regulator: twl4030 regulators
[linux-2.6/linux-loongson.git] / drivers / scsi / scsi_lib.c
blob4b13e36d3aa0b000b3c2bd5aa6d92a0c0b1554be
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
82 * Returns: Nothing.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
91 scsi_put_command(cmd);
94 /**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
114 SCSI_LOG_MLQUEUE(1,
115 printk("Inserting command %p into mlqueue\n", cmd));
118 * Set the appropriate busy bit for the device/host.
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
130 switch (reason) {
131 case SCSI_MLQUEUE_HOST_BUSY:
132 host->host_blocked = host->max_host_blocked;
133 break;
134 case SCSI_MLQUEUE_DEVICE_BUSY:
135 device->device_blocked = device->max_device_blocked;
136 break;
137 case SCSI_MLQUEUE_TARGET_BUSY:
138 starget->target_blocked = starget->max_target_blocked;
139 break;
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
146 if (unbusy)
147 scsi_device_unbusy(device);
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 scsi_run_queue(q);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
244 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
246 if (resid)
247 *resid = req->data_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost = sdev->host;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 if (scsi_target(sdev)->single_lun)
408 scsi_single_lun_run(sdev);
410 spin_lock_irqsave(shost->host_lock, flags);
411 list_splice_init(&shost->starved_list, &starved_list);
413 while (!list_empty(&starved_list)) {
414 int flagset;
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
420 * starved_list.
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
426 if (scsi_host_is_busy(shost))
427 break;
429 sdev = list_entry(starved_list.next,
430 struct scsi_device, starved_entry);
431 list_del_init(&sdev->starved_entry);
432 if (scsi_target_is_busy(scsi_target(sdev))) {
433 list_move_tail(&sdev->starved_entry,
434 &shost->starved_list);
435 continue;
438 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 !test_bit(QUEUE_FLAG_REENTER,
443 &sdev->request_queue->queue_flags);
444 if (flagset)
445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 __blk_run_queue(sdev->request_queue);
447 if (flagset)
448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 spin_unlock(sdev->request_queue->queue_lock);
451 spin_lock(shost->host_lock);
453 /* put any unprocessed entries back */
454 list_splice(&starved_list, &shost->starved_list);
455 spin_unlock_irqrestore(shost->host_lock, flags);
457 blk_run_queue(q);
461 * Function: scsi_requeue_command()
463 * Purpose: Handle post-processing of completed commands.
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
468 * Returns: Nothing
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
475 * sector.
476 * Notes: Upon return, cmd is a stale pointer.
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
480 struct request *req = cmd->request;
481 unsigned long flags;
483 spin_lock_irqsave(q->queue_lock, flags);
484 scsi_unprep_request(req);
485 blk_requeue_request(q, req);
486 spin_unlock_irqrestore(q->queue_lock, flags);
488 scsi_run_queue(q);
491 void scsi_next_command(struct scsi_cmnd *cmd)
493 struct scsi_device *sdev = cmd->device;
494 struct request_queue *q = sdev->request_queue;
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev->sdev_gendev);
499 scsi_put_command(cmd);
500 scsi_run_queue(q);
502 /* ok to remove device now */
503 put_device(&sdev->sdev_gendev);
506 void scsi_run_host_queues(struct Scsi_Host *shost)
508 struct scsi_device *sdev;
510 shost_for_each_device(sdev, shost)
511 scsi_run_queue(sdev->request_queue);
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
517 * Function: scsi_end_request()
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
527 * Lock status: Assumed that lock is not held upon entry.
529 * Returns: cmd if requeue required, NULL otherwise.
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 int bytes, int requeue)
541 struct request_queue *q = cmd->device->request_queue;
542 struct request *req = cmd->request;
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
548 if (blk_end_request(req, error, bytes)) {
549 int leftover = (req->hard_nr_sectors << 9);
551 if (blk_pc_request(req))
552 leftover = req->data_len;
554 /* kill remainder if no retrys */
555 if (error && scsi_noretry_cmd(cmd))
556 blk_end_request(req, error, leftover);
557 else {
558 if (requeue) {
560 * Bleah. Leftovers again. Stick the
561 * leftovers in the front of the
562 * queue, and goose the queue again.
564 scsi_release_buffers(cmd);
565 scsi_requeue_command(q, cmd);
566 cmd = NULL;
568 return cmd;
573 * This will goose the queue request function at the end, so we don't
574 * need to worry about launching another command.
576 __scsi_release_buffers(cmd, 0);
577 scsi_next_command(cmd);
578 return NULL;
581 static inline unsigned int scsi_sgtable_index(unsigned short nents)
583 unsigned int index;
585 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
587 if (nents <= 8)
588 index = 0;
589 else
590 index = get_count_order(nents) - 3;
592 return index;
595 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
597 struct scsi_host_sg_pool *sgp;
599 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
600 mempool_free(sgl, sgp->pool);
603 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
605 struct scsi_host_sg_pool *sgp;
607 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608 return mempool_alloc(sgp->pool, gfp_mask);
611 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
612 gfp_t gfp_mask)
614 int ret;
616 BUG_ON(!nents);
618 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 gfp_mask, scsi_sg_alloc);
620 if (unlikely(ret))
621 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
622 scsi_sg_free);
624 return ret;
627 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
629 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
632 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
635 if (cmd->sdb.table.nents)
636 scsi_free_sgtable(&cmd->sdb);
638 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
640 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
641 struct scsi_data_buffer *bidi_sdb =
642 cmd->request->next_rq->special;
643 scsi_free_sgtable(bidi_sdb);
644 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
645 cmd->request->next_rq->special = NULL;
648 if (scsi_prot_sg_count(cmd))
649 scsi_free_sgtable(cmd->prot_sdb);
653 * Function: scsi_release_buffers()
655 * Purpose: Completion processing for block device I/O requests.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
661 * Returns: Nothing
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table, and potentially any bounce
667 * buffers.
669 void scsi_release_buffers(struct scsi_cmnd *cmd)
671 __scsi_release_buffers(cmd, 1);
673 EXPORT_SYMBOL(scsi_release_buffers);
676 * Bidi commands Must be complete as a whole, both sides at once.
677 * If part of the bytes were written and lld returned
678 * scsi_in()->resid and/or scsi_out()->resid this information will be left
679 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
680 * decide what to do with this information.
682 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
684 struct request *req = cmd->request;
685 unsigned int dlen = req->data_len;
686 unsigned int next_dlen = req->next_rq->data_len;
688 req->data_len = scsi_out(cmd)->resid;
689 req->next_rq->data_len = scsi_in(cmd)->resid;
691 /* The req and req->next_rq have not been completed */
692 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
694 scsi_release_buffers(cmd);
697 * This will goose the queue request function at the end, so we don't
698 * need to worry about launching another command.
700 scsi_next_command(cmd);
704 * Function: scsi_io_completion()
706 * Purpose: Completion processing for block device I/O requests.
708 * Arguments: cmd - command that is finished.
710 * Lock status: Assumed that no lock is held upon entry.
712 * Returns: Nothing
714 * Notes: This function is matched in terms of capabilities to
715 * the function that created the scatter-gather list.
716 * In other words, if there are no bounce buffers
717 * (the normal case for most drivers), we don't need
718 * the logic to deal with cleaning up afterwards.
720 * We must call scsi_end_request(). This will finish off
721 * the specified number of sectors. If we are done, the
722 * command block will be released and the queue function
723 * will be goosed. If we are not done then we have to
724 * figure out what to do next:
726 * a) We can call scsi_requeue_command(). The request
727 * will be unprepared and put back on the queue. Then
728 * a new command will be created for it. This should
729 * be used if we made forward progress, or if we want
730 * to switch from READ(10) to READ(6) for example.
732 * b) We can call scsi_queue_insert(). The request will
733 * be put back on the queue and retried using the same
734 * command as before, possibly after a delay.
736 * c) We can call blk_end_request() with -EIO to fail
737 * the remainder of the request.
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
741 int result = cmd->result;
742 int this_count;
743 struct request_queue *q = cmd->device->request_queue;
744 struct request *req = cmd->request;
745 int error = 0;
746 struct scsi_sense_hdr sshdr;
747 int sense_valid = 0;
748 int sense_deferred = 0;
749 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
750 ACTION_DELAYED_RETRY} action;
751 char *description = NULL;
753 if (result) {
754 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
755 if (sense_valid)
756 sense_deferred = scsi_sense_is_deferred(&sshdr);
759 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
760 req->errors = result;
761 if (result) {
762 if (sense_valid && req->sense) {
764 * SG_IO wants current and deferred errors
766 int len = 8 + cmd->sense_buffer[7];
768 if (len > SCSI_SENSE_BUFFERSIZE)
769 len = SCSI_SENSE_BUFFERSIZE;
770 memcpy(req->sense, cmd->sense_buffer, len);
771 req->sense_len = len;
773 if (!sense_deferred)
774 error = -EIO;
776 if (scsi_bidi_cmnd(cmd)) {
777 /* will also release_buffers */
778 scsi_end_bidi_request(cmd);
779 return;
781 req->data_len = scsi_get_resid(cmd);
784 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
787 * Next deal with any sectors which we were able to correctly
788 * handle.
790 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
791 "%d bytes done.\n",
792 req->nr_sectors, good_bytes));
794 /* A number of bytes were successfully read. If there
795 * are leftovers and there is some kind of error
796 * (result != 0), retry the rest.
798 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
799 return;
800 this_count = blk_rq_bytes(req);
802 error = -EIO;
804 if (host_byte(result) == DID_RESET) {
805 /* Third party bus reset or reset for error recovery
806 * reasons. Just retry the command and see what
807 * happens.
809 action = ACTION_RETRY;
810 } else if (sense_valid && !sense_deferred) {
811 switch (sshdr.sense_key) {
812 case UNIT_ATTENTION:
813 if (cmd->device->removable) {
814 /* Detected disc change. Set a bit
815 * and quietly refuse further access.
817 cmd->device->changed = 1;
818 description = "Media Changed";
819 action = ACTION_FAIL;
820 } else {
821 /* Must have been a power glitch, or a
822 * bus reset. Could not have been a
823 * media change, so we just retry the
824 * command and see what happens.
826 action = ACTION_RETRY;
828 break;
829 case ILLEGAL_REQUEST:
830 /* If we had an ILLEGAL REQUEST returned, then
831 * we may have performed an unsupported
832 * command. The only thing this should be
833 * would be a ten byte read where only a six
834 * byte read was supported. Also, on a system
835 * where READ CAPACITY failed, we may have
836 * read past the end of the disk.
838 if ((cmd->device->use_10_for_rw &&
839 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
840 (cmd->cmnd[0] == READ_10 ||
841 cmd->cmnd[0] == WRITE_10)) {
842 /* This will issue a new 6-byte command. */
843 cmd->device->use_10_for_rw = 0;
844 action = ACTION_REPREP;
845 } else if (sshdr.asc == 0x10) /* DIX */ {
846 description = "Host Data Integrity Failure";
847 action = ACTION_FAIL;
848 error = -EILSEQ;
849 } else
850 action = ACTION_FAIL;
851 break;
852 case ABORTED_COMMAND:
853 action = ACTION_FAIL;
854 if (sshdr.asc == 0x10) { /* DIF */
855 description = "Target Data Integrity Failure";
856 error = -EILSEQ;
858 break;
859 case NOT_READY:
860 /* If the device is in the process of becoming
861 * ready, or has a temporary blockage, retry.
863 if (sshdr.asc == 0x04) {
864 switch (sshdr.ascq) {
865 case 0x01: /* becoming ready */
866 case 0x04: /* format in progress */
867 case 0x05: /* rebuild in progress */
868 case 0x06: /* recalculation in progress */
869 case 0x07: /* operation in progress */
870 case 0x08: /* Long write in progress */
871 case 0x09: /* self test in progress */
872 action = ACTION_DELAYED_RETRY;
873 break;
874 default:
875 description = "Device not ready";
876 action = ACTION_FAIL;
877 break;
879 } else {
880 description = "Device not ready";
881 action = ACTION_FAIL;
883 break;
884 case VOLUME_OVERFLOW:
885 /* See SSC3rXX or current. */
886 action = ACTION_FAIL;
887 break;
888 default:
889 description = "Unhandled sense code";
890 action = ACTION_FAIL;
891 break;
893 } else {
894 description = "Unhandled error code";
895 action = ACTION_FAIL;
898 switch (action) {
899 case ACTION_FAIL:
900 /* Give up and fail the remainder of the request */
901 scsi_release_buffers(cmd);
902 if (!(req->cmd_flags & REQ_QUIET)) {
903 if (description)
904 scmd_printk(KERN_INFO, cmd, "%s\n",
905 description);
906 scsi_print_result(cmd);
907 if (driver_byte(result) & DRIVER_SENSE)
908 scsi_print_sense("", cmd);
910 blk_end_request(req, -EIO, blk_rq_bytes(req));
911 scsi_next_command(cmd);
912 break;
913 case ACTION_REPREP:
914 /* Unprep the request and put it back at the head of the queue.
915 * A new command will be prepared and issued.
917 scsi_release_buffers(cmd);
918 scsi_requeue_command(q, cmd);
919 break;
920 case ACTION_RETRY:
921 /* Retry the same command immediately */
922 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
923 break;
924 case ACTION_DELAYED_RETRY:
925 /* Retry the same command after a delay */
926 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
927 break;
931 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
932 gfp_t gfp_mask)
934 int count;
937 * If sg table allocation fails, requeue request later.
939 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
940 gfp_mask))) {
941 return BLKPREP_DEFER;
944 req->buffer = NULL;
947 * Next, walk the list, and fill in the addresses and sizes of
948 * each segment.
950 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
951 BUG_ON(count > sdb->table.nents);
952 sdb->table.nents = count;
953 if (blk_pc_request(req))
954 sdb->length = req->data_len;
955 else
956 sdb->length = req->nr_sectors << 9;
957 return BLKPREP_OK;
961 * Function: scsi_init_io()
963 * Purpose: SCSI I/O initialize function.
965 * Arguments: cmd - Command descriptor we wish to initialize
967 * Returns: 0 on success
968 * BLKPREP_DEFER if the failure is retryable
969 * BLKPREP_KILL if the failure is fatal
971 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
973 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
974 if (error)
975 goto err_exit;
977 if (blk_bidi_rq(cmd->request)) {
978 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
979 scsi_sdb_cache, GFP_ATOMIC);
980 if (!bidi_sdb) {
981 error = BLKPREP_DEFER;
982 goto err_exit;
985 cmd->request->next_rq->special = bidi_sdb;
986 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
987 GFP_ATOMIC);
988 if (error)
989 goto err_exit;
992 if (blk_integrity_rq(cmd->request)) {
993 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
994 int ivecs, count;
996 BUG_ON(prot_sdb == NULL);
997 ivecs = blk_rq_count_integrity_sg(cmd->request);
999 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1000 error = BLKPREP_DEFER;
1001 goto err_exit;
1004 count = blk_rq_map_integrity_sg(cmd->request,
1005 prot_sdb->table.sgl);
1006 BUG_ON(unlikely(count > ivecs));
1008 cmd->prot_sdb = prot_sdb;
1009 cmd->prot_sdb->table.nents = count;
1012 return BLKPREP_OK ;
1014 err_exit:
1015 scsi_release_buffers(cmd);
1016 if (error == BLKPREP_KILL)
1017 scsi_put_command(cmd);
1018 else /* BLKPREP_DEFER */
1019 scsi_unprep_request(cmd->request);
1021 return error;
1023 EXPORT_SYMBOL(scsi_init_io);
1025 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1026 struct request *req)
1028 struct scsi_cmnd *cmd;
1030 if (!req->special) {
1031 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1032 if (unlikely(!cmd))
1033 return NULL;
1034 req->special = cmd;
1035 } else {
1036 cmd = req->special;
1039 /* pull a tag out of the request if we have one */
1040 cmd->tag = req->tag;
1041 cmd->request = req;
1043 cmd->cmnd = req->cmd;
1045 return cmd;
1048 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1050 struct scsi_cmnd *cmd;
1051 int ret = scsi_prep_state_check(sdev, req);
1053 if (ret != BLKPREP_OK)
1054 return ret;
1056 cmd = scsi_get_cmd_from_req(sdev, req);
1057 if (unlikely(!cmd))
1058 return BLKPREP_DEFER;
1061 * BLOCK_PC requests may transfer data, in which case they must
1062 * a bio attached to them. Or they might contain a SCSI command
1063 * that does not transfer data, in which case they may optionally
1064 * submit a request without an attached bio.
1066 if (req->bio) {
1067 int ret;
1069 BUG_ON(!req->nr_phys_segments);
1071 ret = scsi_init_io(cmd, GFP_ATOMIC);
1072 if (unlikely(ret))
1073 return ret;
1074 } else {
1075 BUG_ON(req->data_len);
1076 BUG_ON(req->data);
1078 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1079 req->buffer = NULL;
1082 cmd->cmd_len = req->cmd_len;
1083 if (!req->data_len)
1084 cmd->sc_data_direction = DMA_NONE;
1085 else if (rq_data_dir(req) == WRITE)
1086 cmd->sc_data_direction = DMA_TO_DEVICE;
1087 else
1088 cmd->sc_data_direction = DMA_FROM_DEVICE;
1090 cmd->transfersize = req->data_len;
1091 cmd->allowed = req->retries;
1092 return BLKPREP_OK;
1094 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1097 * Setup a REQ_TYPE_FS command. These are simple read/write request
1098 * from filesystems that still need to be translated to SCSI CDBs from
1099 * the ULD.
1101 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1103 struct scsi_cmnd *cmd;
1104 int ret = scsi_prep_state_check(sdev, req);
1106 if (ret != BLKPREP_OK)
1107 return ret;
1109 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1110 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1111 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1112 if (ret != BLKPREP_OK)
1113 return ret;
1117 * Filesystem requests must transfer data.
1119 BUG_ON(!req->nr_phys_segments);
1121 cmd = scsi_get_cmd_from_req(sdev, req);
1122 if (unlikely(!cmd))
1123 return BLKPREP_DEFER;
1125 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1126 return scsi_init_io(cmd, GFP_ATOMIC);
1128 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1130 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1132 int ret = BLKPREP_OK;
1135 * If the device is not in running state we will reject some
1136 * or all commands.
1138 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1139 switch (sdev->sdev_state) {
1140 case SDEV_OFFLINE:
1142 * If the device is offline we refuse to process any
1143 * commands. The device must be brought online
1144 * before trying any recovery commands.
1146 sdev_printk(KERN_ERR, sdev,
1147 "rejecting I/O to offline device\n");
1148 ret = BLKPREP_KILL;
1149 break;
1150 case SDEV_DEL:
1152 * If the device is fully deleted, we refuse to
1153 * process any commands as well.
1155 sdev_printk(KERN_ERR, sdev,
1156 "rejecting I/O to dead device\n");
1157 ret = BLKPREP_KILL;
1158 break;
1159 case SDEV_QUIESCE:
1160 case SDEV_BLOCK:
1161 case SDEV_CREATED_BLOCK:
1163 * If the devices is blocked we defer normal commands.
1165 if (!(req->cmd_flags & REQ_PREEMPT))
1166 ret = BLKPREP_DEFER;
1167 break;
1168 default:
1170 * For any other not fully online state we only allow
1171 * special commands. In particular any user initiated
1172 * command is not allowed.
1174 if (!(req->cmd_flags & REQ_PREEMPT))
1175 ret = BLKPREP_KILL;
1176 break;
1179 return ret;
1181 EXPORT_SYMBOL(scsi_prep_state_check);
1183 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1185 struct scsi_device *sdev = q->queuedata;
1187 switch (ret) {
1188 case BLKPREP_KILL:
1189 req->errors = DID_NO_CONNECT << 16;
1190 /* release the command and kill it */
1191 if (req->special) {
1192 struct scsi_cmnd *cmd = req->special;
1193 scsi_release_buffers(cmd);
1194 scsi_put_command(cmd);
1195 req->special = NULL;
1197 break;
1198 case BLKPREP_DEFER:
1200 * If we defer, the elv_next_request() returns NULL, but the
1201 * queue must be restarted, so we plug here if no returning
1202 * command will automatically do that.
1204 if (sdev->device_busy == 0)
1205 blk_plug_device(q);
1206 break;
1207 default:
1208 req->cmd_flags |= REQ_DONTPREP;
1211 return ret;
1213 EXPORT_SYMBOL(scsi_prep_return);
1215 int scsi_prep_fn(struct request_queue *q, struct request *req)
1217 struct scsi_device *sdev = q->queuedata;
1218 int ret = BLKPREP_KILL;
1220 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1221 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1222 return scsi_prep_return(q, req, ret);
1226 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1227 * return 0.
1229 * Called with the queue_lock held.
1231 static inline int scsi_dev_queue_ready(struct request_queue *q,
1232 struct scsi_device *sdev)
1234 if (sdev->device_busy == 0 && sdev->device_blocked) {
1236 * unblock after device_blocked iterates to zero
1238 if (--sdev->device_blocked == 0) {
1239 SCSI_LOG_MLQUEUE(3,
1240 sdev_printk(KERN_INFO, sdev,
1241 "unblocking device at zero depth\n"));
1242 } else {
1243 blk_plug_device(q);
1244 return 0;
1247 if (scsi_device_is_busy(sdev))
1248 return 0;
1250 return 1;
1255 * scsi_target_queue_ready: checks if there we can send commands to target
1256 * @sdev: scsi device on starget to check.
1258 * Called with the host lock held.
1260 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1261 struct scsi_device *sdev)
1263 struct scsi_target *starget = scsi_target(sdev);
1265 if (starget->single_lun) {
1266 if (starget->starget_sdev_user &&
1267 starget->starget_sdev_user != sdev)
1268 return 0;
1269 starget->starget_sdev_user = sdev;
1272 if (starget->target_busy == 0 && starget->target_blocked) {
1274 * unblock after target_blocked iterates to zero
1276 if (--starget->target_blocked == 0) {
1277 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1278 "unblocking target at zero depth\n"));
1279 } else {
1280 blk_plug_device(sdev->request_queue);
1281 return 0;
1285 if (scsi_target_is_busy(starget)) {
1286 if (list_empty(&sdev->starved_entry)) {
1287 list_add_tail(&sdev->starved_entry,
1288 &shost->starved_list);
1289 return 0;
1293 /* We're OK to process the command, so we can't be starved */
1294 if (!list_empty(&sdev->starved_entry))
1295 list_del_init(&sdev->starved_entry);
1296 return 1;
1300 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1301 * return 0. We must end up running the queue again whenever 0 is
1302 * returned, else IO can hang.
1304 * Called with host_lock held.
1306 static inline int scsi_host_queue_ready(struct request_queue *q,
1307 struct Scsi_Host *shost,
1308 struct scsi_device *sdev)
1310 if (scsi_host_in_recovery(shost))
1311 return 0;
1312 if (shost->host_busy == 0 && shost->host_blocked) {
1314 * unblock after host_blocked iterates to zero
1316 if (--shost->host_blocked == 0) {
1317 SCSI_LOG_MLQUEUE(3,
1318 printk("scsi%d unblocking host at zero depth\n",
1319 shost->host_no));
1320 } else {
1321 return 0;
1324 if (scsi_host_is_busy(shost)) {
1325 if (list_empty(&sdev->starved_entry))
1326 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1327 return 0;
1330 /* We're OK to process the command, so we can't be starved */
1331 if (!list_empty(&sdev->starved_entry))
1332 list_del_init(&sdev->starved_entry);
1334 return 1;
1338 * Busy state exporting function for request stacking drivers.
1340 * For efficiency, no lock is taken to check the busy state of
1341 * shost/starget/sdev, since the returned value is not guaranteed and
1342 * may be changed after request stacking drivers call the function,
1343 * regardless of taking lock or not.
1345 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1346 * (e.g. !sdev), scsi needs to return 'not busy'.
1347 * Otherwise, request stacking drivers may hold requests forever.
1349 static int scsi_lld_busy(struct request_queue *q)
1351 struct scsi_device *sdev = q->queuedata;
1352 struct Scsi_Host *shost;
1353 struct scsi_target *starget;
1355 if (!sdev)
1356 return 0;
1358 shost = sdev->host;
1359 starget = scsi_target(sdev);
1361 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1362 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1363 return 1;
1365 return 0;
1369 * Kill a request for a dead device
1371 static void scsi_kill_request(struct request *req, struct request_queue *q)
1373 struct scsi_cmnd *cmd = req->special;
1374 struct scsi_device *sdev = cmd->device;
1375 struct scsi_target *starget = scsi_target(sdev);
1376 struct Scsi_Host *shost = sdev->host;
1378 blkdev_dequeue_request(req);
1380 if (unlikely(cmd == NULL)) {
1381 printk(KERN_CRIT "impossible request in %s.\n",
1382 __func__);
1383 BUG();
1386 scsi_init_cmd_errh(cmd);
1387 cmd->result = DID_NO_CONNECT << 16;
1388 atomic_inc(&cmd->device->iorequest_cnt);
1391 * SCSI request completion path will do scsi_device_unbusy(),
1392 * bump busy counts. To bump the counters, we need to dance
1393 * with the locks as normal issue path does.
1395 sdev->device_busy++;
1396 spin_unlock(sdev->request_queue->queue_lock);
1397 spin_lock(shost->host_lock);
1398 shost->host_busy++;
1399 starget->target_busy++;
1400 spin_unlock(shost->host_lock);
1401 spin_lock(sdev->request_queue->queue_lock);
1403 blk_complete_request(req);
1406 static void scsi_softirq_done(struct request *rq)
1408 struct scsi_cmnd *cmd = rq->special;
1409 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1410 int disposition;
1412 INIT_LIST_HEAD(&cmd->eh_entry);
1415 * Set the serial numbers back to zero
1417 cmd->serial_number = 0;
1419 atomic_inc(&cmd->device->iodone_cnt);
1420 if (cmd->result)
1421 atomic_inc(&cmd->device->ioerr_cnt);
1423 disposition = scsi_decide_disposition(cmd);
1424 if (disposition != SUCCESS &&
1425 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1426 sdev_printk(KERN_ERR, cmd->device,
1427 "timing out command, waited %lus\n",
1428 wait_for/HZ);
1429 disposition = SUCCESS;
1432 scsi_log_completion(cmd, disposition);
1434 switch (disposition) {
1435 case SUCCESS:
1436 scsi_finish_command(cmd);
1437 break;
1438 case NEEDS_RETRY:
1439 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1440 break;
1441 case ADD_TO_MLQUEUE:
1442 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1443 break;
1444 default:
1445 if (!scsi_eh_scmd_add(cmd, 0))
1446 scsi_finish_command(cmd);
1451 * Function: scsi_request_fn()
1453 * Purpose: Main strategy routine for SCSI.
1455 * Arguments: q - Pointer to actual queue.
1457 * Returns: Nothing
1459 * Lock status: IO request lock assumed to be held when called.
1461 static void scsi_request_fn(struct request_queue *q)
1463 struct scsi_device *sdev = q->queuedata;
1464 struct Scsi_Host *shost;
1465 struct scsi_cmnd *cmd;
1466 struct request *req;
1468 if (!sdev) {
1469 printk("scsi: killing requests for dead queue\n");
1470 while ((req = elv_next_request(q)) != NULL)
1471 scsi_kill_request(req, q);
1472 return;
1475 if(!get_device(&sdev->sdev_gendev))
1476 /* We must be tearing the block queue down already */
1477 return;
1480 * To start with, we keep looping until the queue is empty, or until
1481 * the host is no longer able to accept any more requests.
1483 shost = sdev->host;
1484 while (!blk_queue_plugged(q)) {
1485 int rtn;
1487 * get next queueable request. We do this early to make sure
1488 * that the request is fully prepared even if we cannot
1489 * accept it.
1491 req = elv_next_request(q);
1492 if (!req || !scsi_dev_queue_ready(q, sdev))
1493 break;
1495 if (unlikely(!scsi_device_online(sdev))) {
1496 sdev_printk(KERN_ERR, sdev,
1497 "rejecting I/O to offline device\n");
1498 scsi_kill_request(req, q);
1499 continue;
1504 * Remove the request from the request list.
1506 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1507 blkdev_dequeue_request(req);
1508 sdev->device_busy++;
1510 spin_unlock(q->queue_lock);
1511 cmd = req->special;
1512 if (unlikely(cmd == NULL)) {
1513 printk(KERN_CRIT "impossible request in %s.\n"
1514 "please mail a stack trace to "
1515 "linux-scsi@vger.kernel.org\n",
1516 __func__);
1517 blk_dump_rq_flags(req, "foo");
1518 BUG();
1520 spin_lock(shost->host_lock);
1523 * We hit this when the driver is using a host wide
1524 * tag map. For device level tag maps the queue_depth check
1525 * in the device ready fn would prevent us from trying
1526 * to allocate a tag. Since the map is a shared host resource
1527 * we add the dev to the starved list so it eventually gets
1528 * a run when a tag is freed.
1530 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1531 if (list_empty(&sdev->starved_entry))
1532 list_add_tail(&sdev->starved_entry,
1533 &shost->starved_list);
1534 goto not_ready;
1537 if (!scsi_target_queue_ready(shost, sdev))
1538 goto not_ready;
1540 if (!scsi_host_queue_ready(q, shost, sdev))
1541 goto not_ready;
1543 scsi_target(sdev)->target_busy++;
1544 shost->host_busy++;
1547 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1548 * take the lock again.
1550 spin_unlock_irq(shost->host_lock);
1553 * Finally, initialize any error handling parameters, and set up
1554 * the timers for timeouts.
1556 scsi_init_cmd_errh(cmd);
1559 * Dispatch the command to the low-level driver.
1561 rtn = scsi_dispatch_cmd(cmd);
1562 spin_lock_irq(q->queue_lock);
1563 if(rtn) {
1564 /* we're refusing the command; because of
1565 * the way locks get dropped, we need to
1566 * check here if plugging is required */
1567 if(sdev->device_busy == 0)
1568 blk_plug_device(q);
1570 break;
1574 goto out;
1576 not_ready:
1577 spin_unlock_irq(shost->host_lock);
1580 * lock q, handle tag, requeue req, and decrement device_busy. We
1581 * must return with queue_lock held.
1583 * Decrementing device_busy without checking it is OK, as all such
1584 * cases (host limits or settings) should run the queue at some
1585 * later time.
1587 spin_lock_irq(q->queue_lock);
1588 blk_requeue_request(q, req);
1589 sdev->device_busy--;
1590 if(sdev->device_busy == 0)
1591 blk_plug_device(q);
1592 out:
1593 /* must be careful here...if we trigger the ->remove() function
1594 * we cannot be holding the q lock */
1595 spin_unlock_irq(q->queue_lock);
1596 put_device(&sdev->sdev_gendev);
1597 spin_lock_irq(q->queue_lock);
1600 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1602 struct device *host_dev;
1603 u64 bounce_limit = 0xffffffff;
1605 if (shost->unchecked_isa_dma)
1606 return BLK_BOUNCE_ISA;
1608 * Platforms with virtual-DMA translation
1609 * hardware have no practical limit.
1611 if (!PCI_DMA_BUS_IS_PHYS)
1612 return BLK_BOUNCE_ANY;
1614 host_dev = scsi_get_device(shost);
1615 if (host_dev && host_dev->dma_mask)
1616 bounce_limit = *host_dev->dma_mask;
1618 return bounce_limit;
1620 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1622 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1623 request_fn_proc *request_fn)
1625 struct request_queue *q;
1626 struct device *dev = shost->shost_gendev.parent;
1628 q = blk_init_queue(request_fn, NULL);
1629 if (!q)
1630 return NULL;
1633 * this limit is imposed by hardware restrictions
1635 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1636 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1638 blk_queue_max_sectors(q, shost->max_sectors);
1639 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1640 blk_queue_segment_boundary(q, shost->dma_boundary);
1641 dma_set_seg_boundary(dev, shost->dma_boundary);
1643 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1645 /* New queue, no concurrency on queue_flags */
1646 if (!shost->use_clustering)
1647 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1650 * set a reasonable default alignment on word boundaries: the
1651 * host and device may alter it using
1652 * blk_queue_update_dma_alignment() later.
1654 blk_queue_dma_alignment(q, 0x03);
1656 return q;
1658 EXPORT_SYMBOL(__scsi_alloc_queue);
1660 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1662 struct request_queue *q;
1664 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1665 if (!q)
1666 return NULL;
1668 blk_queue_prep_rq(q, scsi_prep_fn);
1669 blk_queue_softirq_done(q, scsi_softirq_done);
1670 blk_queue_rq_timed_out(q, scsi_times_out);
1671 blk_queue_lld_busy(q, scsi_lld_busy);
1672 return q;
1675 void scsi_free_queue(struct request_queue *q)
1677 blk_cleanup_queue(q);
1681 * Function: scsi_block_requests()
1683 * Purpose: Utility function used by low-level drivers to prevent further
1684 * commands from being queued to the device.
1686 * Arguments: shost - Host in question
1688 * Returns: Nothing
1690 * Lock status: No locks are assumed held.
1692 * Notes: There is no timer nor any other means by which the requests
1693 * get unblocked other than the low-level driver calling
1694 * scsi_unblock_requests().
1696 void scsi_block_requests(struct Scsi_Host *shost)
1698 shost->host_self_blocked = 1;
1700 EXPORT_SYMBOL(scsi_block_requests);
1703 * Function: scsi_unblock_requests()
1705 * Purpose: Utility function used by low-level drivers to allow further
1706 * commands from being queued to the device.
1708 * Arguments: shost - Host in question
1710 * Returns: Nothing
1712 * Lock status: No locks are assumed held.
1714 * Notes: There is no timer nor any other means by which the requests
1715 * get unblocked other than the low-level driver calling
1716 * scsi_unblock_requests().
1718 * This is done as an API function so that changes to the
1719 * internals of the scsi mid-layer won't require wholesale
1720 * changes to drivers that use this feature.
1722 void scsi_unblock_requests(struct Scsi_Host *shost)
1724 shost->host_self_blocked = 0;
1725 scsi_run_host_queues(shost);
1727 EXPORT_SYMBOL(scsi_unblock_requests);
1729 int __init scsi_init_queue(void)
1731 int i;
1733 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1734 sizeof(struct scsi_data_buffer),
1735 0, 0, NULL);
1736 if (!scsi_sdb_cache) {
1737 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1738 return -ENOMEM;
1741 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1742 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1743 int size = sgp->size * sizeof(struct scatterlist);
1745 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1746 SLAB_HWCACHE_ALIGN, NULL);
1747 if (!sgp->slab) {
1748 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1749 sgp->name);
1750 goto cleanup_sdb;
1753 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1754 sgp->slab);
1755 if (!sgp->pool) {
1756 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1757 sgp->name);
1758 goto cleanup_sdb;
1762 return 0;
1764 cleanup_sdb:
1765 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1766 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1767 if (sgp->pool)
1768 mempool_destroy(sgp->pool);
1769 if (sgp->slab)
1770 kmem_cache_destroy(sgp->slab);
1772 kmem_cache_destroy(scsi_sdb_cache);
1774 return -ENOMEM;
1777 void scsi_exit_queue(void)
1779 int i;
1781 kmem_cache_destroy(scsi_sdb_cache);
1783 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1784 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1785 mempool_destroy(sgp->pool);
1786 kmem_cache_destroy(sgp->slab);
1791 * scsi_mode_select - issue a mode select
1792 * @sdev: SCSI device to be queried
1793 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1794 * @sp: Save page bit (0 == don't save, 1 == save)
1795 * @modepage: mode page being requested
1796 * @buffer: request buffer (may not be smaller than eight bytes)
1797 * @len: length of request buffer.
1798 * @timeout: command timeout
1799 * @retries: number of retries before failing
1800 * @data: returns a structure abstracting the mode header data
1801 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1802 * must be SCSI_SENSE_BUFFERSIZE big.
1804 * Returns zero if successful; negative error number or scsi
1805 * status on error
1809 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1810 unsigned char *buffer, int len, int timeout, int retries,
1811 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1813 unsigned char cmd[10];
1814 unsigned char *real_buffer;
1815 int ret;
1817 memset(cmd, 0, sizeof(cmd));
1818 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1820 if (sdev->use_10_for_ms) {
1821 if (len > 65535)
1822 return -EINVAL;
1823 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1824 if (!real_buffer)
1825 return -ENOMEM;
1826 memcpy(real_buffer + 8, buffer, len);
1827 len += 8;
1828 real_buffer[0] = 0;
1829 real_buffer[1] = 0;
1830 real_buffer[2] = data->medium_type;
1831 real_buffer[3] = data->device_specific;
1832 real_buffer[4] = data->longlba ? 0x01 : 0;
1833 real_buffer[5] = 0;
1834 real_buffer[6] = data->block_descriptor_length >> 8;
1835 real_buffer[7] = data->block_descriptor_length;
1837 cmd[0] = MODE_SELECT_10;
1838 cmd[7] = len >> 8;
1839 cmd[8] = len;
1840 } else {
1841 if (len > 255 || data->block_descriptor_length > 255 ||
1842 data->longlba)
1843 return -EINVAL;
1845 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1846 if (!real_buffer)
1847 return -ENOMEM;
1848 memcpy(real_buffer + 4, buffer, len);
1849 len += 4;
1850 real_buffer[0] = 0;
1851 real_buffer[1] = data->medium_type;
1852 real_buffer[2] = data->device_specific;
1853 real_buffer[3] = data->block_descriptor_length;
1856 cmd[0] = MODE_SELECT;
1857 cmd[4] = len;
1860 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1861 sshdr, timeout, retries, NULL);
1862 kfree(real_buffer);
1863 return ret;
1865 EXPORT_SYMBOL_GPL(scsi_mode_select);
1868 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1869 * @sdev: SCSI device to be queried
1870 * @dbd: set if mode sense will allow block descriptors to be returned
1871 * @modepage: mode page being requested
1872 * @buffer: request buffer (may not be smaller than eight bytes)
1873 * @len: length of request buffer.
1874 * @timeout: command timeout
1875 * @retries: number of retries before failing
1876 * @data: returns a structure abstracting the mode header data
1877 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1878 * must be SCSI_SENSE_BUFFERSIZE big.
1880 * Returns zero if unsuccessful, or the header offset (either 4
1881 * or 8 depending on whether a six or ten byte command was
1882 * issued) if successful.
1885 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1886 unsigned char *buffer, int len, int timeout, int retries,
1887 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1889 unsigned char cmd[12];
1890 int use_10_for_ms;
1891 int header_length;
1892 int result;
1893 struct scsi_sense_hdr my_sshdr;
1895 memset(data, 0, sizeof(*data));
1896 memset(&cmd[0], 0, 12);
1897 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1898 cmd[2] = modepage;
1900 /* caller might not be interested in sense, but we need it */
1901 if (!sshdr)
1902 sshdr = &my_sshdr;
1904 retry:
1905 use_10_for_ms = sdev->use_10_for_ms;
1907 if (use_10_for_ms) {
1908 if (len < 8)
1909 len = 8;
1911 cmd[0] = MODE_SENSE_10;
1912 cmd[8] = len;
1913 header_length = 8;
1914 } else {
1915 if (len < 4)
1916 len = 4;
1918 cmd[0] = MODE_SENSE;
1919 cmd[4] = len;
1920 header_length = 4;
1923 memset(buffer, 0, len);
1925 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1926 sshdr, timeout, retries, NULL);
1928 /* This code looks awful: what it's doing is making sure an
1929 * ILLEGAL REQUEST sense return identifies the actual command
1930 * byte as the problem. MODE_SENSE commands can return
1931 * ILLEGAL REQUEST if the code page isn't supported */
1933 if (use_10_for_ms && !scsi_status_is_good(result) &&
1934 (driver_byte(result) & DRIVER_SENSE)) {
1935 if (scsi_sense_valid(sshdr)) {
1936 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1937 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1939 * Invalid command operation code
1941 sdev->use_10_for_ms = 0;
1942 goto retry;
1947 if(scsi_status_is_good(result)) {
1948 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1949 (modepage == 6 || modepage == 8))) {
1950 /* Initio breakage? */
1951 header_length = 0;
1952 data->length = 13;
1953 data->medium_type = 0;
1954 data->device_specific = 0;
1955 data->longlba = 0;
1956 data->block_descriptor_length = 0;
1957 } else if(use_10_for_ms) {
1958 data->length = buffer[0]*256 + buffer[1] + 2;
1959 data->medium_type = buffer[2];
1960 data->device_specific = buffer[3];
1961 data->longlba = buffer[4] & 0x01;
1962 data->block_descriptor_length = buffer[6]*256
1963 + buffer[7];
1964 } else {
1965 data->length = buffer[0] + 1;
1966 data->medium_type = buffer[1];
1967 data->device_specific = buffer[2];
1968 data->block_descriptor_length = buffer[3];
1970 data->header_length = header_length;
1973 return result;
1975 EXPORT_SYMBOL(scsi_mode_sense);
1978 * scsi_test_unit_ready - test if unit is ready
1979 * @sdev: scsi device to change the state of.
1980 * @timeout: command timeout
1981 * @retries: number of retries before failing
1982 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1983 * returning sense. Make sure that this is cleared before passing
1984 * in.
1986 * Returns zero if unsuccessful or an error if TUR failed. For
1987 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1988 * translated to success, with the ->changed flag updated.
1991 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1992 struct scsi_sense_hdr *sshdr_external)
1994 char cmd[] = {
1995 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1997 struct scsi_sense_hdr *sshdr;
1998 int result;
2000 if (!sshdr_external)
2001 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2002 else
2003 sshdr = sshdr_external;
2005 /* try to eat the UNIT_ATTENTION if there are enough retries */
2006 do {
2007 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2008 timeout, retries, NULL);
2009 if (sdev->removable && scsi_sense_valid(sshdr) &&
2010 sshdr->sense_key == UNIT_ATTENTION)
2011 sdev->changed = 1;
2012 } while (scsi_sense_valid(sshdr) &&
2013 sshdr->sense_key == UNIT_ATTENTION && --retries);
2015 if (!sshdr)
2016 /* could not allocate sense buffer, so can't process it */
2017 return result;
2019 if (sdev->removable && scsi_sense_valid(sshdr) &&
2020 (sshdr->sense_key == UNIT_ATTENTION ||
2021 sshdr->sense_key == NOT_READY)) {
2022 sdev->changed = 1;
2023 result = 0;
2025 if (!sshdr_external)
2026 kfree(sshdr);
2027 return result;
2029 EXPORT_SYMBOL(scsi_test_unit_ready);
2032 * scsi_device_set_state - Take the given device through the device state model.
2033 * @sdev: scsi device to change the state of.
2034 * @state: state to change to.
2036 * Returns zero if unsuccessful or an error if the requested
2037 * transition is illegal.
2040 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2042 enum scsi_device_state oldstate = sdev->sdev_state;
2044 if (state == oldstate)
2045 return 0;
2047 switch (state) {
2048 case SDEV_CREATED:
2049 switch (oldstate) {
2050 case SDEV_CREATED_BLOCK:
2051 break;
2052 default:
2053 goto illegal;
2055 break;
2057 case SDEV_RUNNING:
2058 switch (oldstate) {
2059 case SDEV_CREATED:
2060 case SDEV_OFFLINE:
2061 case SDEV_QUIESCE:
2062 case SDEV_BLOCK:
2063 break;
2064 default:
2065 goto illegal;
2067 break;
2069 case SDEV_QUIESCE:
2070 switch (oldstate) {
2071 case SDEV_RUNNING:
2072 case SDEV_OFFLINE:
2073 break;
2074 default:
2075 goto illegal;
2077 break;
2079 case SDEV_OFFLINE:
2080 switch (oldstate) {
2081 case SDEV_CREATED:
2082 case SDEV_RUNNING:
2083 case SDEV_QUIESCE:
2084 case SDEV_BLOCK:
2085 break;
2086 default:
2087 goto illegal;
2089 break;
2091 case SDEV_BLOCK:
2092 switch (oldstate) {
2093 case SDEV_RUNNING:
2094 case SDEV_CREATED_BLOCK:
2095 break;
2096 default:
2097 goto illegal;
2099 break;
2101 case SDEV_CREATED_BLOCK:
2102 switch (oldstate) {
2103 case SDEV_CREATED:
2104 break;
2105 default:
2106 goto illegal;
2108 break;
2110 case SDEV_CANCEL:
2111 switch (oldstate) {
2112 case SDEV_CREATED:
2113 case SDEV_RUNNING:
2114 case SDEV_QUIESCE:
2115 case SDEV_OFFLINE:
2116 case SDEV_BLOCK:
2117 break;
2118 default:
2119 goto illegal;
2121 break;
2123 case SDEV_DEL:
2124 switch (oldstate) {
2125 case SDEV_CREATED:
2126 case SDEV_RUNNING:
2127 case SDEV_OFFLINE:
2128 case SDEV_CANCEL:
2129 break;
2130 default:
2131 goto illegal;
2133 break;
2136 sdev->sdev_state = state;
2137 return 0;
2139 illegal:
2140 SCSI_LOG_ERROR_RECOVERY(1,
2141 sdev_printk(KERN_ERR, sdev,
2142 "Illegal state transition %s->%s\n",
2143 scsi_device_state_name(oldstate),
2144 scsi_device_state_name(state))
2146 return -EINVAL;
2148 EXPORT_SYMBOL(scsi_device_set_state);
2151 * sdev_evt_emit - emit a single SCSI device uevent
2152 * @sdev: associated SCSI device
2153 * @evt: event to emit
2155 * Send a single uevent (scsi_event) to the associated scsi_device.
2157 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2159 int idx = 0;
2160 char *envp[3];
2162 switch (evt->evt_type) {
2163 case SDEV_EVT_MEDIA_CHANGE:
2164 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2165 break;
2167 default:
2168 /* do nothing */
2169 break;
2172 envp[idx++] = NULL;
2174 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2178 * sdev_evt_thread - send a uevent for each scsi event
2179 * @work: work struct for scsi_device
2181 * Dispatch queued events to their associated scsi_device kobjects
2182 * as uevents.
2184 void scsi_evt_thread(struct work_struct *work)
2186 struct scsi_device *sdev;
2187 LIST_HEAD(event_list);
2189 sdev = container_of(work, struct scsi_device, event_work);
2191 while (1) {
2192 struct scsi_event *evt;
2193 struct list_head *this, *tmp;
2194 unsigned long flags;
2196 spin_lock_irqsave(&sdev->list_lock, flags);
2197 list_splice_init(&sdev->event_list, &event_list);
2198 spin_unlock_irqrestore(&sdev->list_lock, flags);
2200 if (list_empty(&event_list))
2201 break;
2203 list_for_each_safe(this, tmp, &event_list) {
2204 evt = list_entry(this, struct scsi_event, node);
2205 list_del(&evt->node);
2206 scsi_evt_emit(sdev, evt);
2207 kfree(evt);
2213 * sdev_evt_send - send asserted event to uevent thread
2214 * @sdev: scsi_device event occurred on
2215 * @evt: event to send
2217 * Assert scsi device event asynchronously.
2219 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2221 unsigned long flags;
2223 #if 0
2224 /* FIXME: currently this check eliminates all media change events
2225 * for polled devices. Need to update to discriminate between AN
2226 * and polled events */
2227 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2228 kfree(evt);
2229 return;
2231 #endif
2233 spin_lock_irqsave(&sdev->list_lock, flags);
2234 list_add_tail(&evt->node, &sdev->event_list);
2235 schedule_work(&sdev->event_work);
2236 spin_unlock_irqrestore(&sdev->list_lock, flags);
2238 EXPORT_SYMBOL_GPL(sdev_evt_send);
2241 * sdev_evt_alloc - allocate a new scsi event
2242 * @evt_type: type of event to allocate
2243 * @gfpflags: GFP flags for allocation
2245 * Allocates and returns a new scsi_event.
2247 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2248 gfp_t gfpflags)
2250 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2251 if (!evt)
2252 return NULL;
2254 evt->evt_type = evt_type;
2255 INIT_LIST_HEAD(&evt->node);
2257 /* evt_type-specific initialization, if any */
2258 switch (evt_type) {
2259 case SDEV_EVT_MEDIA_CHANGE:
2260 default:
2261 /* do nothing */
2262 break;
2265 return evt;
2267 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2270 * sdev_evt_send_simple - send asserted event to uevent thread
2271 * @sdev: scsi_device event occurred on
2272 * @evt_type: type of event to send
2273 * @gfpflags: GFP flags for allocation
2275 * Assert scsi device event asynchronously, given an event type.
2277 void sdev_evt_send_simple(struct scsi_device *sdev,
2278 enum scsi_device_event evt_type, gfp_t gfpflags)
2280 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2281 if (!evt) {
2282 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2283 evt_type);
2284 return;
2287 sdev_evt_send(sdev, evt);
2289 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2292 * scsi_device_quiesce - Block user issued commands.
2293 * @sdev: scsi device to quiesce.
2295 * This works by trying to transition to the SDEV_QUIESCE state
2296 * (which must be a legal transition). When the device is in this
2297 * state, only special requests will be accepted, all others will
2298 * be deferred. Since special requests may also be requeued requests,
2299 * a successful return doesn't guarantee the device will be
2300 * totally quiescent.
2302 * Must be called with user context, may sleep.
2304 * Returns zero if unsuccessful or an error if not.
2307 scsi_device_quiesce(struct scsi_device *sdev)
2309 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2310 if (err)
2311 return err;
2313 scsi_run_queue(sdev->request_queue);
2314 while (sdev->device_busy) {
2315 msleep_interruptible(200);
2316 scsi_run_queue(sdev->request_queue);
2318 return 0;
2320 EXPORT_SYMBOL(scsi_device_quiesce);
2323 * scsi_device_resume - Restart user issued commands to a quiesced device.
2324 * @sdev: scsi device to resume.
2326 * Moves the device from quiesced back to running and restarts the
2327 * queues.
2329 * Must be called with user context, may sleep.
2331 void
2332 scsi_device_resume(struct scsi_device *sdev)
2334 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2335 return;
2336 scsi_run_queue(sdev->request_queue);
2338 EXPORT_SYMBOL(scsi_device_resume);
2340 static void
2341 device_quiesce_fn(struct scsi_device *sdev, void *data)
2343 scsi_device_quiesce(sdev);
2346 void
2347 scsi_target_quiesce(struct scsi_target *starget)
2349 starget_for_each_device(starget, NULL, device_quiesce_fn);
2351 EXPORT_SYMBOL(scsi_target_quiesce);
2353 static void
2354 device_resume_fn(struct scsi_device *sdev, void *data)
2356 scsi_device_resume(sdev);
2359 void
2360 scsi_target_resume(struct scsi_target *starget)
2362 starget_for_each_device(starget, NULL, device_resume_fn);
2364 EXPORT_SYMBOL(scsi_target_resume);
2367 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2368 * @sdev: device to block
2370 * Block request made by scsi lld's to temporarily stop all
2371 * scsi commands on the specified device. Called from interrupt
2372 * or normal process context.
2374 * Returns zero if successful or error if not
2376 * Notes:
2377 * This routine transitions the device to the SDEV_BLOCK state
2378 * (which must be a legal transition). When the device is in this
2379 * state, all commands are deferred until the scsi lld reenables
2380 * the device with scsi_device_unblock or device_block_tmo fires.
2381 * This routine assumes the host_lock is held on entry.
2384 scsi_internal_device_block(struct scsi_device *sdev)
2386 struct request_queue *q = sdev->request_queue;
2387 unsigned long flags;
2388 int err = 0;
2390 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2391 if (err) {
2392 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2394 if (err)
2395 return err;
2399 * The device has transitioned to SDEV_BLOCK. Stop the
2400 * block layer from calling the midlayer with this device's
2401 * request queue.
2403 spin_lock_irqsave(q->queue_lock, flags);
2404 blk_stop_queue(q);
2405 spin_unlock_irqrestore(q->queue_lock, flags);
2407 return 0;
2409 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2412 * scsi_internal_device_unblock - resume a device after a block request
2413 * @sdev: device to resume
2415 * Called by scsi lld's or the midlayer to restart the device queue
2416 * for the previously suspended scsi device. Called from interrupt or
2417 * normal process context.
2419 * Returns zero if successful or error if not.
2421 * Notes:
2422 * This routine transitions the device to the SDEV_RUNNING state
2423 * (which must be a legal transition) allowing the midlayer to
2424 * goose the queue for this device. This routine assumes the
2425 * host_lock is held upon entry.
2428 scsi_internal_device_unblock(struct scsi_device *sdev)
2430 struct request_queue *q = sdev->request_queue;
2431 int err;
2432 unsigned long flags;
2435 * Try to transition the scsi device to SDEV_RUNNING
2436 * and goose the device queue if successful.
2438 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2439 if (err) {
2440 err = scsi_device_set_state(sdev, SDEV_CREATED);
2442 if (err)
2443 return err;
2446 spin_lock_irqsave(q->queue_lock, flags);
2447 blk_start_queue(q);
2448 spin_unlock_irqrestore(q->queue_lock, flags);
2450 return 0;
2452 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2454 static void
2455 device_block(struct scsi_device *sdev, void *data)
2457 scsi_internal_device_block(sdev);
2460 static int
2461 target_block(struct device *dev, void *data)
2463 if (scsi_is_target_device(dev))
2464 starget_for_each_device(to_scsi_target(dev), NULL,
2465 device_block);
2466 return 0;
2469 void
2470 scsi_target_block(struct device *dev)
2472 if (scsi_is_target_device(dev))
2473 starget_for_each_device(to_scsi_target(dev), NULL,
2474 device_block);
2475 else
2476 device_for_each_child(dev, NULL, target_block);
2478 EXPORT_SYMBOL_GPL(scsi_target_block);
2480 static void
2481 device_unblock(struct scsi_device *sdev, void *data)
2483 scsi_internal_device_unblock(sdev);
2486 static int
2487 target_unblock(struct device *dev, void *data)
2489 if (scsi_is_target_device(dev))
2490 starget_for_each_device(to_scsi_target(dev), NULL,
2491 device_unblock);
2492 return 0;
2495 void
2496 scsi_target_unblock(struct device *dev)
2498 if (scsi_is_target_device(dev))
2499 starget_for_each_device(to_scsi_target(dev), NULL,
2500 device_unblock);
2501 else
2502 device_for_each_child(dev, NULL, target_unblock);
2504 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2507 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2508 * @sgl: scatter-gather list
2509 * @sg_count: number of segments in sg
2510 * @offset: offset in bytes into sg, on return offset into the mapped area
2511 * @len: bytes to map, on return number of bytes mapped
2513 * Returns virtual address of the start of the mapped page
2515 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2516 size_t *offset, size_t *len)
2518 int i;
2519 size_t sg_len = 0, len_complete = 0;
2520 struct scatterlist *sg;
2521 struct page *page;
2523 WARN_ON(!irqs_disabled());
2525 for_each_sg(sgl, sg, sg_count, i) {
2526 len_complete = sg_len; /* Complete sg-entries */
2527 sg_len += sg->length;
2528 if (sg_len > *offset)
2529 break;
2532 if (unlikely(i == sg_count)) {
2533 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2534 "elements %d\n",
2535 __func__, sg_len, *offset, sg_count);
2536 WARN_ON(1);
2537 return NULL;
2540 /* Offset starting from the beginning of first page in this sg-entry */
2541 *offset = *offset - len_complete + sg->offset;
2543 /* Assumption: contiguous pages can be accessed as "page + i" */
2544 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2545 *offset &= ~PAGE_MASK;
2547 /* Bytes in this sg-entry from *offset to the end of the page */
2548 sg_len = PAGE_SIZE - *offset;
2549 if (*len > sg_len)
2550 *len = sg_len;
2552 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2554 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2557 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2558 * @virt: virtual address to be unmapped
2560 void scsi_kunmap_atomic_sg(void *virt)
2562 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2564 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);