2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool
{
41 struct kmem_cache
*slab
;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS
)
68 struct kmem_cache
*scsi_sdb_cache
;
70 static void scsi_run_queue(struct request_queue
*q
);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
84 static void scsi_unprep_request(struct request
*req
)
86 struct scsi_cmnd
*cmd
= req
->special
;
88 req
->cmd_flags
&= ~REQ_DONTPREP
;
91 scsi_put_command(cmd
);
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
106 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
108 struct Scsi_Host
*host
= cmd
->device
->host
;
109 struct scsi_device
*device
= cmd
->device
;
110 struct scsi_target
*starget
= scsi_target(device
);
111 struct request_queue
*q
= device
->request_queue
;
115 printk("Inserting command %p into mlqueue\n", cmd
));
118 * Set the appropriate busy bit for the device/host.
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
131 case SCSI_MLQUEUE_HOST_BUSY
:
132 host
->host_blocked
= host
->max_host_blocked
;
134 case SCSI_MLQUEUE_DEVICE_BUSY
:
135 device
->device_blocked
= device
->max_device_blocked
;
137 case SCSI_MLQUEUE_TARGET_BUSY
:
138 starget
->target_blocked
= starget
->max_target_blocked
;
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
147 scsi_device_unbusy(device
);
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
160 spin_lock_irqsave(q
->queue_lock
, flags
);
161 blk_requeue_request(q
, cmd
->request
);
162 spin_unlock_irqrestore(q
->queue_lock
, flags
);
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
190 return __scsi_queue_insert(cmd
, reason
, 1);
193 * scsi_execute - insert request and wait for the result
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
208 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
209 int data_direction
, void *buffer
, unsigned bufflen
,
210 unsigned char *sense
, int timeout
, int retries
, int flags
,
214 int write
= (data_direction
== DMA_TO_DEVICE
);
215 int ret
= DRIVER_ERROR
<< 24;
217 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
219 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
220 buffer
, bufflen
, __GFP_WAIT
))
223 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
224 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
227 req
->retries
= retries
;
228 req
->timeout
= timeout
;
229 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
230 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req
->q
, NULL
, req
, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req
->data_len
> 0 && req
->data_len
<= bufflen
))
244 memset(buffer
+ (bufflen
- req
->data_len
), 0, req
->data_len
);
247 *resid
= req
->data_len
;
250 blk_put_request(req
);
254 EXPORT_SYMBOL(scsi_execute
);
257 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
258 int data_direction
, void *buffer
, unsigned bufflen
,
259 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
266 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
268 return DRIVER_ERROR
<< 24;
270 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
271 sense
, timeout
, retries
, 0, resid
);
273 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
278 EXPORT_SYMBOL(scsi_execute_req
);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
293 cmd
->serial_number
= 0;
294 scsi_set_resid(cmd
, 0);
295 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
296 if (cmd
->cmd_len
== 0)
297 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
300 void scsi_device_unbusy(struct scsi_device
*sdev
)
302 struct Scsi_Host
*shost
= sdev
->host
;
303 struct scsi_target
*starget
= scsi_target(sdev
);
306 spin_lock_irqsave(shost
->host_lock
, flags
);
308 starget
->target_busy
--;
309 if (unlikely(scsi_host_in_recovery(shost
) &&
310 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
311 scsi_eh_wakeup(shost
);
312 spin_unlock(shost
->host_lock
);
313 spin_lock(sdev
->request_queue
->queue_lock
);
315 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
327 struct Scsi_Host
*shost
= current_sdev
->host
;
328 struct scsi_device
*sdev
, *tmp
;
329 struct scsi_target
*starget
= scsi_target(current_sdev
);
332 spin_lock_irqsave(shost
->host_lock
, flags
);
333 starget
->starget_sdev_user
= NULL
;
334 spin_unlock_irqrestore(shost
->host_lock
, flags
);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev
->request_queue
);
344 spin_lock_irqsave(shost
->host_lock
, flags
);
345 if (starget
->starget_sdev_user
)
347 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
348 same_target_siblings
) {
349 if (sdev
== current_sdev
)
351 if (scsi_device_get(sdev
))
354 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 blk_run_queue(sdev
->request_queue
);
356 spin_lock_irqsave(shost
->host_lock
, flags
);
358 scsi_device_put(sdev
);
361 spin_unlock_irqrestore(shost
->host_lock
, flags
);
364 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
366 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
372 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
374 return ((starget
->can_queue
> 0 &&
375 starget
->target_busy
>= starget
->can_queue
) ||
376 starget
->target_blocked
);
379 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
381 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
382 shost
->host_blocked
|| shost
->host_self_blocked
)
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue
*q
)
402 struct scsi_device
*sdev
= q
->queuedata
;
403 struct Scsi_Host
*shost
= sdev
->host
;
404 LIST_HEAD(starved_list
);
407 if (scsi_target(sdev
)->single_lun
)
408 scsi_single_lun_run(sdev
);
410 spin_lock_irqsave(shost
->host_lock
, flags
);
411 list_splice_init(&shost
->starved_list
, &starved_list
);
413 while (!list_empty(&starved_list
)) {
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
426 if (scsi_host_is_busy(shost
))
429 sdev
= list_entry(starved_list
.next
,
430 struct scsi_device
, starved_entry
);
431 list_del_init(&sdev
->starved_entry
);
432 if (scsi_target_is_busy(scsi_target(sdev
))) {
433 list_move_tail(&sdev
->starved_entry
,
434 &shost
->starved_list
);
438 spin_unlock(shost
->host_lock
);
440 spin_lock(sdev
->request_queue
->queue_lock
);
441 flagset
= test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
) &&
442 !test_bit(QUEUE_FLAG_REENTER
,
443 &sdev
->request_queue
->queue_flags
);
445 queue_flag_set(QUEUE_FLAG_REENTER
, sdev
->request_queue
);
446 __blk_run_queue(sdev
->request_queue
);
448 queue_flag_clear(QUEUE_FLAG_REENTER
, sdev
->request_queue
);
449 spin_unlock(sdev
->request_queue
->queue_lock
);
451 spin_lock(shost
->host_lock
);
453 /* put any unprocessed entries back */
454 list_splice(&starved_list
, &shost
->starved_list
);
455 spin_unlock_irqrestore(shost
->host_lock
, flags
);
461 * Function: scsi_requeue_command()
463 * Purpose: Handle post-processing of completed commands.
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
476 * Notes: Upon return, cmd is a stale pointer.
478 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
480 struct request
*req
= cmd
->request
;
483 spin_lock_irqsave(q
->queue_lock
, flags
);
484 scsi_unprep_request(req
);
485 blk_requeue_request(q
, req
);
486 spin_unlock_irqrestore(q
->queue_lock
, flags
);
491 void scsi_next_command(struct scsi_cmnd
*cmd
)
493 struct scsi_device
*sdev
= cmd
->device
;
494 struct request_queue
*q
= sdev
->request_queue
;
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev
->sdev_gendev
);
499 scsi_put_command(cmd
);
502 /* ok to remove device now */
503 put_device(&sdev
->sdev_gendev
);
506 void scsi_run_host_queues(struct Scsi_Host
*shost
)
508 struct scsi_device
*sdev
;
510 shost_for_each_device(sdev
, shost
)
511 scsi_run_queue(sdev
->request_queue
);
514 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
517 * Function: scsi_end_request()
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
527 * Lock status: Assumed that lock is not held upon entry.
529 * Returns: cmd if requeue required, NULL otherwise.
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
538 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
539 int bytes
, int requeue
)
541 struct request_queue
*q
= cmd
->device
->request_queue
;
542 struct request
*req
= cmd
->request
;
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
548 if (blk_end_request(req
, error
, bytes
)) {
549 int leftover
= (req
->hard_nr_sectors
<< 9);
551 if (blk_pc_request(req
))
552 leftover
= req
->data_len
;
554 /* kill remainder if no retrys */
555 if (error
&& scsi_noretry_cmd(cmd
))
556 blk_end_request(req
, error
, leftover
);
560 * Bleah. Leftovers again. Stick the
561 * leftovers in the front of the
562 * queue, and goose the queue again.
564 scsi_release_buffers(cmd
);
565 scsi_requeue_command(q
, cmd
);
573 * This will goose the queue request function at the end, so we don't
574 * need to worry about launching another command.
576 __scsi_release_buffers(cmd
, 0);
577 scsi_next_command(cmd
);
581 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
585 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
590 index
= get_count_order(nents
) - 3;
595 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
597 struct scsi_host_sg_pool
*sgp
;
599 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
600 mempool_free(sgl
, sgp
->pool
);
603 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
605 struct scsi_host_sg_pool
*sgp
;
607 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
608 return mempool_alloc(sgp
->pool
, gfp_mask
);
611 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
618 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
619 gfp_mask
, scsi_sg_alloc
);
621 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
627 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
629 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
632 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
635 if (cmd
->sdb
.table
.nents
)
636 scsi_free_sgtable(&cmd
->sdb
);
638 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
640 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
641 struct scsi_data_buffer
*bidi_sdb
=
642 cmd
->request
->next_rq
->special
;
643 scsi_free_sgtable(bidi_sdb
);
644 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
645 cmd
->request
->next_rq
->special
= NULL
;
648 if (scsi_prot_sg_count(cmd
))
649 scsi_free_sgtable(cmd
->prot_sdb
);
653 * Function: scsi_release_buffers()
655 * Purpose: Completion processing for block device I/O requests.
657 * Arguments: cmd - command that we are bailing.
659 * Lock status: Assumed that no lock is held upon entry.
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table, and potentially any bounce
669 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
671 __scsi_release_buffers(cmd
, 1);
673 EXPORT_SYMBOL(scsi_release_buffers
);
676 * Bidi commands Must be complete as a whole, both sides at once.
677 * If part of the bytes were written and lld returned
678 * scsi_in()->resid and/or scsi_out()->resid this information will be left
679 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
680 * decide what to do with this information.
682 static void scsi_end_bidi_request(struct scsi_cmnd
*cmd
)
684 struct request
*req
= cmd
->request
;
685 unsigned int dlen
= req
->data_len
;
686 unsigned int next_dlen
= req
->next_rq
->data_len
;
688 req
->data_len
= scsi_out(cmd
)->resid
;
689 req
->next_rq
->data_len
= scsi_in(cmd
)->resid
;
691 /* The req and req->next_rq have not been completed */
692 BUG_ON(blk_end_bidi_request(req
, 0, dlen
, next_dlen
));
694 scsi_release_buffers(cmd
);
697 * This will goose the queue request function at the end, so we don't
698 * need to worry about launching another command.
700 scsi_next_command(cmd
);
704 * Function: scsi_io_completion()
706 * Purpose: Completion processing for block device I/O requests.
708 * Arguments: cmd - command that is finished.
710 * Lock status: Assumed that no lock is held upon entry.
714 * Notes: This function is matched in terms of capabilities to
715 * the function that created the scatter-gather list.
716 * In other words, if there are no bounce buffers
717 * (the normal case for most drivers), we don't need
718 * the logic to deal with cleaning up afterwards.
720 * We must call scsi_end_request(). This will finish off
721 * the specified number of sectors. If we are done, the
722 * command block will be released and the queue function
723 * will be goosed. If we are not done then we have to
724 * figure out what to do next:
726 * a) We can call scsi_requeue_command(). The request
727 * will be unprepared and put back on the queue. Then
728 * a new command will be created for it. This should
729 * be used if we made forward progress, or if we want
730 * to switch from READ(10) to READ(6) for example.
732 * b) We can call scsi_queue_insert(). The request will
733 * be put back on the queue and retried using the same
734 * command as before, possibly after a delay.
736 * c) We can call blk_end_request() with -EIO to fail
737 * the remainder of the request.
739 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
741 int result
= cmd
->result
;
743 struct request_queue
*q
= cmd
->device
->request_queue
;
744 struct request
*req
= cmd
->request
;
746 struct scsi_sense_hdr sshdr
;
748 int sense_deferred
= 0;
749 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
750 ACTION_DELAYED_RETRY
} action
;
751 char *description
= NULL
;
754 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
756 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
759 if (blk_pc_request(req
)) { /* SG_IO ioctl from block level */
760 req
->errors
= result
;
762 if (sense_valid
&& req
->sense
) {
764 * SG_IO wants current and deferred errors
766 int len
= 8 + cmd
->sense_buffer
[7];
768 if (len
> SCSI_SENSE_BUFFERSIZE
)
769 len
= SCSI_SENSE_BUFFERSIZE
;
770 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
771 req
->sense_len
= len
;
776 if (scsi_bidi_cmnd(cmd
)) {
777 /* will also release_buffers */
778 scsi_end_bidi_request(cmd
);
781 req
->data_len
= scsi_get_resid(cmd
);
784 BUG_ON(blk_bidi_rq(req
)); /* bidi not support for !blk_pc_request yet */
787 * Next deal with any sectors which we were able to correctly
790 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
792 req
->nr_sectors
, good_bytes
));
794 /* A number of bytes were successfully read. If there
795 * are leftovers and there is some kind of error
796 * (result != 0), retry the rest.
798 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
800 this_count
= blk_rq_bytes(req
);
804 if (host_byte(result
) == DID_RESET
) {
805 /* Third party bus reset or reset for error recovery
806 * reasons. Just retry the command and see what
809 action
= ACTION_RETRY
;
810 } else if (sense_valid
&& !sense_deferred
) {
811 switch (sshdr
.sense_key
) {
813 if (cmd
->device
->removable
) {
814 /* Detected disc change. Set a bit
815 * and quietly refuse further access.
817 cmd
->device
->changed
= 1;
818 description
= "Media Changed";
819 action
= ACTION_FAIL
;
821 /* Must have been a power glitch, or a
822 * bus reset. Could not have been a
823 * media change, so we just retry the
824 * command and see what happens.
826 action
= ACTION_RETRY
;
829 case ILLEGAL_REQUEST
:
830 /* If we had an ILLEGAL REQUEST returned, then
831 * we may have performed an unsupported
832 * command. The only thing this should be
833 * would be a ten byte read where only a six
834 * byte read was supported. Also, on a system
835 * where READ CAPACITY failed, we may have
836 * read past the end of the disk.
838 if ((cmd
->device
->use_10_for_rw
&&
839 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
840 (cmd
->cmnd
[0] == READ_10
||
841 cmd
->cmnd
[0] == WRITE_10
)) {
842 /* This will issue a new 6-byte command. */
843 cmd
->device
->use_10_for_rw
= 0;
844 action
= ACTION_REPREP
;
845 } else if (sshdr
.asc
== 0x10) /* DIX */ {
846 description
= "Host Data Integrity Failure";
847 action
= ACTION_FAIL
;
850 action
= ACTION_FAIL
;
852 case ABORTED_COMMAND
:
853 action
= ACTION_FAIL
;
854 if (sshdr
.asc
== 0x10) { /* DIF */
855 description
= "Target Data Integrity Failure";
860 /* If the device is in the process of becoming
861 * ready, or has a temporary blockage, retry.
863 if (sshdr
.asc
== 0x04) {
864 switch (sshdr
.ascq
) {
865 case 0x01: /* becoming ready */
866 case 0x04: /* format in progress */
867 case 0x05: /* rebuild in progress */
868 case 0x06: /* recalculation in progress */
869 case 0x07: /* operation in progress */
870 case 0x08: /* Long write in progress */
871 case 0x09: /* self test in progress */
872 action
= ACTION_DELAYED_RETRY
;
875 description
= "Device not ready";
876 action
= ACTION_FAIL
;
880 description
= "Device not ready";
881 action
= ACTION_FAIL
;
884 case VOLUME_OVERFLOW
:
885 /* See SSC3rXX or current. */
886 action
= ACTION_FAIL
;
889 description
= "Unhandled sense code";
890 action
= ACTION_FAIL
;
894 description
= "Unhandled error code";
895 action
= ACTION_FAIL
;
900 /* Give up and fail the remainder of the request */
901 scsi_release_buffers(cmd
);
902 if (!(req
->cmd_flags
& REQ_QUIET
)) {
904 scmd_printk(KERN_INFO
, cmd
, "%s\n",
906 scsi_print_result(cmd
);
907 if (driver_byte(result
) & DRIVER_SENSE
)
908 scsi_print_sense("", cmd
);
910 blk_end_request(req
, -EIO
, blk_rq_bytes(req
));
911 scsi_next_command(cmd
);
914 /* Unprep the request and put it back at the head of the queue.
915 * A new command will be prepared and issued.
917 scsi_release_buffers(cmd
);
918 scsi_requeue_command(q
, cmd
);
921 /* Retry the same command immediately */
922 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
924 case ACTION_DELAYED_RETRY
:
925 /* Retry the same command after a delay */
926 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
931 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
937 * If sg table allocation fails, requeue request later.
939 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
941 return BLKPREP_DEFER
;
947 * Next, walk the list, and fill in the addresses and sizes of
950 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
951 BUG_ON(count
> sdb
->table
.nents
);
952 sdb
->table
.nents
= count
;
953 if (blk_pc_request(req
))
954 sdb
->length
= req
->data_len
;
956 sdb
->length
= req
->nr_sectors
<< 9;
961 * Function: scsi_init_io()
963 * Purpose: SCSI I/O initialize function.
965 * Arguments: cmd - Command descriptor we wish to initialize
967 * Returns: 0 on success
968 * BLKPREP_DEFER if the failure is retryable
969 * BLKPREP_KILL if the failure is fatal
971 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
973 int error
= scsi_init_sgtable(cmd
->request
, &cmd
->sdb
, gfp_mask
);
977 if (blk_bidi_rq(cmd
->request
)) {
978 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
979 scsi_sdb_cache
, GFP_ATOMIC
);
981 error
= BLKPREP_DEFER
;
985 cmd
->request
->next_rq
->special
= bidi_sdb
;
986 error
= scsi_init_sgtable(cmd
->request
->next_rq
, bidi_sdb
,
992 if (blk_integrity_rq(cmd
->request
)) {
993 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
996 BUG_ON(prot_sdb
== NULL
);
997 ivecs
= blk_rq_count_integrity_sg(cmd
->request
);
999 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1000 error
= BLKPREP_DEFER
;
1004 count
= blk_rq_map_integrity_sg(cmd
->request
,
1005 prot_sdb
->table
.sgl
);
1006 BUG_ON(unlikely(count
> ivecs
));
1008 cmd
->prot_sdb
= prot_sdb
;
1009 cmd
->prot_sdb
->table
.nents
= count
;
1015 scsi_release_buffers(cmd
);
1016 if (error
== BLKPREP_KILL
)
1017 scsi_put_command(cmd
);
1018 else /* BLKPREP_DEFER */
1019 scsi_unprep_request(cmd
->request
);
1023 EXPORT_SYMBOL(scsi_init_io
);
1025 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1026 struct request
*req
)
1028 struct scsi_cmnd
*cmd
;
1030 if (!req
->special
) {
1031 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1039 /* pull a tag out of the request if we have one */
1040 cmd
->tag
= req
->tag
;
1043 cmd
->cmnd
= req
->cmd
;
1048 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1050 struct scsi_cmnd
*cmd
;
1051 int ret
= scsi_prep_state_check(sdev
, req
);
1053 if (ret
!= BLKPREP_OK
)
1056 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1058 return BLKPREP_DEFER
;
1061 * BLOCK_PC requests may transfer data, in which case they must
1062 * a bio attached to them. Or they might contain a SCSI command
1063 * that does not transfer data, in which case they may optionally
1064 * submit a request without an attached bio.
1069 BUG_ON(!req
->nr_phys_segments
);
1071 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1075 BUG_ON(req
->data_len
);
1078 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1082 cmd
->cmd_len
= req
->cmd_len
;
1084 cmd
->sc_data_direction
= DMA_NONE
;
1085 else if (rq_data_dir(req
) == WRITE
)
1086 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1088 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1090 cmd
->transfersize
= req
->data_len
;
1091 cmd
->allowed
= req
->retries
;
1094 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1097 * Setup a REQ_TYPE_FS command. These are simple read/write request
1098 * from filesystems that still need to be translated to SCSI CDBs from
1101 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1103 struct scsi_cmnd
*cmd
;
1104 int ret
= scsi_prep_state_check(sdev
, req
);
1106 if (ret
!= BLKPREP_OK
)
1109 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1110 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1111 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1112 if (ret
!= BLKPREP_OK
)
1117 * Filesystem requests must transfer data.
1119 BUG_ON(!req
->nr_phys_segments
);
1121 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1123 return BLKPREP_DEFER
;
1125 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1126 return scsi_init_io(cmd
, GFP_ATOMIC
);
1128 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1130 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1132 int ret
= BLKPREP_OK
;
1135 * If the device is not in running state we will reject some
1138 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1139 switch (sdev
->sdev_state
) {
1142 * If the device is offline we refuse to process any
1143 * commands. The device must be brought online
1144 * before trying any recovery commands.
1146 sdev_printk(KERN_ERR
, sdev
,
1147 "rejecting I/O to offline device\n");
1152 * If the device is fully deleted, we refuse to
1153 * process any commands as well.
1155 sdev_printk(KERN_ERR
, sdev
,
1156 "rejecting I/O to dead device\n");
1161 case SDEV_CREATED_BLOCK
:
1163 * If the devices is blocked we defer normal commands.
1165 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1166 ret
= BLKPREP_DEFER
;
1170 * For any other not fully online state we only allow
1171 * special commands. In particular any user initiated
1172 * command is not allowed.
1174 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1181 EXPORT_SYMBOL(scsi_prep_state_check
);
1183 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1185 struct scsi_device
*sdev
= q
->queuedata
;
1189 req
->errors
= DID_NO_CONNECT
<< 16;
1190 /* release the command and kill it */
1192 struct scsi_cmnd
*cmd
= req
->special
;
1193 scsi_release_buffers(cmd
);
1194 scsi_put_command(cmd
);
1195 req
->special
= NULL
;
1200 * If we defer, the elv_next_request() returns NULL, but the
1201 * queue must be restarted, so we plug here if no returning
1202 * command will automatically do that.
1204 if (sdev
->device_busy
== 0)
1208 req
->cmd_flags
|= REQ_DONTPREP
;
1213 EXPORT_SYMBOL(scsi_prep_return
);
1215 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1217 struct scsi_device
*sdev
= q
->queuedata
;
1218 int ret
= BLKPREP_KILL
;
1220 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1221 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1222 return scsi_prep_return(q
, req
, ret
);
1226 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1229 * Called with the queue_lock held.
1231 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1232 struct scsi_device
*sdev
)
1234 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1236 * unblock after device_blocked iterates to zero
1238 if (--sdev
->device_blocked
== 0) {
1240 sdev_printk(KERN_INFO
, sdev
,
1241 "unblocking device at zero depth\n"));
1247 if (scsi_device_is_busy(sdev
))
1255 * scsi_target_queue_ready: checks if there we can send commands to target
1256 * @sdev: scsi device on starget to check.
1258 * Called with the host lock held.
1260 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1261 struct scsi_device
*sdev
)
1263 struct scsi_target
*starget
= scsi_target(sdev
);
1265 if (starget
->single_lun
) {
1266 if (starget
->starget_sdev_user
&&
1267 starget
->starget_sdev_user
!= sdev
)
1269 starget
->starget_sdev_user
= sdev
;
1272 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1274 * unblock after target_blocked iterates to zero
1276 if (--starget
->target_blocked
== 0) {
1277 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1278 "unblocking target at zero depth\n"));
1280 blk_plug_device(sdev
->request_queue
);
1285 if (scsi_target_is_busy(starget
)) {
1286 if (list_empty(&sdev
->starved_entry
)) {
1287 list_add_tail(&sdev
->starved_entry
,
1288 &shost
->starved_list
);
1293 /* We're OK to process the command, so we can't be starved */
1294 if (!list_empty(&sdev
->starved_entry
))
1295 list_del_init(&sdev
->starved_entry
);
1300 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1301 * return 0. We must end up running the queue again whenever 0 is
1302 * returned, else IO can hang.
1304 * Called with host_lock held.
1306 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1307 struct Scsi_Host
*shost
,
1308 struct scsi_device
*sdev
)
1310 if (scsi_host_in_recovery(shost
))
1312 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1314 * unblock after host_blocked iterates to zero
1316 if (--shost
->host_blocked
== 0) {
1318 printk("scsi%d unblocking host at zero depth\n",
1324 if (scsi_host_is_busy(shost
)) {
1325 if (list_empty(&sdev
->starved_entry
))
1326 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1330 /* We're OK to process the command, so we can't be starved */
1331 if (!list_empty(&sdev
->starved_entry
))
1332 list_del_init(&sdev
->starved_entry
);
1338 * Busy state exporting function for request stacking drivers.
1340 * For efficiency, no lock is taken to check the busy state of
1341 * shost/starget/sdev, since the returned value is not guaranteed and
1342 * may be changed after request stacking drivers call the function,
1343 * regardless of taking lock or not.
1345 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1346 * (e.g. !sdev), scsi needs to return 'not busy'.
1347 * Otherwise, request stacking drivers may hold requests forever.
1349 static int scsi_lld_busy(struct request_queue
*q
)
1351 struct scsi_device
*sdev
= q
->queuedata
;
1352 struct Scsi_Host
*shost
;
1353 struct scsi_target
*starget
;
1359 starget
= scsi_target(sdev
);
1361 if (scsi_host_in_recovery(shost
) || scsi_host_is_busy(shost
) ||
1362 scsi_target_is_busy(starget
) || scsi_device_is_busy(sdev
))
1369 * Kill a request for a dead device
1371 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1373 struct scsi_cmnd
*cmd
= req
->special
;
1374 struct scsi_device
*sdev
= cmd
->device
;
1375 struct scsi_target
*starget
= scsi_target(sdev
);
1376 struct Scsi_Host
*shost
= sdev
->host
;
1378 blkdev_dequeue_request(req
);
1380 if (unlikely(cmd
== NULL
)) {
1381 printk(KERN_CRIT
"impossible request in %s.\n",
1386 scsi_init_cmd_errh(cmd
);
1387 cmd
->result
= DID_NO_CONNECT
<< 16;
1388 atomic_inc(&cmd
->device
->iorequest_cnt
);
1391 * SCSI request completion path will do scsi_device_unbusy(),
1392 * bump busy counts. To bump the counters, we need to dance
1393 * with the locks as normal issue path does.
1395 sdev
->device_busy
++;
1396 spin_unlock(sdev
->request_queue
->queue_lock
);
1397 spin_lock(shost
->host_lock
);
1399 starget
->target_busy
++;
1400 spin_unlock(shost
->host_lock
);
1401 spin_lock(sdev
->request_queue
->queue_lock
);
1403 blk_complete_request(req
);
1406 static void scsi_softirq_done(struct request
*rq
)
1408 struct scsi_cmnd
*cmd
= rq
->special
;
1409 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1412 INIT_LIST_HEAD(&cmd
->eh_entry
);
1415 * Set the serial numbers back to zero
1417 cmd
->serial_number
= 0;
1419 atomic_inc(&cmd
->device
->iodone_cnt
);
1421 atomic_inc(&cmd
->device
->ioerr_cnt
);
1423 disposition
= scsi_decide_disposition(cmd
);
1424 if (disposition
!= SUCCESS
&&
1425 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1426 sdev_printk(KERN_ERR
, cmd
->device
,
1427 "timing out command, waited %lus\n",
1429 disposition
= SUCCESS
;
1432 scsi_log_completion(cmd
, disposition
);
1434 switch (disposition
) {
1436 scsi_finish_command(cmd
);
1439 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1441 case ADD_TO_MLQUEUE
:
1442 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1445 if (!scsi_eh_scmd_add(cmd
, 0))
1446 scsi_finish_command(cmd
);
1451 * Function: scsi_request_fn()
1453 * Purpose: Main strategy routine for SCSI.
1455 * Arguments: q - Pointer to actual queue.
1459 * Lock status: IO request lock assumed to be held when called.
1461 static void scsi_request_fn(struct request_queue
*q
)
1463 struct scsi_device
*sdev
= q
->queuedata
;
1464 struct Scsi_Host
*shost
;
1465 struct scsi_cmnd
*cmd
;
1466 struct request
*req
;
1469 printk("scsi: killing requests for dead queue\n");
1470 while ((req
= elv_next_request(q
)) != NULL
)
1471 scsi_kill_request(req
, q
);
1475 if(!get_device(&sdev
->sdev_gendev
))
1476 /* We must be tearing the block queue down already */
1480 * To start with, we keep looping until the queue is empty, or until
1481 * the host is no longer able to accept any more requests.
1484 while (!blk_queue_plugged(q
)) {
1487 * get next queueable request. We do this early to make sure
1488 * that the request is fully prepared even if we cannot
1491 req
= elv_next_request(q
);
1492 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1495 if (unlikely(!scsi_device_online(sdev
))) {
1496 sdev_printk(KERN_ERR
, sdev
,
1497 "rejecting I/O to offline device\n");
1498 scsi_kill_request(req
, q
);
1504 * Remove the request from the request list.
1506 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1507 blkdev_dequeue_request(req
);
1508 sdev
->device_busy
++;
1510 spin_unlock(q
->queue_lock
);
1512 if (unlikely(cmd
== NULL
)) {
1513 printk(KERN_CRIT
"impossible request in %s.\n"
1514 "please mail a stack trace to "
1515 "linux-scsi@vger.kernel.org\n",
1517 blk_dump_rq_flags(req
, "foo");
1520 spin_lock(shost
->host_lock
);
1523 * We hit this when the driver is using a host wide
1524 * tag map. For device level tag maps the queue_depth check
1525 * in the device ready fn would prevent us from trying
1526 * to allocate a tag. Since the map is a shared host resource
1527 * we add the dev to the starved list so it eventually gets
1528 * a run when a tag is freed.
1530 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1531 if (list_empty(&sdev
->starved_entry
))
1532 list_add_tail(&sdev
->starved_entry
,
1533 &shost
->starved_list
);
1537 if (!scsi_target_queue_ready(shost
, sdev
))
1540 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1543 scsi_target(sdev
)->target_busy
++;
1547 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1548 * take the lock again.
1550 spin_unlock_irq(shost
->host_lock
);
1553 * Finally, initialize any error handling parameters, and set up
1554 * the timers for timeouts.
1556 scsi_init_cmd_errh(cmd
);
1559 * Dispatch the command to the low-level driver.
1561 rtn
= scsi_dispatch_cmd(cmd
);
1562 spin_lock_irq(q
->queue_lock
);
1564 /* we're refusing the command; because of
1565 * the way locks get dropped, we need to
1566 * check here if plugging is required */
1567 if(sdev
->device_busy
== 0)
1577 spin_unlock_irq(shost
->host_lock
);
1580 * lock q, handle tag, requeue req, and decrement device_busy. We
1581 * must return with queue_lock held.
1583 * Decrementing device_busy without checking it is OK, as all such
1584 * cases (host limits or settings) should run the queue at some
1587 spin_lock_irq(q
->queue_lock
);
1588 blk_requeue_request(q
, req
);
1589 sdev
->device_busy
--;
1590 if(sdev
->device_busy
== 0)
1593 /* must be careful here...if we trigger the ->remove() function
1594 * we cannot be holding the q lock */
1595 spin_unlock_irq(q
->queue_lock
);
1596 put_device(&sdev
->sdev_gendev
);
1597 spin_lock_irq(q
->queue_lock
);
1600 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1602 struct device
*host_dev
;
1603 u64 bounce_limit
= 0xffffffff;
1605 if (shost
->unchecked_isa_dma
)
1606 return BLK_BOUNCE_ISA
;
1608 * Platforms with virtual-DMA translation
1609 * hardware have no practical limit.
1611 if (!PCI_DMA_BUS_IS_PHYS
)
1612 return BLK_BOUNCE_ANY
;
1614 host_dev
= scsi_get_device(shost
);
1615 if (host_dev
&& host_dev
->dma_mask
)
1616 bounce_limit
= *host_dev
->dma_mask
;
1618 return bounce_limit
;
1620 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1622 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1623 request_fn_proc
*request_fn
)
1625 struct request_queue
*q
;
1626 struct device
*dev
= shost
->shost_gendev
.parent
;
1628 q
= blk_init_queue(request_fn
, NULL
);
1633 * this limit is imposed by hardware restrictions
1635 blk_queue_max_hw_segments(q
, shost
->sg_tablesize
);
1636 blk_queue_max_phys_segments(q
, SCSI_MAX_SG_CHAIN_SEGMENTS
);
1638 blk_queue_max_sectors(q
, shost
->max_sectors
);
1639 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1640 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1641 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1643 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1645 /* New queue, no concurrency on queue_flags */
1646 if (!shost
->use_clustering
)
1647 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER
, q
);
1650 * set a reasonable default alignment on word boundaries: the
1651 * host and device may alter it using
1652 * blk_queue_update_dma_alignment() later.
1654 blk_queue_dma_alignment(q
, 0x03);
1658 EXPORT_SYMBOL(__scsi_alloc_queue
);
1660 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1662 struct request_queue
*q
;
1664 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1668 blk_queue_prep_rq(q
, scsi_prep_fn
);
1669 blk_queue_softirq_done(q
, scsi_softirq_done
);
1670 blk_queue_rq_timed_out(q
, scsi_times_out
);
1671 blk_queue_lld_busy(q
, scsi_lld_busy
);
1675 void scsi_free_queue(struct request_queue
*q
)
1677 blk_cleanup_queue(q
);
1681 * Function: scsi_block_requests()
1683 * Purpose: Utility function used by low-level drivers to prevent further
1684 * commands from being queued to the device.
1686 * Arguments: shost - Host in question
1690 * Lock status: No locks are assumed held.
1692 * Notes: There is no timer nor any other means by which the requests
1693 * get unblocked other than the low-level driver calling
1694 * scsi_unblock_requests().
1696 void scsi_block_requests(struct Scsi_Host
*shost
)
1698 shost
->host_self_blocked
= 1;
1700 EXPORT_SYMBOL(scsi_block_requests
);
1703 * Function: scsi_unblock_requests()
1705 * Purpose: Utility function used by low-level drivers to allow further
1706 * commands from being queued to the device.
1708 * Arguments: shost - Host in question
1712 * Lock status: No locks are assumed held.
1714 * Notes: There is no timer nor any other means by which the requests
1715 * get unblocked other than the low-level driver calling
1716 * scsi_unblock_requests().
1718 * This is done as an API function so that changes to the
1719 * internals of the scsi mid-layer won't require wholesale
1720 * changes to drivers that use this feature.
1722 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1724 shost
->host_self_blocked
= 0;
1725 scsi_run_host_queues(shost
);
1727 EXPORT_SYMBOL(scsi_unblock_requests
);
1729 int __init
scsi_init_queue(void)
1733 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1734 sizeof(struct scsi_data_buffer
),
1736 if (!scsi_sdb_cache
) {
1737 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1741 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1742 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1743 int size
= sgp
->size
* sizeof(struct scatterlist
);
1745 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1746 SLAB_HWCACHE_ALIGN
, NULL
);
1748 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1753 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1756 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1765 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1766 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1768 mempool_destroy(sgp
->pool
);
1770 kmem_cache_destroy(sgp
->slab
);
1772 kmem_cache_destroy(scsi_sdb_cache
);
1777 void scsi_exit_queue(void)
1781 kmem_cache_destroy(scsi_sdb_cache
);
1783 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1784 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1785 mempool_destroy(sgp
->pool
);
1786 kmem_cache_destroy(sgp
->slab
);
1791 * scsi_mode_select - issue a mode select
1792 * @sdev: SCSI device to be queried
1793 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1794 * @sp: Save page bit (0 == don't save, 1 == save)
1795 * @modepage: mode page being requested
1796 * @buffer: request buffer (may not be smaller than eight bytes)
1797 * @len: length of request buffer.
1798 * @timeout: command timeout
1799 * @retries: number of retries before failing
1800 * @data: returns a structure abstracting the mode header data
1801 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1802 * must be SCSI_SENSE_BUFFERSIZE big.
1804 * Returns zero if successful; negative error number or scsi
1809 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1810 unsigned char *buffer
, int len
, int timeout
, int retries
,
1811 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1813 unsigned char cmd
[10];
1814 unsigned char *real_buffer
;
1817 memset(cmd
, 0, sizeof(cmd
));
1818 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1820 if (sdev
->use_10_for_ms
) {
1823 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1826 memcpy(real_buffer
+ 8, buffer
, len
);
1830 real_buffer
[2] = data
->medium_type
;
1831 real_buffer
[3] = data
->device_specific
;
1832 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1834 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1835 real_buffer
[7] = data
->block_descriptor_length
;
1837 cmd
[0] = MODE_SELECT_10
;
1841 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1845 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1848 memcpy(real_buffer
+ 4, buffer
, len
);
1851 real_buffer
[1] = data
->medium_type
;
1852 real_buffer
[2] = data
->device_specific
;
1853 real_buffer
[3] = data
->block_descriptor_length
;
1856 cmd
[0] = MODE_SELECT
;
1860 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1861 sshdr
, timeout
, retries
, NULL
);
1865 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1868 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1869 * @sdev: SCSI device to be queried
1870 * @dbd: set if mode sense will allow block descriptors to be returned
1871 * @modepage: mode page being requested
1872 * @buffer: request buffer (may not be smaller than eight bytes)
1873 * @len: length of request buffer.
1874 * @timeout: command timeout
1875 * @retries: number of retries before failing
1876 * @data: returns a structure abstracting the mode header data
1877 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1878 * must be SCSI_SENSE_BUFFERSIZE big.
1880 * Returns zero if unsuccessful, or the header offset (either 4
1881 * or 8 depending on whether a six or ten byte command was
1882 * issued) if successful.
1885 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1886 unsigned char *buffer
, int len
, int timeout
, int retries
,
1887 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1889 unsigned char cmd
[12];
1893 struct scsi_sense_hdr my_sshdr
;
1895 memset(data
, 0, sizeof(*data
));
1896 memset(&cmd
[0], 0, 12);
1897 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1900 /* caller might not be interested in sense, but we need it */
1905 use_10_for_ms
= sdev
->use_10_for_ms
;
1907 if (use_10_for_ms
) {
1911 cmd
[0] = MODE_SENSE_10
;
1918 cmd
[0] = MODE_SENSE
;
1923 memset(buffer
, 0, len
);
1925 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1926 sshdr
, timeout
, retries
, NULL
);
1928 /* This code looks awful: what it's doing is making sure an
1929 * ILLEGAL REQUEST sense return identifies the actual command
1930 * byte as the problem. MODE_SENSE commands can return
1931 * ILLEGAL REQUEST if the code page isn't supported */
1933 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1934 (driver_byte(result
) & DRIVER_SENSE
)) {
1935 if (scsi_sense_valid(sshdr
)) {
1936 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1937 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1939 * Invalid command operation code
1941 sdev
->use_10_for_ms
= 0;
1947 if(scsi_status_is_good(result
)) {
1948 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1949 (modepage
== 6 || modepage
== 8))) {
1950 /* Initio breakage? */
1953 data
->medium_type
= 0;
1954 data
->device_specific
= 0;
1956 data
->block_descriptor_length
= 0;
1957 } else if(use_10_for_ms
) {
1958 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1959 data
->medium_type
= buffer
[2];
1960 data
->device_specific
= buffer
[3];
1961 data
->longlba
= buffer
[4] & 0x01;
1962 data
->block_descriptor_length
= buffer
[6]*256
1965 data
->length
= buffer
[0] + 1;
1966 data
->medium_type
= buffer
[1];
1967 data
->device_specific
= buffer
[2];
1968 data
->block_descriptor_length
= buffer
[3];
1970 data
->header_length
= header_length
;
1975 EXPORT_SYMBOL(scsi_mode_sense
);
1978 * scsi_test_unit_ready - test if unit is ready
1979 * @sdev: scsi device to change the state of.
1980 * @timeout: command timeout
1981 * @retries: number of retries before failing
1982 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1983 * returning sense. Make sure that this is cleared before passing
1986 * Returns zero if unsuccessful or an error if TUR failed. For
1987 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1988 * translated to success, with the ->changed flag updated.
1991 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
1992 struct scsi_sense_hdr
*sshdr_external
)
1995 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
1997 struct scsi_sense_hdr
*sshdr
;
2000 if (!sshdr_external
)
2001 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2003 sshdr
= sshdr_external
;
2005 /* try to eat the UNIT_ATTENTION if there are enough retries */
2007 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2008 timeout
, retries
, NULL
);
2009 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2010 sshdr
->sense_key
== UNIT_ATTENTION
)
2012 } while (scsi_sense_valid(sshdr
) &&
2013 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2016 /* could not allocate sense buffer, so can't process it */
2019 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2020 (sshdr
->sense_key
== UNIT_ATTENTION
||
2021 sshdr
->sense_key
== NOT_READY
)) {
2025 if (!sshdr_external
)
2029 EXPORT_SYMBOL(scsi_test_unit_ready
);
2032 * scsi_device_set_state - Take the given device through the device state model.
2033 * @sdev: scsi device to change the state of.
2034 * @state: state to change to.
2036 * Returns zero if unsuccessful or an error if the requested
2037 * transition is illegal.
2040 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2042 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2044 if (state
== oldstate
)
2050 case SDEV_CREATED_BLOCK
:
2094 case SDEV_CREATED_BLOCK
:
2101 case SDEV_CREATED_BLOCK
:
2136 sdev
->sdev_state
= state
;
2140 SCSI_LOG_ERROR_RECOVERY(1,
2141 sdev_printk(KERN_ERR
, sdev
,
2142 "Illegal state transition %s->%s\n",
2143 scsi_device_state_name(oldstate
),
2144 scsi_device_state_name(state
))
2148 EXPORT_SYMBOL(scsi_device_set_state
);
2151 * sdev_evt_emit - emit a single SCSI device uevent
2152 * @sdev: associated SCSI device
2153 * @evt: event to emit
2155 * Send a single uevent (scsi_event) to the associated scsi_device.
2157 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2162 switch (evt
->evt_type
) {
2163 case SDEV_EVT_MEDIA_CHANGE
:
2164 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2174 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2178 * sdev_evt_thread - send a uevent for each scsi event
2179 * @work: work struct for scsi_device
2181 * Dispatch queued events to their associated scsi_device kobjects
2184 void scsi_evt_thread(struct work_struct
*work
)
2186 struct scsi_device
*sdev
;
2187 LIST_HEAD(event_list
);
2189 sdev
= container_of(work
, struct scsi_device
, event_work
);
2192 struct scsi_event
*evt
;
2193 struct list_head
*this, *tmp
;
2194 unsigned long flags
;
2196 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2197 list_splice_init(&sdev
->event_list
, &event_list
);
2198 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2200 if (list_empty(&event_list
))
2203 list_for_each_safe(this, tmp
, &event_list
) {
2204 evt
= list_entry(this, struct scsi_event
, node
);
2205 list_del(&evt
->node
);
2206 scsi_evt_emit(sdev
, evt
);
2213 * sdev_evt_send - send asserted event to uevent thread
2214 * @sdev: scsi_device event occurred on
2215 * @evt: event to send
2217 * Assert scsi device event asynchronously.
2219 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2221 unsigned long flags
;
2224 /* FIXME: currently this check eliminates all media change events
2225 * for polled devices. Need to update to discriminate between AN
2226 * and polled events */
2227 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2233 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2234 list_add_tail(&evt
->node
, &sdev
->event_list
);
2235 schedule_work(&sdev
->event_work
);
2236 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2238 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2241 * sdev_evt_alloc - allocate a new scsi event
2242 * @evt_type: type of event to allocate
2243 * @gfpflags: GFP flags for allocation
2245 * Allocates and returns a new scsi_event.
2247 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2250 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2254 evt
->evt_type
= evt_type
;
2255 INIT_LIST_HEAD(&evt
->node
);
2257 /* evt_type-specific initialization, if any */
2259 case SDEV_EVT_MEDIA_CHANGE
:
2267 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2270 * sdev_evt_send_simple - send asserted event to uevent thread
2271 * @sdev: scsi_device event occurred on
2272 * @evt_type: type of event to send
2273 * @gfpflags: GFP flags for allocation
2275 * Assert scsi device event asynchronously, given an event type.
2277 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2278 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2280 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2282 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2287 sdev_evt_send(sdev
, evt
);
2289 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2292 * scsi_device_quiesce - Block user issued commands.
2293 * @sdev: scsi device to quiesce.
2295 * This works by trying to transition to the SDEV_QUIESCE state
2296 * (which must be a legal transition). When the device is in this
2297 * state, only special requests will be accepted, all others will
2298 * be deferred. Since special requests may also be requeued requests,
2299 * a successful return doesn't guarantee the device will be
2300 * totally quiescent.
2302 * Must be called with user context, may sleep.
2304 * Returns zero if unsuccessful or an error if not.
2307 scsi_device_quiesce(struct scsi_device
*sdev
)
2309 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2313 scsi_run_queue(sdev
->request_queue
);
2314 while (sdev
->device_busy
) {
2315 msleep_interruptible(200);
2316 scsi_run_queue(sdev
->request_queue
);
2320 EXPORT_SYMBOL(scsi_device_quiesce
);
2323 * scsi_device_resume - Restart user issued commands to a quiesced device.
2324 * @sdev: scsi device to resume.
2326 * Moves the device from quiesced back to running and restarts the
2329 * Must be called with user context, may sleep.
2332 scsi_device_resume(struct scsi_device
*sdev
)
2334 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2336 scsi_run_queue(sdev
->request_queue
);
2338 EXPORT_SYMBOL(scsi_device_resume
);
2341 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2343 scsi_device_quiesce(sdev
);
2347 scsi_target_quiesce(struct scsi_target
*starget
)
2349 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2351 EXPORT_SYMBOL(scsi_target_quiesce
);
2354 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2356 scsi_device_resume(sdev
);
2360 scsi_target_resume(struct scsi_target
*starget
)
2362 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2364 EXPORT_SYMBOL(scsi_target_resume
);
2367 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2368 * @sdev: device to block
2370 * Block request made by scsi lld's to temporarily stop all
2371 * scsi commands on the specified device. Called from interrupt
2372 * or normal process context.
2374 * Returns zero if successful or error if not
2377 * This routine transitions the device to the SDEV_BLOCK state
2378 * (which must be a legal transition). When the device is in this
2379 * state, all commands are deferred until the scsi lld reenables
2380 * the device with scsi_device_unblock or device_block_tmo fires.
2381 * This routine assumes the host_lock is held on entry.
2384 scsi_internal_device_block(struct scsi_device
*sdev
)
2386 struct request_queue
*q
= sdev
->request_queue
;
2387 unsigned long flags
;
2390 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2392 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2399 * The device has transitioned to SDEV_BLOCK. Stop the
2400 * block layer from calling the midlayer with this device's
2403 spin_lock_irqsave(q
->queue_lock
, flags
);
2405 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2409 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2412 * scsi_internal_device_unblock - resume a device after a block request
2413 * @sdev: device to resume
2415 * Called by scsi lld's or the midlayer to restart the device queue
2416 * for the previously suspended scsi device. Called from interrupt or
2417 * normal process context.
2419 * Returns zero if successful or error if not.
2422 * This routine transitions the device to the SDEV_RUNNING state
2423 * (which must be a legal transition) allowing the midlayer to
2424 * goose the queue for this device. This routine assumes the
2425 * host_lock is held upon entry.
2428 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2430 struct request_queue
*q
= sdev
->request_queue
;
2432 unsigned long flags
;
2435 * Try to transition the scsi device to SDEV_RUNNING
2436 * and goose the device queue if successful.
2438 err
= scsi_device_set_state(sdev
, SDEV_RUNNING
);
2440 err
= scsi_device_set_state(sdev
, SDEV_CREATED
);
2446 spin_lock_irqsave(q
->queue_lock
, flags
);
2448 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2452 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2455 device_block(struct scsi_device
*sdev
, void *data
)
2457 scsi_internal_device_block(sdev
);
2461 target_block(struct device
*dev
, void *data
)
2463 if (scsi_is_target_device(dev
))
2464 starget_for_each_device(to_scsi_target(dev
), NULL
,
2470 scsi_target_block(struct device
*dev
)
2472 if (scsi_is_target_device(dev
))
2473 starget_for_each_device(to_scsi_target(dev
), NULL
,
2476 device_for_each_child(dev
, NULL
, target_block
);
2478 EXPORT_SYMBOL_GPL(scsi_target_block
);
2481 device_unblock(struct scsi_device
*sdev
, void *data
)
2483 scsi_internal_device_unblock(sdev
);
2487 target_unblock(struct device
*dev
, void *data
)
2489 if (scsi_is_target_device(dev
))
2490 starget_for_each_device(to_scsi_target(dev
), NULL
,
2496 scsi_target_unblock(struct device
*dev
)
2498 if (scsi_is_target_device(dev
))
2499 starget_for_each_device(to_scsi_target(dev
), NULL
,
2502 device_for_each_child(dev
, NULL
, target_unblock
);
2504 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2507 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2508 * @sgl: scatter-gather list
2509 * @sg_count: number of segments in sg
2510 * @offset: offset in bytes into sg, on return offset into the mapped area
2511 * @len: bytes to map, on return number of bytes mapped
2513 * Returns virtual address of the start of the mapped page
2515 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2516 size_t *offset
, size_t *len
)
2519 size_t sg_len
= 0, len_complete
= 0;
2520 struct scatterlist
*sg
;
2523 WARN_ON(!irqs_disabled());
2525 for_each_sg(sgl
, sg
, sg_count
, i
) {
2526 len_complete
= sg_len
; /* Complete sg-entries */
2527 sg_len
+= sg
->length
;
2528 if (sg_len
> *offset
)
2532 if (unlikely(i
== sg_count
)) {
2533 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2535 __func__
, sg_len
, *offset
, sg_count
);
2540 /* Offset starting from the beginning of first page in this sg-entry */
2541 *offset
= *offset
- len_complete
+ sg
->offset
;
2543 /* Assumption: contiguous pages can be accessed as "page + i" */
2544 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2545 *offset
&= ~PAGE_MASK
;
2547 /* Bytes in this sg-entry from *offset to the end of the page */
2548 sg_len
= PAGE_SIZE
- *offset
;
2552 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2554 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2557 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2558 * @virt: virtual address to be unmapped
2560 void scsi_kunmap_atomic_sg(void *virt
)
2562 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2564 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);