4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
60 * Protected counters by write_lock_irq(&tasklist_lock)
62 unsigned long total_forks
; /* Handle normal Linux uptimes. */
63 int nr_threads
; /* The idle threads do not count.. */
65 int max_threads
; /* tunable limit on nr_threads */
67 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
69 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
71 int nr_processes(void)
76 for_each_online_cpu(cpu
)
77 total
+= per_cpu(process_counts
, cpu
);
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
85 static kmem_cache_t
*task_struct_cachep
;
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static kmem_cache_t
*signal_cachep
;
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 kmem_cache_t
*sighand_cachep
;
94 /* SLAB cache for files_struct structures (tsk->files) */
95 kmem_cache_t
*files_cachep
;
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 kmem_cache_t
*fs_cachep
;
100 /* SLAB cache for vm_area_struct structures */
101 kmem_cache_t
*vm_area_cachep
;
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static kmem_cache_t
*mm_cachep
;
106 void free_task(struct task_struct
*tsk
)
108 free_thread_info(tsk
->thread_info
);
109 rt_mutex_debug_task_free(tsk
);
110 free_task_struct(tsk
);
112 EXPORT_SYMBOL(free_task
);
114 void __put_task_struct(struct task_struct
*tsk
)
116 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
117 WARN_ON(atomic_read(&tsk
->usage
));
118 WARN_ON(tsk
== current
);
120 security_task_free(tsk
);
122 put_group_info(tsk
->group_info
);
123 delayacct_tsk_free(tsk
);
125 if (!profile_handoff_task(tsk
))
129 void __init
fork_init(unsigned long mempages
)
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
135 /* create a slab on which task_structs can be allocated */
137 kmem_cache_create("task_struct", sizeof(struct task_struct
),
138 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
146 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
149 * we need to allow at least 20 threads to boot a system
154 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
155 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
156 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
157 init_task
.signal
->rlim
[RLIMIT_NPROC
];
160 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
162 struct task_struct
*tsk
;
163 struct thread_info
*ti
;
165 prepare_to_copy(orig
);
167 tsk
= alloc_task_struct();
171 ti
= alloc_thread_info(tsk
);
173 free_task_struct(tsk
);
178 tsk
->thread_info
= ti
;
179 setup_thread_stack(tsk
, orig
);
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 tsk
->stack_canary
= get_random_int();
185 /* One for us, one for whoever does the "release_task()" (usually parent) */
186 atomic_set(&tsk
->usage
,2);
187 atomic_set(&tsk
->fs_excl
, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
191 tsk
->splice_pipe
= NULL
;
196 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
198 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
199 struct rb_node
**rb_link
, *rb_parent
;
201 unsigned long charge
;
202 struct mempolicy
*pol
;
204 down_write(&oldmm
->mmap_sem
);
205 flush_cache_mm(oldmm
);
207 * Not linked in yet - no deadlock potential:
209 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
213 mm
->mmap_cache
= NULL
;
214 mm
->free_area_cache
= oldmm
->mmap_base
;
215 mm
->cached_hole_size
= ~0UL;
217 cpus_clear(mm
->cpu_vm_mask
);
219 rb_link
= &mm
->mm_rb
.rb_node
;
223 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
226 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
227 long pages
= vma_pages(mpnt
);
228 mm
->total_vm
-= pages
;
229 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
234 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
235 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
236 if (security_vm_enough_memory(len
))
240 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
244 pol
= mpol_copy(vma_policy(mpnt
));
245 retval
= PTR_ERR(pol
);
247 goto fail_nomem_policy
;
248 vma_set_policy(tmp
, pol
);
249 tmp
->vm_flags
&= ~VM_LOCKED
;
255 struct inode
*inode
= file
->f_dentry
->d_inode
;
257 if (tmp
->vm_flags
& VM_DENYWRITE
)
258 atomic_dec(&inode
->i_writecount
);
260 /* insert tmp into the share list, just after mpnt */
261 spin_lock(&file
->f_mapping
->i_mmap_lock
);
262 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
263 flush_dcache_mmap_lock(file
->f_mapping
);
264 vma_prio_tree_add(tmp
, mpnt
);
265 flush_dcache_mmap_unlock(file
->f_mapping
);
266 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
270 * Link in the new vma and copy the page table entries.
273 pprev
= &tmp
->vm_next
;
275 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
276 rb_link
= &tmp
->vm_rb
.rb_right
;
277 rb_parent
= &tmp
->vm_rb
;
280 retval
= copy_page_range(mm
, oldmm
, mpnt
);
282 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
283 tmp
->vm_ops
->open(tmp
);
290 up_write(&mm
->mmap_sem
);
292 up_write(&oldmm
->mmap_sem
);
295 kmem_cache_free(vm_area_cachep
, tmp
);
298 vm_unacct_memory(charge
);
302 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
304 mm
->pgd
= pgd_alloc(mm
);
305 if (unlikely(!mm
->pgd
))
310 static inline void mm_free_pgd(struct mm_struct
* mm
)
315 #define dup_mmap(mm, oldmm) (0)
316 #define mm_alloc_pgd(mm) (0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
320 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
322 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
323 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
325 #include <linux/init_task.h>
327 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
329 atomic_set(&mm
->mm_users
, 1);
330 atomic_set(&mm
->mm_count
, 1);
331 init_rwsem(&mm
->mmap_sem
);
332 INIT_LIST_HEAD(&mm
->mmlist
);
333 mm
->core_waiters
= 0;
335 set_mm_counter(mm
, file_rss
, 0);
336 set_mm_counter(mm
, anon_rss
, 0);
337 spin_lock_init(&mm
->page_table_lock
);
338 rwlock_init(&mm
->ioctx_list_lock
);
339 mm
->ioctx_list
= NULL
;
340 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
341 mm
->cached_hole_size
= ~0UL;
343 if (likely(!mm_alloc_pgd(mm
))) {
352 * Allocate and initialize an mm_struct.
354 struct mm_struct
* mm_alloc(void)
356 struct mm_struct
* mm
;
360 memset(mm
, 0, sizeof(*mm
));
367 * Called when the last reference to the mm
368 * is dropped: either by a lazy thread or by
369 * mmput. Free the page directory and the mm.
371 void fastcall
__mmdrop(struct mm_struct
*mm
)
373 BUG_ON(mm
== &init_mm
);
380 * Decrement the use count and release all resources for an mm.
382 void mmput(struct mm_struct
*mm
)
386 if (atomic_dec_and_test(&mm
->mm_users
)) {
389 if (!list_empty(&mm
->mmlist
)) {
390 spin_lock(&mmlist_lock
);
391 list_del(&mm
->mmlist
);
392 spin_unlock(&mmlist_lock
);
398 EXPORT_SYMBOL_GPL(mmput
);
401 * get_task_mm - acquire a reference to the task's mm
403 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
404 * this kernel workthread has transiently adopted a user mm with use_mm,
405 * to do its AIO) is not set and if so returns a reference to it, after
406 * bumping up the use count. User must release the mm via mmput()
407 * after use. Typically used by /proc and ptrace.
409 struct mm_struct
*get_task_mm(struct task_struct
*task
)
411 struct mm_struct
*mm
;
416 if (task
->flags
& PF_BORROWED_MM
)
419 atomic_inc(&mm
->mm_users
);
424 EXPORT_SYMBOL_GPL(get_task_mm
);
426 /* Please note the differences between mmput and mm_release.
427 * mmput is called whenever we stop holding onto a mm_struct,
428 * error success whatever.
430 * mm_release is called after a mm_struct has been removed
431 * from the current process.
433 * This difference is important for error handling, when we
434 * only half set up a mm_struct for a new process and need to restore
435 * the old one. Because we mmput the new mm_struct before
436 * restoring the old one. . .
437 * Eric Biederman 10 January 1998
439 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
441 struct completion
*vfork_done
= tsk
->vfork_done
;
443 /* Get rid of any cached register state */
444 deactivate_mm(tsk
, mm
);
446 /* notify parent sleeping on vfork() */
448 tsk
->vfork_done
= NULL
;
449 complete(vfork_done
);
451 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
452 u32 __user
* tidptr
= tsk
->clear_child_tid
;
453 tsk
->clear_child_tid
= NULL
;
456 * We don't check the error code - if userspace has
457 * not set up a proper pointer then tough luck.
460 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
465 * Allocate a new mm structure and copy contents from the
466 * mm structure of the passed in task structure.
468 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
470 struct mm_struct
*mm
, *oldmm
= current
->mm
;
480 memcpy(mm
, oldmm
, sizeof(*mm
));
485 if (init_new_context(tsk
, mm
))
488 err
= dup_mmap(mm
, oldmm
);
492 mm
->hiwater_rss
= get_mm_rss(mm
);
493 mm
->hiwater_vm
= mm
->total_vm
;
505 * If init_new_context() failed, we cannot use mmput() to free the mm
506 * because it calls destroy_context()
513 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
515 struct mm_struct
* mm
, *oldmm
;
518 tsk
->min_flt
= tsk
->maj_flt
= 0;
519 tsk
->nvcsw
= tsk
->nivcsw
= 0;
522 tsk
->active_mm
= NULL
;
525 * Are we cloning a kernel thread?
527 * We need to steal a active VM for that..
533 if (clone_flags
& CLONE_VM
) {
534 atomic_inc(&oldmm
->mm_users
);
553 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
555 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
556 /* We don't need to lock fs - think why ;-) */
558 atomic_set(&fs
->count
, 1);
559 rwlock_init(&fs
->lock
);
560 fs
->umask
= old
->umask
;
561 read_lock(&old
->lock
);
562 fs
->rootmnt
= mntget(old
->rootmnt
);
563 fs
->root
= dget(old
->root
);
564 fs
->pwdmnt
= mntget(old
->pwdmnt
);
565 fs
->pwd
= dget(old
->pwd
);
567 fs
->altrootmnt
= mntget(old
->altrootmnt
);
568 fs
->altroot
= dget(old
->altroot
);
570 fs
->altrootmnt
= NULL
;
573 read_unlock(&old
->lock
);
578 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
580 return __copy_fs_struct(old
);
583 EXPORT_SYMBOL_GPL(copy_fs_struct
);
585 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
587 if (clone_flags
& CLONE_FS
) {
588 atomic_inc(¤t
->fs
->count
);
591 tsk
->fs
= __copy_fs_struct(current
->fs
);
597 static int count_open_files(struct fdtable
*fdt
)
599 int size
= fdt
->max_fdset
;
602 /* Find the last open fd */
603 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
604 if (fdt
->open_fds
->fds_bits
[--i
])
607 i
= (i
+1) * 8 * sizeof(long);
611 static struct files_struct
*alloc_files(void)
613 struct files_struct
*newf
;
616 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
620 atomic_set(&newf
->count
, 1);
622 spin_lock_init(&newf
->file_lock
);
625 fdt
->max_fds
= NR_OPEN_DEFAULT
;
626 fdt
->max_fdset
= EMBEDDED_FD_SET_SIZE
;
627 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
628 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
629 fdt
->fd
= &newf
->fd_array
[0];
630 INIT_RCU_HEAD(&fdt
->rcu
);
631 fdt
->free_files
= NULL
;
633 rcu_assign_pointer(newf
->fdt
, fdt
);
639 * Allocate a new files structure and copy contents from the
640 * passed in files structure.
641 * errorp will be valid only when the returned files_struct is NULL.
643 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
645 struct files_struct
*newf
;
646 struct file
**old_fds
, **new_fds
;
647 int open_files
, size
, i
, expand
;
648 struct fdtable
*old_fdt
, *new_fdt
;
651 newf
= alloc_files();
655 spin_lock(&oldf
->file_lock
);
656 old_fdt
= files_fdtable(oldf
);
657 new_fdt
= files_fdtable(newf
);
658 size
= old_fdt
->max_fdset
;
659 open_files
= count_open_files(old_fdt
);
663 * Check whether we need to allocate a larger fd array or fd set.
664 * Note: we're not a clone task, so the open count won't change.
666 if (open_files
> new_fdt
->max_fdset
) {
667 new_fdt
->max_fdset
= 0;
670 if (open_files
> new_fdt
->max_fds
) {
671 new_fdt
->max_fds
= 0;
675 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
677 spin_unlock(&oldf
->file_lock
);
678 spin_lock(&newf
->file_lock
);
679 *errorp
= expand_files(newf
, open_files
-1);
680 spin_unlock(&newf
->file_lock
);
683 new_fdt
= files_fdtable(newf
);
685 * Reacquire the oldf lock and a pointer to its fd table
686 * who knows it may have a new bigger fd table. We need
687 * the latest pointer.
689 spin_lock(&oldf
->file_lock
);
690 old_fdt
= files_fdtable(oldf
);
693 old_fds
= old_fdt
->fd
;
694 new_fds
= new_fdt
->fd
;
696 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
697 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
699 for (i
= open_files
; i
!= 0; i
--) {
700 struct file
*f
= *old_fds
++;
705 * The fd may be claimed in the fd bitmap but not yet
706 * instantiated in the files array if a sibling thread
707 * is partway through open(). So make sure that this
708 * fd is available to the new process.
710 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
712 rcu_assign_pointer(*new_fds
++, f
);
714 spin_unlock(&oldf
->file_lock
);
716 /* compute the remainder to be cleared */
717 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
719 /* This is long word aligned thus could use a optimized version */
720 memset(new_fds
, 0, size
);
722 if (new_fdt
->max_fdset
> open_files
) {
723 int left
= (new_fdt
->max_fdset
-open_files
)/8;
724 int start
= open_files
/ (8 * sizeof(unsigned long));
726 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
727 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
734 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
735 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
736 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
737 kmem_cache_free(files_cachep
, newf
);
741 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
743 struct files_struct
*oldf
, *newf
;
747 * A background process may not have any files ...
749 oldf
= current
->files
;
753 if (clone_flags
& CLONE_FILES
) {
754 atomic_inc(&oldf
->count
);
759 * Note: we may be using current for both targets (See exec.c)
760 * This works because we cache current->files (old) as oldf. Don't
764 newf
= dup_fd(oldf
, &error
);
775 * Helper to unshare the files of the current task.
776 * We don't want to expose copy_files internals to
777 * the exec layer of the kernel.
780 int unshare_files(void)
782 struct files_struct
*files
= current
->files
;
787 /* This can race but the race causes us to copy when we don't
788 need to and drop the copy */
789 if(atomic_read(&files
->count
) == 1)
791 atomic_inc(&files
->count
);
794 rc
= copy_files(0, current
);
796 current
->files
= files
;
800 EXPORT_SYMBOL(unshare_files
);
802 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
804 struct sighand_struct
*sig
;
806 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
807 atomic_inc(¤t
->sighand
->count
);
810 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
811 rcu_assign_pointer(tsk
->sighand
, sig
);
814 atomic_set(&sig
->count
, 1);
815 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
819 void __cleanup_sighand(struct sighand_struct
*sighand
)
821 if (atomic_dec_and_test(&sighand
->count
))
822 kmem_cache_free(sighand_cachep
, sighand
);
825 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
827 struct signal_struct
*sig
;
830 if (clone_flags
& CLONE_THREAD
) {
831 atomic_inc(¤t
->signal
->count
);
832 atomic_inc(¤t
->signal
->live
);
833 taskstats_tgid_alloc(current
);
836 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
841 ret
= copy_thread_group_keys(tsk
);
843 kmem_cache_free(signal_cachep
, sig
);
847 atomic_set(&sig
->count
, 1);
848 atomic_set(&sig
->live
, 1);
849 init_waitqueue_head(&sig
->wait_chldexit
);
851 sig
->group_exit_code
= 0;
852 sig
->group_exit_task
= NULL
;
853 sig
->group_stop_count
= 0;
854 sig
->curr_target
= NULL
;
855 init_sigpending(&sig
->shared_pending
);
856 INIT_LIST_HEAD(&sig
->posix_timers
);
858 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_REL
);
859 sig
->it_real_incr
.tv64
= 0;
860 sig
->real_timer
.function
= it_real_fn
;
863 sig
->it_virt_expires
= cputime_zero
;
864 sig
->it_virt_incr
= cputime_zero
;
865 sig
->it_prof_expires
= cputime_zero
;
866 sig
->it_prof_incr
= cputime_zero
;
868 sig
->leader
= 0; /* session leadership doesn't inherit */
869 sig
->tty_old_pgrp
= 0;
871 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
872 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
873 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
875 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
876 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
877 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
878 taskstats_tgid_init(sig
);
880 task_lock(current
->group_leader
);
881 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
882 task_unlock(current
->group_leader
);
884 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
886 * New sole thread in the process gets an expiry time
887 * of the whole CPU time limit.
889 tsk
->it_prof_expires
=
890 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
892 acct_init_pacct(&sig
->pacct
);
897 void __cleanup_signal(struct signal_struct
*sig
)
899 exit_thread_group_keys(sig
);
900 kmem_cache_free(signal_cachep
, sig
);
903 static inline void cleanup_signal(struct task_struct
*tsk
)
905 struct signal_struct
*sig
= tsk
->signal
;
907 atomic_dec(&sig
->live
);
909 if (atomic_dec_and_test(&sig
->count
))
910 __cleanup_signal(sig
);
913 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
915 unsigned long new_flags
= p
->flags
;
917 new_flags
&= ~(PF_SUPERPRIV
| PF_NOFREEZE
);
918 new_flags
|= PF_FORKNOEXEC
;
919 if (!(clone_flags
& CLONE_PTRACE
))
921 p
->flags
= new_flags
;
924 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
926 current
->clear_child_tid
= tidptr
;
931 static inline void rt_mutex_init_task(struct task_struct
*p
)
933 #ifdef CONFIG_RT_MUTEXES
934 spin_lock_init(&p
->pi_lock
);
935 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
936 p
->pi_blocked_on
= NULL
;
941 * This creates a new process as a copy of the old one,
942 * but does not actually start it yet.
944 * It copies the registers, and all the appropriate
945 * parts of the process environment (as per the clone
946 * flags). The actual kick-off is left to the caller.
948 static struct task_struct
*copy_process(unsigned long clone_flags
,
949 unsigned long stack_start
,
950 struct pt_regs
*regs
,
951 unsigned long stack_size
,
952 int __user
*parent_tidptr
,
953 int __user
*child_tidptr
,
957 struct task_struct
*p
= NULL
;
959 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
960 return ERR_PTR(-EINVAL
);
963 * Thread groups must share signals as well, and detached threads
964 * can only be started up within the thread group.
966 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
967 return ERR_PTR(-EINVAL
);
970 * Shared signal handlers imply shared VM. By way of the above,
971 * thread groups also imply shared VM. Blocking this case allows
972 * for various simplifications in other code.
974 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
975 return ERR_PTR(-EINVAL
);
977 retval
= security_task_create(clone_flags
);
982 p
= dup_task_struct(current
);
986 rt_mutex_init_task(p
);
988 #ifdef CONFIG_TRACE_IRQFLAGS
989 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
990 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
993 if (atomic_read(&p
->user
->processes
) >=
994 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
995 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
996 p
->user
!= &root_user
)
1000 atomic_inc(&p
->user
->__count
);
1001 atomic_inc(&p
->user
->processes
);
1002 get_group_info(p
->group_info
);
1005 * If multiple threads are within copy_process(), then this check
1006 * triggers too late. This doesn't hurt, the check is only there
1007 * to stop root fork bombs.
1009 if (nr_threads
>= max_threads
)
1010 goto bad_fork_cleanup_count
;
1012 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1013 goto bad_fork_cleanup_count
;
1015 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1016 goto bad_fork_cleanup_put_domain
;
1019 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1020 copy_flags(clone_flags
, p
);
1023 if (clone_flags
& CLONE_PARENT_SETTID
)
1024 if (put_user(p
->pid
, parent_tidptr
))
1025 goto bad_fork_cleanup_delays_binfmt
;
1027 INIT_LIST_HEAD(&p
->children
);
1028 INIT_LIST_HEAD(&p
->sibling
);
1029 p
->vfork_done
= NULL
;
1030 spin_lock_init(&p
->alloc_lock
);
1032 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1033 init_sigpending(&p
->pending
);
1035 p
->utime
= cputime_zero
;
1036 p
->stime
= cputime_zero
;
1038 p
->rchar
= 0; /* I/O counter: bytes read */
1039 p
->wchar
= 0; /* I/O counter: bytes written */
1040 p
->syscr
= 0; /* I/O counter: read syscalls */
1041 p
->syscw
= 0; /* I/O counter: write syscalls */
1042 acct_clear_integrals(p
);
1044 p
->it_virt_expires
= cputime_zero
;
1045 p
->it_prof_expires
= cputime_zero
;
1046 p
->it_sched_expires
= 0;
1047 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1048 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1049 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1051 p
->lock_depth
= -1; /* -1 = no lock */
1052 do_posix_clock_monotonic_gettime(&p
->start_time
);
1054 p
->io_context
= NULL
;
1056 p
->audit_context
= NULL
;
1059 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1060 if (IS_ERR(p
->mempolicy
)) {
1061 retval
= PTR_ERR(p
->mempolicy
);
1062 p
->mempolicy
= NULL
;
1063 goto bad_fork_cleanup_cpuset
;
1065 mpol_fix_fork_child_flag(p
);
1067 #ifdef CONFIG_TRACE_IRQFLAGS
1069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 p
->hardirqs_enabled
= 1;
1072 p
->hardirqs_enabled
= 0;
1074 p
->hardirq_enable_ip
= 0;
1075 p
->hardirq_enable_event
= 0;
1076 p
->hardirq_disable_ip
= _THIS_IP_
;
1077 p
->hardirq_disable_event
= 0;
1078 p
->softirqs_enabled
= 1;
1079 p
->softirq_enable_ip
= _THIS_IP_
;
1080 p
->softirq_enable_event
= 0;
1081 p
->softirq_disable_ip
= 0;
1082 p
->softirq_disable_event
= 0;
1083 p
->hardirq_context
= 0;
1084 p
->softirq_context
= 0;
1086 #ifdef CONFIG_LOCKDEP
1087 p
->lockdep_depth
= 0; /* no locks held yet */
1088 p
->curr_chain_key
= 0;
1089 p
->lockdep_recursion
= 0;
1092 #ifdef CONFIG_DEBUG_MUTEXES
1093 p
->blocked_on
= NULL
; /* not blocked yet */
1097 if (clone_flags
& CLONE_THREAD
)
1098 p
->tgid
= current
->tgid
;
1100 if ((retval
= security_task_alloc(p
)))
1101 goto bad_fork_cleanup_policy
;
1102 if ((retval
= audit_alloc(p
)))
1103 goto bad_fork_cleanup_security
;
1104 /* copy all the process information */
1105 if ((retval
= copy_semundo(clone_flags
, p
)))
1106 goto bad_fork_cleanup_audit
;
1107 if ((retval
= copy_files(clone_flags
, p
)))
1108 goto bad_fork_cleanup_semundo
;
1109 if ((retval
= copy_fs(clone_flags
, p
)))
1110 goto bad_fork_cleanup_files
;
1111 if ((retval
= copy_sighand(clone_flags
, p
)))
1112 goto bad_fork_cleanup_fs
;
1113 if ((retval
= copy_signal(clone_flags
, p
)))
1114 goto bad_fork_cleanup_sighand
;
1115 if ((retval
= copy_mm(clone_flags
, p
)))
1116 goto bad_fork_cleanup_signal
;
1117 if ((retval
= copy_keys(clone_flags
, p
)))
1118 goto bad_fork_cleanup_mm
;
1119 if ((retval
= copy_namespaces(clone_flags
, p
)))
1120 goto bad_fork_cleanup_keys
;
1121 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1123 goto bad_fork_cleanup_namespaces
;
1125 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1127 * Clear TID on mm_release()?
1129 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1130 p
->robust_list
= NULL
;
1131 #ifdef CONFIG_COMPAT
1132 p
->compat_robust_list
= NULL
;
1134 INIT_LIST_HEAD(&p
->pi_state_list
);
1135 p
->pi_state_cache
= NULL
;
1138 * sigaltstack should be cleared when sharing the same VM
1140 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1141 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1144 * Syscall tracing should be turned off in the child regardless
1147 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1148 #ifdef TIF_SYSCALL_EMU
1149 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1152 /* Our parent execution domain becomes current domain
1153 These must match for thread signalling to apply */
1154 p
->parent_exec_id
= p
->self_exec_id
;
1156 /* ok, now we should be set up.. */
1157 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1158 p
->pdeath_signal
= 0;
1162 * Ok, make it visible to the rest of the system.
1163 * We dont wake it up yet.
1165 p
->group_leader
= p
;
1166 INIT_LIST_HEAD(&p
->thread_group
);
1167 INIT_LIST_HEAD(&p
->ptrace_children
);
1168 INIT_LIST_HEAD(&p
->ptrace_list
);
1170 /* Perform scheduler related setup. Assign this task to a CPU. */
1171 sched_fork(p
, clone_flags
);
1173 /* Need tasklist lock for parent etc handling! */
1174 write_lock_irq(&tasklist_lock
);
1176 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1177 p
->ioprio
= current
->ioprio
;
1180 * The task hasn't been attached yet, so its cpus_allowed mask will
1181 * not be changed, nor will its assigned CPU.
1183 * The cpus_allowed mask of the parent may have changed after it was
1184 * copied first time - so re-copy it here, then check the child's CPU
1185 * to ensure it is on a valid CPU (and if not, just force it back to
1186 * parent's CPU). This avoids alot of nasty races.
1188 p
->cpus_allowed
= current
->cpus_allowed
;
1189 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1190 !cpu_online(task_cpu(p
))))
1191 set_task_cpu(p
, smp_processor_id());
1193 /* CLONE_PARENT re-uses the old parent */
1194 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1195 p
->real_parent
= current
->real_parent
;
1197 p
->real_parent
= current
;
1198 p
->parent
= p
->real_parent
;
1200 spin_lock(¤t
->sighand
->siglock
);
1203 * Process group and session signals need to be delivered to just the
1204 * parent before the fork or both the parent and the child after the
1205 * fork. Restart if a signal comes in before we add the new process to
1206 * it's process group.
1207 * A fatal signal pending means that current will exit, so the new
1208 * thread can't slip out of an OOM kill (or normal SIGKILL).
1210 recalc_sigpending();
1211 if (signal_pending(current
)) {
1212 spin_unlock(¤t
->sighand
->siglock
);
1213 write_unlock_irq(&tasklist_lock
);
1214 retval
= -ERESTARTNOINTR
;
1215 goto bad_fork_cleanup_namespaces
;
1218 if (clone_flags
& CLONE_THREAD
) {
1219 p
->group_leader
= current
->group_leader
;
1220 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1222 if (!cputime_eq(current
->signal
->it_virt_expires
,
1224 !cputime_eq(current
->signal
->it_prof_expires
,
1226 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1227 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1228 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1229 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1231 * Have child wake up on its first tick to check
1232 * for process CPU timers.
1234 p
->it_prof_expires
= jiffies_to_cputime(1);
1238 if (likely(p
->pid
)) {
1240 if (unlikely(p
->ptrace
& PT_PTRACED
))
1241 __ptrace_link(p
, current
->parent
);
1243 if (thread_group_leader(p
)) {
1244 p
->signal
->tty
= current
->signal
->tty
;
1245 p
->signal
->pgrp
= process_group(current
);
1246 p
->signal
->session
= current
->signal
->session
;
1247 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1248 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1250 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1251 __get_cpu_var(process_counts
)++;
1253 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1258 spin_unlock(¤t
->sighand
->siglock
);
1259 write_unlock_irq(&tasklist_lock
);
1260 proc_fork_connector(p
);
1263 bad_fork_cleanup_namespaces
:
1264 exit_task_namespaces(p
);
1265 bad_fork_cleanup_keys
:
1267 bad_fork_cleanup_mm
:
1270 bad_fork_cleanup_signal
:
1272 bad_fork_cleanup_sighand
:
1273 __cleanup_sighand(p
->sighand
);
1274 bad_fork_cleanup_fs
:
1275 exit_fs(p
); /* blocking */
1276 bad_fork_cleanup_files
:
1277 exit_files(p
); /* blocking */
1278 bad_fork_cleanup_semundo
:
1280 bad_fork_cleanup_audit
:
1282 bad_fork_cleanup_security
:
1283 security_task_free(p
);
1284 bad_fork_cleanup_policy
:
1286 mpol_free(p
->mempolicy
);
1287 bad_fork_cleanup_cpuset
:
1290 bad_fork_cleanup_delays_binfmt
:
1291 delayacct_tsk_free(p
);
1293 module_put(p
->binfmt
->module
);
1294 bad_fork_cleanup_put_domain
:
1295 module_put(task_thread_info(p
)->exec_domain
->module
);
1296 bad_fork_cleanup_count
:
1297 put_group_info(p
->group_info
);
1298 atomic_dec(&p
->user
->processes
);
1303 return ERR_PTR(retval
);
1306 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1308 memset(regs
, 0, sizeof(struct pt_regs
));
1312 struct task_struct
* __devinit
fork_idle(int cpu
)
1314 struct task_struct
*task
;
1315 struct pt_regs regs
;
1317 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1319 init_idle(task
, cpu
);
1324 static inline int fork_traceflag (unsigned clone_flags
)
1326 if (clone_flags
& CLONE_UNTRACED
)
1328 else if (clone_flags
& CLONE_VFORK
) {
1329 if (current
->ptrace
& PT_TRACE_VFORK
)
1330 return PTRACE_EVENT_VFORK
;
1331 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1332 if (current
->ptrace
& PT_TRACE_CLONE
)
1333 return PTRACE_EVENT_CLONE
;
1334 } else if (current
->ptrace
& PT_TRACE_FORK
)
1335 return PTRACE_EVENT_FORK
;
1341 * Ok, this is the main fork-routine.
1343 * It copies the process, and if successful kick-starts
1344 * it and waits for it to finish using the VM if required.
1346 long do_fork(unsigned long clone_flags
,
1347 unsigned long stack_start
,
1348 struct pt_regs
*regs
,
1349 unsigned long stack_size
,
1350 int __user
*parent_tidptr
,
1351 int __user
*child_tidptr
)
1353 struct task_struct
*p
;
1355 struct pid
*pid
= alloc_pid();
1361 if (unlikely(current
->ptrace
)) {
1362 trace
= fork_traceflag (clone_flags
);
1364 clone_flags
|= CLONE_PTRACE
;
1367 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, nr
);
1369 * Do this prior waking up the new thread - the thread pointer
1370 * might get invalid after that point, if the thread exits quickly.
1373 struct completion vfork
;
1375 if (clone_flags
& CLONE_VFORK
) {
1376 p
->vfork_done
= &vfork
;
1377 init_completion(&vfork
);
1380 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1382 * We'll start up with an immediate SIGSTOP.
1384 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1385 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1388 if (!(clone_flags
& CLONE_STOPPED
))
1389 wake_up_new_task(p
, clone_flags
);
1391 p
->state
= TASK_STOPPED
;
1393 if (unlikely (trace
)) {
1394 current
->ptrace_message
= nr
;
1395 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1398 if (clone_flags
& CLONE_VFORK
) {
1399 wait_for_completion(&vfork
);
1400 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
)) {
1401 current
->ptrace_message
= nr
;
1402 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1412 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1413 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1416 static void sighand_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
1418 struct sighand_struct
*sighand
= data
;
1420 if ((flags
& (SLAB_CTOR_VERIFY
| SLAB_CTOR_CONSTRUCTOR
)) ==
1421 SLAB_CTOR_CONSTRUCTOR
)
1422 spin_lock_init(&sighand
->siglock
);
1425 void __init
proc_caches_init(void)
1427 sighand_cachep
= kmem_cache_create("sighand_cache",
1428 sizeof(struct sighand_struct
), 0,
1429 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1430 sighand_ctor
, NULL
);
1431 signal_cachep
= kmem_cache_create("signal_cache",
1432 sizeof(struct signal_struct
), 0,
1433 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1434 files_cachep
= kmem_cache_create("files_cache",
1435 sizeof(struct files_struct
), 0,
1436 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1437 fs_cachep
= kmem_cache_create("fs_cache",
1438 sizeof(struct fs_struct
), 0,
1439 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1440 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1441 sizeof(struct vm_area_struct
), 0,
1442 SLAB_PANIC
, NULL
, NULL
);
1443 mm_cachep
= kmem_cache_create("mm_struct",
1444 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1445 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1450 * Check constraints on flags passed to the unshare system call and
1451 * force unsharing of additional process context as appropriate.
1453 static inline void check_unshare_flags(unsigned long *flags_ptr
)
1456 * If unsharing a thread from a thread group, must also
1459 if (*flags_ptr
& CLONE_THREAD
)
1460 *flags_ptr
|= CLONE_VM
;
1463 * If unsharing vm, must also unshare signal handlers.
1465 if (*flags_ptr
& CLONE_VM
)
1466 *flags_ptr
|= CLONE_SIGHAND
;
1469 * If unsharing signal handlers and the task was created
1470 * using CLONE_THREAD, then must unshare the thread
1472 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1473 (atomic_read(¤t
->signal
->count
) > 1))
1474 *flags_ptr
|= CLONE_THREAD
;
1477 * If unsharing namespace, must also unshare filesystem information.
1479 if (*flags_ptr
& CLONE_NEWNS
)
1480 *flags_ptr
|= CLONE_FS
;
1484 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1486 static int unshare_thread(unsigned long unshare_flags
)
1488 if (unshare_flags
& CLONE_THREAD
)
1495 * Unshare the filesystem structure if it is being shared
1497 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1499 struct fs_struct
*fs
= current
->fs
;
1501 if ((unshare_flags
& CLONE_FS
) &&
1502 (fs
&& atomic_read(&fs
->count
) > 1)) {
1503 *new_fsp
= __copy_fs_struct(current
->fs
);
1512 * Unshare the namespace structure if it is being shared
1514 static int unshare_namespace(unsigned long unshare_flags
, struct namespace **new_nsp
, struct fs_struct
*new_fs
)
1516 struct namespace *ns
= current
->nsproxy
->namespace;
1518 if ((unshare_flags
& CLONE_NEWNS
) && ns
) {
1519 if (!capable(CAP_SYS_ADMIN
))
1522 *new_nsp
= dup_namespace(current
, new_fs
? new_fs
: current
->fs
);
1531 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1534 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1536 struct sighand_struct
*sigh
= current
->sighand
;
1538 if ((unshare_flags
& CLONE_SIGHAND
) &&
1539 (sigh
&& atomic_read(&sigh
->count
) > 1))
1546 * Unshare vm if it is being shared
1548 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1550 struct mm_struct
*mm
= current
->mm
;
1552 if ((unshare_flags
& CLONE_VM
) &&
1553 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1561 * Unshare file descriptor table if it is being shared
1563 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1565 struct files_struct
*fd
= current
->files
;
1568 if ((unshare_flags
& CLONE_FILES
) &&
1569 (fd
&& atomic_read(&fd
->count
) > 1)) {
1570 *new_fdp
= dup_fd(fd
, &error
);
1579 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1582 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1584 if (unshare_flags
& CLONE_SYSVSEM
)
1590 #ifndef CONFIG_IPC_NS
1591 static inline int unshare_ipcs(unsigned long flags
, struct ipc_namespace
**ns
)
1593 if (flags
& CLONE_NEWIPC
)
1601 * unshare allows a process to 'unshare' part of the process
1602 * context which was originally shared using clone. copy_*
1603 * functions used by do_fork() cannot be used here directly
1604 * because they modify an inactive task_struct that is being
1605 * constructed. Here we are modifying the current, active,
1608 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1611 struct fs_struct
*fs
, *new_fs
= NULL
;
1612 struct namespace *ns
, *new_ns
= NULL
;
1613 struct sighand_struct
*sigh
, *new_sigh
= NULL
;
1614 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1615 struct files_struct
*fd
, *new_fd
= NULL
;
1616 struct sem_undo_list
*new_ulist
= NULL
;
1617 struct nsproxy
*new_nsproxy
= NULL
, *old_nsproxy
= NULL
;
1618 struct uts_namespace
*uts
, *new_uts
= NULL
;
1619 struct ipc_namespace
*ipc
, *new_ipc
= NULL
;
1621 check_unshare_flags(&unshare_flags
);
1623 /* Return -EINVAL for all unsupported flags */
1625 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1626 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1627 CLONE_NEWUTS
|CLONE_NEWIPC
))
1628 goto bad_unshare_out
;
1630 if ((err
= unshare_thread(unshare_flags
)))
1631 goto bad_unshare_out
;
1632 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1633 goto bad_unshare_cleanup_thread
;
1634 if ((err
= unshare_namespace(unshare_flags
, &new_ns
, new_fs
)))
1635 goto bad_unshare_cleanup_fs
;
1636 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1637 goto bad_unshare_cleanup_ns
;
1638 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1639 goto bad_unshare_cleanup_sigh
;
1640 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1641 goto bad_unshare_cleanup_vm
;
1642 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1643 goto bad_unshare_cleanup_fd
;
1644 if ((err
= unshare_utsname(unshare_flags
, &new_uts
)))
1645 goto bad_unshare_cleanup_semundo
;
1646 if ((err
= unshare_ipcs(unshare_flags
, &new_ipc
)))
1647 goto bad_unshare_cleanup_uts
;
1649 if (new_ns
|| new_uts
|| new_ipc
) {
1650 old_nsproxy
= current
->nsproxy
;
1651 new_nsproxy
= dup_namespaces(old_nsproxy
);
1654 goto bad_unshare_cleanup_ipc
;
1658 if (new_fs
|| new_ns
|| new_sigh
|| new_mm
|| new_fd
|| new_ulist
||
1659 new_uts
|| new_ipc
) {
1664 current
->nsproxy
= new_nsproxy
;
1665 new_nsproxy
= old_nsproxy
;
1670 current
->fs
= new_fs
;
1675 ns
= current
->nsproxy
->namespace;
1676 current
->nsproxy
->namespace = new_ns
;
1681 sigh
= current
->sighand
;
1682 rcu_assign_pointer(current
->sighand
, new_sigh
);
1688 active_mm
= current
->active_mm
;
1689 current
->mm
= new_mm
;
1690 current
->active_mm
= new_mm
;
1691 activate_mm(active_mm
, new_mm
);
1696 fd
= current
->files
;
1697 current
->files
= new_fd
;
1702 uts
= current
->nsproxy
->uts_ns
;
1703 current
->nsproxy
->uts_ns
= new_uts
;
1708 ipc
= current
->nsproxy
->ipc_ns
;
1709 current
->nsproxy
->ipc_ns
= new_ipc
;
1713 task_unlock(current
);
1717 put_nsproxy(new_nsproxy
);
1719 bad_unshare_cleanup_ipc
:
1721 put_ipc_ns(new_ipc
);
1723 bad_unshare_cleanup_uts
:
1725 put_uts_ns(new_uts
);
1727 bad_unshare_cleanup_semundo
:
1728 bad_unshare_cleanup_fd
:
1730 put_files_struct(new_fd
);
1732 bad_unshare_cleanup_vm
:
1736 bad_unshare_cleanup_sigh
:
1738 if (atomic_dec_and_test(&new_sigh
->count
))
1739 kmem_cache_free(sighand_cachep
, new_sigh
);
1741 bad_unshare_cleanup_ns
:
1743 put_namespace(new_ns
);
1745 bad_unshare_cleanup_fs
:
1747 put_fs_struct(new_fs
);
1749 bad_unshare_cleanup_thread
: