KVM: Use standard CR3 flags, tighten checking
[linux-2.6/linux-loongson.git] / drivers / kvm / paging_tmpl.h
blob01901ec3fe80cf757c849e84fcf7c08117977a72
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #ifdef CONFIG_X86_64
35 #define PT_MAX_FULL_LEVELS 4
36 #else
37 #define PT_MAX_FULL_LEVELS 2
38 #endif
39 #elif PTTYPE == 32
40 #define pt_element_t u32
41 #define guest_walker guest_walker32
42 #define FNAME(name) paging##32_##name
43 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
44 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
45 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
46 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
47 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
48 #define PT_MAX_FULL_LEVELS 2
49 #else
50 #error Invalid PTTYPE value
51 #endif
54 * The guest_walker structure emulates the behavior of the hardware page
55 * table walker.
57 struct guest_walker {
58 int level;
59 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
60 pt_element_t *table;
61 pt_element_t *ptep;
62 pt_element_t inherited_ar;
63 gfn_t gfn;
64 u32 error_code;
68 * Fetch a guest pte for a guest virtual address
70 static int FNAME(walk_addr)(struct guest_walker *walker,
71 struct kvm_vcpu *vcpu, gva_t addr,
72 int write_fault, int user_fault, int fetch_fault)
74 hpa_t hpa;
75 struct kvm_memory_slot *slot;
76 pt_element_t *ptep;
77 pt_element_t root;
78 gfn_t table_gfn;
80 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
81 walker->level = vcpu->mmu.root_level;
82 walker->table = NULL;
83 root = vcpu->cr3;
84 #if PTTYPE == 64
85 if (!is_long_mode(vcpu)) {
86 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
87 root = *walker->ptep;
88 if (!(root & PT_PRESENT_MASK))
89 goto not_present;
90 --walker->level;
92 #endif
93 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
94 walker->table_gfn[walker->level - 1] = table_gfn;
95 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
96 walker->level - 1, table_gfn);
97 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
98 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
99 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
101 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
102 (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
104 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
106 for (;;) {
107 int index = PT_INDEX(addr, walker->level);
108 hpa_t paddr;
110 ptep = &walker->table[index];
111 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
112 ((unsigned long)ptep & PAGE_MASK));
114 if (!is_present_pte(*ptep))
115 goto not_present;
117 if (write_fault && !is_writeble_pte(*ptep))
118 if (user_fault || is_write_protection(vcpu))
119 goto access_error;
121 if (user_fault && !(*ptep & PT_USER_MASK))
122 goto access_error;
124 #if PTTYPE == 64
125 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
126 goto access_error;
127 #endif
129 if (!(*ptep & PT_ACCESSED_MASK)) {
130 mark_page_dirty(vcpu->kvm, table_gfn);
131 *ptep |= PT_ACCESSED_MASK;
134 if (walker->level == PT_PAGE_TABLE_LEVEL) {
135 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
136 >> PAGE_SHIFT;
137 break;
140 if (walker->level == PT_DIRECTORY_LEVEL
141 && (*ptep & PT_PAGE_SIZE_MASK)
142 && (PTTYPE == 64 || is_pse(vcpu))) {
143 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
144 >> PAGE_SHIFT;
145 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
146 break;
149 walker->inherited_ar &= walker->table[index];
150 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
151 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
152 kunmap_atomic(walker->table, KM_USER0);
153 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
154 KM_USER0);
155 --walker->level;
156 walker->table_gfn[walker->level - 1 ] = table_gfn;
157 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
158 walker->level - 1, table_gfn);
160 walker->ptep = ptep;
161 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
162 return 1;
164 not_present:
165 walker->error_code = 0;
166 goto err;
168 access_error:
169 walker->error_code = PFERR_PRESENT_MASK;
171 err:
172 if (write_fault)
173 walker->error_code |= PFERR_WRITE_MASK;
174 if (user_fault)
175 walker->error_code |= PFERR_USER_MASK;
176 if (fetch_fault)
177 walker->error_code |= PFERR_FETCH_MASK;
178 return 0;
181 static void FNAME(release_walker)(struct guest_walker *walker)
183 if (walker->table)
184 kunmap_atomic(walker->table, KM_USER0);
187 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
188 struct guest_walker *walker)
190 mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
193 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
194 u64 *shadow_pte,
195 gpa_t gaddr,
196 pt_element_t *gpte,
197 u64 access_bits,
198 int user_fault,
199 int write_fault,
200 int *ptwrite,
201 struct guest_walker *walker,
202 gfn_t gfn)
204 hpa_t paddr;
205 int dirty = *gpte & PT_DIRTY_MASK;
206 u64 spte = *shadow_pte;
207 int was_rmapped = is_rmap_pte(spte);
209 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
210 " user_fault %d gfn %lx\n",
211 __FUNCTION__, spte, (u64)*gpte, access_bits,
212 write_fault, user_fault, gfn);
214 if (write_fault && !dirty) {
215 *gpte |= PT_DIRTY_MASK;
216 dirty = 1;
217 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
220 spte |= PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK;
221 spte |= *gpte & PT64_NX_MASK;
222 if (!dirty)
223 access_bits &= ~PT_WRITABLE_MASK;
225 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
227 spte |= PT_PRESENT_MASK;
228 if (access_bits & PT_USER_MASK)
229 spte |= PT_USER_MASK;
231 if (is_error_hpa(paddr)) {
232 spte |= gaddr;
233 spte |= PT_SHADOW_IO_MARK;
234 spte &= ~PT_PRESENT_MASK;
235 set_shadow_pte(shadow_pte, spte);
236 return;
239 spte |= paddr;
241 if ((access_bits & PT_WRITABLE_MASK)
242 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
243 struct kvm_mmu_page *shadow;
245 spte |= PT_WRITABLE_MASK;
246 if (user_fault) {
247 mmu_unshadow(vcpu, gfn);
248 goto unshadowed;
251 shadow = kvm_mmu_lookup_page(vcpu, gfn);
252 if (shadow) {
253 pgprintk("%s: found shadow page for %lx, marking ro\n",
254 __FUNCTION__, gfn);
255 access_bits &= ~PT_WRITABLE_MASK;
256 if (is_writeble_pte(spte)) {
257 spte &= ~PT_WRITABLE_MASK;
258 kvm_arch_ops->tlb_flush(vcpu);
260 if (write_fault)
261 *ptwrite = 1;
265 unshadowed:
267 if (access_bits & PT_WRITABLE_MASK)
268 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
270 set_shadow_pte(shadow_pte, spte);
271 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
272 if (!was_rmapped)
273 rmap_add(vcpu, shadow_pte);
276 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
277 u64 *shadow_pte, u64 access_bits,
278 int user_fault, int write_fault, int *ptwrite,
279 struct guest_walker *walker, gfn_t gfn)
281 access_bits &= *gpte;
282 FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
283 gpte, access_bits, user_fault, write_fault,
284 ptwrite, walker, gfn);
287 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
288 u64 *spte, const void *pte, int bytes)
290 pt_element_t gpte;
292 if (bytes < sizeof(pt_element_t))
293 return;
294 gpte = *(const pt_element_t *)pte;
295 if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
296 return;
297 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
298 FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
299 0, NULL, NULL,
300 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
303 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
304 u64 *shadow_pte, u64 access_bits,
305 int user_fault, int write_fault, int *ptwrite,
306 struct guest_walker *walker, gfn_t gfn)
308 gpa_t gaddr;
310 access_bits &= *gpde;
311 gaddr = (gpa_t)gfn << PAGE_SHIFT;
312 if (PTTYPE == 32 && is_cpuid_PSE36())
313 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
314 (32 - PT32_DIR_PSE36_SHIFT);
315 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
316 gpde, access_bits, user_fault, write_fault,
317 ptwrite, walker, gfn);
321 * Fetch a shadow pte for a specific level in the paging hierarchy.
323 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
324 struct guest_walker *walker,
325 int user_fault, int write_fault, int *ptwrite)
327 hpa_t shadow_addr;
328 int level;
329 u64 *shadow_ent;
330 u64 *prev_shadow_ent = NULL;
331 pt_element_t *guest_ent = walker->ptep;
333 if (!is_present_pte(*guest_ent))
334 return NULL;
336 shadow_addr = vcpu->mmu.root_hpa;
337 level = vcpu->mmu.shadow_root_level;
338 if (level == PT32E_ROOT_LEVEL) {
339 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
340 shadow_addr &= PT64_BASE_ADDR_MASK;
341 --level;
344 for (; ; level--) {
345 u32 index = SHADOW_PT_INDEX(addr, level);
346 struct kvm_mmu_page *shadow_page;
347 u64 shadow_pte;
348 int metaphysical;
349 gfn_t table_gfn;
350 unsigned hugepage_access = 0;
352 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
353 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
354 if (level == PT_PAGE_TABLE_LEVEL)
355 break;
356 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
357 prev_shadow_ent = shadow_ent;
358 continue;
361 if (level == PT_PAGE_TABLE_LEVEL)
362 break;
364 if (level - 1 == PT_PAGE_TABLE_LEVEL
365 && walker->level == PT_DIRECTORY_LEVEL) {
366 metaphysical = 1;
367 hugepage_access = *guest_ent;
368 hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
369 if (*guest_ent & PT64_NX_MASK)
370 hugepage_access |= (1 << 2);
371 hugepage_access >>= PT_WRITABLE_SHIFT;
372 table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
373 >> PAGE_SHIFT;
374 } else {
375 metaphysical = 0;
376 table_gfn = walker->table_gfn[level - 2];
378 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
379 metaphysical, hugepage_access,
380 shadow_ent);
381 shadow_addr = __pa(shadow_page->spt);
382 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
383 | PT_WRITABLE_MASK | PT_USER_MASK;
384 *shadow_ent = shadow_pte;
385 prev_shadow_ent = shadow_ent;
388 if (walker->level == PT_DIRECTORY_LEVEL) {
389 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
390 walker->inherited_ar, user_fault, write_fault,
391 ptwrite, walker, walker->gfn);
392 } else {
393 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
394 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
395 walker->inherited_ar, user_fault, write_fault,
396 ptwrite, walker, walker->gfn);
398 return shadow_ent;
402 * Page fault handler. There are several causes for a page fault:
403 * - there is no shadow pte for the guest pte
404 * - write access through a shadow pte marked read only so that we can set
405 * the dirty bit
406 * - write access to a shadow pte marked read only so we can update the page
407 * dirty bitmap, when userspace requests it
408 * - mmio access; in this case we will never install a present shadow pte
409 * - normal guest page fault due to the guest pte marked not present, not
410 * writable, or not executable
412 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
413 * a negative value on error.
415 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
416 u32 error_code)
418 int write_fault = error_code & PFERR_WRITE_MASK;
419 int user_fault = error_code & PFERR_USER_MASK;
420 int fetch_fault = error_code & PFERR_FETCH_MASK;
421 struct guest_walker walker;
422 u64 *shadow_pte;
423 int write_pt = 0;
424 int r;
426 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
427 kvm_mmu_audit(vcpu, "pre page fault");
429 r = mmu_topup_memory_caches(vcpu);
430 if (r)
431 return r;
434 * Look up the shadow pte for the faulting address.
436 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
437 fetch_fault);
440 * The page is not mapped by the guest. Let the guest handle it.
442 if (!r) {
443 pgprintk("%s: guest page fault\n", __FUNCTION__);
444 inject_page_fault(vcpu, addr, walker.error_code);
445 FNAME(release_walker)(&walker);
446 vcpu->last_pt_write_count = 0; /* reset fork detector */
447 return 0;
450 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
451 &write_pt);
452 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
453 shadow_pte, *shadow_pte, write_pt);
455 FNAME(release_walker)(&walker);
457 if (!write_pt)
458 vcpu->last_pt_write_count = 0; /* reset fork detector */
461 * mmio: emulate if accessible, otherwise its a guest fault.
463 if (is_io_pte(*shadow_pte))
464 return 1;
466 ++vcpu->stat.pf_fixed;
467 kvm_mmu_audit(vcpu, "post page fault (fixed)");
469 return write_pt;
472 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
474 struct guest_walker walker;
475 gpa_t gpa = UNMAPPED_GVA;
476 int r;
478 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
480 if (r) {
481 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
482 gpa |= vaddr & ~PAGE_MASK;
485 FNAME(release_walker)(&walker);
486 return gpa;
489 #undef pt_element_t
490 #undef guest_walker
491 #undef FNAME
492 #undef PT_BASE_ADDR_MASK
493 #undef PT_INDEX
494 #undef SHADOW_PT_INDEX
495 #undef PT_LEVEL_MASK
496 #undef PT_DIR_BASE_ADDR_MASK
497 #undef PT_MAX_FULL_LEVELS