2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device
;
31 static cpumask_t tick_broadcast_mask
;
32 static DEFINE_SPINLOCK(tick_broadcast_lock
);
35 * Debugging: see timer_list.c
37 struct tick_device
*tick_get_broadcast_device(void)
39 return &tick_broadcast_device
;
42 cpumask_t
*tick_get_broadcast_mask(void)
44 return &tick_broadcast_mask
;
48 * Start the device in periodic mode
50 static void tick_broadcast_start_periodic(struct clock_event_device
*bc
)
52 if (bc
&& bc
->mode
== CLOCK_EVT_MODE_SHUTDOWN
)
53 tick_setup_periodic(bc
, 1);
57 * Check, if the device can be utilized as broadcast device:
59 int tick_check_broadcast_device(struct clock_event_device
*dev
)
61 if (tick_broadcast_device
.evtdev
||
62 (dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
65 clockevents_exchange_device(NULL
, dev
);
66 tick_broadcast_device
.evtdev
= dev
;
67 if (!cpus_empty(tick_broadcast_mask
))
68 tick_broadcast_start_periodic(dev
);
73 * Check, if the device is the broadcast device
75 int tick_is_broadcast_device(struct clock_event_device
*dev
)
77 return (dev
&& tick_broadcast_device
.evtdev
== dev
);
81 * Check, if the device is disfunctional and a place holder, which
82 * needs to be handled by the broadcast device.
84 int tick_device_uses_broadcast(struct clock_event_device
*dev
, int cpu
)
89 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
92 * Devices might be registered with both periodic and oneshot
93 * mode disabled. This signals, that the device needs to be
94 * operated from the broadcast device and is a placeholder for
95 * the cpu local device.
97 if (!tick_device_is_functional(dev
)) {
98 dev
->event_handler
= tick_handle_periodic
;
99 cpu_set(cpu
, tick_broadcast_mask
);
100 tick_broadcast_start_periodic(tick_broadcast_device
.evtdev
);
104 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
109 * Broadcast the event to the cpus, which are set in the mask
111 int tick_do_broadcast(cpumask_t mask
)
113 int ret
= 0, cpu
= smp_processor_id();
114 struct tick_device
*td
;
117 * Check, if the current cpu is in the mask
119 if (cpu_isset(cpu
, mask
)) {
120 cpu_clear(cpu
, mask
);
121 td
= &per_cpu(tick_cpu_device
, cpu
);
122 td
->evtdev
->event_handler(td
->evtdev
);
126 if (!cpus_empty(mask
)) {
128 * It might be necessary to actually check whether the devices
129 * have different broadcast functions. For now, just use the
130 * one of the first device. This works as long as we have this
131 * misfeature only on x86 (lapic)
133 cpu
= first_cpu(mask
);
134 td
= &per_cpu(tick_cpu_device
, cpu
);
135 td
->evtdev
->broadcast(mask
);
142 * Periodic broadcast:
143 * - invoke the broadcast handlers
145 static void tick_do_periodic_broadcast(void)
149 spin_lock(&tick_broadcast_lock
);
151 cpus_and(mask
, cpu_online_map
, tick_broadcast_mask
);
152 tick_do_broadcast(mask
);
154 spin_unlock(&tick_broadcast_lock
);
158 * Event handler for periodic broadcast ticks
160 static void tick_handle_periodic_broadcast(struct clock_event_device
*dev
)
162 dev
->next_event
.tv64
= KTIME_MAX
;
164 tick_do_periodic_broadcast();
167 * The device is in periodic mode. No reprogramming necessary:
169 if (dev
->mode
== CLOCK_EVT_MODE_PERIODIC
)
173 * Setup the next period for devices, which do not have
177 ktime_t next
= ktime_add(dev
->next_event
, tick_period
);
179 if (!clockevents_program_event(dev
, next
, ktime_get()))
181 tick_do_periodic_broadcast();
186 * Powerstate information: The system enters/leaves a state, where
187 * affected devices might stop
189 static void tick_do_broadcast_on_off(void *why
)
191 struct clock_event_device
*bc
, *dev
;
192 struct tick_device
*td
;
193 unsigned long flags
, *reason
= why
;
196 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
198 cpu
= smp_processor_id();
199 td
= &per_cpu(tick_cpu_device
, cpu
);
201 bc
= tick_broadcast_device
.evtdev
;
204 * Is the device in broadcast mode forever or is it not
205 * affected by the powerstate ?
207 if (!dev
|| !tick_device_is_functional(dev
) ||
208 !(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
211 if (*reason
== CLOCK_EVT_NOTIFY_BROADCAST_ON
) {
212 if (!cpu_isset(cpu
, tick_broadcast_mask
)) {
213 cpu_set(cpu
, tick_broadcast_mask
);
214 if (td
->mode
== TICKDEV_MODE_PERIODIC
)
215 clockevents_set_mode(dev
,
216 CLOCK_EVT_MODE_SHUTDOWN
);
219 if (cpu_isset(cpu
, tick_broadcast_mask
)) {
220 cpu_clear(cpu
, tick_broadcast_mask
);
221 if (td
->mode
== TICKDEV_MODE_PERIODIC
)
222 tick_setup_periodic(dev
, 0);
226 if (cpus_empty(tick_broadcast_mask
))
227 clockevents_set_mode(bc
, CLOCK_EVT_MODE_SHUTDOWN
);
229 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
230 tick_broadcast_start_periodic(bc
);
232 tick_broadcast_setup_oneshot(bc
);
235 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
239 * Powerstate information: The system enters/leaves a state, where
240 * affected devices might stop.
242 void tick_broadcast_on_off(unsigned long reason
, int *oncpu
)
247 tick_do_broadcast_on_off(&reason
);
249 smp_call_function_single(*oncpu
, tick_do_broadcast_on_off
,
255 * Set the periodic handler depending on broadcast on/off
257 void tick_set_periodic_handler(struct clock_event_device
*dev
, int broadcast
)
260 dev
->event_handler
= tick_handle_periodic
;
262 dev
->event_handler
= tick_handle_periodic_broadcast
;
266 * Remove a CPU from broadcasting
268 void tick_shutdown_broadcast(unsigned int *cpup
)
270 struct clock_event_device
*bc
;
272 unsigned int cpu
= *cpup
;
274 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
276 bc
= tick_broadcast_device
.evtdev
;
277 cpu_clear(cpu
, tick_broadcast_mask
);
279 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
) {
280 if (bc
&& cpus_empty(tick_broadcast_mask
))
281 clockevents_set_mode(bc
, CLOCK_EVT_MODE_SHUTDOWN
);
284 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
287 void tick_suspend_broadcast(void)
289 struct clock_event_device
*bc
;
292 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
294 bc
= tick_broadcast_device
.evtdev
;
295 if (bc
&& tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
296 clockevents_set_mode(bc
, CLOCK_EVT_MODE_SHUTDOWN
);
298 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
301 int tick_resume_broadcast(void)
303 struct clock_event_device
*bc
;
307 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
309 bc
= tick_broadcast_device
.evtdev
;
311 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
&&
312 !cpus_empty(tick_broadcast_mask
))
313 tick_broadcast_start_periodic(bc
);
315 broadcast
= cpu_isset(smp_processor_id(), tick_broadcast_mask
);
317 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
323 #ifdef CONFIG_TICK_ONESHOT
325 static cpumask_t tick_broadcast_oneshot_mask
;
328 * Debugging: see timer_list.c
330 cpumask_t
*tick_get_broadcast_oneshot_mask(void)
332 return &tick_broadcast_oneshot_mask
;
335 static int tick_broadcast_set_event(ktime_t expires
, int force
)
337 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
338 ktime_t now
= ktime_get();
342 res
= clockevents_program_event(bc
, expires
, now
);
346 expires
= ktime_add(now
, ktime_set(0, bc
->min_delta_ns
));
351 * Reprogram the broadcast device:
353 * Called with tick_broadcast_lock held and interrupts disabled.
355 static int tick_broadcast_reprogram(void)
357 ktime_t expires
= { .tv64
= KTIME_MAX
};
358 struct tick_device
*td
;
362 * Find the event which expires next:
364 for (cpu
= first_cpu(tick_broadcast_oneshot_mask
); cpu
!= NR_CPUS
;
365 cpu
= next_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
366 td
= &per_cpu(tick_cpu_device
, cpu
);
367 if (td
->evtdev
->next_event
.tv64
< expires
.tv64
)
368 expires
= td
->evtdev
->next_event
;
371 if (expires
.tv64
== KTIME_MAX
)
374 return tick_broadcast_set_event(expires
, 0);
378 * Handle oneshot mode broadcasting
380 static void tick_handle_oneshot_broadcast(struct clock_event_device
*dev
)
382 struct tick_device
*td
;
387 spin_lock(&tick_broadcast_lock
);
389 dev
->next_event
.tv64
= KTIME_MAX
;
390 mask
= CPU_MASK_NONE
;
392 /* Find all expired events */
393 for (cpu
= first_cpu(tick_broadcast_oneshot_mask
); cpu
!= NR_CPUS
;
394 cpu
= next_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
395 td
= &per_cpu(tick_cpu_device
, cpu
);
396 if (td
->evtdev
->next_event
.tv64
<= now
.tv64
)
401 * Wakeup the cpus which have an expired event. The broadcast
402 * device is reprogrammed in the return from idle code.
404 if (!tick_do_broadcast(mask
)) {
406 * The global event did not expire any CPU local
407 * events. This happens in dyntick mode, as the
408 * maximum PIT delta is quite small.
410 if (tick_broadcast_reprogram())
413 spin_unlock(&tick_broadcast_lock
);
417 * Powerstate information: The system enters/leaves a state, where
418 * affected devices might stop
420 void tick_broadcast_oneshot_control(unsigned long reason
)
422 struct clock_event_device
*bc
, *dev
;
423 struct tick_device
*td
;
427 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
430 * Periodic mode does not care about the enter/exit of power
433 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
436 bc
= tick_broadcast_device
.evtdev
;
437 cpu
= smp_processor_id();
438 td
= &per_cpu(tick_cpu_device
, cpu
);
441 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
444 if (reason
== CLOCK_EVT_NOTIFY_BROADCAST_ENTER
) {
445 if (!cpu_isset(cpu
, tick_broadcast_oneshot_mask
)) {
446 cpu_set(cpu
, tick_broadcast_oneshot_mask
);
447 clockevents_set_mode(dev
, CLOCK_EVT_MODE_SHUTDOWN
);
448 if (dev
->next_event
.tv64
< bc
->next_event
.tv64
)
449 tick_broadcast_set_event(dev
->next_event
, 1);
452 if (cpu_isset(cpu
, tick_broadcast_oneshot_mask
)) {
453 cpu_clear(cpu
, tick_broadcast_oneshot_mask
);
454 clockevents_set_mode(dev
, CLOCK_EVT_MODE_ONESHOT
);
455 if (dev
->next_event
.tv64
!= KTIME_MAX
)
456 tick_program_event(dev
->next_event
, 1);
461 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
465 * tick_broadcast_setup_highres - setup the broadcast device for highres
467 void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
)
469 if (bc
->mode
!= CLOCK_EVT_MODE_ONESHOT
) {
470 bc
->event_handler
= tick_handle_oneshot_broadcast
;
471 clockevents_set_mode(bc
, CLOCK_EVT_MODE_ONESHOT
);
472 bc
->next_event
.tv64
= KTIME_MAX
;
477 * Select oneshot operating mode for the broadcast device
479 void tick_broadcast_switch_to_oneshot(void)
481 struct clock_event_device
*bc
;
484 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
486 tick_broadcast_device
.mode
= TICKDEV_MODE_ONESHOT
;
487 bc
= tick_broadcast_device
.evtdev
;
489 tick_broadcast_setup_oneshot(bc
);
490 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
495 * Remove a dead CPU from broadcasting
497 void tick_shutdown_broadcast_oneshot(unsigned int *cpup
)
499 struct clock_event_device
*bc
;
501 unsigned int cpu
= *cpup
;
503 spin_lock_irqsave(&tick_broadcast_lock
, flags
);
505 bc
= tick_broadcast_device
.evtdev
;
506 cpu_clear(cpu
, tick_broadcast_oneshot_mask
);
508 if (tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
) {
509 if (bc
&& cpus_empty(tick_broadcast_oneshot_mask
))
510 clockevents_set_mode(bc
, CLOCK_EVT_MODE_SHUTDOWN
);
513 spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);