viocons: BKL locking
[linux-2.6/linux-loongson.git] / arch / ia64 / ia32 / sys_ia32.c
blob7e028ceb93ba6272abfaa9635bec1fc4ef6e6d6a
1 /*
2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
13 * These routines maintain argument size conversion between 32bit and 64bit
14 * environment.
17 #include <linux/kernel.h>
18 #include <linux/syscalls.h>
19 #include <linux/sysctl.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/signal.h>
24 #include <linux/resource.h>
25 #include <linux/times.h>
26 #include <linux/utsname.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/sem.h>
30 #include <linux/msg.h>
31 #include <linux/mm.h>
32 #include <linux/shm.h>
33 #include <linux/slab.h>
34 #include <linux/uio.h>
35 #include <linux/socket.h>
36 #include <linux/quota.h>
37 #include <linux/poll.h>
38 #include <linux/eventpoll.h>
39 #include <linux/personality.h>
40 #include <linux/ptrace.h>
41 #include <linux/regset.h>
42 #include <linux/stat.h>
43 #include <linux/ipc.h>
44 #include <linux/capability.h>
45 #include <linux/compat.h>
46 #include <linux/vfs.h>
47 #include <linux/mman.h>
48 #include <linux/mutex.h>
50 #include <asm/intrinsics.h>
51 #include <asm/types.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
55 #include "ia32priv.h"
57 #include <net/scm.h>
58 #include <net/sock.h>
60 #define DEBUG 0
62 #if DEBUG
63 # define DBG(fmt...) printk(KERN_DEBUG fmt)
64 #else
65 # define DBG(fmt...)
66 #endif
68 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
70 #define OFFSET4K(a) ((a) & 0xfff)
71 #define PAGE_START(addr) ((addr) & PAGE_MASK)
72 #define MINSIGSTKSZ_IA32 2048
74 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
75 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
78 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
79 * while doing so.
81 /* XXX make per-mm: */
82 static DEFINE_MUTEX(ia32_mmap_mutex);
84 asmlinkage long
85 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
86 struct pt_regs *regs)
88 long error;
89 char *filename;
90 unsigned long old_map_base, old_task_size, tssd;
92 filename = getname(name);
93 error = PTR_ERR(filename);
94 if (IS_ERR(filename))
95 return error;
97 old_map_base = current->thread.map_base;
98 old_task_size = current->thread.task_size;
99 tssd = ia64_get_kr(IA64_KR_TSSD);
101 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
102 current->thread.map_base = DEFAULT_MAP_BASE;
103 current->thread.task_size = DEFAULT_TASK_SIZE;
104 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
105 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
107 error = compat_do_execve(filename, argv, envp, regs);
108 putname(filename);
110 if (error < 0) {
111 /* oops, execve failed, switch back to old values... */
112 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
113 ia64_set_kr(IA64_KR_TSSD, tssd);
114 current->thread.map_base = old_map_base;
115 current->thread.task_size = old_task_size;
118 return error;
121 int cp_compat_stat(struct kstat *stat, struct compat_stat __user *ubuf)
123 compat_ino_t ino;
124 int err;
126 if ((u64) stat->size > MAX_NON_LFS ||
127 !old_valid_dev(stat->dev) ||
128 !old_valid_dev(stat->rdev))
129 return -EOVERFLOW;
131 ino = stat->ino;
132 if (sizeof(ino) < sizeof(stat->ino) && ino != stat->ino)
133 return -EOVERFLOW;
135 if (clear_user(ubuf, sizeof(*ubuf)))
136 return -EFAULT;
138 err = __put_user(old_encode_dev(stat->dev), &ubuf->st_dev);
139 err |= __put_user(ino, &ubuf->st_ino);
140 err |= __put_user(stat->mode, &ubuf->st_mode);
141 err |= __put_user(stat->nlink, &ubuf->st_nlink);
142 err |= __put_user(high2lowuid(stat->uid), &ubuf->st_uid);
143 err |= __put_user(high2lowgid(stat->gid), &ubuf->st_gid);
144 err |= __put_user(old_encode_dev(stat->rdev), &ubuf->st_rdev);
145 err |= __put_user(stat->size, &ubuf->st_size);
146 err |= __put_user(stat->atime.tv_sec, &ubuf->st_atime);
147 err |= __put_user(stat->atime.tv_nsec, &ubuf->st_atime_nsec);
148 err |= __put_user(stat->mtime.tv_sec, &ubuf->st_mtime);
149 err |= __put_user(stat->mtime.tv_nsec, &ubuf->st_mtime_nsec);
150 err |= __put_user(stat->ctime.tv_sec, &ubuf->st_ctime);
151 err |= __put_user(stat->ctime.tv_nsec, &ubuf->st_ctime_nsec);
152 err |= __put_user(stat->blksize, &ubuf->st_blksize);
153 err |= __put_user(stat->blocks, &ubuf->st_blocks);
154 return err;
157 #if PAGE_SHIFT > IA32_PAGE_SHIFT
160 static int
161 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
163 int prot = 0;
165 if (!vma || vma->vm_start > addr)
166 return 0;
168 if (vma->vm_flags & VM_READ)
169 prot |= PROT_READ;
170 if (vma->vm_flags & VM_WRITE)
171 prot |= PROT_WRITE;
172 if (vma->vm_flags & VM_EXEC)
173 prot |= PROT_EXEC;
174 return prot;
178 * Map a subpage by creating an anonymous page that contains the union of the old page and
179 * the subpage.
181 static unsigned long
182 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
183 loff_t off)
185 void *page = NULL;
186 struct inode *inode;
187 unsigned long ret = 0;
188 struct vm_area_struct *vma = find_vma(current->mm, start);
189 int old_prot = get_page_prot(vma, start);
191 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
192 file, start, end, prot, flags, off);
195 /* Optimize the case where the old mmap and the new mmap are both anonymous */
196 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
197 if (clear_user((void __user *) start, end - start)) {
198 ret = -EFAULT;
199 goto out;
201 goto skip_mmap;
204 page = (void *) get_zeroed_page(GFP_KERNEL);
205 if (!page)
206 return -ENOMEM;
208 if (old_prot)
209 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
211 down_write(&current->mm->mmap_sem);
213 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
214 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
216 up_write(&current->mm->mmap_sem);
218 if (IS_ERR((void *) ret))
219 goto out;
221 if (old_prot) {
222 /* copy back the old page contents. */
223 if (offset_in_page(start))
224 copy_to_user((void __user *) PAGE_START(start), page,
225 offset_in_page(start));
226 if (offset_in_page(end))
227 copy_to_user((void __user *) end, page + offset_in_page(end),
228 PAGE_SIZE - offset_in_page(end));
231 if (!(flags & MAP_ANONYMOUS)) {
232 /* read the file contents */
233 inode = file->f_path.dentry->d_inode;
234 if (!inode->i_fop || !file->f_op->read
235 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
237 ret = -EINVAL;
238 goto out;
242 skip_mmap:
243 if (!(prot & PROT_WRITE))
244 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
245 out:
246 if (page)
247 free_page((unsigned long) page);
248 return ret;
251 /* SLAB cache for ia64_partial_page structures */
252 struct kmem_cache *ia64_partial_page_cachep;
255 * init ia64_partial_page_list.
256 * return 0 means kmalloc fail.
258 struct ia64_partial_page_list*
259 ia32_init_pp_list(void)
261 struct ia64_partial_page_list *p;
263 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
264 return p;
265 p->pp_head = NULL;
266 p->ppl_rb = RB_ROOT;
267 p->pp_hint = NULL;
268 atomic_set(&p->pp_count, 1);
269 return p;
273 * Search for the partial page with @start in partial page list @ppl.
274 * If finds the partial page, return the found partial page.
275 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
276 * be used by later __ia32_insert_pp().
278 static struct ia64_partial_page *
279 __ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
280 struct ia64_partial_page **pprev, struct rb_node ***rb_link,
281 struct rb_node **rb_parent)
283 struct ia64_partial_page *pp;
284 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
286 pp = ppl->pp_hint;
287 if (pp && pp->base == start)
288 return pp;
290 __rb_link = &ppl->ppl_rb.rb_node;
291 rb_prev = __rb_parent = NULL;
293 while (*__rb_link) {
294 __rb_parent = *__rb_link;
295 pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);
297 if (pp->base == start) {
298 ppl->pp_hint = pp;
299 return pp;
300 } else if (pp->base < start) {
301 rb_prev = __rb_parent;
302 __rb_link = &__rb_parent->rb_right;
303 } else {
304 __rb_link = &__rb_parent->rb_left;
308 *rb_link = __rb_link;
309 *rb_parent = __rb_parent;
310 *pprev = NULL;
311 if (rb_prev)
312 *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
313 return NULL;
317 * insert @pp into @ppl.
319 static void
320 __ia32_insert_pp(struct ia64_partial_page_list *ppl,
321 struct ia64_partial_page *pp, struct ia64_partial_page *prev,
322 struct rb_node **rb_link, struct rb_node *rb_parent)
324 /* link list */
325 if (prev) {
326 pp->next = prev->next;
327 prev->next = pp;
328 } else {
329 ppl->pp_head = pp;
330 if (rb_parent)
331 pp->next = rb_entry(rb_parent,
332 struct ia64_partial_page, pp_rb);
333 else
334 pp->next = NULL;
337 /* link rb */
338 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
339 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
341 ppl->pp_hint = pp;
345 * delete @pp from partial page list @ppl.
347 static void
348 __ia32_delete_pp(struct ia64_partial_page_list *ppl,
349 struct ia64_partial_page *pp, struct ia64_partial_page *prev)
351 if (prev) {
352 prev->next = pp->next;
353 if (ppl->pp_hint == pp)
354 ppl->pp_hint = prev;
355 } else {
356 ppl->pp_head = pp->next;
357 if (ppl->pp_hint == pp)
358 ppl->pp_hint = pp->next;
360 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
361 kmem_cache_free(ia64_partial_page_cachep, pp);
364 static struct ia64_partial_page *
365 __pp_prev(struct ia64_partial_page *pp)
367 struct rb_node *prev = rb_prev(&pp->pp_rb);
368 if (prev)
369 return rb_entry(prev, struct ia64_partial_page, pp_rb);
370 else
371 return NULL;
375 * Delete partial pages with address between @start and @end.
376 * @start and @end are page aligned.
378 static void
379 __ia32_delete_pp_range(unsigned int start, unsigned int end)
381 struct ia64_partial_page *pp, *prev;
382 struct rb_node **rb_link, *rb_parent;
384 if (start >= end)
385 return;
387 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
388 &rb_link, &rb_parent);
389 if (pp)
390 prev = __pp_prev(pp);
391 else {
392 if (prev)
393 pp = prev->next;
394 else
395 pp = current->thread.ppl->pp_head;
398 while (pp && pp->base < end) {
399 struct ia64_partial_page *tmp = pp->next;
400 __ia32_delete_pp(current->thread.ppl, pp, prev);
401 pp = tmp;
406 * Set the range between @start and @end in bitmap.
407 * @start and @end should be IA32 page aligned and in the same IA64 page.
409 static int
410 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
412 struct ia64_partial_page *pp, *prev;
413 struct rb_node ** rb_link, *rb_parent;
414 unsigned int pstart, start_bit, end_bit, i;
416 pstart = PAGE_START(start);
417 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
418 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
419 if (end_bit == 0)
420 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
421 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
422 &rb_link, &rb_parent);
423 if (pp) {
424 for (i = start_bit; i < end_bit; i++)
425 set_bit(i, &pp->bitmap);
427 * Check: if this partial page has been set to a full page,
428 * then delete it.
430 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
431 PAGE_SIZE/IA32_PAGE_SIZE) {
432 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
434 return 0;
438 * MAP_FIXED may lead to overlapping mmap.
439 * In this case, the requested mmap area may already mmaped as a full
440 * page. So check vma before adding a new partial page.
442 if (flags & MAP_FIXED) {
443 struct vm_area_struct *vma = find_vma(current->mm, pstart);
444 if (vma && vma->vm_start <= pstart)
445 return 0;
448 /* new a ia64_partial_page */
449 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
450 if (!pp)
451 return -ENOMEM;
452 pp->base = pstart;
453 pp->bitmap = 0;
454 for (i=start_bit; i<end_bit; i++)
455 set_bit(i, &(pp->bitmap));
456 pp->next = NULL;
457 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
458 return 0;
462 * @start and @end should be IA32 page aligned, but don't need to be in the
463 * same IA64 page. Split @start and @end to make sure they're in the same IA64
464 * page, then call __ia32_set_pp().
466 static void
467 ia32_set_pp(unsigned int start, unsigned int end, int flags)
469 down_write(&current->mm->mmap_sem);
470 if (flags & MAP_FIXED) {
472 * MAP_FIXED may lead to overlapping mmap. When this happens,
473 * a series of complete IA64 pages results in deletion of
474 * old partial pages in that range.
476 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
479 if (end < PAGE_ALIGN(start)) {
480 __ia32_set_pp(start, end, flags);
481 } else {
482 if (offset_in_page(start))
483 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
484 if (offset_in_page(end))
485 __ia32_set_pp(PAGE_START(end), end, flags);
487 up_write(&current->mm->mmap_sem);
491 * Unset the range between @start and @end in bitmap.
492 * @start and @end should be IA32 page aligned and in the same IA64 page.
493 * After doing that, if the bitmap is 0, then free the page and return 1,
494 * else return 0;
495 * If not find the partial page in the list, then
496 * If the vma exists, then the full page is set to a partial page;
497 * Else return -ENOMEM.
499 static int
500 __ia32_unset_pp(unsigned int start, unsigned int end)
502 struct ia64_partial_page *pp, *prev;
503 struct rb_node ** rb_link, *rb_parent;
504 unsigned int pstart, start_bit, end_bit, i;
505 struct vm_area_struct *vma;
507 pstart = PAGE_START(start);
508 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
509 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
510 if (end_bit == 0)
511 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
513 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
514 &rb_link, &rb_parent);
515 if (pp) {
516 for (i = start_bit; i < end_bit; i++)
517 clear_bit(i, &pp->bitmap);
518 if (pp->bitmap == 0) {
519 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
520 return 1;
522 return 0;
525 vma = find_vma(current->mm, pstart);
526 if (!vma || vma->vm_start > pstart) {
527 return -ENOMEM;
530 /* new a ia64_partial_page */
531 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
532 if (!pp)
533 return -ENOMEM;
534 pp->base = pstart;
535 pp->bitmap = 0;
536 for (i = 0; i < start_bit; i++)
537 set_bit(i, &(pp->bitmap));
538 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
539 set_bit(i, &(pp->bitmap));
540 pp->next = NULL;
541 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
542 return 0;
546 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
547 * __ia32_delete_pp_range(). Unset possible partial pages by calling
548 * __ia32_unset_pp().
549 * The returned value see __ia32_unset_pp().
551 static int
552 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
554 unsigned int start = *startp, end = *endp;
555 int ret = 0;
557 down_write(&current->mm->mmap_sem);
559 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
561 if (end < PAGE_ALIGN(start)) {
562 ret = __ia32_unset_pp(start, end);
563 if (ret == 1) {
564 *startp = PAGE_START(start);
565 *endp = PAGE_ALIGN(end);
567 if (ret == 0) {
568 /* to shortcut sys_munmap() in sys32_munmap() */
569 *startp = PAGE_START(start);
570 *endp = PAGE_START(end);
572 } else {
573 if (offset_in_page(start)) {
574 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
575 if (ret == 1)
576 *startp = PAGE_START(start);
577 if (ret == 0)
578 *startp = PAGE_ALIGN(start);
579 if (ret < 0)
580 goto out;
582 if (offset_in_page(end)) {
583 ret = __ia32_unset_pp(PAGE_START(end), end);
584 if (ret == 1)
585 *endp = PAGE_ALIGN(end);
586 if (ret == 0)
587 *endp = PAGE_START(end);
591 out:
592 up_write(&current->mm->mmap_sem);
593 return ret;
597 * Compare the range between @start and @end with bitmap in partial page.
598 * @start and @end should be IA32 page aligned and in the same IA64 page.
600 static int
601 __ia32_compare_pp(unsigned int start, unsigned int end)
603 struct ia64_partial_page *pp, *prev;
604 struct rb_node ** rb_link, *rb_parent;
605 unsigned int pstart, start_bit, end_bit, size;
606 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
608 pstart = PAGE_START(start);
610 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
611 &rb_link, &rb_parent);
612 if (!pp)
613 return 1;
615 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
616 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
617 size = sizeof(pp->bitmap) * 8;
618 first_bit = find_first_bit(&pp->bitmap, size);
619 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
620 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
621 /* exceeds the first range in bitmap */
622 return -ENOMEM;
623 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
624 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
625 if ((next_zero_bit < first_bit) && (first_bit < size))
626 return 1; /* has next range */
627 else
628 return 0; /* no next range */
629 } else
630 return 1;
634 * @start and @end should be IA32 page aligned, but don't need to be in the
635 * same IA64 page. Split @start and @end to make sure they're in the same IA64
636 * page, then call __ia32_compare_pp().
638 * Take this as example: the range is the 1st and 2nd 4K page.
639 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
640 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
641 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
642 * bitmap = 00000101.
644 static int
645 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
647 unsigned int start = *startp, end = *endp;
648 int retval = 0;
650 down_write(&current->mm->mmap_sem);
652 if (end < PAGE_ALIGN(start)) {
653 retval = __ia32_compare_pp(start, end);
654 if (retval == 0) {
655 *startp = PAGE_START(start);
656 *endp = PAGE_ALIGN(end);
658 } else {
659 if (offset_in_page(start)) {
660 retval = __ia32_compare_pp(start,
661 PAGE_ALIGN(start));
662 if (retval == 0)
663 *startp = PAGE_START(start);
664 if (retval < 0)
665 goto out;
667 if (offset_in_page(end)) {
668 retval = __ia32_compare_pp(PAGE_START(end), end);
669 if (retval == 0)
670 *endp = PAGE_ALIGN(end);
674 out:
675 up_write(&current->mm->mmap_sem);
676 return retval;
679 static void
680 __ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
682 struct ia64_partial_page *pp = ppl->pp_head;
684 while (pp) {
685 struct ia64_partial_page *next = pp->next;
686 kmem_cache_free(ia64_partial_page_cachep, pp);
687 pp = next;
690 kfree(ppl);
693 void
694 ia32_drop_ia64_partial_page_list(struct task_struct *task)
696 struct ia64_partial_page_list* ppl = task->thread.ppl;
698 if (ppl && atomic_dec_and_test(&ppl->pp_count))
699 __ia32_drop_pp_list(ppl);
703 * Copy current->thread.ppl to ppl (already initialized).
705 static int
706 __ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
708 struct ia64_partial_page *pp, *tmp, *prev;
709 struct rb_node **rb_link, *rb_parent;
711 ppl->pp_head = NULL;
712 ppl->pp_hint = NULL;
713 ppl->ppl_rb = RB_ROOT;
714 rb_link = &ppl->ppl_rb.rb_node;
715 rb_parent = NULL;
716 prev = NULL;
718 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
719 tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
720 if (!tmp)
721 return -ENOMEM;
722 *tmp = *pp;
723 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
724 prev = tmp;
725 rb_link = &tmp->pp_rb.rb_right;
726 rb_parent = &tmp->pp_rb;
728 return 0;
732 ia32_copy_ia64_partial_page_list(struct task_struct *p,
733 unsigned long clone_flags)
735 int retval = 0;
737 if (clone_flags & CLONE_VM) {
738 atomic_inc(&current->thread.ppl->pp_count);
739 p->thread.ppl = current->thread.ppl;
740 } else {
741 p->thread.ppl = ia32_init_pp_list();
742 if (!p->thread.ppl)
743 return -ENOMEM;
744 down_write(&current->mm->mmap_sem);
746 retval = __ia32_copy_pp_list(p->thread.ppl);
748 up_write(&current->mm->mmap_sem);
751 return retval;
754 static unsigned long
755 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
756 loff_t off)
758 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
759 struct inode *inode;
760 loff_t poff;
762 end = start + len;
763 pstart = PAGE_START(start);
764 pend = PAGE_ALIGN(end);
766 if (flags & MAP_FIXED) {
767 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
768 if (start > pstart) {
769 if (flags & MAP_SHARED)
770 printk(KERN_INFO
771 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
772 current->comm, task_pid_nr(current), start);
773 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
774 off);
775 if (IS_ERR((void *) ret))
776 return ret;
777 pstart += PAGE_SIZE;
778 if (pstart >= pend)
779 goto out; /* done */
781 if (end < pend) {
782 if (flags & MAP_SHARED)
783 printk(KERN_INFO
784 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
785 current->comm, task_pid_nr(current), end);
786 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
787 (off + len) - offset_in_page(end));
788 if (IS_ERR((void *) ret))
789 return ret;
790 pend -= PAGE_SIZE;
791 if (pstart >= pend)
792 goto out; /* done */
794 } else {
796 * If a start address was specified, use it if the entire rounded out area
797 * is available.
799 if (start && !pstart)
800 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
801 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
802 if (tmp != pstart) {
803 pstart = tmp;
804 start = pstart + offset_in_page(off); /* make start congruent with off */
805 end = start + len;
806 pend = PAGE_ALIGN(end);
810 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
811 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
813 if ((flags & MAP_SHARED) && !is_congruent)
814 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
815 "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);
817 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
818 is_congruent ? "congruent" : "not congruent", poff);
820 down_write(&current->mm->mmap_sem);
822 if (!(flags & MAP_ANONYMOUS) && is_congruent)
823 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
824 else
825 ret = do_mmap(NULL, pstart, pend - pstart,
826 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
827 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
829 up_write(&current->mm->mmap_sem);
831 if (IS_ERR((void *) ret))
832 return ret;
834 if (!is_congruent) {
835 /* read the file contents */
836 inode = file->f_path.dentry->d_inode;
837 if (!inode->i_fop || !file->f_op->read
838 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
839 < 0))
841 sys_munmap(pstart, pend - pstart);
842 return -EINVAL;
844 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
845 return -EINVAL;
848 if (!(flags & MAP_FIXED))
849 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
850 out:
851 return start;
854 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
856 static inline unsigned int
857 get_prot32 (unsigned int prot)
859 if (prot & PROT_WRITE)
860 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
861 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
862 else if (prot & (PROT_READ | PROT_EXEC))
863 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
864 prot |= (PROT_READ | PROT_EXEC);
866 return prot;
869 unsigned long
870 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
871 loff_t offset)
873 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
874 file, addr, len, prot, flags, offset);
876 if (file && (!file->f_op || !file->f_op->mmap))
877 return -ENODEV;
879 len = IA32_PAGE_ALIGN(len);
880 if (len == 0)
881 return addr;
883 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
885 if (flags & MAP_FIXED)
886 return -ENOMEM;
887 else
888 return -EINVAL;
891 if (OFFSET4K(offset))
892 return -EINVAL;
894 prot = get_prot32(prot);
896 #if PAGE_SHIFT > IA32_PAGE_SHIFT
897 mutex_lock(&ia32_mmap_mutex);
899 addr = emulate_mmap(file, addr, len, prot, flags, offset);
901 mutex_unlock(&ia32_mmap_mutex);
902 #else
903 down_write(&current->mm->mmap_sem);
905 addr = do_mmap(file, addr, len, prot, flags, offset);
907 up_write(&current->mm->mmap_sem);
908 #endif
909 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
910 return addr;
914 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
915 * system calls used a memory block for parameter passing..
918 struct mmap_arg_struct {
919 unsigned int addr;
920 unsigned int len;
921 unsigned int prot;
922 unsigned int flags;
923 unsigned int fd;
924 unsigned int offset;
927 asmlinkage long
928 sys32_mmap (struct mmap_arg_struct __user *arg)
930 struct mmap_arg_struct a;
931 struct file *file = NULL;
932 unsigned long addr;
933 int flags;
935 if (copy_from_user(&a, arg, sizeof(a)))
936 return -EFAULT;
938 if (OFFSET4K(a.offset))
939 return -EINVAL;
941 flags = a.flags;
943 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
944 if (!(flags & MAP_ANONYMOUS)) {
945 file = fget(a.fd);
946 if (!file)
947 return -EBADF;
950 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
952 if (file)
953 fput(file);
954 return addr;
957 asmlinkage long
958 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
959 unsigned int fd, unsigned int pgoff)
961 struct file *file = NULL;
962 unsigned long retval;
964 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
965 if (!(flags & MAP_ANONYMOUS)) {
966 file = fget(fd);
967 if (!file)
968 return -EBADF;
971 retval = ia32_do_mmap(file, addr, len, prot, flags,
972 (unsigned long) pgoff << IA32_PAGE_SHIFT);
974 if (file)
975 fput(file);
976 return retval;
979 asmlinkage long
980 sys32_munmap (unsigned int start, unsigned int len)
982 unsigned int end = start + len;
983 long ret;
985 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
986 ret = sys_munmap(start, end - start);
987 #else
988 if (OFFSET4K(start))
989 return -EINVAL;
991 end = IA32_PAGE_ALIGN(end);
992 if (start >= end)
993 return -EINVAL;
995 ret = ia32_unset_pp(&start, &end);
996 if (ret < 0)
997 return ret;
999 if (start >= end)
1000 return 0;
1002 mutex_lock(&ia32_mmap_mutex);
1003 ret = sys_munmap(start, end - start);
1004 mutex_unlock(&ia32_mmap_mutex);
1005 #endif
1006 return ret;
1009 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1012 * When mprotect()ing a partial page, we set the permission to the union of the old
1013 * settings and the new settings. In other words, it's only possible to make access to a
1014 * partial page less restrictive.
1016 static long
1017 mprotect_subpage (unsigned long address, int new_prot)
1019 int old_prot;
1020 struct vm_area_struct *vma;
1022 if (new_prot == PROT_NONE)
1023 return 0; /* optimize case where nothing changes... */
1024 vma = find_vma(current->mm, address);
1025 old_prot = get_page_prot(vma, address);
1026 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
1029 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
1031 asmlinkage long
1032 sys32_mprotect (unsigned int start, unsigned int len, int prot)
1034 unsigned int end = start + len;
1035 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1036 long retval = 0;
1037 #endif
1039 prot = get_prot32(prot);
1041 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1042 return sys_mprotect(start, end - start, prot);
1043 #else
1044 if (OFFSET4K(start))
1045 return -EINVAL;
1047 end = IA32_PAGE_ALIGN(end);
1048 if (end < start)
1049 return -EINVAL;
1051 retval = ia32_compare_pp(&start, &end);
1053 if (retval < 0)
1054 return retval;
1056 mutex_lock(&ia32_mmap_mutex);
1058 if (offset_in_page(start)) {
1059 /* start address is 4KB aligned but not page aligned. */
1060 retval = mprotect_subpage(PAGE_START(start), prot);
1061 if (retval < 0)
1062 goto out;
1064 start = PAGE_ALIGN(start);
1065 if (start >= end)
1066 goto out; /* retval is already zero... */
1069 if (offset_in_page(end)) {
1070 /* end address is 4KB aligned but not page aligned. */
1071 retval = mprotect_subpage(PAGE_START(end), prot);
1072 if (retval < 0)
1073 goto out;
1075 end = PAGE_START(end);
1077 retval = sys_mprotect(start, end - start, prot);
1079 out:
1080 mutex_unlock(&ia32_mmap_mutex);
1081 return retval;
1082 #endif
1085 asmlinkage long
1086 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1087 unsigned int flags, unsigned int new_addr)
1089 long ret;
1091 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1092 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1093 #else
1094 unsigned int old_end, new_end;
1096 if (OFFSET4K(addr))
1097 return -EINVAL;
1099 old_len = IA32_PAGE_ALIGN(old_len);
1100 new_len = IA32_PAGE_ALIGN(new_len);
1101 old_end = addr + old_len;
1102 new_end = addr + new_len;
1104 if (!new_len)
1105 return -EINVAL;
1107 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1108 return -EINVAL;
1110 if (old_len >= new_len) {
1111 ret = sys32_munmap(addr + new_len, old_len - new_len);
1112 if (ret && old_len != new_len)
1113 return ret;
1114 ret = addr;
1115 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1116 return ret;
1117 old_len = new_len;
1120 addr = PAGE_START(addr);
1121 old_len = PAGE_ALIGN(old_end) - addr;
1122 new_len = PAGE_ALIGN(new_end) - addr;
1124 mutex_lock(&ia32_mmap_mutex);
1125 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1126 mutex_unlock(&ia32_mmap_mutex);
1128 if ((ret >= 0) && (old_len < new_len)) {
1129 /* mremap expanded successfully */
1130 ia32_set_pp(old_end, new_end, flags);
1132 #endif
1133 return ret;
1136 asmlinkage long
1137 sys32_pipe (int __user *fd)
1139 int retval;
1140 int fds[2];
1142 retval = do_pipe(fds);
1143 if (retval)
1144 goto out;
1145 if (copy_to_user(fd, fds, sizeof(fds)))
1146 retval = -EFAULT;
1147 out:
1148 return retval;
1151 static inline long
1152 get_tv32 (struct timeval *o, struct compat_timeval __user *i)
1154 return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
1155 (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec)));
1158 static inline long
1159 put_tv32 (struct compat_timeval __user *o, struct timeval *i)
1161 return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
1162 (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec)));
1165 asmlinkage unsigned long
1166 sys32_alarm (unsigned int seconds)
1168 return alarm_setitimer(seconds);
1171 /* Translations due to time_t size differences. Which affects all
1172 sorts of things, like timeval and itimerval. */
1174 extern struct timezone sys_tz;
1176 asmlinkage long
1177 sys32_gettimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1179 if (tv) {
1180 struct timeval ktv;
1181 do_gettimeofday(&ktv);
1182 if (put_tv32(tv, &ktv))
1183 return -EFAULT;
1185 if (tz) {
1186 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
1187 return -EFAULT;
1189 return 0;
1192 asmlinkage long
1193 sys32_settimeofday (struct compat_timeval __user *tv, struct timezone __user *tz)
1195 struct timeval ktv;
1196 struct timespec kts;
1197 struct timezone ktz;
1199 if (tv) {
1200 if (get_tv32(&ktv, tv))
1201 return -EFAULT;
1202 kts.tv_sec = ktv.tv_sec;
1203 kts.tv_nsec = ktv.tv_usec * 1000;
1205 if (tz) {
1206 if (copy_from_user(&ktz, tz, sizeof(ktz)))
1207 return -EFAULT;
1210 return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
1213 struct getdents32_callback {
1214 struct compat_dirent __user *current_dir;
1215 struct compat_dirent __user *previous;
1216 int count;
1217 int error;
1220 struct readdir32_callback {
1221 struct old_linux32_dirent __user * dirent;
1222 int count;
1225 static int
1226 filldir32 (void *__buf, const char *name, int namlen, loff_t offset, u64 ino,
1227 unsigned int d_type)
1229 struct compat_dirent __user * dirent;
1230 struct getdents32_callback * buf = (struct getdents32_callback *) __buf;
1231 int reclen = ROUND_UP(offsetof(struct compat_dirent, d_name) + namlen + 1, 4);
1232 u32 d_ino;
1234 buf->error = -EINVAL; /* only used if we fail.. */
1235 if (reclen > buf->count)
1236 return -EINVAL;
1237 d_ino = ino;
1238 if (sizeof(d_ino) < sizeof(ino) && d_ino != ino)
1239 return -EOVERFLOW;
1240 buf->error = -EFAULT; /* only used if we fail.. */
1241 dirent = buf->previous;
1242 if (dirent)
1243 if (put_user(offset, &dirent->d_off))
1244 return -EFAULT;
1245 dirent = buf->current_dir;
1246 buf->previous = dirent;
1247 if (put_user(d_ino, &dirent->d_ino)
1248 || put_user(reclen, &dirent->d_reclen)
1249 || copy_to_user(dirent->d_name, name, namlen)
1250 || put_user(0, dirent->d_name + namlen))
1251 return -EFAULT;
1252 dirent = (struct compat_dirent __user *) ((char __user *) dirent + reclen);
1253 buf->current_dir = dirent;
1254 buf->count -= reclen;
1255 return 0;
1258 asmlinkage long
1259 sys32_getdents (unsigned int fd, struct compat_dirent __user *dirent, unsigned int count)
1261 struct file * file;
1262 struct compat_dirent __user * lastdirent;
1263 struct getdents32_callback buf;
1264 int error;
1266 error = -EFAULT;
1267 if (!access_ok(VERIFY_WRITE, dirent, count))
1268 goto out;
1270 error = -EBADF;
1271 file = fget(fd);
1272 if (!file)
1273 goto out;
1275 buf.current_dir = dirent;
1276 buf.previous = NULL;
1277 buf.count = count;
1278 buf.error = 0;
1280 error = vfs_readdir(file, filldir32, &buf);
1281 if (error < 0)
1282 goto out_putf;
1283 error = buf.error;
1284 lastdirent = buf.previous;
1285 if (lastdirent) {
1286 if (put_user(file->f_pos, &lastdirent->d_off))
1287 error = -EFAULT;
1288 else
1289 error = count - buf.count;
1292 out_putf:
1293 fput(file);
1294 out:
1295 return error;
1298 static int
1299 fillonedir32 (void * __buf, const char * name, int namlen, loff_t offset, u64 ino,
1300 unsigned int d_type)
1302 struct readdir32_callback * buf = (struct readdir32_callback *) __buf;
1303 struct old_linux32_dirent __user * dirent;
1304 u32 d_ino;
1306 if (buf->count)
1307 return -EINVAL;
1308 d_ino = ino;
1309 if (sizeof(d_ino) < sizeof(ino) && d_ino != ino)
1310 return -EOVERFLOW;
1311 buf->count++;
1312 dirent = buf->dirent;
1313 if (put_user(d_ino, &dirent->d_ino)
1314 || put_user(offset, &dirent->d_offset)
1315 || put_user(namlen, &dirent->d_namlen)
1316 || copy_to_user(dirent->d_name, name, namlen)
1317 || put_user(0, dirent->d_name + namlen))
1318 return -EFAULT;
1319 return 0;
1322 asmlinkage long
1323 sys32_readdir (unsigned int fd, void __user *dirent, unsigned int count)
1325 int error;
1326 struct file * file;
1327 struct readdir32_callback buf;
1329 error = -EBADF;
1330 file = fget(fd);
1331 if (!file)
1332 goto out;
1334 buf.count = 0;
1335 buf.dirent = dirent;
1337 error = vfs_readdir(file, fillonedir32, &buf);
1338 if (error >= 0)
1339 error = buf.count;
1340 fput(file);
1341 out:
1342 return error;
1345 struct sel_arg_struct {
1346 unsigned int n;
1347 unsigned int inp;
1348 unsigned int outp;
1349 unsigned int exp;
1350 unsigned int tvp;
1353 asmlinkage long
1354 sys32_old_select (struct sel_arg_struct __user *arg)
1356 struct sel_arg_struct a;
1358 if (copy_from_user(&a, arg, sizeof(a)))
1359 return -EFAULT;
1360 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1361 compat_ptr(a.exp), compat_ptr(a.tvp));
1364 #define SEMOP 1
1365 #define SEMGET 2
1366 #define SEMCTL 3
1367 #define SEMTIMEDOP 4
1368 #define MSGSND 11
1369 #define MSGRCV 12
1370 #define MSGGET 13
1371 #define MSGCTL 14
1372 #define SHMAT 21
1373 #define SHMDT 22
1374 #define SHMGET 23
1375 #define SHMCTL 24
1377 asmlinkage long
1378 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1380 int version;
1382 version = call >> 16; /* hack for backward compatibility */
1383 call &= 0xffff;
1385 switch (call) {
1386 case SEMTIMEDOP:
1387 if (fifth)
1388 return compat_sys_semtimedop(first, compat_ptr(ptr),
1389 second, compat_ptr(fifth));
1390 /* else fall through for normal semop() */
1391 case SEMOP:
1392 /* struct sembuf is the same on 32 and 64bit :)) */
1393 return sys_semtimedop(first, compat_ptr(ptr), second,
1394 NULL);
1395 case SEMGET:
1396 return sys_semget(first, second, third);
1397 case SEMCTL:
1398 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1400 case MSGSND:
1401 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1402 case MSGRCV:
1403 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1404 case MSGGET:
1405 return sys_msgget((key_t) first, second);
1406 case MSGCTL:
1407 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1409 case SHMAT:
1410 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1411 break;
1412 case SHMDT:
1413 return sys_shmdt(compat_ptr(ptr));
1414 case SHMGET:
1415 return sys_shmget(first, (unsigned)second, third);
1416 case SHMCTL:
1417 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1419 default:
1420 return -ENOSYS;
1422 return -EINVAL;
1425 asmlinkage long
1426 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1427 struct compat_rusage *ru);
1429 asmlinkage long
1430 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1432 return compat_sys_wait4(pid, stat_addr, options, NULL);
1435 static unsigned int
1436 ia32_peek (struct task_struct *child, unsigned long addr, unsigned int *val)
1438 size_t copied;
1439 unsigned int ret;
1441 copied = access_process_vm(child, addr, val, sizeof(*val), 0);
1442 return (copied != sizeof(ret)) ? -EIO : 0;
1445 static unsigned int
1446 ia32_poke (struct task_struct *child, unsigned long addr, unsigned int val)
1449 if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
1450 return -EIO;
1451 return 0;
1455 * The order in which registers are stored in the ptrace regs structure
1457 #define PT_EBX 0
1458 #define PT_ECX 1
1459 #define PT_EDX 2
1460 #define PT_ESI 3
1461 #define PT_EDI 4
1462 #define PT_EBP 5
1463 #define PT_EAX 6
1464 #define PT_DS 7
1465 #define PT_ES 8
1466 #define PT_FS 9
1467 #define PT_GS 10
1468 #define PT_ORIG_EAX 11
1469 #define PT_EIP 12
1470 #define PT_CS 13
1471 #define PT_EFL 14
1472 #define PT_UESP 15
1473 #define PT_SS 16
1475 static unsigned int
1476 getreg (struct task_struct *child, int regno)
1478 struct pt_regs *child_regs;
1480 child_regs = task_pt_regs(child);
1481 switch (regno / sizeof(int)) {
1482 case PT_EBX: return child_regs->r11;
1483 case PT_ECX: return child_regs->r9;
1484 case PT_EDX: return child_regs->r10;
1485 case PT_ESI: return child_regs->r14;
1486 case PT_EDI: return child_regs->r15;
1487 case PT_EBP: return child_regs->r13;
1488 case PT_EAX: return child_regs->r8;
1489 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1490 case PT_EIP: return child_regs->cr_iip;
1491 case PT_UESP: return child_regs->r12;
1492 case PT_EFL: return child->thread.eflag;
1493 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1494 return __USER_DS;
1495 case PT_CS: return __USER_CS;
1496 default:
1497 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1498 break;
1500 return 0;
1503 static void
1504 putreg (struct task_struct *child, int regno, unsigned int value)
1506 struct pt_regs *child_regs;
1508 child_regs = task_pt_regs(child);
1509 switch (regno / sizeof(int)) {
1510 case PT_EBX: child_regs->r11 = value; break;
1511 case PT_ECX: child_regs->r9 = value; break;
1512 case PT_EDX: child_regs->r10 = value; break;
1513 case PT_ESI: child_regs->r14 = value; break;
1514 case PT_EDI: child_regs->r15 = value; break;
1515 case PT_EBP: child_regs->r13 = value; break;
1516 case PT_EAX: child_regs->r8 = value; break;
1517 case PT_ORIG_EAX: child_regs->r1 = value; break;
1518 case PT_EIP: child_regs->cr_iip = value; break;
1519 case PT_UESP: child_regs->r12 = value; break;
1520 case PT_EFL: child->thread.eflag = value; break;
1521 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1522 if (value != __USER_DS)
1523 printk(KERN_ERR
1524 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1525 regno, value);
1526 break;
1527 case PT_CS:
1528 if (value != __USER_CS)
1529 printk(KERN_ERR
1530 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1531 regno, value);
1532 break;
1533 default:
1534 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1535 break;
1539 static void
1540 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1541 struct switch_stack *swp, int tos)
1543 struct _fpreg_ia32 *f;
1544 char buf[32];
1546 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1547 if ((regno += tos) >= 8)
1548 regno -= 8;
1549 switch (regno) {
1550 case 0:
1551 ia64f2ia32f(f, &ptp->f8);
1552 break;
1553 case 1:
1554 ia64f2ia32f(f, &ptp->f9);
1555 break;
1556 case 2:
1557 ia64f2ia32f(f, &ptp->f10);
1558 break;
1559 case 3:
1560 ia64f2ia32f(f, &ptp->f11);
1561 break;
1562 case 4:
1563 case 5:
1564 case 6:
1565 case 7:
1566 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1567 break;
1569 copy_to_user(reg, f, sizeof(*reg));
1572 static void
1573 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1574 struct switch_stack *swp, int tos)
1577 if ((regno += tos) >= 8)
1578 regno -= 8;
1579 switch (regno) {
1580 case 0:
1581 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1582 break;
1583 case 1:
1584 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1585 break;
1586 case 2:
1587 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1588 break;
1589 case 3:
1590 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1591 break;
1592 case 4:
1593 case 5:
1594 case 6:
1595 case 7:
1596 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1597 break;
1599 return;
1603 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1605 struct switch_stack *swp;
1606 struct pt_regs *ptp;
1607 int i, tos;
1609 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1610 return -EFAULT;
1612 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1613 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1614 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1615 __put_user(tsk->thread.fir, &save->fip);
1616 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1617 __put_user(tsk->thread.fdr, &save->foo);
1618 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1621 * Stack frames start with 16-bytes of temp space
1623 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1624 ptp = task_pt_regs(tsk);
1625 tos = (tsk->thread.fsr >> 11) & 7;
1626 for (i = 0; i < 8; i++)
1627 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1628 return 0;
1631 static int
1632 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1634 struct switch_stack *swp;
1635 struct pt_regs *ptp;
1636 int i, tos;
1637 unsigned int fsrlo, fsrhi, num32;
1639 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1640 return(-EFAULT);
1642 __get_user(num32, (unsigned int __user *)&save->cwd);
1643 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1644 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1645 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1646 num32 = (fsrhi << 16) | fsrlo;
1647 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1648 __get_user(num32, (unsigned int __user *)&save->fip);
1649 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1650 __get_user(num32, (unsigned int __user *)&save->foo);
1651 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1654 * Stack frames start with 16-bytes of temp space
1656 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1657 ptp = task_pt_regs(tsk);
1658 tos = (tsk->thread.fsr >> 11) & 7;
1659 for (i = 0; i < 8; i++)
1660 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1661 return 0;
1665 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1667 struct switch_stack *swp;
1668 struct pt_regs *ptp;
1669 int i, tos;
1670 unsigned long mxcsr=0;
1671 unsigned long num128[2];
1673 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1674 return -EFAULT;
1676 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1677 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1678 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1679 __put_user(tsk->thread.fir, &save->fip);
1680 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1681 __put_user(tsk->thread.fdr, &save->foo);
1682 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1685 * Stack frames start with 16-bytes of temp space
1687 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1688 ptp = task_pt_regs(tsk);
1689 tos = (tsk->thread.fsr >> 11) & 7;
1690 for (i = 0; i < 8; i++)
1691 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1693 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1694 __put_user(mxcsr & 0xffff, &save->mxcsr);
1695 for (i = 0; i < 8; i++) {
1696 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1697 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1698 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1700 return 0;
1703 static int
1704 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1706 struct switch_stack *swp;
1707 struct pt_regs *ptp;
1708 int i, tos;
1709 unsigned int fsrlo, fsrhi, num32;
1710 int mxcsr;
1711 unsigned long num64;
1712 unsigned long num128[2];
1714 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1715 return(-EFAULT);
1717 __get_user(num32, (unsigned int __user *)&save->cwd);
1718 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1719 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1720 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1721 num32 = (fsrhi << 16) | fsrlo;
1722 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1723 __get_user(num32, (unsigned int __user *)&save->fip);
1724 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1725 __get_user(num32, (unsigned int __user *)&save->foo);
1726 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1729 * Stack frames start with 16-bytes of temp space
1731 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1732 ptp = task_pt_regs(tsk);
1733 tos = (tsk->thread.fsr >> 11) & 7;
1734 for (i = 0; i < 8; i++)
1735 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1737 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1738 num64 = mxcsr & 0xff10;
1739 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1740 num64 = mxcsr & 0x3f;
1741 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1743 for (i = 0; i < 8; i++) {
1744 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1745 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1746 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1748 return 0;
1751 asmlinkage long
1752 sys32_ptrace (int request, pid_t pid, unsigned int addr, unsigned int data)
1754 struct task_struct *child;
1755 unsigned int value, tmp;
1756 long i, ret;
1758 lock_kernel();
1759 if (request == PTRACE_TRACEME) {
1760 ret = ptrace_traceme();
1761 goto out;
1764 child = ptrace_get_task_struct(pid);
1765 if (IS_ERR(child)) {
1766 ret = PTR_ERR(child);
1767 goto out;
1770 if (request == PTRACE_ATTACH) {
1771 ret = sys_ptrace(request, pid, addr, data);
1772 goto out_tsk;
1775 ret = ptrace_check_attach(child, request == PTRACE_KILL);
1776 if (ret < 0)
1777 goto out_tsk;
1779 switch (request) {
1780 case PTRACE_PEEKTEXT:
1781 case PTRACE_PEEKDATA: /* read word at location addr */
1782 ret = ia32_peek(child, addr, &value);
1783 if (ret == 0)
1784 ret = put_user(value, (unsigned int __user *) compat_ptr(data));
1785 else
1786 ret = -EIO;
1787 goto out_tsk;
1789 case PTRACE_POKETEXT:
1790 case PTRACE_POKEDATA: /* write the word at location addr */
1791 ret = ia32_poke(child, addr, data);
1792 goto out_tsk;
1794 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1795 ret = -EIO;
1796 if ((addr & 3) || addr > 17*sizeof(int))
1797 break;
1799 tmp = getreg(child, addr);
1800 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1801 ret = 0;
1802 break;
1804 case PTRACE_POKEUSR: /* write word at addr in USER area */
1805 ret = -EIO;
1806 if ((addr & 3) || addr > 17*sizeof(int))
1807 break;
1809 putreg(child, addr, data);
1810 ret = 0;
1811 break;
1813 case IA32_PTRACE_GETREGS:
1814 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1815 ret = -EIO;
1816 break;
1818 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1819 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1820 data += sizeof(int);
1822 ret = 0;
1823 break;
1825 case IA32_PTRACE_SETREGS:
1826 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1827 ret = -EIO;
1828 break;
1830 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1831 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1832 putreg(child, i, tmp);
1833 data += sizeof(int);
1835 ret = 0;
1836 break;
1838 case IA32_PTRACE_GETFPREGS:
1839 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1840 compat_ptr(data));
1841 break;
1843 case IA32_PTRACE_GETFPXREGS:
1844 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1845 compat_ptr(data));
1846 break;
1848 case IA32_PTRACE_SETFPREGS:
1849 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1850 compat_ptr(data));
1851 break;
1853 case IA32_PTRACE_SETFPXREGS:
1854 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1855 compat_ptr(data));
1856 break;
1858 case PTRACE_GETEVENTMSG:
1859 ret = put_user(child->ptrace_message, (unsigned int __user *) compat_ptr(data));
1860 break;
1862 case PTRACE_SYSCALL: /* continue, stop after next syscall */
1863 case PTRACE_CONT: /* restart after signal. */
1864 case PTRACE_KILL:
1865 case PTRACE_SINGLESTEP: /* execute chile for one instruction */
1866 case PTRACE_DETACH: /* detach a process */
1867 ret = sys_ptrace(request, pid, addr, data);
1868 break;
1870 default:
1871 ret = ptrace_request(child, request, addr, data);
1872 break;
1875 out_tsk:
1876 put_task_struct(child);
1877 out:
1878 unlock_kernel();
1879 return ret;
1882 typedef struct {
1883 unsigned int ss_sp;
1884 unsigned int ss_flags;
1885 unsigned int ss_size;
1886 } ia32_stack_t;
1888 asmlinkage long
1889 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1890 long arg2, long arg3, long arg4, long arg5, long arg6,
1891 long arg7, struct pt_regs pt)
1893 stack_t uss, uoss;
1894 ia32_stack_t buf32;
1895 int ret;
1896 mm_segment_t old_fs = get_fs();
1898 if (uss32) {
1899 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1900 return -EFAULT;
1901 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1902 uss.ss_flags = buf32.ss_flags;
1903 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1904 check and set it to the user requested value later */
1905 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1906 ret = -ENOMEM;
1907 goto out;
1909 uss.ss_size = MINSIGSTKSZ;
1911 set_fs(KERNEL_DS);
1912 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1913 (stack_t __user *) &uoss, pt.r12);
1914 current->sas_ss_size = buf32.ss_size;
1915 set_fs(old_fs);
1916 out:
1917 if (ret < 0)
1918 return(ret);
1919 if (uoss32) {
1920 buf32.ss_sp = (long __user) uoss.ss_sp;
1921 buf32.ss_flags = uoss.ss_flags;
1922 buf32.ss_size = uoss.ss_size;
1923 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1924 return -EFAULT;
1926 return ret;
1929 asmlinkage int
1930 sys32_pause (void)
1932 current->state = TASK_INTERRUPTIBLE;
1933 schedule();
1934 return -ERESTARTNOHAND;
1937 asmlinkage int
1938 sys32_msync (unsigned int start, unsigned int len, int flags)
1940 unsigned int addr;
1942 if (OFFSET4K(start))
1943 return -EINVAL;
1944 addr = PAGE_START(start);
1945 return sys_msync(addr, len + (start - addr), flags);
1948 struct sysctl32 {
1949 unsigned int name;
1950 int nlen;
1951 unsigned int oldval;
1952 unsigned int oldlenp;
1953 unsigned int newval;
1954 unsigned int newlen;
1955 unsigned int __unused[4];
1958 #ifdef CONFIG_SYSCTL_SYSCALL
1959 asmlinkage long
1960 sys32_sysctl (struct sysctl32 __user *args)
1962 struct sysctl32 a32;
1963 mm_segment_t old_fs = get_fs ();
1964 void __user *oldvalp, *newvalp;
1965 size_t oldlen;
1966 int __user *namep;
1967 long ret;
1969 if (copy_from_user(&a32, args, sizeof(a32)))
1970 return -EFAULT;
1973 * We need to pre-validate these because we have to disable address checking
1974 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1975 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1976 * addresses, we KNOW that access_ok() will always succeed, so this is an
1977 * expensive NOP, but so what...
1979 namep = (int __user *) compat_ptr(a32.name);
1980 oldvalp = compat_ptr(a32.oldval);
1981 newvalp = compat_ptr(a32.newval);
1983 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1984 || !access_ok(VERIFY_WRITE, namep, 0)
1985 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1986 || !access_ok(VERIFY_WRITE, newvalp, 0))
1987 return -EFAULT;
1989 set_fs(KERNEL_DS);
1990 lock_kernel();
1991 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
1992 newvalp, (size_t) a32.newlen);
1993 unlock_kernel();
1994 set_fs(old_fs);
1996 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1997 return -EFAULT;
1999 return ret;
2001 #endif
2003 asmlinkage long
2004 sys32_newuname (struct new_utsname __user *name)
2006 int ret = sys_newuname(name);
2008 if (!ret)
2009 if (copy_to_user(name->machine, "i686\0\0\0", 8))
2010 ret = -EFAULT;
2011 return ret;
2014 asmlinkage long
2015 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
2017 uid_t a, b, c;
2018 int ret;
2019 mm_segment_t old_fs = get_fs();
2021 set_fs(KERNEL_DS);
2022 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
2023 set_fs(old_fs);
2025 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
2026 return -EFAULT;
2027 return ret;
2030 asmlinkage long
2031 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
2033 gid_t a, b, c;
2034 int ret;
2035 mm_segment_t old_fs = get_fs();
2037 set_fs(KERNEL_DS);
2038 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
2039 set_fs(old_fs);
2041 if (ret)
2042 return ret;
2044 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
2047 asmlinkage long
2048 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
2050 /* Sign-extension of "offset" is important here... */
2051 return sys_lseek(fd, offset, whence);
2054 static int
2055 groups16_to_user(short __user *grouplist, struct group_info *group_info)
2057 int i;
2058 short group;
2060 for (i = 0; i < group_info->ngroups; i++) {
2061 group = (short)GROUP_AT(group_info, i);
2062 if (put_user(group, grouplist+i))
2063 return -EFAULT;
2066 return 0;
2069 static int
2070 groups16_from_user(struct group_info *group_info, short __user *grouplist)
2072 int i;
2073 short group;
2075 for (i = 0; i < group_info->ngroups; i++) {
2076 if (get_user(group, grouplist+i))
2077 return -EFAULT;
2078 GROUP_AT(group_info, i) = (gid_t)group;
2081 return 0;
2084 asmlinkage long
2085 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
2087 int i;
2089 if (gidsetsize < 0)
2090 return -EINVAL;
2092 get_group_info(current->group_info);
2093 i = current->group_info->ngroups;
2094 if (gidsetsize) {
2095 if (i > gidsetsize) {
2096 i = -EINVAL;
2097 goto out;
2099 if (groups16_to_user(grouplist, current->group_info)) {
2100 i = -EFAULT;
2101 goto out;
2104 out:
2105 put_group_info(current->group_info);
2106 return i;
2109 asmlinkage long
2110 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
2112 struct group_info *group_info;
2113 int retval;
2115 if (!capable(CAP_SETGID))
2116 return -EPERM;
2117 if ((unsigned)gidsetsize > NGROUPS_MAX)
2118 return -EINVAL;
2120 group_info = groups_alloc(gidsetsize);
2121 if (!group_info)
2122 return -ENOMEM;
2123 retval = groups16_from_user(group_info, grouplist);
2124 if (retval) {
2125 put_group_info(group_info);
2126 return retval;
2129 retval = set_current_groups(group_info);
2130 put_group_info(group_info);
2132 return retval;
2135 asmlinkage long
2136 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
2138 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
2141 asmlinkage long
2142 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
2144 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
2147 static int
2148 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
2150 int err;
2151 u64 hdev;
2153 if (clear_user(ubuf, sizeof(*ubuf)))
2154 return -EFAULT;
2156 hdev = huge_encode_dev(kbuf->dev);
2157 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
2158 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
2159 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
2160 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
2161 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
2162 err |= __put_user(kbuf->mode, &ubuf->st_mode);
2163 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
2164 err |= __put_user(kbuf->uid, &ubuf->st_uid);
2165 err |= __put_user(kbuf->gid, &ubuf->st_gid);
2166 hdev = huge_encode_dev(kbuf->rdev);
2167 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
2168 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
2169 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
2170 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
2171 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
2172 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
2173 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
2174 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
2175 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
2176 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
2177 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
2178 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
2179 return err;
2182 asmlinkage long
2183 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
2185 struct kstat s;
2186 long ret = vfs_stat(filename, &s);
2187 if (!ret)
2188 ret = putstat64(statbuf, &s);
2189 return ret;
2192 asmlinkage long
2193 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
2195 struct kstat s;
2196 long ret = vfs_lstat(filename, &s);
2197 if (!ret)
2198 ret = putstat64(statbuf, &s);
2199 return ret;
2202 asmlinkage long
2203 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
2205 struct kstat s;
2206 long ret = vfs_fstat(fd, &s);
2207 if (!ret)
2208 ret = putstat64(statbuf, &s);
2209 return ret;
2212 asmlinkage long
2213 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
2215 mm_segment_t old_fs = get_fs();
2216 struct timespec t;
2217 long ret;
2219 set_fs(KERNEL_DS);
2220 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
2221 set_fs(old_fs);
2222 if (put_compat_timespec(&t, interval))
2223 return -EFAULT;
2224 return ret;
2227 asmlinkage long
2228 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2230 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2233 asmlinkage long
2234 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
2236 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
2239 asmlinkage long
2240 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
2242 mm_segment_t old_fs = get_fs();
2243 long ret;
2244 off_t of;
2246 if (offset && get_user(of, offset))
2247 return -EFAULT;
2249 set_fs(KERNEL_DS);
2250 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
2251 set_fs(old_fs);
2253 if (offset && put_user(of, offset))
2254 return -EFAULT;
2256 return ret;
2259 asmlinkage long
2260 sys32_personality (unsigned int personality)
2262 long ret;
2264 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
2265 personality = PER_LINUX32;
2266 ret = sys_personality(personality);
2267 if (ret == PER_LINUX32)
2268 ret = PER_LINUX;
2269 return ret;
2272 asmlinkage unsigned long
2273 sys32_brk (unsigned int brk)
2275 unsigned long ret, obrk;
2276 struct mm_struct *mm = current->mm;
2278 obrk = mm->brk;
2279 ret = sys_brk(brk);
2280 if (ret < obrk)
2281 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
2282 return ret;
2285 /* Structure for ia32 emulation on ia64 */
2286 struct epoll_event32
2288 u32 events;
2289 u32 data[2];
2292 asmlinkage long
2293 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
2295 mm_segment_t old_fs = get_fs();
2296 struct epoll_event event64;
2297 int error;
2298 u32 data_halfword;
2300 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
2301 return -EFAULT;
2303 __get_user(event64.events, &event->events);
2304 __get_user(data_halfword, &event->data[0]);
2305 event64.data = data_halfword;
2306 __get_user(data_halfword, &event->data[1]);
2307 event64.data |= (u64)data_halfword << 32;
2309 set_fs(KERNEL_DS);
2310 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
2311 set_fs(old_fs);
2313 return error;
2316 asmlinkage long
2317 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2318 int timeout)
2320 struct epoll_event *events64 = NULL;
2321 mm_segment_t old_fs = get_fs();
2322 int numevents, size;
2323 int evt_idx;
2324 int do_free_pages = 0;
2326 if (maxevents <= 0) {
2327 return -EINVAL;
2330 /* Verify that the area passed by the user is writeable */
2331 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2332 return -EFAULT;
2335 * Allocate space for the intermediate copy. If the space needed
2336 * is large enough to cause kmalloc to fail, then try again with
2337 * __get_free_pages.
2339 size = maxevents * sizeof(struct epoll_event);
2340 events64 = kmalloc(size, GFP_KERNEL);
2341 if (events64 == NULL) {
2342 events64 = (struct epoll_event *)
2343 __get_free_pages(GFP_KERNEL, get_order(size));
2344 if (events64 == NULL)
2345 return -ENOMEM;
2346 do_free_pages = 1;
2349 /* Do the system call */
2350 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2351 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2352 maxevents, timeout);
2353 set_fs(old_fs);
2355 /* Don't modify userspace memory if we're returning an error */
2356 if (numevents > 0) {
2357 /* Translate the 64-bit structures back into the 32-bit
2358 structures */
2359 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2360 __put_user(events64[evt_idx].events,
2361 &events[evt_idx].events);
2362 __put_user((u32)events64[evt_idx].data,
2363 &events[evt_idx].data[0]);
2364 __put_user((u32)(events64[evt_idx].data >> 32),
2365 &events[evt_idx].data[1]);
2369 if (do_free_pages)
2370 free_pages((unsigned long) events64, get_order(size));
2371 else
2372 kfree(events64);
2373 return numevents;
2377 * Get a yet unused TLS descriptor index.
2379 static int
2380 get_free_idx (void)
2382 struct thread_struct *t = &current->thread;
2383 int idx;
2385 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2386 if (desc_empty(t->tls_array + idx))
2387 return idx + GDT_ENTRY_TLS_MIN;
2388 return -ESRCH;
2391 static void set_tls_desc(struct task_struct *p, int idx,
2392 const struct ia32_user_desc *info, int n)
2394 struct thread_struct *t = &p->thread;
2395 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
2396 int cpu;
2399 * We must not get preempted while modifying the TLS.
2401 cpu = get_cpu();
2403 while (n-- > 0) {
2404 if (LDT_empty(info)) {
2405 desc->a = 0;
2406 desc->b = 0;
2407 } else {
2408 desc->a = LDT_entry_a(info);
2409 desc->b = LDT_entry_b(info);
2412 ++info;
2413 ++desc;
2416 if (t == &current->thread)
2417 load_TLS(t, cpu);
2419 put_cpu();
2423 * Set a given TLS descriptor:
2425 asmlinkage int
2426 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2428 struct ia32_user_desc info;
2429 int idx;
2431 if (copy_from_user(&info, u_info, sizeof(info)))
2432 return -EFAULT;
2433 idx = info.entry_number;
2436 * index -1 means the kernel should try to find and allocate an empty descriptor:
2438 if (idx == -1) {
2439 idx = get_free_idx();
2440 if (idx < 0)
2441 return idx;
2442 if (put_user(idx, &u_info->entry_number))
2443 return -EFAULT;
2446 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2447 return -EINVAL;
2449 set_tls_desc(current, idx, &info, 1);
2450 return 0;
2454 * Get the current Thread-Local Storage area:
2457 #define GET_BASE(desc) ( \
2458 (((desc)->a >> 16) & 0x0000ffff) | \
2459 (((desc)->b << 16) & 0x00ff0000) | \
2460 ( (desc)->b & 0xff000000) )
2462 #define GET_LIMIT(desc) ( \
2463 ((desc)->a & 0x0ffff) | \
2464 ((desc)->b & 0xf0000) )
2466 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2467 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2468 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2469 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2470 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2471 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2473 static void fill_user_desc(struct ia32_user_desc *info, int idx,
2474 const struct desc_struct *desc)
2476 info->entry_number = idx;
2477 info->base_addr = GET_BASE(desc);
2478 info->limit = GET_LIMIT(desc);
2479 info->seg_32bit = GET_32BIT(desc);
2480 info->contents = GET_CONTENTS(desc);
2481 info->read_exec_only = !GET_WRITABLE(desc);
2482 info->limit_in_pages = GET_LIMIT_PAGES(desc);
2483 info->seg_not_present = !GET_PRESENT(desc);
2484 info->useable = GET_USEABLE(desc);
2487 asmlinkage int
2488 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2490 struct ia32_user_desc info;
2491 struct desc_struct *desc;
2492 int idx;
2494 if (get_user(idx, &u_info->entry_number))
2495 return -EFAULT;
2496 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2497 return -EINVAL;
2499 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2500 fill_user_desc(&info, idx, desc);
2502 if (copy_to_user(u_info, &info, sizeof(info)))
2503 return -EFAULT;
2504 return 0;
2507 struct regset_get {
2508 void *kbuf;
2509 void __user *ubuf;
2512 struct regset_set {
2513 const void *kbuf;
2514 const void __user *ubuf;
2517 struct regset_getset {
2518 struct task_struct *target;
2519 const struct user_regset *regset;
2520 union {
2521 struct regset_get get;
2522 struct regset_set set;
2523 } u;
2524 unsigned int pos;
2525 unsigned int count;
2526 int ret;
2529 static void getfpreg(struct task_struct *task, int regno, int *val)
2531 switch (regno / sizeof(int)) {
2532 case 0:
2533 *val = task->thread.fcr & 0xffff;
2534 break;
2535 case 1:
2536 *val = task->thread.fsr & 0xffff;
2537 break;
2538 case 2:
2539 *val = (task->thread.fsr>>16) & 0xffff;
2540 break;
2541 case 3:
2542 *val = task->thread.fir;
2543 break;
2544 case 4:
2545 *val = (task->thread.fir>>32) & 0xffff;
2546 break;
2547 case 5:
2548 *val = task->thread.fdr;
2549 break;
2550 case 6:
2551 *val = (task->thread.fdr >> 32) & 0xffff;
2552 break;
2556 static void setfpreg(struct task_struct *task, int regno, int val)
2558 switch (regno / sizeof(int)) {
2559 case 0:
2560 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2561 | (val & 0x1f3f);
2562 break;
2563 case 1:
2564 task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
2565 break;
2566 case 2:
2567 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2568 | (val << 16);
2569 break;
2570 case 3:
2571 task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
2572 break;
2573 case 5:
2574 task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
2575 break;
2579 static void access_fpreg_ia32(int regno, void *reg,
2580 struct pt_regs *pt, struct switch_stack *sw,
2581 int tos, int write)
2583 void *f;
2585 if ((regno += tos) >= 8)
2586 regno -= 8;
2587 if (regno < 4)
2588 f = &pt->f8 + regno;
2589 else if (regno <= 7)
2590 f = &sw->f12 + (regno - 4);
2591 else {
2592 printk(KERN_ERR "regno must be less than 7 \n");
2593 return;
2596 if (write)
2597 memcpy(f, reg, sizeof(struct _fpreg_ia32));
2598 else
2599 memcpy(reg, f, sizeof(struct _fpreg_ia32));
2602 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
2604 struct regset_getset *dst = arg;
2605 struct task_struct *task = dst->target;
2606 struct pt_regs *pt;
2607 int start, end, tos;
2608 char buf[80];
2610 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2611 return;
2612 if (dst->pos < 7 * sizeof(int)) {
2613 end = min((dst->pos + dst->count),
2614 (unsigned int)(7 * sizeof(int)));
2615 for (start = dst->pos; start < end; start += sizeof(int))
2616 getfpreg(task, start, (int *)(buf + start));
2617 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2618 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2619 0, 7 * sizeof(int));
2620 if (dst->ret || dst->count == 0)
2621 return;
2623 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2624 pt = task_pt_regs(task);
2625 tos = (task->thread.fsr >> 11) & 7;
2626 end = min(dst->pos + dst->count,
2627 (unsigned int)(sizeof(struct ia32_user_i387_struct)));
2628 start = (dst->pos - 7 * sizeof(int)) /
2629 sizeof(struct _fpreg_ia32);
2630 end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2631 for (; start < end; start++)
2632 access_fpreg_ia32(start,
2633 (struct _fpreg_ia32 *)buf + start,
2634 pt, info->sw, tos, 0);
2635 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2636 &dst->u.get.kbuf, &dst->u.get.ubuf,
2637 buf, 7 * sizeof(int),
2638 sizeof(struct ia32_user_i387_struct));
2639 if (dst->ret || dst->count == 0)
2640 return;
2644 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
2646 struct regset_getset *dst = arg;
2647 struct task_struct *task = dst->target;
2648 struct pt_regs *pt;
2649 char buf[80];
2650 int end, start, tos;
2652 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2653 return;
2655 if (dst->pos < 7 * sizeof(int)) {
2656 start = dst->pos;
2657 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2658 &dst->u.set.kbuf, &dst->u.set.ubuf, buf,
2659 0, 7 * sizeof(int));
2660 if (dst->ret)
2661 return;
2662 for (; start < dst->pos; start += sizeof(int))
2663 setfpreg(task, start, *((int *)(buf + start)));
2664 if (dst->count == 0)
2665 return;
2667 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2668 start = (dst->pos - 7 * sizeof(int)) /
2669 sizeof(struct _fpreg_ia32);
2670 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2671 &dst->u.set.kbuf, &dst->u.set.ubuf,
2672 buf, 7 * sizeof(int),
2673 sizeof(struct ia32_user_i387_struct));
2674 if (dst->ret)
2675 return;
2676 pt = task_pt_regs(task);
2677 tos = (task->thread.fsr >> 11) & 7;
2678 end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2679 for (; start < end; start++)
2680 access_fpreg_ia32(start,
2681 (struct _fpreg_ia32 *)buf + start,
2682 pt, info->sw, tos, 1);
2683 if (dst->count == 0)
2684 return;
2688 #define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
2689 static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
2691 int min_val;
2693 min_val = min(end, OFFSET(fop));
2694 while (start < min_val) {
2695 if (start == OFFSET(cwd))
2696 *((short *)buf) = task->thread.fcr & 0xffff;
2697 else if (start == OFFSET(swd))
2698 *((short *)buf) = task->thread.fsr & 0xffff;
2699 else if (start == OFFSET(twd))
2700 *((short *)buf) = (task->thread.fsr>>16) & 0xffff;
2701 buf += 2;
2702 start += 2;
2704 /* skip fop element */
2705 if (start == OFFSET(fop)) {
2706 start += 2;
2707 buf += 2;
2709 while (start < end) {
2710 if (start == OFFSET(fip))
2711 *((int *)buf) = task->thread.fir;
2712 else if (start == OFFSET(fcs))
2713 *((int *)buf) = (task->thread.fir>>32) & 0xffff;
2714 else if (start == OFFSET(foo))
2715 *((int *)buf) = task->thread.fdr;
2716 else if (start == OFFSET(fos))
2717 *((int *)buf) = (task->thread.fdr>>32) & 0xffff;
2718 else if (start == OFFSET(mxcsr))
2719 *((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
2720 | ((task->thread.fsr>>32) & 0x3f);
2721 buf += 4;
2722 start += 4;
2726 static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
2728 int min_val, num32;
2729 short num;
2730 unsigned long num64;
2732 min_val = min(end, OFFSET(fop));
2733 while (start < min_val) {
2734 num = *((short *)buf);
2735 if (start == OFFSET(cwd)) {
2736 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2737 | (num & 0x1f3f);
2738 } else if (start == OFFSET(swd)) {
2739 task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
2740 } else if (start == OFFSET(twd)) {
2741 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2742 | (((int)num) << 16);
2744 buf += 2;
2745 start += 2;
2747 /* skip fop element */
2748 if (start == OFFSET(fop)) {
2749 start += 2;
2750 buf += 2;
2752 while (start < end) {
2753 num32 = *((int *)buf);
2754 if (start == OFFSET(fip))
2755 task->thread.fir = (task->thread.fir & (~0xffffffff))
2756 | num32;
2757 else if (start == OFFSET(foo))
2758 task->thread.fdr = (task->thread.fdr & (~0xffffffff))
2759 | num32;
2760 else if (start == OFFSET(mxcsr)) {
2761 num64 = num32 & 0xff10;
2762 task->thread.fcr = (task->thread.fcr &
2763 (~0xff1000000000UL)) | (num64<<32);
2764 num64 = num32 & 0x3f;
2765 task->thread.fsr = (task->thread.fsr &
2766 (~0x3f00000000UL)) | (num64<<32);
2768 buf += 4;
2769 start += 4;
2773 static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
2775 struct regset_getset *dst = arg;
2776 struct task_struct *task = dst->target;
2777 struct pt_regs *pt;
2778 char buf[128];
2779 int start, end, tos;
2781 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2782 return;
2783 if (dst->pos < OFFSET(st_space[0])) {
2784 end = min(dst->pos + dst->count, (unsigned int)32);
2785 getfpxreg(task, dst->pos, end, buf);
2786 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2787 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2788 0, OFFSET(st_space[0]));
2789 if (dst->ret || dst->count == 0)
2790 return;
2792 if (dst->pos < OFFSET(xmm_space[0])) {
2793 pt = task_pt_regs(task);
2794 tos = (task->thread.fsr >> 11) & 7;
2795 end = min(dst->pos + dst->count,
2796 (unsigned int)OFFSET(xmm_space[0]));
2797 start = (dst->pos - OFFSET(st_space[0])) / 16;
2798 end = (end - OFFSET(st_space[0])) / 16;
2799 for (; start < end; start++)
2800 access_fpreg_ia32(start, buf + 16 * start, pt,
2801 info->sw, tos, 0);
2802 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2803 &dst->u.get.kbuf, &dst->u.get.ubuf,
2804 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2805 if (dst->ret || dst->count == 0)
2806 return;
2808 if (dst->pos < OFFSET(padding[0]))
2809 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2810 &dst->u.get.kbuf, &dst->u.get.ubuf,
2811 &info->sw->f16, OFFSET(xmm_space[0]),
2812 OFFSET(padding[0]));
2815 static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
2817 struct regset_getset *dst = arg;
2818 struct task_struct *task = dst->target;
2819 char buf[128];
2820 int start, end;
2822 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2823 return;
2825 if (dst->pos < OFFSET(st_space[0])) {
2826 start = dst->pos;
2827 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2828 &dst->u.set.kbuf, &dst->u.set.ubuf,
2829 buf, 0, OFFSET(st_space[0]));
2830 if (dst->ret)
2831 return;
2832 setfpxreg(task, start, dst->pos, buf);
2833 if (dst->count == 0)
2834 return;
2836 if (dst->pos < OFFSET(xmm_space[0])) {
2837 struct pt_regs *pt;
2838 int tos;
2839 pt = task_pt_regs(task);
2840 tos = (task->thread.fsr >> 11) & 7;
2841 start = (dst->pos - OFFSET(st_space[0])) / 16;
2842 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2843 &dst->u.set.kbuf, &dst->u.set.ubuf,
2844 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2845 if (dst->ret)
2846 return;
2847 end = (dst->pos - OFFSET(st_space[0])) / 16;
2848 for (; start < end; start++)
2849 access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
2850 tos, 1);
2851 if (dst->count == 0)
2852 return;
2854 if (dst->pos < OFFSET(padding[0]))
2855 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2856 &dst->u.set.kbuf, &dst->u.set.ubuf,
2857 &info->sw->f16, OFFSET(xmm_space[0]),
2858 OFFSET(padding[0]));
2860 #undef OFFSET
2862 static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
2863 struct task_struct *target,
2864 const struct user_regset *regset,
2865 unsigned int pos, unsigned int count,
2866 const void *kbuf, const void __user *ubuf)
2868 struct regset_getset info = { .target = target, .regset = regset,
2869 .pos = pos, .count = count,
2870 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
2871 .ret = 0 };
2873 if (target == current)
2874 unw_init_running(call, &info);
2875 else {
2876 struct unw_frame_info ufi;
2877 memset(&ufi, 0, sizeof(ufi));
2878 unw_init_from_blocked_task(&ufi, target);
2879 (*call)(&ufi, &info);
2882 return info.ret;
2885 static int ia32_fpregs_get(struct task_struct *target,
2886 const struct user_regset *regset,
2887 unsigned int pos, unsigned int count,
2888 void *kbuf, void __user *ubuf)
2890 return do_regset_call(do_fpregs_get, target, regset, pos, count,
2891 kbuf, ubuf);
2894 static int ia32_fpregs_set(struct task_struct *target,
2895 const struct user_regset *regset,
2896 unsigned int pos, unsigned int count,
2897 const void *kbuf, const void __user *ubuf)
2899 return do_regset_call(do_fpregs_set, target, regset, pos, count,
2900 kbuf, ubuf);
2903 static int ia32_fpxregs_get(struct task_struct *target,
2904 const struct user_regset *regset,
2905 unsigned int pos, unsigned int count,
2906 void *kbuf, void __user *ubuf)
2908 return do_regset_call(do_fpxregs_get, target, regset, pos, count,
2909 kbuf, ubuf);
2912 static int ia32_fpxregs_set(struct task_struct *target,
2913 const struct user_regset *regset,
2914 unsigned int pos, unsigned int count,
2915 const void *kbuf, const void __user *ubuf)
2917 return do_regset_call(do_fpxregs_set, target, regset, pos, count,
2918 kbuf, ubuf);
2921 static int ia32_genregs_get(struct task_struct *target,
2922 const struct user_regset *regset,
2923 unsigned int pos, unsigned int count,
2924 void *kbuf, void __user *ubuf)
2926 if (kbuf) {
2927 u32 *kp = kbuf;
2928 while (count > 0) {
2929 *kp++ = getreg(target, pos);
2930 pos += 4;
2931 count -= 4;
2933 } else {
2934 u32 __user *up = ubuf;
2935 while (count > 0) {
2936 if (__put_user(getreg(target, pos), up++))
2937 return -EFAULT;
2938 pos += 4;
2939 count -= 4;
2942 return 0;
2945 static int ia32_genregs_set(struct task_struct *target,
2946 const struct user_regset *regset,
2947 unsigned int pos, unsigned int count,
2948 const void *kbuf, const void __user *ubuf)
2950 int ret = 0;
2952 if (kbuf) {
2953 const u32 *kp = kbuf;
2954 while (!ret && count > 0) {
2955 putreg(target, pos, *kp++);
2956 pos += 4;
2957 count -= 4;
2959 } else {
2960 const u32 __user *up = ubuf;
2961 u32 val;
2962 while (!ret && count > 0) {
2963 ret = __get_user(val, up++);
2964 if (!ret)
2965 putreg(target, pos, val);
2966 pos += 4;
2967 count -= 4;
2970 return ret;
2973 static int ia32_tls_active(struct task_struct *target,
2974 const struct user_regset *regset)
2976 struct thread_struct *t = &target->thread;
2977 int n = GDT_ENTRY_TLS_ENTRIES;
2978 while (n > 0 && desc_empty(&t->tls_array[n -1]))
2979 --n;
2980 return n;
2983 static int ia32_tls_get(struct task_struct *target,
2984 const struct user_regset *regset, unsigned int pos,
2985 unsigned int count, void *kbuf, void __user *ubuf)
2987 const struct desc_struct *tls;
2989 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
2990 (pos % sizeof(struct ia32_user_desc)) != 0 ||
2991 (count % sizeof(struct ia32_user_desc)) != 0)
2992 return -EINVAL;
2994 pos /= sizeof(struct ia32_user_desc);
2995 count /= sizeof(struct ia32_user_desc);
2997 tls = &target->thread.tls_array[pos];
2999 if (kbuf) {
3000 struct ia32_user_desc *info = kbuf;
3001 while (count-- > 0)
3002 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
3003 tls++);
3004 } else {
3005 struct ia32_user_desc __user *u_info = ubuf;
3006 while (count-- > 0) {
3007 struct ia32_user_desc info;
3008 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
3009 if (__copy_to_user(u_info++, &info, sizeof(info)))
3010 return -EFAULT;
3014 return 0;
3017 static int ia32_tls_set(struct task_struct *target,
3018 const struct user_regset *regset, unsigned int pos,
3019 unsigned int count, const void *kbuf, const void __user *ubuf)
3021 struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
3022 const struct ia32_user_desc *info;
3024 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
3025 (pos % sizeof(struct ia32_user_desc)) != 0 ||
3026 (count % sizeof(struct ia32_user_desc)) != 0)
3027 return -EINVAL;
3029 if (kbuf)
3030 info = kbuf;
3031 else if (__copy_from_user(infobuf, ubuf, count))
3032 return -EFAULT;
3033 else
3034 info = infobuf;
3036 set_tls_desc(target,
3037 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
3038 info, count / sizeof(struct ia32_user_desc));
3040 return 0;
3044 * This should match arch/i386/kernel/ptrace.c:native_regsets.
3045 * XXX ioperm? vm86?
3047 static const struct user_regset ia32_regsets[] = {
3049 .core_note_type = NT_PRSTATUS,
3050 .n = sizeof(struct user_regs_struct32)/4,
3051 .size = 4, .align = 4,
3052 .get = ia32_genregs_get, .set = ia32_genregs_set
3055 .core_note_type = NT_PRFPREG,
3056 .n = sizeof(struct ia32_user_i387_struct) / 4,
3057 .size = 4, .align = 4,
3058 .get = ia32_fpregs_get, .set = ia32_fpregs_set
3061 .core_note_type = NT_PRXFPREG,
3062 .n = sizeof(struct ia32_user_fxsr_struct) / 4,
3063 .size = 4, .align = 4,
3064 .get = ia32_fpxregs_get, .set = ia32_fpxregs_set
3067 .core_note_type = NT_386_TLS,
3068 .n = GDT_ENTRY_TLS_ENTRIES,
3069 .bias = GDT_ENTRY_TLS_MIN,
3070 .size = sizeof(struct ia32_user_desc),
3071 .align = sizeof(struct ia32_user_desc),
3072 .active = ia32_tls_active,
3073 .get = ia32_tls_get, .set = ia32_tls_set,
3077 const struct user_regset_view user_ia32_view = {
3078 .name = "i386", .e_machine = EM_386,
3079 .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
3082 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
3083 __u32 len_low, __u32 len_high, int advice)
3085 return sys_fadvise64_64(fd,
3086 (((u64)offset_high)<<32) | offset_low,
3087 (((u64)len_high)<<32) | len_low,
3088 advice);
3091 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
3093 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
3095 uid_t sruid, seuid;
3097 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
3098 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
3099 return sys_setreuid(sruid, seuid);
3102 asmlinkage long
3103 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
3104 compat_uid_t suid)
3106 uid_t sruid, seuid, ssuid;
3108 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
3109 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
3110 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
3111 return sys_setresuid(sruid, seuid, ssuid);
3114 asmlinkage long
3115 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
3117 gid_t srgid, segid;
3119 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
3120 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
3121 return sys_setregid(srgid, segid);
3124 asmlinkage long
3125 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
3126 compat_gid_t sgid)
3128 gid_t srgid, segid, ssgid;
3130 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
3131 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
3132 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
3133 return sys_setresgid(srgid, segid, ssgid);
3135 #endif /* NOTYET */