ax->argc = bprm->argc;
1599 ax->envc = bprm->envc;
1600 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1601 struct page *page = bprm->page[p / PAGE_SIZE];
1602 void *kaddr = kmap(page);
1603 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1604 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1605 to += next - p;
1606 kunmap(page);
1609 ax->d.type = AUDIT_EXECVE;
1610 ax->d.next = context->aux;
1611 context->aux = (void *)ax;
1612 return 0;
1617 * audit_socketcall - record audit data for sys_socketcall
1618 * @nargs: number of args
1619 * @args: args array
1621 * Returns 0 for success or NULL context or < 0 on error.
1623 int audit_socketcall(int nargs, unsigned long *args)
1625 struct audit_aux_data_socketcall *ax;
1626 struct audit_context *context = current->audit_context;
1628 if (likely(!context))
1629 return 0;
1631 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1632 if (!ax)
1633 return -ENOMEM;
1635 ax->nargs = nargs;
1636 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1638 ax->d.type = AUDIT_SOCKETCALL;
1639 ax->d.next = context->aux;
1640 context->aux = (void *)ax;
1641 return 0;
1645 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1646 * @len: data length in user space
1647 * @a: data address in kernel space
1649 * Returns 0 for success or NULL context or < 0 on error.
1651 int audit_sockaddr(int len, void *a)
1653 struct audit_aux_data_sockaddr *ax;
1654 struct audit_context *context = current->audit_context;
1656 if (likely(!context))
1657 return 0;
1659 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1660 if (!ax)
1661 return -ENOMEM;
1663 ax->len = len;
1664 memcpy(ax->a, a, len);
1666 ax->d.type = AUDIT_SOCKADDR;
1667 ax->d.next = context->aux;
1668 context->aux = (void *)ax;
1669 return 0;
1673 * audit_avc_path - record the granting or denial of permissions
1674 * @dentry: dentry to record
1675 * @mnt: mnt to record
1677 * Returns 0 for success or NULL context or < 0 on error.
1679 * Called from security/selinux/avc.c::avc_audit()
1681 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1683 struct audit_aux_data_path *ax;
1684 struct audit_context *context = current->audit_context;
1686 if (likely(!context))
1687 return 0;
1689 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1690 if (!ax)
1691 return -ENOMEM;
1693 ax->dentry = dget(dentry);
1694 ax->mnt = mntget(mnt);
1696 ax->d.type = AUDIT_AVC_PATH;
1697 ax->d.next = context->aux;
1698 context->aux = (void *)ax;
1699 return 0;
1703 * audit_signal_info - record signal info for shutting down audit subsystem
1704 * @sig: signal value
1705 * @t: task being signaled
1707 * If the audit subsystem is being terminated, record the task (pid)
1708 * and uid that is doing that.
1710 void __audit_signal_info(int sig, struct task_struct *t)
1712 extern pid_t audit_sig_pid;
1713 extern uid_t audit_sig_uid;
1714 extern u32 audit_sig_sid;
1716 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1717 struct task_struct *tsk = current;
1718 struct audit_context *ctx = tsk->audit_context;
1719 audit_sig_pid = tsk->pid;
1720 if (ctx)
1721 audit_sig_uid = ctx->loginuid;
1722 else
1723 audit_sig_uid = tsk->uid;
1724 selinux_get_task_sid(tsk, &audit_sig_sid);