[NET] sunhme: Convert to new SBUS driver framework.
[linux-2.6/linux-mips.git] / drivers / net / sunhme.c
blobec51f397e1ed526ab8c00c0c6db0fa6b1c7b8fec
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 2006 David S. Miller (davem@davemloft.net)
8 * Changes :
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/in.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/ethtool.h>
29 #include <linux/mii.h>
30 #include <linux/crc32.h>
31 #include <linux/random.h>
32 #include <linux/errno.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/bitops.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>
41 #include <asm/byteorder.h>
43 #ifdef CONFIG_SPARC
44 #include <asm/idprom.h>
45 #include <asm/sbus.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
48 #include <asm/prom.h>
49 #include <asm/auxio.h>
50 #endif
51 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
54 #include <asm/irq.h>
56 #ifdef CONFIG_PCI
57 #include <linux/pci.h>
58 #ifdef CONFIG_SPARC
59 #include <asm/pbm.h>
60 #endif
61 #endif
63 #include "sunhme.h"
65 #define DRV_NAME "sunhme"
66 #define DRV_VERSION "3.00"
67 #define DRV_RELDATE "June 23, 2006"
68 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
70 static char version[] =
71 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
73 MODULE_VERSION(DRV_VERSION);
74 MODULE_AUTHOR(DRV_AUTHOR);
75 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
76 MODULE_LICENSE("GPL");
78 static int macaddr[6];
80 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
81 module_param_array(macaddr, int, NULL, 0);
82 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
84 #ifdef CONFIG_SBUS
85 static struct quattro *qfe_sbus_list;
86 #endif
88 #ifdef CONFIG_PCI
89 static struct quattro *qfe_pci_list;
90 #endif
92 #undef HMEDEBUG
93 #undef SXDEBUG
94 #undef RXDEBUG
95 #undef TXDEBUG
96 #undef TXLOGGING
98 #ifdef TXLOGGING
99 struct hme_tx_logent {
100 unsigned int tstamp;
101 int tx_new, tx_old;
102 unsigned int action;
103 #define TXLOG_ACTION_IRQ 0x01
104 #define TXLOG_ACTION_TXMIT 0x02
105 #define TXLOG_ACTION_TBUSY 0x04
106 #define TXLOG_ACTION_NBUFS 0x08
107 unsigned int status;
109 #define TX_LOG_LEN 128
110 static struct hme_tx_logent tx_log[TX_LOG_LEN];
111 static int txlog_cur_entry;
112 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
114 struct hme_tx_logent *tlp;
115 unsigned long flags;
117 save_and_cli(flags);
118 tlp = &tx_log[txlog_cur_entry];
119 tlp->tstamp = (unsigned int)jiffies;
120 tlp->tx_new = hp->tx_new;
121 tlp->tx_old = hp->tx_old;
122 tlp->action = a;
123 tlp->status = s;
124 txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
125 restore_flags(flags);
127 static __inline__ void tx_dump_log(void)
129 int i, this;
131 this = txlog_cur_entry;
132 for (i = 0; i < TX_LOG_LEN; i++) {
133 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
134 tx_log[this].tstamp,
135 tx_log[this].tx_new, tx_log[this].tx_old,
136 tx_log[this].action, tx_log[this].status);
137 this = (this + 1) & (TX_LOG_LEN - 1);
140 static __inline__ void tx_dump_ring(struct happy_meal *hp)
142 struct hmeal_init_block *hb = hp->happy_block;
143 struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
144 int i;
146 for (i = 0; i < TX_RING_SIZE; i+=4) {
147 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
148 i, i + 4,
149 le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
150 le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
151 le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
152 le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
155 #else
156 #define tx_add_log(hp, a, s) do { } while(0)
157 #define tx_dump_log() do { } while(0)
158 #define tx_dump_ring(hp) do { } while(0)
159 #endif
161 #ifdef HMEDEBUG
162 #define HMD(x) printk x
163 #else
164 #define HMD(x)
165 #endif
167 /* #define AUTO_SWITCH_DEBUG */
169 #ifdef AUTO_SWITCH_DEBUG
170 #define ASD(x) printk x
171 #else
172 #define ASD(x)
173 #endif
175 #define DEFAULT_IPG0 16 /* For lance-mode only */
176 #define DEFAULT_IPG1 8 /* For all modes */
177 #define DEFAULT_IPG2 4 /* For all modes */
178 #define DEFAULT_JAMSIZE 4 /* Toe jam */
180 /* NOTE: In the descriptor writes one _must_ write the address
181 * member _first_. The card must not be allowed to see
182 * the updated descriptor flags until the address is
183 * correct. I've added a write memory barrier between
184 * the two stores so that I can sleep well at night... -DaveM
187 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
188 static void sbus_hme_write32(void __iomem *reg, u32 val)
190 sbus_writel(val, reg);
193 static u32 sbus_hme_read32(void __iomem *reg)
195 return sbus_readl(reg);
198 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
200 rxd->rx_addr = addr;
201 wmb();
202 rxd->rx_flags = flags;
205 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
207 txd->tx_addr = addr;
208 wmb();
209 txd->tx_flags = flags;
212 static u32 sbus_hme_read_desc32(u32 *p)
214 return *p;
217 static void pci_hme_write32(void __iomem *reg, u32 val)
219 writel(val, reg);
222 static u32 pci_hme_read32(void __iomem *reg)
224 return readl(reg);
227 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
229 rxd->rx_addr = cpu_to_le32(addr);
230 wmb();
231 rxd->rx_flags = cpu_to_le32(flags);
234 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
236 txd->tx_addr = cpu_to_le32(addr);
237 wmb();
238 txd->tx_flags = cpu_to_le32(flags);
241 static u32 pci_hme_read_desc32(u32 *p)
243 return cpu_to_le32p(p);
246 #define hme_write32(__hp, __reg, __val) \
247 ((__hp)->write32((__reg), (__val)))
248 #define hme_read32(__hp, __reg) \
249 ((__hp)->read32(__reg))
250 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
251 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
252 #define hme_write_txd(__hp, __txd, __flags, __addr) \
253 ((__hp)->write_txd((__txd), (__flags), (__addr)))
254 #define hme_read_desc32(__hp, __p) \
255 ((__hp)->read_desc32(__p))
256 #define hme_dma_map(__hp, __ptr, __size, __dir) \
257 ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
258 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
259 ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
261 ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
262 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
263 ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
264 #else
265 #ifdef CONFIG_SBUS
266 /* SBUS only compilation */
267 #define hme_write32(__hp, __reg, __val) \
268 sbus_writel((__val), (__reg))
269 #define hme_read32(__hp, __reg) \
270 sbus_readl(__reg)
271 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
272 do { (__rxd)->rx_addr = (__addr); \
273 wmb(); \
274 (__rxd)->rx_flags = (__flags); \
275 } while(0)
276 #define hme_write_txd(__hp, __txd, __flags, __addr) \
277 do { (__txd)->tx_addr = (__addr); \
278 wmb(); \
279 (__txd)->tx_flags = (__flags); \
280 } while(0)
281 #define hme_read_desc32(__hp, __p) (*(__p))
282 #define hme_dma_map(__hp, __ptr, __size, __dir) \
283 sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
284 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
285 sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
287 sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
288 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
289 sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
290 #else
291 /* PCI only compilation */
292 #define hme_write32(__hp, __reg, __val) \
293 writel((__val), (__reg))
294 #define hme_read32(__hp, __reg) \
295 readl(__reg)
296 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
297 do { (__rxd)->rx_addr = cpu_to_le32(__addr); \
298 wmb(); \
299 (__rxd)->rx_flags = cpu_to_le32(__flags); \
300 } while(0)
301 #define hme_write_txd(__hp, __txd, __flags, __addr) \
302 do { (__txd)->tx_addr = cpu_to_le32(__addr); \
303 wmb(); \
304 (__txd)->tx_flags = cpu_to_le32(__flags); \
305 } while(0)
306 #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p)
307 #define hme_dma_map(__hp, __ptr, __size, __dir) \
308 pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
309 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
310 pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
311 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
312 pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
314 pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
315 #endif
316 #endif
319 #ifdef SBUS_DMA_BIDIRECTIONAL
320 # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL
321 #else
322 # define DMA_BIDIRECTIONAL 0
323 #endif
325 #ifdef SBUS_DMA_FROMDEVICE
326 # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE
327 #else
328 # define DMA_TODEVICE 1
329 #endif
331 #ifdef SBUS_DMA_TODEVICE
332 # define DMA_TODEVICE SBUS_DMA_TODEVICE
333 #else
334 # define DMA_FROMDEVICE 2
335 #endif
338 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
339 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
341 hme_write32(hp, tregs + TCVR_BBDATA, bit);
342 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
343 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
346 #if 0
347 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
349 u32 ret;
351 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
352 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
353 ret = hme_read32(hp, tregs + TCVR_CFG);
354 if (internal)
355 ret &= TCV_CFG_MDIO0;
356 else
357 ret &= TCV_CFG_MDIO1;
359 return ret;
361 #endif
363 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
365 u32 retval;
367 hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
368 udelay(1);
369 retval = hme_read32(hp, tregs + TCVR_CFG);
370 if (internal)
371 retval &= TCV_CFG_MDIO0;
372 else
373 retval &= TCV_CFG_MDIO1;
374 hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
376 return retval;
379 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
381 static int happy_meal_bb_read(struct happy_meal *hp,
382 void __iomem *tregs, int reg)
384 u32 tmp;
385 int retval = 0;
386 int i;
388 ASD(("happy_meal_bb_read: reg=%d ", reg));
390 /* Enable the MIF BitBang outputs. */
391 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
393 /* Force BitBang into the idle state. */
394 for (i = 0; i < 32; i++)
395 BB_PUT_BIT(hp, tregs, 1);
397 /* Give it the read sequence. */
398 BB_PUT_BIT(hp, tregs, 0);
399 BB_PUT_BIT(hp, tregs, 1);
400 BB_PUT_BIT(hp, tregs, 1);
401 BB_PUT_BIT(hp, tregs, 0);
403 /* Give it the PHY address. */
404 tmp = hp->paddr & 0xff;
405 for (i = 4; i >= 0; i--)
406 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
408 /* Tell it what register we want to read. */
409 tmp = (reg & 0xff);
410 for (i = 4; i >= 0; i--)
411 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
413 /* Close down the MIF BitBang outputs. */
414 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
416 /* Now read in the value. */
417 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
418 for (i = 15; i >= 0; i--)
419 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
421 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
422 (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
423 ASD(("value=%x\n", retval));
424 return retval;
427 static void happy_meal_bb_write(struct happy_meal *hp,
428 void __iomem *tregs, int reg,
429 unsigned short value)
431 u32 tmp;
432 int i;
434 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
436 /* Enable the MIF BitBang outputs. */
437 hme_write32(hp, tregs + TCVR_BBOENAB, 1);
439 /* Force BitBang into the idle state. */
440 for (i = 0; i < 32; i++)
441 BB_PUT_BIT(hp, tregs, 1);
443 /* Give it write sequence. */
444 BB_PUT_BIT(hp, tregs, 0);
445 BB_PUT_BIT(hp, tregs, 1);
446 BB_PUT_BIT(hp, tregs, 0);
447 BB_PUT_BIT(hp, tregs, 1);
449 /* Give it the PHY address. */
450 tmp = (hp->paddr & 0xff);
451 for (i = 4; i >= 0; i--)
452 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
454 /* Tell it what register we will be writing. */
455 tmp = (reg & 0xff);
456 for (i = 4; i >= 0; i--)
457 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
459 /* Tell it to become ready for the bits. */
460 BB_PUT_BIT(hp, tregs, 1);
461 BB_PUT_BIT(hp, tregs, 0);
463 for (i = 15; i >= 0; i--)
464 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
466 /* Close down the MIF BitBang outputs. */
467 hme_write32(hp, tregs + TCVR_BBOENAB, 0);
470 #define TCVR_READ_TRIES 16
472 static int happy_meal_tcvr_read(struct happy_meal *hp,
473 void __iomem *tregs, int reg)
475 int tries = TCVR_READ_TRIES;
476 int retval;
478 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
479 if (hp->tcvr_type == none) {
480 ASD(("no transceiver, value=TCVR_FAILURE\n"));
481 return TCVR_FAILURE;
484 if (!(hp->happy_flags & HFLAG_FENABLE)) {
485 ASD(("doing bit bang\n"));
486 return happy_meal_bb_read(hp, tregs, reg);
489 hme_write32(hp, tregs + TCVR_FRAME,
490 (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
491 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
492 udelay(20);
493 if (!tries) {
494 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
495 return TCVR_FAILURE;
497 retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
498 ASD(("value=%04x\n", retval));
499 return retval;
502 #define TCVR_WRITE_TRIES 16
504 static void happy_meal_tcvr_write(struct happy_meal *hp,
505 void __iomem *tregs, int reg,
506 unsigned short value)
508 int tries = TCVR_WRITE_TRIES;
510 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
512 /* Welcome to Sun Microsystems, can I take your order please? */
513 if (!(hp->happy_flags & HFLAG_FENABLE)) {
514 happy_meal_bb_write(hp, tregs, reg, value);
515 return;
518 /* Would you like fries with that? */
519 hme_write32(hp, tregs + TCVR_FRAME,
520 (FRAME_WRITE | (hp->paddr << 23) |
521 ((reg & 0xff) << 18) | (value & 0xffff)));
522 while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
523 udelay(20);
525 /* Anything else? */
526 if (!tries)
527 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
529 /* Fifty-two cents is your change, have a nice day. */
532 /* Auto negotiation. The scheme is very simple. We have a timer routine
533 * that keeps watching the auto negotiation process as it progresses.
534 * The DP83840 is first told to start doing it's thing, we set up the time
535 * and place the timer state machine in it's initial state.
537 * Here the timer peeks at the DP83840 status registers at each click to see
538 * if the auto negotiation has completed, we assume here that the DP83840 PHY
539 * will time out at some point and just tell us what (didn't) happen. For
540 * complete coverage we only allow so many of the ticks at this level to run,
541 * when this has expired we print a warning message and try another strategy.
542 * This "other" strategy is to force the interface into various speed/duplex
543 * configurations and we stop when we see a link-up condition before the
544 * maximum number of "peek" ticks have occurred.
546 * Once a valid link status has been detected we configure the BigMAC and
547 * the rest of the Happy Meal to speak the most efficient protocol we could
548 * get a clean link for. The priority for link configurations, highest first
549 * is:
550 * 100 Base-T Full Duplex
551 * 100 Base-T Half Duplex
552 * 10 Base-T Full Duplex
553 * 10 Base-T Half Duplex
555 * We start a new timer now, after a successful auto negotiation status has
556 * been detected. This timer just waits for the link-up bit to get set in
557 * the BMCR of the DP83840. When this occurs we print a kernel log message
558 * describing the link type in use and the fact that it is up.
560 * If a fatal error of some sort is signalled and detected in the interrupt
561 * service routine, and the chip is reset, or the link is ifconfig'd down
562 * and then back up, this entire process repeats itself all over again.
564 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
566 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
568 /* Downgrade from full to half duplex. Only possible
569 * via ethtool.
571 if (hp->sw_bmcr & BMCR_FULLDPLX) {
572 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
573 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
574 return 0;
577 /* Downgrade from 100 to 10. */
578 if (hp->sw_bmcr & BMCR_SPEED100) {
579 hp->sw_bmcr &= ~(BMCR_SPEED100);
580 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
581 return 0;
584 /* We've tried everything. */
585 return -1;
588 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
590 printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
591 if (hp->tcvr_type == external)
592 printk("external ");
593 else
594 printk("internal ");
595 printk("transceiver at ");
596 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
597 if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
598 if (hp->sw_lpa & LPA_100FULL)
599 printk("100Mb/s, Full Duplex.\n");
600 else
601 printk("100Mb/s, Half Duplex.\n");
602 } else {
603 if (hp->sw_lpa & LPA_10FULL)
604 printk("10Mb/s, Full Duplex.\n");
605 else
606 printk("10Mb/s, Half Duplex.\n");
610 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
612 printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
613 if (hp->tcvr_type == external)
614 printk("external ");
615 else
616 printk("internal ");
617 printk("transceiver at ");
618 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
619 if (hp->sw_bmcr & BMCR_SPEED100)
620 printk("100Mb/s, ");
621 else
622 printk("10Mb/s, ");
623 if (hp->sw_bmcr & BMCR_FULLDPLX)
624 printk("Full Duplex.\n");
625 else
626 printk("Half Duplex.\n");
629 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
631 int full;
633 /* All we care about is making sure the bigmac tx_cfg has a
634 * proper duplex setting.
636 if (hp->timer_state == arbwait) {
637 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
638 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
639 goto no_response;
640 if (hp->sw_lpa & LPA_100FULL)
641 full = 1;
642 else if (hp->sw_lpa & LPA_100HALF)
643 full = 0;
644 else if (hp->sw_lpa & LPA_10FULL)
645 full = 1;
646 else
647 full = 0;
648 } else {
649 /* Forcing a link mode. */
650 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
651 if (hp->sw_bmcr & BMCR_FULLDPLX)
652 full = 1;
653 else
654 full = 0;
657 /* Before changing other bits in the tx_cfg register, and in
658 * general any of other the TX config registers too, you
659 * must:
660 * 1) Clear Enable
661 * 2) Poll with reads until that bit reads back as zero
662 * 3) Make TX configuration changes
663 * 4) Set Enable once more
665 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
666 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
667 ~(BIGMAC_TXCFG_ENABLE));
668 while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
669 barrier();
670 if (full) {
671 hp->happy_flags |= HFLAG_FULL;
672 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
673 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
674 BIGMAC_TXCFG_FULLDPLX);
675 } else {
676 hp->happy_flags &= ~(HFLAG_FULL);
677 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
678 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
679 ~(BIGMAC_TXCFG_FULLDPLX));
681 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
682 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
683 BIGMAC_TXCFG_ENABLE);
684 return 0;
685 no_response:
686 return 1;
689 static int happy_meal_init(struct happy_meal *hp);
691 static int is_lucent_phy(struct happy_meal *hp)
693 void __iomem *tregs = hp->tcvregs;
694 unsigned short mr2, mr3;
695 int ret = 0;
697 mr2 = happy_meal_tcvr_read(hp, tregs, 2);
698 mr3 = happy_meal_tcvr_read(hp, tregs, 3);
699 if ((mr2 & 0xffff) == 0x0180 &&
700 ((mr3 & 0xffff) >> 10) == 0x1d)
701 ret = 1;
703 return ret;
706 static void happy_meal_timer(unsigned long data)
708 struct happy_meal *hp = (struct happy_meal *) data;
709 void __iomem *tregs = hp->tcvregs;
710 int restart_timer = 0;
712 spin_lock_irq(&hp->happy_lock);
714 hp->timer_ticks++;
715 switch(hp->timer_state) {
716 case arbwait:
717 /* Only allow for 5 ticks, thats 10 seconds and much too
718 * long to wait for arbitration to complete.
720 if (hp->timer_ticks >= 10) {
721 /* Enter force mode. */
722 do_force_mode:
723 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
724 printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
725 hp->dev->name);
726 hp->sw_bmcr = BMCR_SPEED100;
727 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
729 if (!is_lucent_phy(hp)) {
730 /* OK, seems we need do disable the transceiver for the first
731 * tick to make sure we get an accurate link state at the
732 * second tick.
734 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
735 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
736 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
738 hp->timer_state = ltrywait;
739 hp->timer_ticks = 0;
740 restart_timer = 1;
741 } else {
742 /* Anything interesting happen? */
743 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
744 if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
745 int ret;
747 /* Just what we've been waiting for... */
748 ret = set_happy_link_modes(hp, tregs);
749 if (ret) {
750 /* Ooops, something bad happened, go to force
751 * mode.
753 * XXX Broken hubs which don't support 802.3u
754 * XXX auto-negotiation make this happen as well.
756 goto do_force_mode;
759 /* Success, at least so far, advance our state engine. */
760 hp->timer_state = lupwait;
761 restart_timer = 1;
762 } else {
763 restart_timer = 1;
766 break;
768 case lupwait:
769 /* Auto negotiation was successful and we are awaiting a
770 * link up status. I have decided to let this timer run
771 * forever until some sort of error is signalled, reporting
772 * a message to the user at 10 second intervals.
774 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
775 if (hp->sw_bmsr & BMSR_LSTATUS) {
776 /* Wheee, it's up, display the link mode in use and put
777 * the timer to sleep.
779 display_link_mode(hp, tregs);
780 hp->timer_state = asleep;
781 restart_timer = 0;
782 } else {
783 if (hp->timer_ticks >= 10) {
784 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
785 "not completely up.\n", hp->dev->name);
786 hp->timer_ticks = 0;
787 restart_timer = 1;
788 } else {
789 restart_timer = 1;
792 break;
794 case ltrywait:
795 /* Making the timeout here too long can make it take
796 * annoyingly long to attempt all of the link mode
797 * permutations, but then again this is essentially
798 * error recovery code for the most part.
800 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
801 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
802 if (hp->timer_ticks == 1) {
803 if (!is_lucent_phy(hp)) {
804 /* Re-enable transceiver, we'll re-enable the transceiver next
805 * tick, then check link state on the following tick.
807 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
808 happy_meal_tcvr_write(hp, tregs,
809 DP83840_CSCONFIG, hp->sw_csconfig);
811 restart_timer = 1;
812 break;
814 if (hp->timer_ticks == 2) {
815 if (!is_lucent_phy(hp)) {
816 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
817 happy_meal_tcvr_write(hp, tregs,
818 DP83840_CSCONFIG, hp->sw_csconfig);
820 restart_timer = 1;
821 break;
823 if (hp->sw_bmsr & BMSR_LSTATUS) {
824 /* Force mode selection success. */
825 display_forced_link_mode(hp, tregs);
826 set_happy_link_modes(hp, tregs); /* XXX error? then what? */
827 hp->timer_state = asleep;
828 restart_timer = 0;
829 } else {
830 if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
831 int ret;
833 ret = try_next_permutation(hp, tregs);
834 if (ret == -1) {
835 /* Aieee, tried them all, reset the
836 * chip and try all over again.
839 /* Let the user know... */
840 printk(KERN_NOTICE "%s: Link down, cable problem?\n",
841 hp->dev->name);
843 ret = happy_meal_init(hp);
844 if (ret) {
845 /* ho hum... */
846 printk(KERN_ERR "%s: Error, cannot re-init the "
847 "Happy Meal.\n", hp->dev->name);
849 goto out;
851 if (!is_lucent_phy(hp)) {
852 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
853 DP83840_CSCONFIG);
854 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
855 happy_meal_tcvr_write(hp, tregs,
856 DP83840_CSCONFIG, hp->sw_csconfig);
858 hp->timer_ticks = 0;
859 restart_timer = 1;
860 } else {
861 restart_timer = 1;
864 break;
866 case asleep:
867 default:
868 /* Can't happens.... */
869 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
870 hp->dev->name);
871 restart_timer = 0;
872 hp->timer_ticks = 0;
873 hp->timer_state = asleep; /* foo on you */
874 break;
877 if (restart_timer) {
878 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
879 add_timer(&hp->happy_timer);
882 out:
883 spin_unlock_irq(&hp->happy_lock);
886 #define TX_RESET_TRIES 32
887 #define RX_RESET_TRIES 32
889 /* hp->happy_lock must be held */
890 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
892 int tries = TX_RESET_TRIES;
894 HMD(("happy_meal_tx_reset: reset, "));
896 /* Would you like to try our SMCC Delux? */
897 hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
898 while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
899 udelay(20);
901 /* Lettuce, tomato, buggy hardware (no extra charge)? */
902 if (!tries)
903 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
905 /* Take care. */
906 HMD(("done\n"));
909 /* hp->happy_lock must be held */
910 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
912 int tries = RX_RESET_TRIES;
914 HMD(("happy_meal_rx_reset: reset, "));
916 /* We have a special on GNU/Viking hardware bugs today. */
917 hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
918 while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
919 udelay(20);
921 /* Will that be all? */
922 if (!tries)
923 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
925 /* Don't forget your vik_1137125_wa. Have a nice day. */
926 HMD(("done\n"));
929 #define STOP_TRIES 16
931 /* hp->happy_lock must be held */
932 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
934 int tries = STOP_TRIES;
936 HMD(("happy_meal_stop: reset, "));
938 /* We're consolidating our STB products, it's your lucky day. */
939 hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
940 while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
941 udelay(20);
943 /* Come back next week when we are "Sun Microelectronics". */
944 if (!tries)
945 printk(KERN_ERR "happy meal: Fry guys.");
947 /* Remember: "Different name, same old buggy as shit hardware." */
948 HMD(("done\n"));
951 /* hp->happy_lock must be held */
952 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
954 struct net_device_stats *stats = &hp->net_stats;
956 stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
957 hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
959 stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
960 hme_write32(hp, bregs + BMAC_UNALECTR, 0);
962 stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
963 hme_write32(hp, bregs + BMAC_GLECTR, 0);
965 stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
967 stats->collisions +=
968 (hme_read32(hp, bregs + BMAC_EXCTR) +
969 hme_read32(hp, bregs + BMAC_LTCTR));
970 hme_write32(hp, bregs + BMAC_EXCTR, 0);
971 hme_write32(hp, bregs + BMAC_LTCTR, 0);
974 /* hp->happy_lock must be held */
975 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
977 ASD(("happy_meal_poll_stop: "));
979 /* If polling disabled or not polling already, nothing to do. */
980 if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
981 (HFLAG_POLLENABLE | HFLAG_POLL)) {
982 HMD(("not polling, return\n"));
983 return;
986 /* Shut up the MIF. */
987 ASD(("were polling, mif ints off, "));
988 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
990 /* Turn off polling. */
991 ASD(("polling off, "));
992 hme_write32(hp, tregs + TCVR_CFG,
993 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
995 /* We are no longer polling. */
996 hp->happy_flags &= ~(HFLAG_POLL);
998 /* Let the bits set. */
999 udelay(200);
1000 ASD(("done\n"));
1003 /* Only Sun can take such nice parts and fuck up the programming interface
1004 * like this. Good job guys...
1006 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
1007 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
1009 /* hp->happy_lock must be held */
1010 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1012 u32 tconfig;
1013 int result, tries = TCVR_RESET_TRIES;
1015 tconfig = hme_read32(hp, tregs + TCVR_CFG);
1016 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1017 if (hp->tcvr_type == external) {
1018 ASD(("external<"));
1019 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1020 hp->tcvr_type = internal;
1021 hp->paddr = TCV_PADDR_ITX;
1022 ASD(("ISOLATE,"));
1023 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1024 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1025 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1026 if (result == TCVR_FAILURE) {
1027 ASD(("phyread_fail>\n"));
1028 return -1;
1030 ASD(("phyread_ok,PSELECT>"));
1031 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1032 hp->tcvr_type = external;
1033 hp->paddr = TCV_PADDR_ETX;
1034 } else {
1035 if (tconfig & TCV_CFG_MDIO1) {
1036 ASD(("internal<PSELECT,"));
1037 hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1038 ASD(("ISOLATE,"));
1039 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1040 (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1041 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1042 if (result == TCVR_FAILURE) {
1043 ASD(("phyread_fail>\n"));
1044 return -1;
1046 ASD(("phyread_ok,~PSELECT>"));
1047 hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1048 hp->tcvr_type = internal;
1049 hp->paddr = TCV_PADDR_ITX;
1053 ASD(("BMCR_RESET "));
1054 happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1056 while (--tries) {
1057 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1058 if (result == TCVR_FAILURE)
1059 return -1;
1060 hp->sw_bmcr = result;
1061 if (!(result & BMCR_RESET))
1062 break;
1063 udelay(20);
1065 if (!tries) {
1066 ASD(("BMCR RESET FAILED!\n"));
1067 return -1;
1069 ASD(("RESET_OK\n"));
1071 /* Get fresh copies of the PHY registers. */
1072 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1073 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1074 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1075 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1077 ASD(("UNISOLATE"));
1078 hp->sw_bmcr &= ~(BMCR_ISOLATE);
1079 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1081 tries = TCVR_UNISOLATE_TRIES;
1082 while (--tries) {
1083 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1084 if (result == TCVR_FAILURE)
1085 return -1;
1086 if (!(result & BMCR_ISOLATE))
1087 break;
1088 udelay(20);
1090 if (!tries) {
1091 ASD((" FAILED!\n"));
1092 return -1;
1094 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1095 if (!is_lucent_phy(hp)) {
1096 result = happy_meal_tcvr_read(hp, tregs,
1097 DP83840_CSCONFIG);
1098 happy_meal_tcvr_write(hp, tregs,
1099 DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1101 return 0;
1104 /* Figure out whether we have an internal or external transceiver.
1106 * hp->happy_lock must be held
1108 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1110 unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1112 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1113 if (hp->happy_flags & HFLAG_POLL) {
1114 /* If we are polling, we must stop to get the transceiver type. */
1115 ASD(("<polling> "));
1116 if (hp->tcvr_type == internal) {
1117 if (tconfig & TCV_CFG_MDIO1) {
1118 ASD(("<internal> <poll stop> "));
1119 happy_meal_poll_stop(hp, tregs);
1120 hp->paddr = TCV_PADDR_ETX;
1121 hp->tcvr_type = external;
1122 ASD(("<external>\n"));
1123 tconfig &= ~(TCV_CFG_PENABLE);
1124 tconfig |= TCV_CFG_PSELECT;
1125 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1127 } else {
1128 if (hp->tcvr_type == external) {
1129 ASD(("<external> "));
1130 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1131 ASD(("<poll stop> "));
1132 happy_meal_poll_stop(hp, tregs);
1133 hp->paddr = TCV_PADDR_ITX;
1134 hp->tcvr_type = internal;
1135 ASD(("<internal>\n"));
1136 hme_write32(hp, tregs + TCVR_CFG,
1137 hme_read32(hp, tregs + TCVR_CFG) &
1138 ~(TCV_CFG_PSELECT));
1140 ASD(("\n"));
1141 } else {
1142 ASD(("<none>\n"));
1145 } else {
1146 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1148 /* Else we can just work off of the MDIO bits. */
1149 ASD(("<not polling> "));
1150 if (reread & TCV_CFG_MDIO1) {
1151 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1152 hp->paddr = TCV_PADDR_ETX;
1153 hp->tcvr_type = external;
1154 ASD(("<external>\n"));
1155 } else {
1156 if (reread & TCV_CFG_MDIO0) {
1157 hme_write32(hp, tregs + TCVR_CFG,
1158 tconfig & ~(TCV_CFG_PSELECT));
1159 hp->paddr = TCV_PADDR_ITX;
1160 hp->tcvr_type = internal;
1161 ASD(("<internal>\n"));
1162 } else {
1163 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1164 hp->tcvr_type = none; /* Grrr... */
1165 ASD(("<none>\n"));
1171 /* The receive ring buffers are a bit tricky to get right. Here goes...
1173 * The buffers we dma into must be 64 byte aligned. So we use a special
1174 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1175 * we really need.
1177 * We use skb_reserve() to align the data block we get in the skb. We
1178 * also program the etxregs->cfg register to use an offset of 2. This
1179 * imperical constant plus the ethernet header size will always leave
1180 * us with a nicely aligned ip header once we pass things up to the
1181 * protocol layers.
1183 * The numbers work out to:
1185 * Max ethernet frame size 1518
1186 * Ethernet header size 14
1187 * Happy Meal base offset 2
1189 * Say a skb data area is at 0xf001b010, and its size alloced is
1190 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1192 * First our alloc_skb() routine aligns the data base to a 64 byte
1193 * boundary. We now have 0xf001b040 as our skb data address. We
1194 * plug this into the receive descriptor address.
1196 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1197 * So now the data we will end up looking at starts at 0xf001b042. When
1198 * the packet arrives, we will check out the size received and subtract
1199 * this from the skb->length. Then we just pass the packet up to the
1200 * protocols as is, and allocate a new skb to replace this slot we have
1201 * just received from.
1203 * The ethernet layer will strip the ether header from the front of the
1204 * skb we just sent to it, this leaves us with the ip header sitting
1205 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1206 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1207 * bit checksum is obtained from the low bits of the receive descriptor
1208 * flags, thus:
1210 * skb->csum = rxd->rx_flags & 0xffff;
1211 * skb->ip_summed = CHECKSUM_HW;
1213 * before sending off the skb to the protocols, and we are good as gold.
1215 static void happy_meal_clean_rings(struct happy_meal *hp)
1217 int i;
1219 for (i = 0; i < RX_RING_SIZE; i++) {
1220 if (hp->rx_skbs[i] != NULL) {
1221 struct sk_buff *skb = hp->rx_skbs[i];
1222 struct happy_meal_rxd *rxd;
1223 u32 dma_addr;
1225 rxd = &hp->happy_block->happy_meal_rxd[i];
1226 dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1227 hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1228 dev_kfree_skb_any(skb);
1229 hp->rx_skbs[i] = NULL;
1233 for (i = 0; i < TX_RING_SIZE; i++) {
1234 if (hp->tx_skbs[i] != NULL) {
1235 struct sk_buff *skb = hp->tx_skbs[i];
1236 struct happy_meal_txd *txd;
1237 u32 dma_addr;
1238 int frag;
1240 hp->tx_skbs[i] = NULL;
1242 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1243 txd = &hp->happy_block->happy_meal_txd[i];
1244 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1245 hme_dma_unmap(hp, dma_addr,
1246 (hme_read_desc32(hp, &txd->tx_flags)
1247 & TXFLAG_SIZE),
1248 DMA_TODEVICE);
1250 if (frag != skb_shinfo(skb)->nr_frags)
1251 i++;
1254 dev_kfree_skb_any(skb);
1259 /* hp->happy_lock must be held */
1260 static void happy_meal_init_rings(struct happy_meal *hp)
1262 struct hmeal_init_block *hb = hp->happy_block;
1263 struct net_device *dev = hp->dev;
1264 int i;
1266 HMD(("happy_meal_init_rings: counters to zero, "));
1267 hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1269 /* Free any skippy bufs left around in the rings. */
1270 HMD(("clean, "));
1271 happy_meal_clean_rings(hp);
1273 /* Now get new skippy bufs for the receive ring. */
1274 HMD(("init rxring, "));
1275 for (i = 0; i < RX_RING_SIZE; i++) {
1276 struct sk_buff *skb;
1278 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1279 if (!skb) {
1280 hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281 continue;
1283 hp->rx_skbs[i] = skb;
1284 skb->dev = dev;
1286 /* Because we reserve afterwards. */
1287 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
1288 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1289 (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1290 hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1291 skb_reserve(skb, RX_OFFSET);
1294 HMD(("init txring, "));
1295 for (i = 0; i < TX_RING_SIZE; i++)
1296 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1298 HMD(("done\n"));
1301 /* hp->happy_lock must be held */
1302 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1303 void __iomem *tregs,
1304 struct ethtool_cmd *ep)
1306 int timeout;
1308 /* Read all of the registers we are interested in now. */
1309 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1310 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1311 hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1312 hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1314 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1316 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1317 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1318 /* Advertise everything we can support. */
1319 if (hp->sw_bmsr & BMSR_10HALF)
1320 hp->sw_advertise |= (ADVERTISE_10HALF);
1321 else
1322 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1324 if (hp->sw_bmsr & BMSR_10FULL)
1325 hp->sw_advertise |= (ADVERTISE_10FULL);
1326 else
1327 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1328 if (hp->sw_bmsr & BMSR_100HALF)
1329 hp->sw_advertise |= (ADVERTISE_100HALF);
1330 else
1331 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1332 if (hp->sw_bmsr & BMSR_100FULL)
1333 hp->sw_advertise |= (ADVERTISE_100FULL);
1334 else
1335 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1336 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1338 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1339 * XXX and this is because the DP83840 does not support it, changes
1340 * XXX would need to be made to the tx/rx logic in the driver as well
1341 * XXX so I completely skip checking for it in the BMSR for now.
1344 #ifdef AUTO_SWITCH_DEBUG
1345 ASD(("%s: Advertising [ ", hp->dev->name));
1346 if (hp->sw_advertise & ADVERTISE_10HALF)
1347 ASD(("10H "));
1348 if (hp->sw_advertise & ADVERTISE_10FULL)
1349 ASD(("10F "));
1350 if (hp->sw_advertise & ADVERTISE_100HALF)
1351 ASD(("100H "));
1352 if (hp->sw_advertise & ADVERTISE_100FULL)
1353 ASD(("100F "));
1354 #endif
1356 /* Enable Auto-Negotiation, this is usually on already... */
1357 hp->sw_bmcr |= BMCR_ANENABLE;
1358 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1360 /* Restart it to make sure it is going. */
1361 hp->sw_bmcr |= BMCR_ANRESTART;
1362 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1364 /* BMCR_ANRESTART self clears when the process has begun. */
1366 timeout = 64; /* More than enough. */
1367 while (--timeout) {
1368 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1369 if (!(hp->sw_bmcr & BMCR_ANRESTART))
1370 break; /* got it. */
1371 udelay(10);
1373 if (!timeout) {
1374 printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1375 "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1376 printk(KERN_NOTICE "%s: Performing force link detection.\n",
1377 hp->dev->name);
1378 goto force_link;
1379 } else {
1380 hp->timer_state = arbwait;
1382 } else {
1383 force_link:
1384 /* Force the link up, trying first a particular mode.
1385 * Either we are here at the request of ethtool or
1386 * because the Happy Meal would not start to autoneg.
1389 /* Disable auto-negotiation in BMCR, enable the duplex and
1390 * speed setting, init the timer state machine, and fire it off.
1392 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1393 hp->sw_bmcr = BMCR_SPEED100;
1394 } else {
1395 if (ep->speed == SPEED_100)
1396 hp->sw_bmcr = BMCR_SPEED100;
1397 else
1398 hp->sw_bmcr = 0;
1399 if (ep->duplex == DUPLEX_FULL)
1400 hp->sw_bmcr |= BMCR_FULLDPLX;
1402 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1404 if (!is_lucent_phy(hp)) {
1405 /* OK, seems we need do disable the transceiver for the first
1406 * tick to make sure we get an accurate link state at the
1407 * second tick.
1409 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1410 DP83840_CSCONFIG);
1411 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1412 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1413 hp->sw_csconfig);
1415 hp->timer_state = ltrywait;
1418 hp->timer_ticks = 0;
1419 hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
1420 hp->happy_timer.data = (unsigned long) hp;
1421 hp->happy_timer.function = &happy_meal_timer;
1422 add_timer(&hp->happy_timer);
1425 /* hp->happy_lock must be held */
1426 static int happy_meal_init(struct happy_meal *hp)
1428 void __iomem *gregs = hp->gregs;
1429 void __iomem *etxregs = hp->etxregs;
1430 void __iomem *erxregs = hp->erxregs;
1431 void __iomem *bregs = hp->bigmacregs;
1432 void __iomem *tregs = hp->tcvregs;
1433 u32 regtmp, rxcfg;
1434 unsigned char *e = &hp->dev->dev_addr[0];
1436 /* If auto-negotiation timer is running, kill it. */
1437 del_timer(&hp->happy_timer);
1439 HMD(("happy_meal_init: happy_flags[%08x] ",
1440 hp->happy_flags));
1441 if (!(hp->happy_flags & HFLAG_INIT)) {
1442 HMD(("set HFLAG_INIT, "));
1443 hp->happy_flags |= HFLAG_INIT;
1444 happy_meal_get_counters(hp, bregs);
1447 /* Stop polling. */
1448 HMD(("to happy_meal_poll_stop\n"));
1449 happy_meal_poll_stop(hp, tregs);
1451 /* Stop transmitter and receiver. */
1452 HMD(("happy_meal_init: to happy_meal_stop\n"));
1453 happy_meal_stop(hp, gregs);
1455 /* Alloc and reset the tx/rx descriptor chains. */
1456 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1457 happy_meal_init_rings(hp);
1459 /* Shut up the MIF. */
1460 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1461 hme_read32(hp, tregs + TCVR_IMASK)));
1462 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1464 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1465 if (hp->happy_flags & HFLAG_FENABLE) {
1466 HMD(("use frame old[%08x], ",
1467 hme_read32(hp, tregs + TCVR_CFG)));
1468 hme_write32(hp, tregs + TCVR_CFG,
1469 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1470 } else {
1471 HMD(("use bitbang old[%08x], ",
1472 hme_read32(hp, tregs + TCVR_CFG)));
1473 hme_write32(hp, tregs + TCVR_CFG,
1474 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1477 /* Check the state of the transceiver. */
1478 HMD(("to happy_meal_transceiver_check\n"));
1479 happy_meal_transceiver_check(hp, tregs);
1481 /* Put the Big Mac into a sane state. */
1482 HMD(("happy_meal_init: "));
1483 switch(hp->tcvr_type) {
1484 case none:
1485 /* Cannot operate if we don't know the transceiver type! */
1486 HMD(("AAIEEE no transceiver type, EAGAIN"));
1487 return -EAGAIN;
1489 case internal:
1490 /* Using the MII buffers. */
1491 HMD(("internal, using MII, "));
1492 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1493 break;
1495 case external:
1496 /* Not using the MII, disable it. */
1497 HMD(("external, disable MII, "));
1498 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1499 break;
1502 if (happy_meal_tcvr_reset(hp, tregs))
1503 return -EAGAIN;
1505 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1506 HMD(("tx/rx reset, "));
1507 happy_meal_tx_reset(hp, bregs);
1508 happy_meal_rx_reset(hp, bregs);
1510 /* Set jam size and inter-packet gaps to reasonable defaults. */
1511 HMD(("jsize/ipg1/ipg2, "));
1512 hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1513 hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1514 hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1516 /* Load up the MAC address and random seed. */
1517 HMD(("rseed/macaddr, "));
1519 /* The docs recommend to use the 10LSB of our MAC here. */
1520 hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1522 hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1523 hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1524 hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1526 HMD(("htable, "));
1527 if ((hp->dev->flags & IFF_ALLMULTI) ||
1528 (hp->dev->mc_count > 64)) {
1529 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1530 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1531 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1532 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1533 } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1534 u16 hash_table[4];
1535 struct dev_mc_list *dmi = hp->dev->mc_list;
1536 char *addrs;
1537 int i;
1538 u32 crc;
1540 for (i = 0; i < 4; i++)
1541 hash_table[i] = 0;
1543 for (i = 0; i < hp->dev->mc_count; i++) {
1544 addrs = dmi->dmi_addr;
1545 dmi = dmi->next;
1547 if (!(*addrs & 1))
1548 continue;
1550 crc = ether_crc_le(6, addrs);
1551 crc >>= 26;
1552 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1554 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1555 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1556 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1557 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1558 } else {
1559 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1560 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1561 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1562 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1565 /* Set the RX and TX ring ptrs. */
1566 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1567 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1568 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1569 hme_write32(hp, erxregs + ERX_RING,
1570 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1571 hme_write32(hp, etxregs + ETX_RING,
1572 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1574 /* Parity issues in the ERX unit of some HME revisions can cause some
1575 * registers to not be written unless their parity is even. Detect such
1576 * lost writes and simply rewrite with a low bit set (which will be ignored
1577 * since the rxring needs to be 2K aligned).
1579 if (hme_read32(hp, erxregs + ERX_RING) !=
1580 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1581 hme_write32(hp, erxregs + ERX_RING,
1582 ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1583 | 0x4);
1585 /* Set the supported burst sizes. */
1586 HMD(("happy_meal_init: old[%08x] bursts<",
1587 hme_read32(hp, gregs + GREG_CFG)));
1589 #ifndef CONFIG_SPARC
1590 /* It is always PCI and can handle 64byte bursts. */
1591 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1592 #else
1593 if ((hp->happy_bursts & DMA_BURST64) &&
1594 ((hp->happy_flags & HFLAG_PCI) != 0
1595 #ifdef CONFIG_SBUS
1596 || sbus_can_burst64(hp->happy_dev)
1597 #endif
1598 || 0)) {
1599 u32 gcfg = GREG_CFG_BURST64;
1601 /* I have no idea if I should set the extended
1602 * transfer mode bit for Cheerio, so for now I
1603 * do not. -DaveM
1605 #ifdef CONFIG_SBUS
1606 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1607 sbus_can_dma_64bit(hp->happy_dev)) {
1608 sbus_set_sbus64(hp->happy_dev,
1609 hp->happy_bursts);
1610 gcfg |= GREG_CFG_64BIT;
1612 #endif
1614 HMD(("64>"));
1615 hme_write32(hp, gregs + GREG_CFG, gcfg);
1616 } else if (hp->happy_bursts & DMA_BURST32) {
1617 HMD(("32>"));
1618 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1619 } else if (hp->happy_bursts & DMA_BURST16) {
1620 HMD(("16>"));
1621 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1622 } else {
1623 HMD(("XXX>"));
1624 hme_write32(hp, gregs + GREG_CFG, 0);
1626 #endif /* CONFIG_SPARC */
1628 /* Turn off interrupts we do not want to hear. */
1629 HMD((", enable global interrupts, "));
1630 hme_write32(hp, gregs + GREG_IMASK,
1631 (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1632 GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1634 /* Set the transmit ring buffer size. */
1635 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1636 hme_read32(hp, etxregs + ETX_RSIZE)));
1637 hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1639 /* Enable transmitter DVMA. */
1640 HMD(("tx dma enable old[%08x], ",
1641 hme_read32(hp, etxregs + ETX_CFG)));
1642 hme_write32(hp, etxregs + ETX_CFG,
1643 hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1645 /* This chip really rots, for the receiver sometimes when you
1646 * write to its control registers not all the bits get there
1647 * properly. I cannot think of a sane way to provide complete
1648 * coverage for this hardware bug yet.
1650 HMD(("erx regs bug old[%08x]\n",
1651 hme_read32(hp, erxregs + ERX_CFG)));
1652 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1653 regtmp = hme_read32(hp, erxregs + ERX_CFG);
1654 hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1655 if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1656 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1657 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1658 ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1659 /* XXX Should return failure here... */
1662 /* Enable Big Mac hash table filter. */
1663 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1664 hme_read32(hp, bregs + BMAC_RXCFG)));
1665 rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1666 if (hp->dev->flags & IFF_PROMISC)
1667 rxcfg |= BIGMAC_RXCFG_PMISC;
1668 hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1670 /* Let the bits settle in the chip. */
1671 udelay(10);
1673 /* Ok, configure the Big Mac transmitter. */
1674 HMD(("BIGMAC init, "));
1675 regtmp = 0;
1676 if (hp->happy_flags & HFLAG_FULL)
1677 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1679 /* Don't turn on the "don't give up" bit for now. It could cause hme
1680 * to deadlock with the PHY if a Jabber occurs.
1682 hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1684 /* Give up after 16 TX attempts. */
1685 hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1687 /* Enable the output drivers no matter what. */
1688 regtmp = BIGMAC_XCFG_ODENABLE;
1690 /* If card can do lance mode, enable it. */
1691 if (hp->happy_flags & HFLAG_LANCE)
1692 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1694 /* Disable the MII buffers if using external transceiver. */
1695 if (hp->tcvr_type == external)
1696 regtmp |= BIGMAC_XCFG_MIIDISAB;
1698 HMD(("XIF config old[%08x], ",
1699 hme_read32(hp, bregs + BMAC_XIFCFG)));
1700 hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1702 /* Start things up. */
1703 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1704 hme_read32(hp, bregs + BMAC_TXCFG),
1705 hme_read32(hp, bregs + BMAC_RXCFG)));
1706 hme_write32(hp, bregs + BMAC_TXCFG,
1707 hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1708 hme_write32(hp, bregs + BMAC_RXCFG,
1709 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1711 /* Get the autonegotiation started, and the watch timer ticking. */
1712 happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1714 /* Success. */
1715 return 0;
1718 /* hp->happy_lock must be held */
1719 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1721 void __iomem *tregs = hp->tcvregs;
1722 void __iomem *bregs = hp->bigmacregs;
1723 void __iomem *gregs = hp->gregs;
1725 happy_meal_stop(hp, gregs);
1726 hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1727 if (hp->happy_flags & HFLAG_FENABLE)
1728 hme_write32(hp, tregs + TCVR_CFG,
1729 hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1730 else
1731 hme_write32(hp, tregs + TCVR_CFG,
1732 hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1733 happy_meal_transceiver_check(hp, tregs);
1734 switch(hp->tcvr_type) {
1735 case none:
1736 return;
1737 case internal:
1738 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1739 break;
1740 case external:
1741 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1742 break;
1744 if (happy_meal_tcvr_reset(hp, tregs))
1745 return;
1747 /* Latch PHY registers as of now. */
1748 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1749 hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1751 /* Advertise everything we can support. */
1752 if (hp->sw_bmsr & BMSR_10HALF)
1753 hp->sw_advertise |= (ADVERTISE_10HALF);
1754 else
1755 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1757 if (hp->sw_bmsr & BMSR_10FULL)
1758 hp->sw_advertise |= (ADVERTISE_10FULL);
1759 else
1760 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1761 if (hp->sw_bmsr & BMSR_100HALF)
1762 hp->sw_advertise |= (ADVERTISE_100HALF);
1763 else
1764 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1765 if (hp->sw_bmsr & BMSR_100FULL)
1766 hp->sw_advertise |= (ADVERTISE_100FULL);
1767 else
1768 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1770 /* Update the PHY advertisement register. */
1771 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1774 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1775 * the hardware, so we cannot re-read it and get a correct value.
1777 * hp->happy_lock must be held
1779 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1781 int reset = 0;
1783 /* Only print messages for non-counter related interrupts. */
1784 if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1785 GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1786 GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1787 GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1788 GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1789 GREG_STAT_SLVPERR))
1790 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1791 hp->dev->name, status);
1793 if (status & GREG_STAT_RFIFOVF) {
1794 /* Receive FIFO overflow is harmless and the hardware will take
1795 care of it, just some packets are lost. Who cares. */
1796 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1799 if (status & GREG_STAT_STSTERR) {
1800 /* BigMAC SQE link test failed. */
1801 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1802 reset = 1;
1805 if (status & GREG_STAT_TFIFO_UND) {
1806 /* Transmit FIFO underrun, again DMA error likely. */
1807 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1808 hp->dev->name);
1809 reset = 1;
1812 if (status & GREG_STAT_MAXPKTERR) {
1813 /* Driver error, tried to transmit something larger
1814 * than ethernet max mtu.
1816 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1817 reset = 1;
1820 if (status & GREG_STAT_NORXD) {
1821 /* This is harmless, it just means the system is
1822 * quite loaded and the incoming packet rate was
1823 * faster than the interrupt handler could keep up
1824 * with.
1826 printk(KERN_INFO "%s: Happy Meal out of receive "
1827 "descriptors, packet dropped.\n",
1828 hp->dev->name);
1831 if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1832 /* All sorts of DMA receive errors. */
1833 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1834 if (status & GREG_STAT_RXERR)
1835 printk("GenericError ");
1836 if (status & GREG_STAT_RXPERR)
1837 printk("ParityError ");
1838 if (status & GREG_STAT_RXTERR)
1839 printk("RxTagBotch ");
1840 printk("]\n");
1841 reset = 1;
1844 if (status & GREG_STAT_EOPERR) {
1845 /* Driver bug, didn't set EOP bit in tx descriptor given
1846 * to the happy meal.
1848 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1849 hp->dev->name);
1850 reset = 1;
1853 if (status & GREG_STAT_MIFIRQ) {
1854 /* MIF signalled an interrupt, were we polling it? */
1855 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1858 if (status &
1859 (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1860 /* All sorts of transmit DMA errors. */
1861 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1862 if (status & GREG_STAT_TXEACK)
1863 printk("GenericError ");
1864 if (status & GREG_STAT_TXLERR)
1865 printk("LateError ");
1866 if (status & GREG_STAT_TXPERR)
1867 printk("ParityErro ");
1868 if (status & GREG_STAT_TXTERR)
1869 printk("TagBotch ");
1870 printk("]\n");
1871 reset = 1;
1874 if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1875 /* Bus or parity error when cpu accessed happy meal registers
1876 * or it's internal FIFO's. Should never see this.
1878 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1879 hp->dev->name,
1880 (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1881 reset = 1;
1884 if (reset) {
1885 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1886 happy_meal_init(hp);
1887 return 1;
1889 return 0;
1892 /* hp->happy_lock must be held */
1893 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1895 void __iomem *tregs = hp->tcvregs;
1897 printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1898 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1899 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1901 /* Use the fastest transmission protocol possible. */
1902 if (hp->sw_lpa & LPA_100FULL) {
1903 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1904 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1905 } else if (hp->sw_lpa & LPA_100HALF) {
1906 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1907 hp->sw_bmcr |= BMCR_SPEED100;
1908 } else if (hp->sw_lpa & LPA_10FULL) {
1909 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1910 hp->sw_bmcr |= BMCR_FULLDPLX;
1911 } else {
1912 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1914 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1916 /* Finally stop polling and shut up the MIF. */
1917 happy_meal_poll_stop(hp, tregs);
1920 #ifdef TXDEBUG
1921 #define TXD(x) printk x
1922 #else
1923 #define TXD(x)
1924 #endif
1926 /* hp->happy_lock must be held */
1927 static void happy_meal_tx(struct happy_meal *hp)
1929 struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1930 struct happy_meal_txd *this;
1931 struct net_device *dev = hp->dev;
1932 int elem;
1934 elem = hp->tx_old;
1935 TXD(("TX<"));
1936 while (elem != hp->tx_new) {
1937 struct sk_buff *skb;
1938 u32 flags, dma_addr, dma_len;
1939 int frag;
1941 TXD(("[%d]", elem));
1942 this = &txbase[elem];
1943 flags = hme_read_desc32(hp, &this->tx_flags);
1944 if (flags & TXFLAG_OWN)
1945 break;
1946 skb = hp->tx_skbs[elem];
1947 if (skb_shinfo(skb)->nr_frags) {
1948 int last;
1950 last = elem + skb_shinfo(skb)->nr_frags;
1951 last &= (TX_RING_SIZE - 1);
1952 flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1953 if (flags & TXFLAG_OWN)
1954 break;
1956 hp->tx_skbs[elem] = NULL;
1957 hp->net_stats.tx_bytes += skb->len;
1959 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1960 dma_addr = hme_read_desc32(hp, &this->tx_addr);
1961 dma_len = hme_read_desc32(hp, &this->tx_flags);
1963 dma_len &= TXFLAG_SIZE;
1964 hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1966 elem = NEXT_TX(elem);
1967 this = &txbase[elem];
1970 dev_kfree_skb_irq(skb);
1971 hp->net_stats.tx_packets++;
1973 hp->tx_old = elem;
1974 TXD((">"));
1976 if (netif_queue_stopped(dev) &&
1977 TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1978 netif_wake_queue(dev);
1981 #ifdef RXDEBUG
1982 #define RXD(x) printk x
1983 #else
1984 #define RXD(x)
1985 #endif
1987 /* Originally I used to handle the allocation failure by just giving back just
1988 * that one ring buffer to the happy meal. Problem is that usually when that
1989 * condition is triggered, the happy meal expects you to do something reasonable
1990 * with all of the packets it has DMA'd in. So now I just drop the entire
1991 * ring when we cannot get a new skb and give them all back to the happy meal,
1992 * maybe things will be "happier" now.
1994 * hp->happy_lock must be held
1996 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1998 struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1999 struct happy_meal_rxd *this;
2000 int elem = hp->rx_new, drops = 0;
2001 u32 flags;
2003 RXD(("RX<"));
2004 this = &rxbase[elem];
2005 while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2006 struct sk_buff *skb;
2007 int len = flags >> 16;
2008 u16 csum = flags & RXFLAG_CSUM;
2009 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2011 RXD(("[%d ", elem));
2013 /* Check for errors. */
2014 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2015 RXD(("ERR(%08x)]", flags));
2016 hp->net_stats.rx_errors++;
2017 if (len < ETH_ZLEN)
2018 hp->net_stats.rx_length_errors++;
2019 if (len & (RXFLAG_OVERFLOW >> 16)) {
2020 hp->net_stats.rx_over_errors++;
2021 hp->net_stats.rx_fifo_errors++;
2024 /* Return it to the Happy meal. */
2025 drop_it:
2026 hp->net_stats.rx_dropped++;
2027 hme_write_rxd(hp, this,
2028 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2029 dma_addr);
2030 goto next;
2032 skb = hp->rx_skbs[elem];
2033 if (len > RX_COPY_THRESHOLD) {
2034 struct sk_buff *new_skb;
2036 /* Now refill the entry, if we can. */
2037 new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2038 if (new_skb == NULL) {
2039 drops++;
2040 goto drop_it;
2042 hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2043 hp->rx_skbs[elem] = new_skb;
2044 new_skb->dev = dev;
2045 skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
2046 hme_write_rxd(hp, this,
2047 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2048 hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2049 skb_reserve(new_skb, RX_OFFSET);
2051 /* Trim the original skb for the netif. */
2052 skb_trim(skb, len);
2053 } else {
2054 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2056 if (copy_skb == NULL) {
2057 drops++;
2058 goto drop_it;
2061 copy_skb->dev = dev;
2062 skb_reserve(copy_skb, 2);
2063 skb_put(copy_skb, len);
2064 hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2065 memcpy(copy_skb->data, skb->data, len);
2066 hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2068 /* Reuse original ring buffer. */
2069 hme_write_rxd(hp, this,
2070 (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2071 dma_addr);
2073 skb = copy_skb;
2076 /* This card is _fucking_ hot... */
2077 skb->csum = ntohs(csum ^ 0xffff);
2078 skb->ip_summed = CHECKSUM_HW;
2080 RXD(("len=%d csum=%4x]", len, csum));
2081 skb->protocol = eth_type_trans(skb, dev);
2082 netif_rx(skb);
2084 dev->last_rx = jiffies;
2085 hp->net_stats.rx_packets++;
2086 hp->net_stats.rx_bytes += len;
2087 next:
2088 elem = NEXT_RX(elem);
2089 this = &rxbase[elem];
2091 hp->rx_new = elem;
2092 if (drops)
2093 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2094 RXD((">"));
2097 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2099 struct net_device *dev = (struct net_device *) dev_id;
2100 struct happy_meal *hp = dev->priv;
2101 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2103 HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105 spin_lock(&hp->happy_lock);
2107 if (happy_status & GREG_STAT_ERRORS) {
2108 HMD(("ERRORS "));
2109 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2110 goto out;
2113 if (happy_status & GREG_STAT_MIFIRQ) {
2114 HMD(("MIFIRQ "));
2115 happy_meal_mif_interrupt(hp);
2118 if (happy_status & GREG_STAT_TXALL) {
2119 HMD(("TXALL "));
2120 happy_meal_tx(hp);
2123 if (happy_status & GREG_STAT_RXTOHOST) {
2124 HMD(("RXTOHOST "));
2125 happy_meal_rx(hp, dev);
2128 HMD(("done\n"));
2129 out:
2130 spin_unlock(&hp->happy_lock);
2132 return IRQ_HANDLED;
2135 #ifdef CONFIG_SBUS
2136 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie, struct pt_regs *ptregs)
2138 struct quattro *qp = (struct quattro *) cookie;
2139 int i;
2141 for (i = 0; i < 4; i++) {
2142 struct net_device *dev = qp->happy_meals[i];
2143 struct happy_meal *hp = dev->priv;
2144 u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT);
2146 HMD(("quattro_interrupt: status=%08x ", happy_status));
2148 if (!(happy_status & (GREG_STAT_ERRORS |
2149 GREG_STAT_MIFIRQ |
2150 GREG_STAT_TXALL |
2151 GREG_STAT_RXTOHOST)))
2152 continue;
2154 spin_lock(&hp->happy_lock);
2156 if (happy_status & GREG_STAT_ERRORS) {
2157 HMD(("ERRORS "));
2158 if (happy_meal_is_not_so_happy(hp, happy_status))
2159 goto next;
2162 if (happy_status & GREG_STAT_MIFIRQ) {
2163 HMD(("MIFIRQ "));
2164 happy_meal_mif_interrupt(hp);
2167 if (happy_status & GREG_STAT_TXALL) {
2168 HMD(("TXALL "));
2169 happy_meal_tx(hp);
2172 if (happy_status & GREG_STAT_RXTOHOST) {
2173 HMD(("RXTOHOST "));
2174 happy_meal_rx(hp, dev);
2177 next:
2178 spin_unlock(&hp->happy_lock);
2180 HMD(("done\n"));
2182 return IRQ_HANDLED;
2184 #endif
2186 static int happy_meal_open(struct net_device *dev)
2188 struct happy_meal *hp = dev->priv;
2189 int res;
2191 HMD(("happy_meal_open: "));
2193 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2194 * into a single source which we register handling at probe time.
2196 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2197 if (request_irq(dev->irq, &happy_meal_interrupt,
2198 SA_SHIRQ, dev->name, (void *)dev)) {
2199 HMD(("EAGAIN\n"));
2200 printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2201 dev->irq);
2203 return -EAGAIN;
2207 HMD(("to happy_meal_init\n"));
2209 spin_lock_irq(&hp->happy_lock);
2210 res = happy_meal_init(hp);
2211 spin_unlock_irq(&hp->happy_lock);
2213 if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2214 free_irq(dev->irq, dev);
2215 return res;
2218 static int happy_meal_close(struct net_device *dev)
2220 struct happy_meal *hp = dev->priv;
2222 spin_lock_irq(&hp->happy_lock);
2223 happy_meal_stop(hp, hp->gregs);
2224 happy_meal_clean_rings(hp);
2226 /* If auto-negotiation timer is running, kill it. */
2227 del_timer(&hp->happy_timer);
2229 spin_unlock_irq(&hp->happy_lock);
2231 /* On Quattro QFE cards, all hme interrupts are concentrated
2232 * into a single source which we register handling at probe
2233 * time and never unregister.
2235 if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2236 free_irq(dev->irq, dev);
2238 return 0;
2241 #ifdef SXDEBUG
2242 #define SXD(x) printk x
2243 #else
2244 #define SXD(x)
2245 #endif
2247 static void happy_meal_tx_timeout(struct net_device *dev)
2249 struct happy_meal *hp = dev->priv;
2251 printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2252 tx_dump_log();
2253 printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2254 hme_read32(hp, hp->gregs + GREG_STAT),
2255 hme_read32(hp, hp->etxregs + ETX_CFG),
2256 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2258 spin_lock_irq(&hp->happy_lock);
2259 happy_meal_init(hp);
2260 spin_unlock_irq(&hp->happy_lock);
2262 netif_wake_queue(dev);
2265 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2267 struct happy_meal *hp = dev->priv;
2268 int entry;
2269 u32 tx_flags;
2271 tx_flags = TXFLAG_OWN;
2272 if (skb->ip_summed == CHECKSUM_HW) {
2273 u32 csum_start_off, csum_stuff_off;
2275 csum_start_off = (u32) (skb->h.raw - skb->data);
2276 csum_stuff_off = (u32) ((skb->h.raw + skb->csum) - skb->data);
2278 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2279 ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2280 ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2283 spin_lock_irq(&hp->happy_lock);
2285 if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2286 netif_stop_queue(dev);
2287 spin_unlock_irq(&hp->happy_lock);
2288 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2289 dev->name);
2290 return 1;
2293 entry = hp->tx_new;
2294 SXD(("SX<l[%d]e[%d]>", len, entry));
2295 hp->tx_skbs[entry] = skb;
2297 if (skb_shinfo(skb)->nr_frags == 0) {
2298 u32 mapping, len;
2300 len = skb->len;
2301 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2302 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2303 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2304 (tx_flags | (len & TXFLAG_SIZE)),
2305 mapping);
2306 entry = NEXT_TX(entry);
2307 } else {
2308 u32 first_len, first_mapping;
2309 int frag, first_entry = entry;
2311 /* We must give this initial chunk to the device last.
2312 * Otherwise we could race with the device.
2314 first_len = skb_headlen(skb);
2315 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2316 entry = NEXT_TX(entry);
2318 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2319 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2320 u32 len, mapping, this_txflags;
2322 len = this_frag->size;
2323 mapping = hme_dma_map(hp,
2324 ((void *) page_address(this_frag->page) +
2325 this_frag->page_offset),
2326 len, DMA_TODEVICE);
2327 this_txflags = tx_flags;
2328 if (frag == skb_shinfo(skb)->nr_frags - 1)
2329 this_txflags |= TXFLAG_EOP;
2330 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2331 (this_txflags | (len & TXFLAG_SIZE)),
2332 mapping);
2333 entry = NEXT_TX(entry);
2335 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2336 (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2337 first_mapping);
2340 hp->tx_new = entry;
2342 if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2343 netif_stop_queue(dev);
2345 /* Get it going. */
2346 hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2348 spin_unlock_irq(&hp->happy_lock);
2350 dev->trans_start = jiffies;
2352 tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2353 return 0;
2356 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2358 struct happy_meal *hp = dev->priv;
2360 spin_lock_irq(&hp->happy_lock);
2361 happy_meal_get_counters(hp, hp->bigmacregs);
2362 spin_unlock_irq(&hp->happy_lock);
2364 return &hp->net_stats;
2367 static void happy_meal_set_multicast(struct net_device *dev)
2369 struct happy_meal *hp = dev->priv;
2370 void __iomem *bregs = hp->bigmacregs;
2371 struct dev_mc_list *dmi = dev->mc_list;
2372 char *addrs;
2373 int i;
2374 u32 crc;
2376 spin_lock_irq(&hp->happy_lock);
2378 netif_stop_queue(dev);
2380 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2381 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2382 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2383 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2384 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2385 } else if (dev->flags & IFF_PROMISC) {
2386 hme_write32(hp, bregs + BMAC_RXCFG,
2387 hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2388 } else {
2389 u16 hash_table[4];
2391 for (i = 0; i < 4; i++)
2392 hash_table[i] = 0;
2394 for (i = 0; i < dev->mc_count; i++) {
2395 addrs = dmi->dmi_addr;
2396 dmi = dmi->next;
2398 if (!(*addrs & 1))
2399 continue;
2401 crc = ether_crc_le(6, addrs);
2402 crc >>= 26;
2403 hash_table[crc >> 4] |= 1 << (crc & 0xf);
2405 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2406 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2407 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2408 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2411 netif_wake_queue(dev);
2413 spin_unlock_irq(&hp->happy_lock);
2416 /* Ethtool support... */
2417 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2419 struct happy_meal *hp = dev->priv;
2421 cmd->supported =
2422 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2423 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2424 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2426 /* XXX hardcoded stuff for now */
2427 cmd->port = PORT_TP; /* XXX no MII support */
2428 cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2429 cmd->phy_address = 0; /* XXX fixed PHYAD */
2431 /* Record PHY settings. */
2432 spin_lock_irq(&hp->happy_lock);
2433 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2434 hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2435 spin_unlock_irq(&hp->happy_lock);
2437 if (hp->sw_bmcr & BMCR_ANENABLE) {
2438 cmd->autoneg = AUTONEG_ENABLE;
2439 cmd->speed =
2440 (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2441 SPEED_100 : SPEED_10;
2442 if (cmd->speed == SPEED_100)
2443 cmd->duplex =
2444 (hp->sw_lpa & (LPA_100FULL)) ?
2445 DUPLEX_FULL : DUPLEX_HALF;
2446 else
2447 cmd->duplex =
2448 (hp->sw_lpa & (LPA_10FULL)) ?
2449 DUPLEX_FULL : DUPLEX_HALF;
2450 } else {
2451 cmd->autoneg = AUTONEG_DISABLE;
2452 cmd->speed =
2453 (hp->sw_bmcr & BMCR_SPEED100) ?
2454 SPEED_100 : SPEED_10;
2455 cmd->duplex =
2456 (hp->sw_bmcr & BMCR_FULLDPLX) ?
2457 DUPLEX_FULL : DUPLEX_HALF;
2459 return 0;
2462 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2464 struct happy_meal *hp = dev->priv;
2466 /* Verify the settings we care about. */
2467 if (cmd->autoneg != AUTONEG_ENABLE &&
2468 cmd->autoneg != AUTONEG_DISABLE)
2469 return -EINVAL;
2470 if (cmd->autoneg == AUTONEG_DISABLE &&
2471 ((cmd->speed != SPEED_100 &&
2472 cmd->speed != SPEED_10) ||
2473 (cmd->duplex != DUPLEX_HALF &&
2474 cmd->duplex != DUPLEX_FULL)))
2475 return -EINVAL;
2477 /* Ok, do it to it. */
2478 spin_lock_irq(&hp->happy_lock);
2479 del_timer(&hp->happy_timer);
2480 happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2481 spin_unlock_irq(&hp->happy_lock);
2483 return 0;
2486 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2488 struct happy_meal *hp = dev->priv;
2490 strcpy(info->driver, "sunhme");
2491 strcpy(info->version, "2.02");
2492 if (hp->happy_flags & HFLAG_PCI) {
2493 struct pci_dev *pdev = hp->happy_dev;
2494 strcpy(info->bus_info, pci_name(pdev));
2496 #ifdef CONFIG_SBUS
2497 else {
2498 struct sbus_dev *sdev = hp->happy_dev;
2499 sprintf(info->bus_info, "SBUS:%d",
2500 sdev->slot);
2502 #endif
2505 static u32 hme_get_link(struct net_device *dev)
2507 struct happy_meal *hp = dev->priv;
2509 spin_lock_irq(&hp->happy_lock);
2510 hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2511 spin_unlock_irq(&hp->happy_lock);
2513 return (hp->sw_bmsr & BMSR_LSTATUS);
2516 static struct ethtool_ops hme_ethtool_ops = {
2517 .get_settings = hme_get_settings,
2518 .set_settings = hme_set_settings,
2519 .get_drvinfo = hme_get_drvinfo,
2520 .get_link = hme_get_link,
2523 static int hme_version_printed;
2525 #ifdef CONFIG_SBUS
2526 void __init quattro_get_ranges(struct quattro *qp)
2528 struct sbus_dev *sdev = qp->quattro_dev;
2529 int err;
2531 err = prom_getproperty(sdev->prom_node,
2532 "ranges",
2533 (char *)&qp->ranges[0],
2534 sizeof(qp->ranges));
2535 if (err == 0 || err == -1) {
2536 qp->nranges = 0;
2537 return;
2539 qp->nranges = (err / sizeof(struct linux_prom_ranges));
2542 static void __init quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2544 struct sbus_dev *sdev = hp->happy_dev;
2545 int rng;
2547 for (rng = 0; rng < qp->nranges; rng++) {
2548 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2549 int reg;
2551 for (reg = 0; reg < 5; reg++) {
2552 if (sdev->reg_addrs[reg].which_io ==
2553 rngp->ot_child_space)
2554 break;
2556 if (reg == 5)
2557 continue;
2559 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2560 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2564 /* Given a happy meal sbus device, find it's quattro parent.
2565 * If none exist, allocate and return a new one.
2567 * Return NULL on failure.
2569 static struct quattro * __init quattro_sbus_find(struct sbus_dev *goal_sdev)
2571 struct sbus_bus *sbus;
2572 struct sbus_dev *sdev;
2573 struct quattro *qp;
2574 int i;
2576 if (qfe_sbus_list == NULL)
2577 goto found;
2579 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2580 for (i = 0, sdev = qp->quattro_dev;
2581 (sdev != NULL) && (i < 4);
2582 sdev = sdev->next, i++) {
2583 if (sdev == goal_sdev)
2584 return qp;
2587 for_each_sbus(sbus) {
2588 for_each_sbusdev(sdev, sbus) {
2589 if (sdev == goal_sdev)
2590 goto found;
2594 /* Cannot find quattro parent, fail. */
2595 return NULL;
2597 found:
2598 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2599 if (qp != NULL) {
2600 int i;
2602 for (i = 0; i < 4; i++)
2603 qp->happy_meals[i] = NULL;
2605 qp->quattro_dev = goal_sdev;
2606 qp->next = qfe_sbus_list;
2607 qfe_sbus_list = qp;
2608 quattro_get_ranges(qp);
2610 return qp;
2613 /* After all quattro cards have been probed, we call these functions
2614 * to register the IRQ handlers.
2616 static void __init quattro_sbus_register_irqs(void)
2618 struct quattro *qp;
2620 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2621 struct sbus_dev *sdev = qp->quattro_dev;
2622 int err;
2624 err = request_irq(sdev->irqs[0],
2625 quattro_sbus_interrupt,
2626 SA_SHIRQ, "Quattro",
2627 qp);
2628 if (err != 0) {
2629 printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2630 panic("QFE request irq");
2635 static void __devexit quattro_sbus_free_irqs(void)
2637 struct quattro *qp;
2639 for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2640 struct sbus_dev *sdev = qp->quattro_dev;
2642 free_irq(sdev->irqs[0], qp);
2645 #endif /* CONFIG_SBUS */
2647 #ifdef CONFIG_PCI
2648 static struct quattro * __init quattro_pci_find(struct pci_dev *pdev)
2650 struct pci_dev *bdev = pdev->bus->self;
2651 struct quattro *qp;
2653 if (!bdev) return NULL;
2654 for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2655 struct pci_dev *qpdev = qp->quattro_dev;
2657 if (qpdev == bdev)
2658 return qp;
2660 qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2661 if (qp != NULL) {
2662 int i;
2664 for (i = 0; i < 4; i++)
2665 qp->happy_meals[i] = NULL;
2667 qp->quattro_dev = bdev;
2668 qp->next = qfe_pci_list;
2669 qfe_pci_list = qp;
2671 /* No range tricks necessary on PCI. */
2672 qp->nranges = 0;
2674 return qp;
2676 #endif /* CONFIG_PCI */
2678 #ifdef CONFIG_SBUS
2679 static int __init happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2681 struct device_node *dp = sdev->ofdev.node;
2682 struct quattro *qp = NULL;
2683 struct happy_meal *hp;
2684 struct net_device *dev;
2685 int i, qfe_slot = -1;
2686 int err = -ENODEV;
2688 if (is_qfe) {
2689 qp = quattro_sbus_find(sdev);
2690 if (qp == NULL)
2691 goto err_out;
2692 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2693 if (qp->happy_meals[qfe_slot] == NULL)
2694 break;
2695 if (qfe_slot == 4)
2696 goto err_out;
2699 err = -ENOMEM;
2700 dev = alloc_etherdev(sizeof(struct happy_meal));
2701 if (!dev)
2702 goto err_out;
2703 SET_MODULE_OWNER(dev);
2704 SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2706 if (hme_version_printed++ == 0)
2707 printk(KERN_INFO "%s", version);
2709 /* If user did not specify a MAC address specifically, use
2710 * the Quattro local-mac-address property...
2712 for (i = 0; i < 6; i++) {
2713 if (macaddr[i] != 0)
2714 break;
2716 if (i < 6) { /* a mac address was given */
2717 for (i = 0; i < 6; i++)
2718 dev->dev_addr[i] = macaddr[i];
2719 macaddr[5]++;
2720 } else {
2721 unsigned char *addr;
2722 int len;
2724 addr = of_get_property(dp, "local-mac-address", &len);
2726 if (qfe_slot != -1 && addr && len == 6)
2727 memcpy(dev->dev_addr, addr, 6);
2728 else
2729 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2732 hp = dev->priv;
2734 hp->happy_dev = sdev;
2736 spin_lock_init(&hp->happy_lock);
2738 err = -ENODEV;
2739 if (sdev->num_registers != 5) {
2740 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2741 sdev->num_registers);
2742 goto err_out_free_netdev;
2745 if (qp != NULL) {
2746 hp->qfe_parent = qp;
2747 hp->qfe_ent = qfe_slot;
2748 qp->happy_meals[qfe_slot] = dev;
2749 quattro_apply_ranges(qp, hp);
2752 hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2753 GREG_REG_SIZE, "HME Global Regs");
2754 if (!hp->gregs) {
2755 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2756 goto err_out_free_netdev;
2759 hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2760 ETX_REG_SIZE, "HME TX Regs");
2761 if (!hp->etxregs) {
2762 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2763 goto err_out_iounmap;
2766 hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2767 ERX_REG_SIZE, "HME RX Regs");
2768 if (!hp->erxregs) {
2769 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2770 goto err_out_iounmap;
2773 hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2774 BMAC_REG_SIZE, "HME BIGMAC Regs");
2775 if (!hp->bigmacregs) {
2776 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2777 goto err_out_iounmap;
2780 hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2781 TCVR_REG_SIZE, "HME Tranceiver Regs");
2782 if (!hp->tcvregs) {
2783 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2784 goto err_out_iounmap;
2787 hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2788 if (hp->hm_revision == 0xff)
2789 hp->hm_revision = 0xa0;
2791 /* Now enable the feature flags we can. */
2792 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2793 hp->happy_flags = HFLAG_20_21;
2794 else if (hp->hm_revision != 0xa0)
2795 hp->happy_flags = HFLAG_NOT_A0;
2797 if (qp != NULL)
2798 hp->happy_flags |= HFLAG_QUATTRO;
2800 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2801 hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2802 "burst-sizes", 0x00);
2804 hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2805 PAGE_SIZE,
2806 &hp->hblock_dvma);
2807 err = -ENOMEM;
2808 if (!hp->happy_block) {
2809 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2810 goto err_out_iounmap;
2813 /* Force check of the link first time we are brought up. */
2814 hp->linkcheck = 0;
2816 /* Force timer state to 'asleep' with count of zero. */
2817 hp->timer_state = asleep;
2818 hp->timer_ticks = 0;
2820 init_timer(&hp->happy_timer);
2822 hp->dev = dev;
2823 dev->open = &happy_meal_open;
2824 dev->stop = &happy_meal_close;
2825 dev->hard_start_xmit = &happy_meal_start_xmit;
2826 dev->get_stats = &happy_meal_get_stats;
2827 dev->set_multicast_list = &happy_meal_set_multicast;
2828 dev->tx_timeout = &happy_meal_tx_timeout;
2829 dev->watchdog_timeo = 5*HZ;
2830 dev->ethtool_ops = &hme_ethtool_ops;
2832 /* Happy Meal can do it all... except VLAN. */
2833 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
2835 dev->irq = sdev->irqs[0];
2837 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2838 /* Hook up PCI register/dma accessors. */
2839 hp->read_desc32 = sbus_hme_read_desc32;
2840 hp->write_txd = sbus_hme_write_txd;
2841 hp->write_rxd = sbus_hme_write_rxd;
2842 hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2843 hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2844 hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2845 sbus_dma_sync_single_for_cpu;
2846 hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2847 sbus_dma_sync_single_for_device;
2848 hp->read32 = sbus_hme_read32;
2849 hp->write32 = sbus_hme_write32;
2850 #endif
2852 /* Grrr, Happy Meal comes up by default not advertising
2853 * full duplex 100baseT capabilities, fix this.
2855 spin_lock_irq(&hp->happy_lock);
2856 happy_meal_set_initial_advertisement(hp);
2857 spin_unlock_irq(&hp->happy_lock);
2859 if (register_netdev(hp->dev)) {
2860 printk(KERN_ERR "happymeal: Cannot register net device, "
2861 "aborting.\n");
2862 goto err_out_free_consistent;
2865 dev_set_drvdata(&sdev->ofdev.dev, hp);
2867 if (qfe_slot != -1)
2868 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2869 dev->name, qfe_slot);
2870 else
2871 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2872 dev->name);
2874 for (i = 0; i < 6; i++)
2875 printk("%2.2x%c",
2876 dev->dev_addr[i], i == 5 ? ' ' : ':');
2877 printk("\n");
2879 return 0;
2881 err_out_free_consistent:
2882 sbus_free_consistent(hp->happy_dev,
2883 PAGE_SIZE,
2884 hp->happy_block,
2885 hp->hblock_dvma);
2887 err_out_iounmap:
2888 if (hp->gregs)
2889 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2890 if (hp->etxregs)
2891 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2892 if (hp->erxregs)
2893 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2894 if (hp->bigmacregs)
2895 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2896 if (hp->tcvregs)
2897 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2899 err_out_free_netdev:
2900 free_netdev(dev);
2902 err_out:
2903 return err;
2905 #endif
2907 #ifdef CONFIG_PCI
2908 #ifndef CONFIG_SPARC
2909 static int is_quattro_p(struct pci_dev *pdev)
2911 struct pci_dev *busdev = pdev->bus->self;
2912 struct list_head *tmp;
2913 int n_hmes;
2915 if (busdev == NULL ||
2916 busdev->vendor != PCI_VENDOR_ID_DEC ||
2917 busdev->device != PCI_DEVICE_ID_DEC_21153)
2918 return 0;
2920 n_hmes = 0;
2921 tmp = pdev->bus->devices.next;
2922 while (tmp != &pdev->bus->devices) {
2923 struct pci_dev *this_pdev = pci_dev_b(tmp);
2925 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2926 this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2927 n_hmes++;
2929 tmp = tmp->next;
2932 if (n_hmes != 4)
2933 return 0;
2935 return 1;
2938 /* Fetch MAC address from vital product data of PCI ROM. */
2939 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2941 int this_offset;
2943 for (this_offset = 0x20; this_offset < len; this_offset++) {
2944 void __iomem *p = rom_base + this_offset;
2946 if (readb(p + 0) != 0x90 ||
2947 readb(p + 1) != 0x00 ||
2948 readb(p + 2) != 0x09 ||
2949 readb(p + 3) != 0x4e ||
2950 readb(p + 4) != 0x41 ||
2951 readb(p + 5) != 0x06)
2952 continue;
2954 this_offset += 6;
2955 p += 6;
2957 if (index == 0) {
2958 int i;
2960 for (i = 0; i < 6; i++)
2961 dev_addr[i] = readb(p + i);
2962 return 1;
2964 index--;
2966 return 0;
2969 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2971 size_t size;
2972 void __iomem *p = pci_map_rom(pdev, &size);
2974 if (p) {
2975 int index = 0;
2976 int found;
2978 if (is_quattro_p(pdev))
2979 index = PCI_SLOT(pdev->devfn);
2981 found = readb(p) == 0x55 &&
2982 readb(p + 1) == 0xaa &&
2983 find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2984 pci_unmap_rom(pdev, p);
2985 if (found)
2986 return;
2989 /* Sun MAC prefix then 3 random bytes. */
2990 dev_addr[0] = 0x08;
2991 dev_addr[1] = 0x00;
2992 dev_addr[2] = 0x20;
2993 get_random_bytes(&dev_addr[3], 3);
2994 return;
2996 #endif /* !(CONFIG_SPARC) */
2998 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2999 const struct pci_device_id *ent)
3001 struct quattro *qp = NULL;
3002 #ifdef CONFIG_SPARC
3003 struct pcidev_cookie *pcp;
3004 #endif
3005 struct happy_meal *hp;
3006 struct net_device *dev;
3007 void __iomem *hpreg_base;
3008 unsigned long hpreg_res;
3009 int i, qfe_slot = -1;
3010 char prom_name[64];
3011 int err;
3013 /* Now make sure pci_dev cookie is there. */
3014 #ifdef CONFIG_SPARC
3015 pcp = pdev->sysdata;
3016 if (pcp == NULL) {
3017 printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n");
3018 return -ENODEV;
3021 strcpy(prom_name, pcp->prom_node->name);
3022 #else
3023 if (is_quattro_p(pdev))
3024 strcpy(prom_name, "SUNW,qfe");
3025 else
3026 strcpy(prom_name, "SUNW,hme");
3027 #endif
3029 err = -ENODEV;
3030 if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3031 qp = quattro_pci_find(pdev);
3032 if (qp == NULL)
3033 goto err_out;
3034 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3035 if (qp->happy_meals[qfe_slot] == NULL)
3036 break;
3037 if (qfe_slot == 4)
3038 goto err_out;
3041 dev = alloc_etherdev(sizeof(struct happy_meal));
3042 err = -ENOMEM;
3043 if (!dev)
3044 goto err_out;
3045 SET_MODULE_OWNER(dev);
3046 SET_NETDEV_DEV(dev, &pdev->dev);
3048 if (hme_version_printed++ == 0)
3049 printk(KERN_INFO "%s", version);
3051 dev->base_addr = (long) pdev;
3053 hp = (struct happy_meal *)dev->priv;
3054 memset(hp, 0, sizeof(*hp));
3056 hp->happy_dev = pdev;
3058 spin_lock_init(&hp->happy_lock);
3060 if (qp != NULL) {
3061 hp->qfe_parent = qp;
3062 hp->qfe_ent = qfe_slot;
3063 qp->happy_meals[qfe_slot] = dev;
3066 hpreg_res = pci_resource_start(pdev, 0);
3067 err = -ENODEV;
3068 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3069 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3070 goto err_out_clear_quattro;
3072 if (pci_request_regions(pdev, DRV_NAME)) {
3073 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3074 "aborting.\n");
3075 goto err_out_clear_quattro;
3078 if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3079 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3080 goto err_out_free_res;
3083 for (i = 0; i < 6; i++) {
3084 if (macaddr[i] != 0)
3085 break;
3087 if (i < 6) { /* a mac address was given */
3088 for (i = 0; i < 6; i++)
3089 dev->dev_addr[i] = macaddr[i];
3090 macaddr[5]++;
3091 } else {
3092 #ifdef CONFIG_SPARC
3093 unsigned char *addr;
3094 int len;
3096 if (qfe_slot != -1 &&
3097 (addr = of_get_property(pcp->prom_node,
3098 "local-mac-address", &len)) != NULL
3099 && len == 6) {
3100 memcpy(dev->dev_addr, addr, 6);
3101 } else {
3102 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3104 #else
3105 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3106 #endif
3109 /* Layout registers. */
3110 hp->gregs = (hpreg_base + 0x0000UL);
3111 hp->etxregs = (hpreg_base + 0x2000UL);
3112 hp->erxregs = (hpreg_base + 0x4000UL);
3113 hp->bigmacregs = (hpreg_base + 0x6000UL);
3114 hp->tcvregs = (hpreg_base + 0x7000UL);
3116 #ifdef CONFIG_SPARC
3117 hp->hm_revision = of_getintprop_default(pcp->prom_node, "hm-rev", 0xff);
3118 if (hp->hm_revision == 0xff) {
3119 unsigned char prev;
3121 pci_read_config_byte(pdev, PCI_REVISION_ID, &prev);
3122 hp->hm_revision = 0xc0 | (prev & 0x0f);
3124 #else
3125 /* works with this on non-sparc hosts */
3126 hp->hm_revision = 0x20;
3127 #endif
3129 /* Now enable the feature flags we can. */
3130 if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3131 hp->happy_flags = HFLAG_20_21;
3132 else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3133 hp->happy_flags = HFLAG_NOT_A0;
3135 if (qp != NULL)
3136 hp->happy_flags |= HFLAG_QUATTRO;
3138 /* And of course, indicate this is PCI. */
3139 hp->happy_flags |= HFLAG_PCI;
3141 #ifdef CONFIG_SPARC
3142 /* Assume PCI happy meals can handle all burst sizes. */
3143 hp->happy_bursts = DMA_BURSTBITS;
3144 #endif
3146 hp->happy_block = (struct hmeal_init_block *)
3147 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3149 err = -ENODEV;
3150 if (!hp->happy_block) {
3151 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3152 goto err_out_iounmap;
3155 hp->linkcheck = 0;
3156 hp->timer_state = asleep;
3157 hp->timer_ticks = 0;
3159 init_timer(&hp->happy_timer);
3161 hp->dev = dev;
3162 dev->open = &happy_meal_open;
3163 dev->stop = &happy_meal_close;
3164 dev->hard_start_xmit = &happy_meal_start_xmit;
3165 dev->get_stats = &happy_meal_get_stats;
3166 dev->set_multicast_list = &happy_meal_set_multicast;
3167 dev->tx_timeout = &happy_meal_tx_timeout;
3168 dev->watchdog_timeo = 5*HZ;
3169 dev->ethtool_ops = &hme_ethtool_ops;
3170 dev->irq = pdev->irq;
3171 dev->dma = 0;
3173 /* Happy Meal can do it all... */
3174 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3176 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3177 /* Hook up PCI register/dma accessors. */
3178 hp->read_desc32 = pci_hme_read_desc32;
3179 hp->write_txd = pci_hme_write_txd;
3180 hp->write_rxd = pci_hme_write_rxd;
3181 hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3182 hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3183 hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3184 pci_dma_sync_single_for_cpu;
3185 hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3186 pci_dma_sync_single_for_device;
3187 hp->read32 = pci_hme_read32;
3188 hp->write32 = pci_hme_write32;
3189 #endif
3191 /* Grrr, Happy Meal comes up by default not advertising
3192 * full duplex 100baseT capabilities, fix this.
3194 spin_lock_irq(&hp->happy_lock);
3195 happy_meal_set_initial_advertisement(hp);
3196 spin_unlock_irq(&hp->happy_lock);
3198 if (register_netdev(hp->dev)) {
3199 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3200 "aborting.\n");
3201 goto err_out_iounmap;
3204 dev_set_drvdata(&pdev->dev, hp);
3206 if (!qfe_slot) {
3207 struct pci_dev *qpdev = qp->quattro_dev;
3209 prom_name[0] = 0;
3210 if (!strncmp(dev->name, "eth", 3)) {
3211 int i = simple_strtoul(dev->name + 3, NULL, 10);
3212 sprintf(prom_name, "-%d", i + 3);
3214 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3215 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3216 qpdev->device == PCI_DEVICE_ID_DEC_21153)
3217 printk("DEC 21153 PCI Bridge\n");
3218 else
3219 printk("unknown bridge %04x.%04x\n",
3220 qpdev->vendor, qpdev->device);
3223 if (qfe_slot != -1)
3224 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3225 dev->name, qfe_slot);
3226 else
3227 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3228 dev->name);
3230 for (i = 0; i < 6; i++)
3231 printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':');
3233 printk("\n");
3235 return 0;
3237 err_out_iounmap:
3238 iounmap(hp->gregs);
3240 err_out_free_res:
3241 pci_release_regions(pdev);
3243 err_out_clear_quattro:
3244 if (qp != NULL)
3245 qp->happy_meals[qfe_slot] = NULL;
3247 free_netdev(dev);
3249 err_out:
3250 return err;
3253 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3255 struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3256 struct net_device *net_dev = hp->dev;
3258 unregister_netdev(net_dev);
3260 pci_free_consistent(hp->happy_dev,
3261 PAGE_SIZE,
3262 hp->happy_block,
3263 hp->hblock_dvma);
3264 iounmap(hp->gregs);
3265 pci_release_regions(hp->happy_dev);
3267 free_netdev(net_dev);
3269 dev_set_drvdata(&pdev->dev, NULL);
3272 static struct pci_device_id happymeal_pci_ids[] = {
3274 .vendor = PCI_VENDOR_ID_SUN,
3275 .device = PCI_DEVICE_ID_SUN_HAPPYMEAL,
3276 .subvendor = PCI_ANY_ID,
3277 .subdevice = PCI_ANY_ID,
3279 { } /* Terminating entry */
3282 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3284 static struct pci_driver hme_pci_driver = {
3285 .name = "hme",
3286 .id_table = happymeal_pci_ids,
3287 .probe = happy_meal_pci_probe,
3288 .remove = __devexit_p(happy_meal_pci_remove),
3291 static int __init happy_meal_pci_init(void)
3293 return pci_module_init(&hme_pci_driver);
3296 static void happy_meal_pci_exit(void)
3298 pci_unregister_driver(&hme_pci_driver);
3300 while (qfe_pci_list) {
3301 struct quattro *qfe = qfe_pci_list;
3302 struct quattro *next = qfe->next;
3304 kfree(qfe);
3306 qfe_pci_list = next;
3310 #endif
3312 #ifdef CONFIG_SBUS
3313 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3315 struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3316 struct device_node *dp = dev->node;
3317 char *model = of_get_property(dp, "model", NULL);
3318 int is_qfe = (match->data != NULL);
3320 if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3321 is_qfe = 1;
3323 return happy_meal_sbus_probe_one(sdev, is_qfe);
3326 static int __devexit hme_sbus_remove(struct of_device *dev)
3328 struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3329 struct net_device *net_dev = hp->dev;
3331 unregister_netdevice(net_dev);
3333 /* XXX qfe parent interrupt... */
3335 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3336 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3337 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3338 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3339 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3340 sbus_free_consistent(hp->happy_dev,
3341 PAGE_SIZE,
3342 hp->happy_block,
3343 hp->hblock_dvma);
3345 free_netdev(net_dev);
3347 dev_set_drvdata(&dev->dev, NULL);
3349 return 0;
3352 static struct of_device_id hme_sbus_match[] = {
3354 .name = "SUNW,hme",
3357 .name = "SUNW,qfe",
3358 .data = (void *) 1,
3361 .name = "qfe",
3362 .data = (void *) 1,
3367 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3369 static struct of_platform_driver hme_sbus_driver = {
3370 .name = "hme",
3371 .match_table = hme_sbus_match,
3372 .probe = hme_sbus_probe,
3373 .remove = __devexit_p(hme_sbus_remove),
3376 static int __init happy_meal_sbus_init(void)
3378 int err;
3380 err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3381 if (!err)
3382 quattro_sbus_register_irqs();
3384 return err;
3387 static void happy_meal_sbus_exit(void)
3389 of_unregister_driver(&hme_sbus_driver);
3390 quattro_sbus_free_irqs();
3392 while (qfe_sbus_list) {
3393 struct quattro *qfe = qfe_sbus_list;
3394 struct quattro *next = qfe->next;
3396 kfree(qfe);
3398 qfe_sbus_list = next;
3401 #endif
3403 static int __init happy_meal_probe(void)
3405 int err = 0;
3407 #ifdef CONFIG_SBUS
3408 err = happy_meal_sbus_init();
3409 #endif
3410 #ifdef CONFIG_PCI
3411 if (!err) {
3412 err = happy_meal_pci_init();
3413 #ifdef CONFIG_SBUS
3414 if (err)
3415 happy_meal_sbus_exit();
3416 #endif
3418 #endif
3420 return err;
3424 static void __exit happy_meal_exit(void)
3426 #ifdef CONFIG_SBUS
3427 happy_meal_sbus_exit();
3428 #endif
3429 #ifdef CONFIG_PCI
3430 happy_meal_pci_exit();
3431 #endif
3434 module_init(happy_meal_probe);
3435 module_exit(happy_meal_exit);