Merge with Linux 2.4.0-test6-pre2.
[linux-2.6/linux-mips.git] / fs / ext2 / inode.c
blob678eb4d285c958330a621540fb5e77d489bfa03e
1 /*
2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/fs.h>
26 #include <linux/locks.h>
27 #include <linux/smp_lock.h>
28 #include <linux/sched.h>
29 #include <linux/highuid.h>
31 static int ext2_update_inode(struct inode * inode, int do_sync);
34 * Called at each iput()
36 void ext2_put_inode (struct inode * inode)
38 ext2_discard_prealloc (inode);
42 * Called at the last iput() if i_nlink is zero.
44 void ext2_delete_inode (struct inode * inode)
46 lock_kernel();
48 if (is_bad_inode(inode) ||
49 inode->i_ino == EXT2_ACL_IDX_INO ||
50 inode->i_ino == EXT2_ACL_DATA_INO)
51 goto no_delete;
52 inode->u.ext2_i.i_dtime = CURRENT_TIME;
53 mark_inode_dirty(inode);
54 ext2_update_inode(inode, IS_SYNC(inode));
55 inode->i_size = 0;
56 if (inode->i_blocks)
57 ext2_truncate (inode);
58 ext2_free_inode (inode);
60 unlock_kernel();
61 return;
62 no_delete:
63 unlock_kernel();
64 clear_inode(inode); /* We must guarantee clearing of inode... */
67 void ext2_discard_prealloc (struct inode * inode)
69 #ifdef EXT2_PREALLOCATE
70 lock_kernel();
71 /* Writer: ->i_prealloc* */
72 if (inode->u.ext2_i.i_prealloc_count) {
73 unsigned short total = inode->u.ext2_i.i_prealloc_count;
74 unsigned long block = inode->u.ext2_i.i_prealloc_block;
75 inode->u.ext2_i.i_prealloc_count = 0;
76 inode->u.ext2_i.i_prealloc_block = 0;
77 /* Writer: end */
78 ext2_free_blocks (inode, block, total);
80 unlock_kernel();
81 #endif
84 static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)
86 #ifdef EXT2FS_DEBUG
87 static unsigned long alloc_hits = 0, alloc_attempts = 0;
88 #endif
89 unsigned long result;
92 #ifdef EXT2_PREALLOCATE
93 /* Writer: ->i_prealloc* */
94 if (inode->u.ext2_i.i_prealloc_count &&
95 (goal == inode->u.ext2_i.i_prealloc_block ||
96 goal + 1 == inode->u.ext2_i.i_prealloc_block))
98 result = inode->u.ext2_i.i_prealloc_block++;
99 inode->u.ext2_i.i_prealloc_count--;
100 /* Writer: end */
101 #ifdef EXT2FS_DEBUG
102 ext2_debug ("preallocation hit (%lu/%lu).\n",
103 ++alloc_hits, ++alloc_attempts);
104 #endif
105 } else {
106 ext2_discard_prealloc (inode);
107 #ifdef EXT2FS_DEBUG
108 ext2_debug ("preallocation miss (%lu/%lu).\n",
109 alloc_hits, ++alloc_attempts);
110 #endif
111 if (S_ISREG(inode->i_mode))
112 result = ext2_new_block (inode, goal,
113 &inode->u.ext2_i.i_prealloc_count,
114 &inode->u.ext2_i.i_prealloc_block, err);
115 else
116 result = ext2_new_block (inode, goal, 0, 0, err);
118 #else
119 result = ext2_new_block (inode, goal, 0, 0, err);
120 #endif
121 return result;
124 typedef struct {
125 u32 *p;
126 u32 key;
127 struct buffer_head *bh;
128 } Indirect;
130 static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
132 p->key = *(p->p = v);
133 p->bh = bh;
136 static inline int verify_chain(Indirect *from, Indirect *to)
138 while (from <= to && from->key == *from->p)
139 from++;
140 return (from > to);
144 * ext2_block_to_path - parse the block number into array of offsets
145 * @inode: inode in question (we are only interested in its superblock)
146 * @i_block: block number to be parsed
147 * @offsets: array to store the offsets in
149 * To store the locations of file's data ext2 uses a data structure common
150 * for UNIX filesystems - tree of pointers anchored in the inode, with
151 * data blocks at leaves and indirect blocks in intermediate nodes.
152 * This function translates the block number into path in that tree -
153 * return value is the path length and @offsets[n] is the offset of
154 * pointer to (n+1)th node in the nth one. If @block is out of range
155 * (negative or too large) warning is printed and zero returned.
157 * Note: function doesn't find node addresses, so no IO is needed. All
158 * we need to know is the capacity of indirect blocks (taken from the
159 * inode->i_sb).
163 * Portability note: the last comparison (check that we fit into triple
164 * indirect block) is spelled differently, because otherwise on an
165 * architecture with 32-bit longs and 8Kb pages we might get into trouble
166 * if our filesystem had 8Kb blocks. We might use long long, but that would
167 * kill us on x86. Oh, well, at least the sign propagation does not matter -
168 * i_block would have to be negative in the very beginning, so we would not
169 * get there at all.
172 static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4])
174 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
175 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
176 const long direct_blocks = EXT2_NDIR_BLOCKS,
177 indirect_blocks = ptrs,
178 double_blocks = (1 << (ptrs_bits * 2));
179 int n = 0;
181 if (i_block < 0) {
182 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
183 } else if (i_block < direct_blocks) {
184 offsets[n++] = i_block;
185 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
186 offsets[n++] = EXT2_IND_BLOCK;
187 offsets[n++] = i_block;
188 } else if ((i_block -= indirect_blocks) < double_blocks) {
189 offsets[n++] = EXT2_DIND_BLOCK;
190 offsets[n++] = i_block >> ptrs_bits;
191 offsets[n++] = i_block & (ptrs - 1);
192 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
193 offsets[n++] = EXT2_TIND_BLOCK;
194 offsets[n++] = i_block >> (ptrs_bits * 2);
195 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
196 offsets[n++] = i_block & (ptrs - 1);
197 } else {
198 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
200 return n;
204 * ext2_get_branch - read the chain of indirect blocks leading to data
205 * @inode: inode in question
206 * @depth: depth of the chain (1 - direct pointer, etc.)
207 * @offsets: offsets of pointers in inode/indirect blocks
208 * @chain: place to store the result
209 * @err: here we store the error value
211 * Function fills the array of triples <key, p, bh> and returns %NULL
212 * if everything went OK or the pointer to the last filled triple
213 * (incomplete one) otherwise. Upon the return chain[i].key contains
214 * the number of (i+1)-th block in the chain (as it is stored in memory,
215 * i.e. little-endian 32-bit), chain[i].p contains the address of that
216 * number (it points into struct inode for i==0 and into the bh->b_data
217 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
218 * block for i>0 and NULL for i==0. In other words, it holds the block
219 * numbers of the chain, addresses they were taken from (and where we can
220 * verify that chain did not change) and buffer_heads hosting these
221 * numbers.
223 * Function stops when it stumbles upon zero pointer (absent block)
224 * (pointer to last triple returned, *@err == 0)
225 * or when it gets an IO error reading an indirect block
226 * (ditto, *@err == -EIO)
227 * or when it notices that chain had been changed while it was reading
228 * (ditto, *@err == -EAGAIN)
229 * or when it reads all @depth-1 indirect blocks successfully and finds
230 * the whole chain, all way to the data (returns %NULL, *err == 0).
232 static inline Indirect *ext2_get_branch(struct inode *inode,
233 int depth,
234 int *offsets,
235 Indirect chain[4],
236 int *err)
238 kdev_t dev = inode->i_dev;
239 int size = inode->i_sb->s_blocksize;
240 Indirect *p = chain;
241 struct buffer_head *bh;
243 *err = 0;
244 /* i_data is not going away, no lock needed */
245 add_chain (chain, NULL, inode->u.ext2_i.i_data + *offsets);
246 if (!p->key)
247 goto no_block;
249 * switch below is merely an unrolled loop - body should be
250 * repeated depth-1 times. Maybe loop would be actually better,
251 * but that way we get straight execution path in normal cases.
252 * Easy to change, anyway - all cases in switch are literally
253 * identical.
255 switch (depth) {
256 case 4:
257 bh = bread(dev, le32_to_cpu(p->key), size);
258 if (!bh)
259 goto failure;
260 /* Reader: pointers */
261 if (!verify_chain(chain, p))
262 goto changed;
263 add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
264 /* Reader: end */
265 if (!p->key)
266 goto no_block;
267 case 3:
268 bh = bread(dev, le32_to_cpu(p->key), size);
269 if (!bh)
270 goto failure;
271 /* Reader: pointers */
272 if (!verify_chain(chain, p))
273 goto changed;
274 add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
275 /* Reader: end */
276 if (!p->key)
277 goto no_block;
278 case 2:
279 bh = bread(dev, le32_to_cpu(p->key), size);
280 if (!bh)
281 goto failure;
282 /* Reader: pointers */
283 if (!verify_chain(chain, p))
284 goto changed;
285 add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
286 /* Reader: end */
287 if (!p->key)
288 goto no_block;
290 return NULL;
292 changed:
293 *err = -EAGAIN;
294 goto no_block;
295 failure:
296 *err = -EIO;
297 no_block:
298 return p;
302 * ext2_find_near - find a place for allocation with sufficient locality
303 * @inode: owner
304 * @ind: descriptor of indirect block.
306 * This function returns the prefered place for block allocation.
307 * It is used when heuristic for sequential allocation fails.
308 * Rules are:
309 * + if there is a block to the left of our position - allocate near it.
310 * + if pointer will live in indirect block - allocate near that block.
311 * + if pointer will live in inode - allocate in the same cylinder group.
312 * Caller must make sure that @ind is valid and will stay that way.
315 static inline unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
317 u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext2_i.i_data;
318 u32 *p;
320 /* Try to find previous block */
321 for (p = ind->p - 1; p >= start; p--)
322 if (*p)
323 return le32_to_cpu(*p);
325 /* No such thing, so let's try location of indirect block */
326 if (ind->bh)
327 return ind->bh->b_blocknr;
330 * It is going to be refered from inode itself? OK, just put it into
331 * the same cylinder group then.
333 return (inode->u.ext2_i.i_block_group *
334 EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
335 le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_first_data_block);
339 * ext2_find_goal - find a prefered place for allocation.
340 * @inode: owner
341 * @block: block we want
342 * @chain: chain of indirect blocks
343 * @partial: pointer to the last triple within a chain.
345 * This function returns the prefered place for block allocation.
348 static inline unsigned long ext2_find_goal(struct inode *inode,
349 long block,
350 Indirect chain[4],
351 Indirect *partial)
353 unsigned long goal = 0;
355 /* Writer: ->i_next_alloc* */
356 if (block == inode->u.ext2_i.i_next_alloc_block + 1) {
357 inode->u.ext2_i.i_next_alloc_block++;
358 inode->u.ext2_i.i_next_alloc_goal++;
360 /* Writer: end */
361 /* Reader: pointers, ->i_next_alloc* */
362 if (verify_chain(chain, partial)) {
364 * try the heuristic for sequential allocation,
365 * failing that at least try to get decent locality.
367 if (block == inode->u.ext2_i.i_next_alloc_block)
368 goal = inode->u.ext2_i.i_next_alloc_goal;
369 if (!goal)
370 goal = ext2_find_near(inode, partial);
372 /* Reader: end */
373 return goal;
377 * ext2_alloc_branch - allocate and set up a chain of blocks.
378 * @inode: owner
379 * @num: depth of the chain (number of blocks to allocate)
380 * @offsets: offsets (in the blocks) to store the pointers to next.
381 * @branch: place to store the chain in.
383 * This function allocates @num blocks, zeroes out all but the last one,
384 * links them into chain and (if we are synchronous) writes them to disk.
385 * In other words, it prepares a branch that can be spliced onto the
386 * inode. It stores the information about that chain in the branch[], in
387 * the same format as ext2_get_branch() would do. We are calling it after
388 * we had read the existing part of chain and partial points to the last
389 * triple of that (one with zero ->key). Upon the exit we have the same
390 * picture as after the successful ext2_get_block(), excpet that in one
391 * place chain is disconnected - *branch->p is still zero (we did not
392 * set the last link), but branch->key contains the number that should
393 * be placed into *branch->p to fill that gap.
395 * If allocation fails we free all blocks we've allocated (and forget
396 * ther buffer_heads) and return the error value the from failed
397 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
398 * as described above and return 0.
401 static int ext2_alloc_branch(struct inode *inode,
402 int num,
403 unsigned long goal,
404 int *offsets,
405 Indirect *branch)
407 int blocksize = inode->i_sb->s_blocksize;
408 int n = 0;
409 int err;
410 int i;
411 int parent = ext2_alloc_block(inode, goal, &err);
413 branch[0].key = cpu_to_le32(parent);
414 if (parent) for (n = 1; n < num; n++) {
415 struct buffer_head *bh;
416 /* Allocate the next block */
417 int nr = ext2_alloc_block(inode, parent, &err);
418 if (!nr)
419 break;
420 branch[n].key = cpu_to_le32(nr);
422 * Get buffer_head for parent block, zero it out and set
423 * the pointer to new one, then send parent to disk.
425 bh = getblk(inode->i_dev, parent, blocksize);
426 if (!buffer_uptodate(bh))
427 wait_on_buffer(bh);
428 memset(bh->b_data, 0, blocksize);
429 branch[n].bh = bh;
430 branch[n].p = (u32*) bh->b_data + offsets[n];
431 *branch[n].p = branch[n].key;
432 mark_buffer_uptodate(bh, 1);
433 mark_buffer_dirty(bh, 1);
434 if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) {
435 ll_rw_block (WRITE, 1, &bh);
436 wait_on_buffer (bh);
438 parent = nr;
440 if (n == num)
441 return 0;
443 /* Allocation failed, free what we already allocated */
444 for (i = 1; i < n; i++)
445 bforget(branch[i].bh);
446 for (i = 0; i < n; i++)
447 ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);
448 return err;
452 * ext2_splice_branch - splice the allocated branch onto inode.
453 * @inode: owner
454 * @block: (logical) number of block we are adding
455 * @chain: chain of indirect blocks (with a missing link - see
456 * ext2_alloc_branch)
457 * @where: location of missing link
458 * @num: number of blocks we are adding
460 * This function verifies that chain (up to the missing link) had not
461 * changed, fills the missing link and does all housekeeping needed in
462 * inode (->i_blocks, etc.). In case of success we end up with the full
463 * chain to new block and return 0. Otherwise (== chain had been changed)
464 * we free the new blocks (forgetting their buffer_heads, indeed) and
465 * return -EAGAIN.
468 static inline int ext2_splice_branch(struct inode *inode,
469 long block,
470 Indirect chain[4],
471 Indirect *where,
472 int num)
474 int i;
476 /* Verify that place we are splicing to is still there and vacant */
478 /* Writer: pointers, ->i_next_alloc*, ->i_blocks */
479 if (!verify_chain(chain, where-1) || *where->p)
480 /* Writer: end */
481 goto changed;
483 /* That's it */
485 *where->p = where->key;
486 inode->u.ext2_i.i_next_alloc_block = block;
487 inode->u.ext2_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key);
488 inode->i_blocks += num * inode->i_sb->s_blocksize/512;
490 /* Writer: end */
492 /* We are done with atomic stuff, now do the rest of housekeeping */
494 inode->i_ctime = CURRENT_TIME;
496 /* had we spliced it onto indirect block? */
497 if (where->bh) {
498 mark_buffer_dirty(where->bh, 1);
499 if (IS_SYNC(inode) || inode->u.ext2_i.i_osync) {
500 ll_rw_block (WRITE, 1, &where->bh);
501 wait_on_buffer(where->bh);
505 if (IS_SYNC(inode) || inode->u.ext2_i.i_osync)
506 ext2_sync_inode (inode);
507 else
508 mark_inode_dirty(inode);
509 return 0;
511 changed:
512 for (i = 1; i < num; i++)
513 bforget(where[i].bh);
514 for (i = 0; i < num; i++)
515 ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);
516 return -EAGAIN;
520 * Allocation strategy is simple: if we have to allocate something, we will
521 * have to go the whole way to leaf. So let's do it before attaching anything
522 * to tree, set linkage between the newborn blocks, write them if sync is
523 * required, recheck the path, free and repeat if check fails, otherwise
524 * set the last missing link (that will protect us from any truncate-generated
525 * removals - all blocks on the path are immune now) and possibly force the
526 * write on the parent block.
527 * That has a nice additional property: no special recovery from the failed
528 * allocations is needed - we simply release blocks and do not touch anything
529 * reachable from inode.
532 static int ext2_get_block(struct inode *inode, long iblock, struct buffer_head *bh_result, int create)
534 int err = -EIO;
535 int offsets[4];
536 Indirect chain[4];
537 Indirect *partial;
538 unsigned long goal;
539 int left;
540 int depth = ext2_block_to_path(inode, iblock, offsets);
542 if (depth == 0)
543 goto out;
545 lock_kernel();
546 reread:
547 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
549 /* Simplest case - block found, no allocation needed */
550 if (!partial) {
551 got_it:
552 bh_result->b_dev = inode->i_dev;
553 bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key);
554 bh_result->b_state |= (1UL << BH_Mapped);
555 /* Clean up and exit */
556 partial = chain+depth-1; /* the whole chain */
557 goto cleanup;
560 /* Next simple case - plain lookup or failed read of indirect block */
561 if (!create || err == -EIO) {
562 cleanup:
563 while (partial > chain) {
564 brelse(partial->bh);
565 partial--;
567 unlock_kernel();
568 out:
569 return err;
573 * Indirect block might be removed by truncate while we were
574 * reading it. Handling of that case (forget what we've got and
575 * reread) is taken out of the main path.
577 if (err == -EAGAIN)
578 goto changed;
580 goal = ext2_find_goal(inode, iblock, chain, partial);
581 if (!goal)
582 goto changed;
584 left = (chain + depth) - partial;
585 err = ext2_alloc_branch(inode, left, goal,
586 offsets+(partial-chain), partial);
587 if (err)
588 goto cleanup;
590 if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)
591 goto changed;
593 bh_result->b_state |= (1UL << BH_New);
594 goto got_it;
596 changed:
597 while (partial > chain) {
598 bforget(partial->bh);
599 partial--;
601 goto reread;
604 struct buffer_head * ext2_getblk(struct inode * inode, long block, int create, int * err)
606 struct buffer_head dummy;
607 int error;
609 dummy.b_state = 0;
610 dummy.b_blocknr = -1000;
611 error = ext2_get_block(inode, block, &dummy, create);
612 *err = error;
613 if (!error && buffer_mapped(&dummy)) {
614 struct buffer_head *bh;
615 bh = getblk(dummy.b_dev, dummy.b_blocknr, inode->i_sb->s_blocksize);
616 if (buffer_new(&dummy)) {
617 if (!buffer_uptodate(bh))
618 wait_on_buffer(bh);
619 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
620 mark_buffer_uptodate(bh, 1);
621 mark_buffer_dirty(bh, 1);
623 return bh;
625 return NULL;
628 struct buffer_head * ext2_bread (struct inode * inode, int block,
629 int create, int *err)
631 struct buffer_head * bh;
632 int prev_blocks;
634 prev_blocks = inode->i_blocks;
636 bh = ext2_getblk (inode, block, create, err);
637 if (!bh)
638 return bh;
641 * If the inode has grown, and this is a directory, then perform
642 * preallocation of a few more blocks to try to keep directory
643 * fragmentation down.
645 if (create &&
646 S_ISDIR(inode->i_mode) &&
647 inode->i_blocks > prev_blocks &&
648 EXT2_HAS_COMPAT_FEATURE(inode->i_sb,
649 EXT2_FEATURE_COMPAT_DIR_PREALLOC)) {
650 int i;
651 struct buffer_head *tmp_bh;
653 for (i = 1;
654 i < EXT2_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks;
655 i++) {
657 * ext2_getblk will zero out the contents of the
658 * directory for us
660 tmp_bh = ext2_getblk(inode, block+i, create, err);
661 if (!tmp_bh) {
662 brelse (bh);
663 return 0;
665 brelse (tmp_bh);
669 if (buffer_uptodate(bh))
670 return bh;
671 ll_rw_block (READ, 1, &bh);
672 wait_on_buffer (bh);
673 if (buffer_uptodate(bh))
674 return bh;
675 brelse (bh);
676 *err = -EIO;
677 return NULL;
680 static int ext2_writepage(struct file *file, struct page *page)
682 return block_write_full_page(page,ext2_get_block);
684 static int ext2_readpage(struct file *file, struct page *page)
686 return block_read_full_page(page,ext2_get_block);
688 static int ext2_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
690 return block_prepare_write(page,from,to,ext2_get_block);
692 static int ext2_bmap(struct address_space *mapping, long block)
694 return generic_block_bmap(mapping,block,ext2_get_block);
696 struct address_space_operations ext2_aops = {
697 readpage: ext2_readpage,
698 writepage: ext2_writepage,
699 sync_page: block_sync_page,
700 prepare_write: ext2_prepare_write,
701 commit_write: generic_commit_write,
702 bmap: ext2_bmap
705 void ext2_read_inode (struct inode * inode)
707 struct buffer_head * bh;
708 struct ext2_inode * raw_inode;
709 unsigned long block_group;
710 unsigned long group_desc;
711 unsigned long desc;
712 unsigned long block;
713 unsigned long offset;
714 struct ext2_group_desc * gdp;
716 if ((inode->i_ino != EXT2_ROOT_INO && inode->i_ino != EXT2_ACL_IDX_INO &&
717 inode->i_ino != EXT2_ACL_DATA_INO &&
718 inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
719 inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
720 ext2_error (inode->i_sb, "ext2_read_inode",
721 "bad inode number: %lu", inode->i_ino);
722 goto bad_inode;
724 block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
725 if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
726 ext2_error (inode->i_sb, "ext2_read_inode",
727 "group >= groups count");
728 goto bad_inode;
730 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
731 desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
732 bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
733 if (!bh) {
734 ext2_error (inode->i_sb, "ext2_read_inode",
735 "Descriptor not loaded");
736 goto bad_inode;
739 gdp = (struct ext2_group_desc *) bh->b_data;
741 * Figure out the offset within the block group inode table
743 offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
744 EXT2_INODE_SIZE(inode->i_sb);
745 block = le32_to_cpu(gdp[desc].bg_inode_table) +
746 (offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
747 if (!(bh = bread (inode->i_dev, block, inode->i_sb->s_blocksize))) {
748 ext2_error (inode->i_sb, "ext2_read_inode",
749 "unable to read inode block - "
750 "inode=%lu, block=%lu", inode->i_ino, block);
751 goto bad_inode;
753 offset &= (EXT2_BLOCK_SIZE(inode->i_sb) - 1);
754 raw_inode = (struct ext2_inode *) (bh->b_data + offset);
756 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
757 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
758 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
759 if(!(test_opt (inode->i_sb, NO_UID32))) {
760 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
761 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
763 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
764 inode->i_size = le32_to_cpu(raw_inode->i_size);
765 inode->i_atime = le32_to_cpu(raw_inode->i_atime);
766 inode->i_ctime = le32_to_cpu(raw_inode->i_ctime);
767 inode->i_mtime = le32_to_cpu(raw_inode->i_mtime);
768 inode->u.ext2_i.i_dtime = le32_to_cpu(raw_inode->i_dtime);
769 /* We now have enough fields to check if the inode was active or not.
770 * This is needed because nfsd might try to access dead inodes
771 * the test is that same one that e2fsck uses
772 * NeilBrown 1999oct15
774 if (inode->i_nlink == 0 && (inode->i_mode == 0 || inode->u.ext2_i.i_dtime)) {
775 /* this inode is deleted */
776 brelse (bh);
777 goto bad_inode;
779 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */
780 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
781 inode->i_version = ++event;
782 inode->u.ext2_i.i_new_inode = 0;
783 inode->u.ext2_i.i_flags = le32_to_cpu(raw_inode->i_flags);
784 inode->u.ext2_i.i_faddr = le32_to_cpu(raw_inode->i_faddr);
785 inode->u.ext2_i.i_frag_no = raw_inode->i_frag;
786 inode->u.ext2_i.i_frag_size = raw_inode->i_fsize;
787 inode->u.ext2_i.i_osync = 0;
788 inode->u.ext2_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
789 if (S_ISDIR(inode->i_mode))
790 inode->u.ext2_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
791 else {
792 inode->u.ext2_i.i_dir_acl = 0;
793 inode->u.ext2_i.i_high_size = le32_to_cpu(raw_inode->i_size_high);
794 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
796 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
797 inode->u.ext2_i.i_block_group = block_group;
798 inode->u.ext2_i.i_next_alloc_block = 0;
799 inode->u.ext2_i.i_next_alloc_goal = 0;
800 if (inode->u.ext2_i.i_prealloc_count)
801 ext2_error (inode->i_sb, "ext2_read_inode",
802 "New inode has non-zero prealloc count!");
805 * NOTE! The in-memory inode i_blocks array is in little-endian order
806 * even on big-endian machines: we do NOT byteswap the block numbers!
808 for (block = 0; block < EXT2_N_BLOCKS; block++)
809 inode->u.ext2_i.i_data[block] = raw_inode->i_block[block];
811 if (inode->i_ino == EXT2_ACL_IDX_INO ||
812 inode->i_ino == EXT2_ACL_DATA_INO)
813 /* Nothing to do */ ;
814 else if (S_ISREG(inode->i_mode)) {
815 inode->i_op = &ext2_file_inode_operations;
816 inode->i_fop = &ext2_file_operations;
817 inode->i_mapping->a_ops = &ext2_aops;
818 } else if (S_ISDIR(inode->i_mode)) {
819 inode->i_op = &ext2_dir_inode_operations;
820 inode->i_fop = &ext2_dir_operations;
821 } else if (S_ISLNK(inode->i_mode)) {
822 if (!inode->i_blocks)
823 inode->i_op = &ext2_fast_symlink_inode_operations;
824 else {
825 inode->i_op = &page_symlink_inode_operations;
826 inode->i_mapping->a_ops = &ext2_aops;
828 } else
829 init_special_inode(inode, inode->i_mode,
830 le32_to_cpu(raw_inode->i_block[0]));
831 brelse (bh);
832 inode->i_attr_flags = 0;
833 if (inode->u.ext2_i.i_flags & EXT2_SYNC_FL) {
834 inode->i_attr_flags |= ATTR_FLAG_SYNCRONOUS;
835 inode->i_flags |= S_SYNC;
837 if (inode->u.ext2_i.i_flags & EXT2_APPEND_FL) {
838 inode->i_attr_flags |= ATTR_FLAG_APPEND;
839 inode->i_flags |= S_APPEND;
841 if (inode->u.ext2_i.i_flags & EXT2_IMMUTABLE_FL) {
842 inode->i_attr_flags |= ATTR_FLAG_IMMUTABLE;
843 inode->i_flags |= S_IMMUTABLE;
845 if (inode->u.ext2_i.i_flags & EXT2_NOATIME_FL) {
846 inode->i_attr_flags |= ATTR_FLAG_NOATIME;
847 inode->i_flags |= S_NOATIME;
849 return;
851 bad_inode:
852 make_bad_inode(inode);
853 return;
856 static int ext2_update_inode(struct inode * inode, int do_sync)
858 struct buffer_head * bh;
859 struct ext2_inode * raw_inode;
860 unsigned long block_group;
861 unsigned long group_desc;
862 unsigned long desc;
863 unsigned long block;
864 unsigned long offset;
865 int err = 0;
866 struct ext2_group_desc * gdp;
868 if ((inode->i_ino != EXT2_ROOT_INO &&
869 inode->i_ino < EXT2_FIRST_INO(inode->i_sb)) ||
870 inode->i_ino > le32_to_cpu(inode->i_sb->u.ext2_sb.s_es->s_inodes_count)) {
871 ext2_error (inode->i_sb, "ext2_write_inode",
872 "bad inode number: %lu", inode->i_ino);
873 return -EIO;
875 block_group = (inode->i_ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
876 if (block_group >= inode->i_sb->u.ext2_sb.s_groups_count) {
877 ext2_error (inode->i_sb, "ext2_write_inode",
878 "group >= groups count");
879 return -EIO;
881 group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(inode->i_sb);
882 desc = block_group & (EXT2_DESC_PER_BLOCK(inode->i_sb) - 1);
883 bh = inode->i_sb->u.ext2_sb.s_group_desc[group_desc];
884 if (!bh) {
885 ext2_error (inode->i_sb, "ext2_write_inode",
886 "Descriptor not loaded");
887 return -EIO;
889 gdp = (struct ext2_group_desc *) bh->b_data;
891 * Figure out the offset within the block group inode table
893 offset = ((inode->i_ino - 1) % EXT2_INODES_PER_GROUP(inode->i_sb)) *
894 EXT2_INODE_SIZE(inode->i_sb);
895 block = le32_to_cpu(gdp[desc].bg_inode_table) +
896 (offset >> EXT2_BLOCK_SIZE_BITS(inode->i_sb));
897 if (!(bh = bread (inode->i_dev, block, inode->i_sb->s_blocksize))) {
898 ext2_error (inode->i_sb, "ext2_write_inode",
899 "unable to read inode block - "
900 "inode=%lu, block=%lu", inode->i_ino, block);
901 return -EIO;
903 offset &= EXT2_BLOCK_SIZE(inode->i_sb) - 1;
904 raw_inode = (struct ext2_inode *) (bh->b_data + offset);
906 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
907 if(!(test_opt(inode->i_sb, NO_UID32))) {
908 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
909 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
911 * Fix up interoperability with old kernels. Otherwise, old inodes get
912 * re-used with the upper 16 bits of the uid/gid intact
914 if(!inode->u.ext2_i.i_dtime) {
915 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(inode->i_uid));
916 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(inode->i_gid));
917 } else {
918 raw_inode->i_uid_high = 0;
919 raw_inode->i_gid_high = 0;
921 } else {
922 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(inode->i_uid));
923 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(inode->i_gid));
924 raw_inode->i_uid_high = 0;
925 raw_inode->i_gid_high = 0;
927 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
928 raw_inode->i_size = cpu_to_le32(inode->i_size);
929 raw_inode->i_atime = cpu_to_le32(inode->i_atime);
930 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime);
931 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime);
932 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
933 raw_inode->i_dtime = cpu_to_le32(inode->u.ext2_i.i_dtime);
934 raw_inode->i_flags = cpu_to_le32(inode->u.ext2_i.i_flags);
935 raw_inode->i_faddr = cpu_to_le32(inode->u.ext2_i.i_faddr);
936 raw_inode->i_frag = inode->u.ext2_i.i_frag_no;
937 raw_inode->i_fsize = inode->u.ext2_i.i_frag_size;
938 raw_inode->i_file_acl = cpu_to_le32(inode->u.ext2_i.i_file_acl);
939 if (S_ISDIR(inode->i_mode))
940 raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext2_i.i_dir_acl);
941 else
942 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
944 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
945 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
946 raw_inode->i_block[0] = cpu_to_le32(kdev_t_to_nr(inode->i_rdev));
947 else for (block = 0; block < EXT2_N_BLOCKS; block++)
948 raw_inode->i_block[block] = inode->u.ext2_i.i_data[block];
949 mark_buffer_dirty(bh, 1);
950 if (do_sync) {
951 ll_rw_block (WRITE, 1, &bh);
952 wait_on_buffer (bh);
953 if (buffer_req(bh) && !buffer_uptodate(bh)) {
954 printk ("IO error syncing ext2 inode ["
955 "%s:%08lx]\n",
956 bdevname(inode->i_dev), inode->i_ino);
957 err = -EIO;
960 brelse (bh);
961 return err;
964 void ext2_write_inode (struct inode * inode, int wait)
966 lock_kernel();
967 ext2_update_inode (inode, 0);
968 unlock_kernel();
971 int ext2_sync_inode (struct inode *inode)
973 return ext2_update_inode (inode, 1);
976 int ext2_notify_change(struct dentry *dentry, struct iattr *iattr)
978 struct inode *inode = dentry->d_inode;
979 int retval;
980 unsigned int flags;
982 retval = -EPERM;
983 if (iattr->ia_valid & ATTR_ATTR_FLAG &&
984 ((!(iattr->ia_attr_flags & ATTR_FLAG_APPEND) !=
985 !(inode->u.ext2_i.i_flags & EXT2_APPEND_FL)) ||
986 (!(iattr->ia_attr_flags & ATTR_FLAG_IMMUTABLE) !=
987 !(inode->u.ext2_i.i_flags & EXT2_IMMUTABLE_FL)))) {
988 if (!capable(CAP_LINUX_IMMUTABLE))
989 goto out;
990 } else if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
991 goto out;
993 retval = inode_change_ok(inode, iattr);
994 if (retval != 0)
995 goto out;
997 inode_setattr(inode, iattr);
999 flags = iattr->ia_attr_flags;
1000 if (flags & ATTR_FLAG_SYNCRONOUS) {
1001 inode->i_flags |= S_SYNC;
1002 inode->u.ext2_i.i_flags |= EXT2_SYNC_FL;
1003 } else {
1004 inode->i_flags &= ~S_SYNC;
1005 inode->u.ext2_i.i_flags &= ~EXT2_SYNC_FL;
1007 if (flags & ATTR_FLAG_NOATIME) {
1008 inode->i_flags |= S_NOATIME;
1009 inode->u.ext2_i.i_flags |= EXT2_NOATIME_FL;
1010 } else {
1011 inode->i_flags &= ~S_NOATIME;
1012 inode->u.ext2_i.i_flags &= ~EXT2_NOATIME_FL;
1014 if (flags & ATTR_FLAG_APPEND) {
1015 inode->i_flags |= S_APPEND;
1016 inode->u.ext2_i.i_flags |= EXT2_APPEND_FL;
1017 } else {
1018 inode->i_flags &= ~S_APPEND;
1019 inode->u.ext2_i.i_flags &= ~EXT2_APPEND_FL;
1021 if (flags & ATTR_FLAG_IMMUTABLE) {
1022 inode->i_flags |= S_IMMUTABLE;
1023 inode->u.ext2_i.i_flags |= EXT2_IMMUTABLE_FL;
1024 } else {
1025 inode->i_flags &= ~S_IMMUTABLE;
1026 inode->u.ext2_i.i_flags &= ~EXT2_IMMUTABLE_FL;
1028 mark_inode_dirty(inode);
1029 out:
1030 return retval;