[SCSI] sas_scsi_host: Convert to use the kthread API
[linux-2.6/linux-loongson.git] / fs / xfs / xfs_inode.c
blob3da9829c19d5e80af53be627dc8b5b1a0b594ee0
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
53 kmem_zone_t *xfs_ifork_zone;
54 kmem_zone_t *xfs_inode_zone;
55 kmem_zone_t *xfs_chashlist_zone;
58 * Used in xfs_itruncate(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
64 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
65 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
66 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 int disk,
79 xfs_exntfmt_t fmt)
81 xfs_bmbt_rec_t *ep;
82 xfs_bmbt_irec_t irec;
83 xfs_bmbt_rec_t rec;
84 int i;
86 for (i = 0; i < nrecs; i++) {
87 ep = xfs_iext_get_ext(ifp, i);
88 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
89 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
90 if (disk)
91 xfs_bmbt_disk_get_all(&rec, &irec);
92 else
93 xfs_bmbt_get_all(&rec, &irec);
94 if (fmt == XFS_EXTFMT_NOSTATE)
95 ASSERT(irec.br_state == XFS_EXT_NORM);
98 #else /* DEBUG */
99 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
100 #endif /* DEBUG */
103 * Check that none of the inode's in the buffer have a next
104 * unlinked field of 0.
106 #if defined(DEBUG)
107 void
108 xfs_inobp_check(
109 xfs_mount_t *mp,
110 xfs_buf_t *bp)
112 int i;
113 int j;
114 xfs_dinode_t *dip;
116 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
118 for (i = 0; i < j; i++) {
119 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
120 i * mp->m_sb.sb_inodesize);
121 if (!dip->di_next_unlinked) {
122 xfs_fs_cmn_err(CE_ALERT, mp,
123 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
124 bp);
125 ASSERT(dip->di_next_unlinked);
129 #endif
132 * This routine is called to map an inode number within a file
133 * system to the buffer containing the on-disk version of the
134 * inode. It returns a pointer to the buffer containing the
135 * on-disk inode in the bpp parameter, and in the dip parameter
136 * it returns a pointer to the on-disk inode within that buffer.
138 * If a non-zero error is returned, then the contents of bpp and
139 * dipp are undefined.
141 * Use xfs_imap() to determine the size and location of the
142 * buffer to read from disk.
144 STATIC int
145 xfs_inotobp(
146 xfs_mount_t *mp,
147 xfs_trans_t *tp,
148 xfs_ino_t ino,
149 xfs_dinode_t **dipp,
150 xfs_buf_t **bpp,
151 int *offset)
153 int di_ok;
154 xfs_imap_t imap;
155 xfs_buf_t *bp;
156 int error;
157 xfs_dinode_t *dip;
160 * Call the space management code to find the location of the
161 * inode on disk.
163 imap.im_blkno = 0;
164 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
165 if (error != 0) {
166 cmn_err(CE_WARN,
167 "xfs_inotobp: xfs_imap() returned an "
168 "error %d on %s. Returning error.", error, mp->m_fsname);
169 return error;
173 * If the inode number maps to a block outside the bounds of the
174 * file system then return NULL rather than calling read_buf
175 * and panicing when we get an error from the driver.
177 if ((imap.im_blkno + imap.im_len) >
178 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
179 cmn_err(CE_WARN,
180 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
181 "of the file system %s. Returning EINVAL.",
182 (unsigned long long)imap.im_blkno,
183 imap.im_len, mp->m_fsname);
184 return XFS_ERROR(EINVAL);
188 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
189 * default to just a read_buf() call.
191 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
192 (int)imap.im_len, XFS_BUF_LOCK, &bp);
194 if (error) {
195 cmn_err(CE_WARN,
196 "xfs_inotobp: xfs_trans_read_buf() returned an "
197 "error %d on %s. Returning error.", error, mp->m_fsname);
198 return error;
200 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
201 di_ok =
202 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
203 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
204 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
205 XFS_RANDOM_ITOBP_INOTOBP))) {
206 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
207 xfs_trans_brelse(tp, bp);
208 cmn_err(CE_WARN,
209 "xfs_inotobp: XFS_TEST_ERROR() returned an "
210 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
211 return XFS_ERROR(EFSCORRUPTED);
214 xfs_inobp_check(mp, bp);
217 * Set *dipp to point to the on-disk inode in the buffer.
219 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
220 *bpp = bp;
221 *offset = imap.im_boffset;
222 return 0;
227 * This routine is called to map an inode to the buffer containing
228 * the on-disk version of the inode. It returns a pointer to the
229 * buffer containing the on-disk inode in the bpp parameter, and in
230 * the dip parameter it returns a pointer to the on-disk inode within
231 * that buffer.
233 * If a non-zero error is returned, then the contents of bpp and
234 * dipp are undefined.
236 * If the inode is new and has not yet been initialized, use xfs_imap()
237 * to determine the size and location of the buffer to read from disk.
238 * If the inode has already been mapped to its buffer and read in once,
239 * then use the mapping information stored in the inode rather than
240 * calling xfs_imap(). This allows us to avoid the overhead of looking
241 * at the inode btree for small block file systems (see xfs_dilocate()).
242 * We can tell whether the inode has been mapped in before by comparing
243 * its disk block address to 0. Only uninitialized inodes will have
244 * 0 for the disk block address.
247 xfs_itobp(
248 xfs_mount_t *mp,
249 xfs_trans_t *tp,
250 xfs_inode_t *ip,
251 xfs_dinode_t **dipp,
252 xfs_buf_t **bpp,
253 xfs_daddr_t bno,
254 uint imap_flags)
256 xfs_imap_t imap;
257 xfs_buf_t *bp;
258 int error;
259 int i;
260 int ni;
262 if (ip->i_blkno == (xfs_daddr_t)0) {
264 * Call the space management code to find the location of the
265 * inode on disk.
267 imap.im_blkno = bno;
268 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
269 XFS_IMAP_LOOKUP | imap_flags)))
270 return error;
273 * If the inode number maps to a block outside the bounds
274 * of the file system then return NULL rather than calling
275 * read_buf and panicing when we get an error from the
276 * driver.
278 if ((imap.im_blkno + imap.im_len) >
279 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
280 #ifdef DEBUG
281 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
282 "(imap.im_blkno (0x%llx) "
283 "+ imap.im_len (0x%llx)) > "
284 " XFS_FSB_TO_BB(mp, "
285 "mp->m_sb.sb_dblocks) (0x%llx)",
286 (unsigned long long) imap.im_blkno,
287 (unsigned long long) imap.im_len,
288 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
289 #endif /* DEBUG */
290 return XFS_ERROR(EINVAL);
294 * Fill in the fields in the inode that will be used to
295 * map the inode to its buffer from now on.
297 ip->i_blkno = imap.im_blkno;
298 ip->i_len = imap.im_len;
299 ip->i_boffset = imap.im_boffset;
300 } else {
302 * We've already mapped the inode once, so just use the
303 * mapping that we saved the first time.
305 imap.im_blkno = ip->i_blkno;
306 imap.im_len = ip->i_len;
307 imap.im_boffset = ip->i_boffset;
309 ASSERT(bno == 0 || bno == imap.im_blkno);
312 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
313 * default to just a read_buf() call.
315 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
316 (int)imap.im_len, XFS_BUF_LOCK, &bp);
317 if (error) {
318 #ifdef DEBUG
319 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
320 "xfs_trans_read_buf() returned error %d, "
321 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
322 error, (unsigned long long) imap.im_blkno,
323 (unsigned long long) imap.im_len);
324 #endif /* DEBUG */
325 return error;
329 * Validate the magic number and version of every inode in the buffer
330 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
331 * No validation is done here in userspace (xfs_repair).
333 #if !defined(__KERNEL__)
334 ni = 0;
335 #elif defined(DEBUG)
336 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
337 #else /* usual case */
338 ni = 1;
339 #endif
341 for (i = 0; i < ni; i++) {
342 int di_ok;
343 xfs_dinode_t *dip;
345 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
346 (i << mp->m_sb.sb_inodelog));
347 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
348 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
349 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
350 XFS_ERRTAG_ITOBP_INOTOBP,
351 XFS_RANDOM_ITOBP_INOTOBP))) {
352 if (imap_flags & XFS_IMAP_BULKSTAT) {
353 xfs_trans_brelse(tp, bp);
354 return XFS_ERROR(EINVAL);
356 #ifdef DEBUG
357 cmn_err(CE_ALERT,
358 "Device %s - bad inode magic/vsn "
359 "daddr %lld #%d (magic=%x)",
360 XFS_BUFTARG_NAME(mp->m_ddev_targp),
361 (unsigned long long)imap.im_blkno, i,
362 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
363 #endif
364 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
365 mp, dip);
366 xfs_trans_brelse(tp, bp);
367 return XFS_ERROR(EFSCORRUPTED);
371 xfs_inobp_check(mp, bp);
374 * Mark the buffer as an inode buffer now that it looks good
376 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
379 * Set *dipp to point to the on-disk inode in the buffer.
381 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
382 *bpp = bp;
383 return 0;
387 * Move inode type and inode format specific information from the
388 * on-disk inode to the in-core inode. For fifos, devs, and sockets
389 * this means set if_rdev to the proper value. For files, directories,
390 * and symlinks this means to bring in the in-line data or extent
391 * pointers. For a file in B-tree format, only the root is immediately
392 * brought in-core. The rest will be in-lined in if_extents when it
393 * is first referenced (see xfs_iread_extents()).
395 STATIC int
396 xfs_iformat(
397 xfs_inode_t *ip,
398 xfs_dinode_t *dip)
400 xfs_attr_shortform_t *atp;
401 int size;
402 int error;
403 xfs_fsize_t di_size;
404 ip->i_df.if_ext_max =
405 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
406 error = 0;
408 if (unlikely(
409 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
410 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
411 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
414 (unsigned long long)ip->i_ino,
415 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
416 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
417 (unsigned long long)
418 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
419 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
420 ip->i_mount, dip);
421 return XFS_ERROR(EFSCORRUPTED);
424 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
425 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
426 "corrupt dinode %Lu, forkoff = 0x%x.",
427 (unsigned long long)ip->i_ino,
428 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
429 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
430 ip->i_mount, dip);
431 return XFS_ERROR(EFSCORRUPTED);
434 switch (ip->i_d.di_mode & S_IFMT) {
435 case S_IFIFO:
436 case S_IFCHR:
437 case S_IFBLK:
438 case S_IFSOCK:
439 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
440 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
444 ip->i_d.di_size = 0;
445 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
446 break;
448 case S_IFREG:
449 case S_IFLNK:
450 case S_IFDIR:
451 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
452 case XFS_DINODE_FMT_LOCAL:
454 * no local regular files yet
456 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
457 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
458 "corrupt inode %Lu "
459 "(local format for regular file).",
460 (unsigned long long) ip->i_ino);
461 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
462 XFS_ERRLEVEL_LOW,
463 ip->i_mount, dip);
464 return XFS_ERROR(EFSCORRUPTED);
467 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
468 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
469 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
470 "corrupt inode %Lu "
471 "(bad size %Ld for local inode).",
472 (unsigned long long) ip->i_ino,
473 (long long) di_size);
474 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
475 XFS_ERRLEVEL_LOW,
476 ip->i_mount, dip);
477 return XFS_ERROR(EFSCORRUPTED);
480 size = (int)di_size;
481 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
482 break;
483 case XFS_DINODE_FMT_EXTENTS:
484 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
485 break;
486 case XFS_DINODE_FMT_BTREE:
487 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
488 break;
489 default:
490 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
491 ip->i_mount);
492 return XFS_ERROR(EFSCORRUPTED);
494 break;
496 default:
497 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
498 return XFS_ERROR(EFSCORRUPTED);
500 if (error) {
501 return error;
503 if (!XFS_DFORK_Q(dip))
504 return 0;
505 ASSERT(ip->i_afp == NULL);
506 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
507 ip->i_afp->if_ext_max =
508 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
509 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
510 case XFS_DINODE_FMT_LOCAL:
511 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
512 size = be16_to_cpu(atp->hdr.totsize);
513 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
514 break;
515 case XFS_DINODE_FMT_EXTENTS:
516 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
517 break;
518 case XFS_DINODE_FMT_BTREE:
519 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
520 break;
521 default:
522 error = XFS_ERROR(EFSCORRUPTED);
523 break;
525 if (error) {
526 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
527 ip->i_afp = NULL;
528 xfs_idestroy_fork(ip, XFS_DATA_FORK);
530 return error;
534 * The file is in-lined in the on-disk inode.
535 * If it fits into if_inline_data, then copy
536 * it there, otherwise allocate a buffer for it
537 * and copy the data there. Either way, set
538 * if_data to point at the data.
539 * If we allocate a buffer for the data, make
540 * sure that its size is a multiple of 4 and
541 * record the real size in i_real_bytes.
543 STATIC int
544 xfs_iformat_local(
545 xfs_inode_t *ip,
546 xfs_dinode_t *dip,
547 int whichfork,
548 int size)
550 xfs_ifork_t *ifp;
551 int real_size;
554 * If the size is unreasonable, then something
555 * is wrong and we just bail out rather than crash in
556 * kmem_alloc() or memcpy() below.
558 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
559 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
560 "corrupt inode %Lu "
561 "(bad size %d for local fork, size = %d).",
562 (unsigned long long) ip->i_ino, size,
563 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
564 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
565 ip->i_mount, dip);
566 return XFS_ERROR(EFSCORRUPTED);
568 ifp = XFS_IFORK_PTR(ip, whichfork);
569 real_size = 0;
570 if (size == 0)
571 ifp->if_u1.if_data = NULL;
572 else if (size <= sizeof(ifp->if_u2.if_inline_data))
573 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
574 else {
575 real_size = roundup(size, 4);
576 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
578 ifp->if_bytes = size;
579 ifp->if_real_bytes = real_size;
580 if (size)
581 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
582 ifp->if_flags &= ~XFS_IFEXTENTS;
583 ifp->if_flags |= XFS_IFINLINE;
584 return 0;
588 * The file consists of a set of extents all
589 * of which fit into the on-disk inode.
590 * If there are few enough extents to fit into
591 * the if_inline_ext, then copy them there.
592 * Otherwise allocate a buffer for them and copy
593 * them into it. Either way, set if_extents
594 * to point at the extents.
596 STATIC int
597 xfs_iformat_extents(
598 xfs_inode_t *ip,
599 xfs_dinode_t *dip,
600 int whichfork)
602 xfs_bmbt_rec_t *ep, *dp;
603 xfs_ifork_t *ifp;
604 int nex;
605 int size;
606 int i;
608 ifp = XFS_IFORK_PTR(ip, whichfork);
609 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
610 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
613 * If the number of extents is unreasonable, then something
614 * is wrong and we just bail out rather than crash in
615 * kmem_alloc() or memcpy() below.
617 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
618 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
619 "corrupt inode %Lu ((a)extents = %d).",
620 (unsigned long long) ip->i_ino, nex);
621 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
622 ip->i_mount, dip);
623 return XFS_ERROR(EFSCORRUPTED);
626 ifp->if_real_bytes = 0;
627 if (nex == 0)
628 ifp->if_u1.if_extents = NULL;
629 else if (nex <= XFS_INLINE_EXTS)
630 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
631 else
632 xfs_iext_add(ifp, 0, nex);
634 ifp->if_bytes = size;
635 if (size) {
636 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
637 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
638 for (i = 0; i < nex; i++, dp++) {
639 ep = xfs_iext_get_ext(ifp, i);
640 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
641 ARCH_CONVERT);
642 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
643 ARCH_CONVERT);
645 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
646 whichfork);
647 if (whichfork != XFS_DATA_FORK ||
648 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
649 if (unlikely(xfs_check_nostate_extents(
650 ifp, 0, nex))) {
651 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
652 XFS_ERRLEVEL_LOW,
653 ip->i_mount);
654 return XFS_ERROR(EFSCORRUPTED);
657 ifp->if_flags |= XFS_IFEXTENTS;
658 return 0;
662 * The file has too many extents to fit into
663 * the inode, so they are in B-tree format.
664 * Allocate a buffer for the root of the B-tree
665 * and copy the root into it. The i_extents
666 * field will remain NULL until all of the
667 * extents are read in (when they are needed).
669 STATIC int
670 xfs_iformat_btree(
671 xfs_inode_t *ip,
672 xfs_dinode_t *dip,
673 int whichfork)
675 xfs_bmdr_block_t *dfp;
676 xfs_ifork_t *ifp;
677 /* REFERENCED */
678 int nrecs;
679 int size;
681 ifp = XFS_IFORK_PTR(ip, whichfork);
682 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
683 size = XFS_BMAP_BROOT_SPACE(dfp);
684 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
687 * blow out if -- fork has less extents than can fit in
688 * fork (fork shouldn't be a btree format), root btree
689 * block has more records than can fit into the fork,
690 * or the number of extents is greater than the number of
691 * blocks.
693 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
694 || XFS_BMDR_SPACE_CALC(nrecs) >
695 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
696 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
697 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
698 "corrupt inode %Lu (btree).",
699 (unsigned long long) ip->i_ino);
700 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
701 ip->i_mount);
702 return XFS_ERROR(EFSCORRUPTED);
705 ifp->if_broot_bytes = size;
706 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
707 ASSERT(ifp->if_broot != NULL);
709 * Copy and convert from the on-disk structure
710 * to the in-memory structure.
712 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
713 ifp->if_broot, size);
714 ifp->if_flags &= ~XFS_IFEXTENTS;
715 ifp->if_flags |= XFS_IFBROOT;
717 return 0;
721 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
722 * and native format
724 * buf = on-disk representation
725 * dip = native representation
726 * dir = direction - +ve -> disk to native
727 * -ve -> native to disk
729 void
730 xfs_xlate_dinode_core(
731 xfs_caddr_t buf,
732 xfs_dinode_core_t *dip,
733 int dir)
735 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
736 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
737 xfs_arch_t arch = ARCH_CONVERT;
739 ASSERT(dir);
741 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
742 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
743 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
744 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
745 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
746 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
747 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
748 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
749 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
751 if (dir > 0) {
752 memcpy(mem_core->di_pad, buf_core->di_pad,
753 sizeof(buf_core->di_pad));
754 } else {
755 memcpy(buf_core->di_pad, mem_core->di_pad,
756 sizeof(buf_core->di_pad));
759 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
761 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
762 dir, arch);
763 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
764 dir, arch);
765 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
766 dir, arch);
767 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
768 dir, arch);
769 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
770 dir, arch);
771 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
772 dir, arch);
773 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
774 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
775 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
776 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
777 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
778 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
779 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
780 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
781 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
782 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
783 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
786 STATIC uint
787 _xfs_dic2xflags(
788 __uint16_t di_flags)
790 uint flags = 0;
792 if (di_flags & XFS_DIFLAG_ANY) {
793 if (di_flags & XFS_DIFLAG_REALTIME)
794 flags |= XFS_XFLAG_REALTIME;
795 if (di_flags & XFS_DIFLAG_PREALLOC)
796 flags |= XFS_XFLAG_PREALLOC;
797 if (di_flags & XFS_DIFLAG_IMMUTABLE)
798 flags |= XFS_XFLAG_IMMUTABLE;
799 if (di_flags & XFS_DIFLAG_APPEND)
800 flags |= XFS_XFLAG_APPEND;
801 if (di_flags & XFS_DIFLAG_SYNC)
802 flags |= XFS_XFLAG_SYNC;
803 if (di_flags & XFS_DIFLAG_NOATIME)
804 flags |= XFS_XFLAG_NOATIME;
805 if (di_flags & XFS_DIFLAG_NODUMP)
806 flags |= XFS_XFLAG_NODUMP;
807 if (di_flags & XFS_DIFLAG_RTINHERIT)
808 flags |= XFS_XFLAG_RTINHERIT;
809 if (di_flags & XFS_DIFLAG_PROJINHERIT)
810 flags |= XFS_XFLAG_PROJINHERIT;
811 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
812 flags |= XFS_XFLAG_NOSYMLINKS;
813 if (di_flags & XFS_DIFLAG_EXTSIZE)
814 flags |= XFS_XFLAG_EXTSIZE;
815 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
816 flags |= XFS_XFLAG_EXTSZINHERIT;
817 if (di_flags & XFS_DIFLAG_NODEFRAG)
818 flags |= XFS_XFLAG_NODEFRAG;
821 return flags;
824 uint
825 xfs_ip2xflags(
826 xfs_inode_t *ip)
828 xfs_dinode_core_t *dic = &ip->i_d;
830 return _xfs_dic2xflags(dic->di_flags) |
831 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
834 uint
835 xfs_dic2xflags(
836 xfs_dinode_core_t *dic)
838 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
839 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
843 * Given a mount structure and an inode number, return a pointer
844 * to a newly allocated in-core inode corresponding to the given
845 * inode number.
847 * Initialize the inode's attributes and extent pointers if it
848 * already has them (it will not if the inode has no links).
851 xfs_iread(
852 xfs_mount_t *mp,
853 xfs_trans_t *tp,
854 xfs_ino_t ino,
855 xfs_inode_t **ipp,
856 xfs_daddr_t bno,
857 uint imap_flags)
859 xfs_buf_t *bp;
860 xfs_dinode_t *dip;
861 xfs_inode_t *ip;
862 int error;
864 ASSERT(xfs_inode_zone != NULL);
866 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
867 ip->i_ino = ino;
868 ip->i_mount = mp;
869 spin_lock_init(&ip->i_flags_lock);
872 * Get pointer's to the on-disk inode and the buffer containing it.
873 * If the inode number refers to a block outside the file system
874 * then xfs_itobp() will return NULL. In this case we should
875 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
876 * know that this is a new incore inode.
878 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
879 if (error) {
880 kmem_zone_free(xfs_inode_zone, ip);
881 return error;
885 * Initialize inode's trace buffers.
886 * Do this before xfs_iformat in case it adds entries.
888 #ifdef XFS_BMAP_TRACE
889 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
890 #endif
891 #ifdef XFS_BMBT_TRACE
892 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
893 #endif
894 #ifdef XFS_RW_TRACE
895 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
896 #endif
897 #ifdef XFS_ILOCK_TRACE
898 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
899 #endif
900 #ifdef XFS_DIR2_TRACE
901 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
902 #endif
905 * If we got something that isn't an inode it means someone
906 * (nfs or dmi) has a stale handle.
908 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
909 kmem_zone_free(xfs_inode_zone, ip);
910 xfs_trans_brelse(tp, bp);
911 #ifdef DEBUG
912 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
913 "dip->di_core.di_magic (0x%x) != "
914 "XFS_DINODE_MAGIC (0x%x)",
915 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
916 XFS_DINODE_MAGIC);
917 #endif /* DEBUG */
918 return XFS_ERROR(EINVAL);
922 * If the on-disk inode is already linked to a directory
923 * entry, copy all of the inode into the in-core inode.
924 * xfs_iformat() handles copying in the inode format
925 * specific information.
926 * Otherwise, just get the truly permanent information.
928 if (dip->di_core.di_mode) {
929 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
930 &(ip->i_d), 1);
931 error = xfs_iformat(ip, dip);
932 if (error) {
933 kmem_zone_free(xfs_inode_zone, ip);
934 xfs_trans_brelse(tp, bp);
935 #ifdef DEBUG
936 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
937 "xfs_iformat() returned error %d",
938 error);
939 #endif /* DEBUG */
940 return error;
942 } else {
943 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
944 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
945 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
946 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
948 * Make sure to pull in the mode here as well in
949 * case the inode is released without being used.
950 * This ensures that xfs_inactive() will see that
951 * the inode is already free and not try to mess
952 * with the uninitialized part of it.
954 ip->i_d.di_mode = 0;
956 * Initialize the per-fork minima and maxima for a new
957 * inode here. xfs_iformat will do it for old inodes.
959 ip->i_df.if_ext_max =
960 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
963 INIT_LIST_HEAD(&ip->i_reclaim);
966 * The inode format changed when we moved the link count and
967 * made it 32 bits long. If this is an old format inode,
968 * convert it in memory to look like a new one. If it gets
969 * flushed to disk we will convert back before flushing or
970 * logging it. We zero out the new projid field and the old link
971 * count field. We'll handle clearing the pad field (the remains
972 * of the old uuid field) when we actually convert the inode to
973 * the new format. We don't change the version number so that we
974 * can distinguish this from a real new format inode.
976 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
977 ip->i_d.di_nlink = ip->i_d.di_onlink;
978 ip->i_d.di_onlink = 0;
979 ip->i_d.di_projid = 0;
982 ip->i_delayed_blks = 0;
985 * Mark the buffer containing the inode as something to keep
986 * around for a while. This helps to keep recently accessed
987 * meta-data in-core longer.
989 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992 * Use xfs_trans_brelse() to release the buffer containing the
993 * on-disk inode, because it was acquired with xfs_trans_read_buf()
994 * in xfs_itobp() above. If tp is NULL, this is just a normal
995 * brelse(). If we're within a transaction, then xfs_trans_brelse()
996 * will only release the buffer if it is not dirty within the
997 * transaction. It will be OK to release the buffer in this case,
998 * because inodes on disk are never destroyed and we will be
999 * locking the new in-core inode before putting it in the hash
1000 * table where other processes can find it. Thus we don't have
1001 * to worry about the inode being changed just because we released
1002 * the buffer.
1004 xfs_trans_brelse(tp, bp);
1005 *ipp = ip;
1006 return 0;
1010 * Read in extents from a btree-format inode.
1011 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1014 xfs_iread_extents(
1015 xfs_trans_t *tp,
1016 xfs_inode_t *ip,
1017 int whichfork)
1019 int error;
1020 xfs_ifork_t *ifp;
1021 xfs_extnum_t nextents;
1022 size_t size;
1024 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1025 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1026 ip->i_mount);
1027 return XFS_ERROR(EFSCORRUPTED);
1029 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1030 size = nextents * sizeof(xfs_bmbt_rec_t);
1031 ifp = XFS_IFORK_PTR(ip, whichfork);
1034 * We know that the size is valid (it's checked in iformat_btree)
1036 ifp->if_lastex = NULLEXTNUM;
1037 ifp->if_bytes = ifp->if_real_bytes = 0;
1038 ifp->if_flags |= XFS_IFEXTENTS;
1039 xfs_iext_add(ifp, 0, nextents);
1040 error = xfs_bmap_read_extents(tp, ip, whichfork);
1041 if (error) {
1042 xfs_iext_destroy(ifp);
1043 ifp->if_flags &= ~XFS_IFEXTENTS;
1044 return error;
1046 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1047 return 0;
1051 * Allocate an inode on disk and return a copy of its in-core version.
1052 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1053 * appropriately within the inode. The uid and gid for the inode are
1054 * set according to the contents of the given cred structure.
1056 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1057 * has a free inode available, call xfs_iget()
1058 * to obtain the in-core version of the allocated inode. Finally,
1059 * fill in the inode and log its initial contents. In this case,
1060 * ialloc_context would be set to NULL and call_again set to false.
1062 * If xfs_dialloc() does not have an available inode,
1063 * it will replenish its supply by doing an allocation. Since we can
1064 * only do one allocation within a transaction without deadlocks, we
1065 * must commit the current transaction before returning the inode itself.
1066 * In this case, therefore, we will set call_again to true and return.
1067 * The caller should then commit the current transaction, start a new
1068 * transaction, and call xfs_ialloc() again to actually get the inode.
1070 * To ensure that some other process does not grab the inode that
1071 * was allocated during the first call to xfs_ialloc(), this routine
1072 * also returns the [locked] bp pointing to the head of the freelist
1073 * as ialloc_context. The caller should hold this buffer across
1074 * the commit and pass it back into this routine on the second call.
1077 xfs_ialloc(
1078 xfs_trans_t *tp,
1079 xfs_inode_t *pip,
1080 mode_t mode,
1081 xfs_nlink_t nlink,
1082 xfs_dev_t rdev,
1083 cred_t *cr,
1084 xfs_prid_t prid,
1085 int okalloc,
1086 xfs_buf_t **ialloc_context,
1087 boolean_t *call_again,
1088 xfs_inode_t **ipp)
1090 xfs_ino_t ino;
1091 xfs_inode_t *ip;
1092 bhv_vnode_t *vp;
1093 uint flags;
1094 int error;
1097 * Call the space management code to pick
1098 * the on-disk inode to be allocated.
1100 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1101 ialloc_context, call_again, &ino);
1102 if (error != 0) {
1103 return error;
1105 if (*call_again || ino == NULLFSINO) {
1106 *ipp = NULL;
1107 return 0;
1109 ASSERT(*ialloc_context == NULL);
1112 * Get the in-core inode with the lock held exclusively.
1113 * This is because we're setting fields here we need
1114 * to prevent others from looking at until we're done.
1116 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1117 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1118 if (error != 0) {
1119 return error;
1121 ASSERT(ip != NULL);
1123 vp = XFS_ITOV(ip);
1124 ip->i_d.di_mode = (__uint16_t)mode;
1125 ip->i_d.di_onlink = 0;
1126 ip->i_d.di_nlink = nlink;
1127 ASSERT(ip->i_d.di_nlink == nlink);
1128 ip->i_d.di_uid = current_fsuid(cr);
1129 ip->i_d.di_gid = current_fsgid(cr);
1130 ip->i_d.di_projid = prid;
1131 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1134 * If the superblock version is up to where we support new format
1135 * inodes and this is currently an old format inode, then change
1136 * the inode version number now. This way we only do the conversion
1137 * here rather than here and in the flush/logging code.
1139 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1140 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1141 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1143 * We've already zeroed the old link count, the projid field,
1144 * and the pad field.
1149 * Project ids won't be stored on disk if we are using a version 1 inode.
1151 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1152 xfs_bump_ino_vers2(tp, ip);
1154 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1155 ip->i_d.di_gid = pip->i_d.di_gid;
1156 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1157 ip->i_d.di_mode |= S_ISGID;
1162 * If the group ID of the new file does not match the effective group
1163 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1164 * (and only if the irix_sgid_inherit compatibility variable is set).
1166 if ((irix_sgid_inherit) &&
1167 (ip->i_d.di_mode & S_ISGID) &&
1168 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1169 ip->i_d.di_mode &= ~S_ISGID;
1172 ip->i_d.di_size = 0;
1173 ip->i_d.di_nextents = 0;
1174 ASSERT(ip->i_d.di_nblocks == 0);
1175 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1177 * di_gen will have been taken care of in xfs_iread.
1179 ip->i_d.di_extsize = 0;
1180 ip->i_d.di_dmevmask = 0;
1181 ip->i_d.di_dmstate = 0;
1182 ip->i_d.di_flags = 0;
1183 flags = XFS_ILOG_CORE;
1184 switch (mode & S_IFMT) {
1185 case S_IFIFO:
1186 case S_IFCHR:
1187 case S_IFBLK:
1188 case S_IFSOCK:
1189 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1190 ip->i_df.if_u2.if_rdev = rdev;
1191 ip->i_df.if_flags = 0;
1192 flags |= XFS_ILOG_DEV;
1193 break;
1194 case S_IFREG:
1195 case S_IFDIR:
1196 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1197 uint di_flags = 0;
1199 if ((mode & S_IFMT) == S_IFDIR) {
1200 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1201 di_flags |= XFS_DIFLAG_RTINHERIT;
1202 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1203 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1204 ip->i_d.di_extsize = pip->i_d.di_extsize;
1206 } else if ((mode & S_IFMT) == S_IFREG) {
1207 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1208 di_flags |= XFS_DIFLAG_REALTIME;
1209 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1211 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1212 di_flags |= XFS_DIFLAG_EXTSIZE;
1213 ip->i_d.di_extsize = pip->i_d.di_extsize;
1216 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1217 xfs_inherit_noatime)
1218 di_flags |= XFS_DIFLAG_NOATIME;
1219 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1220 xfs_inherit_nodump)
1221 di_flags |= XFS_DIFLAG_NODUMP;
1222 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1223 xfs_inherit_sync)
1224 di_flags |= XFS_DIFLAG_SYNC;
1225 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1226 xfs_inherit_nosymlinks)
1227 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1228 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1229 di_flags |= XFS_DIFLAG_PROJINHERIT;
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1231 xfs_inherit_nodefrag)
1232 di_flags |= XFS_DIFLAG_NODEFRAG;
1233 ip->i_d.di_flags |= di_flags;
1235 /* FALLTHROUGH */
1236 case S_IFLNK:
1237 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1238 ip->i_df.if_flags = XFS_IFEXTENTS;
1239 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1240 ip->i_df.if_u1.if_extents = NULL;
1241 break;
1242 default:
1243 ASSERT(0);
1246 * Attribute fork settings for new inode.
1248 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1249 ip->i_d.di_anextents = 0;
1252 * Log the new values stuffed into the inode.
1254 xfs_trans_log_inode(tp, ip, flags);
1256 /* now that we have an i_mode we can setup inode ops and unlock */
1257 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1259 *ipp = ip;
1260 return 0;
1264 * Check to make sure that there are no blocks allocated to the
1265 * file beyond the size of the file. We don't check this for
1266 * files with fixed size extents or real time extents, but we
1267 * at least do it for regular files.
1269 #ifdef DEBUG
1270 void
1271 xfs_isize_check(
1272 xfs_mount_t *mp,
1273 xfs_inode_t *ip,
1274 xfs_fsize_t isize)
1276 xfs_fileoff_t map_first;
1277 int nimaps;
1278 xfs_bmbt_irec_t imaps[2];
1280 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1281 return;
1283 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1284 return;
1286 nimaps = 2;
1287 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1289 * The filesystem could be shutting down, so bmapi may return
1290 * an error.
1292 if (xfs_bmapi(NULL, ip, map_first,
1293 (XFS_B_TO_FSB(mp,
1294 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1295 map_first),
1296 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1297 NULL, NULL))
1298 return;
1299 ASSERT(nimaps == 1);
1300 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1302 #endif /* DEBUG */
1305 * Calculate the last possible buffered byte in a file. This must
1306 * include data that was buffered beyond the EOF by the write code.
1307 * This also needs to deal with overflowing the xfs_fsize_t type
1308 * which can happen for sizes near the limit.
1310 * We also need to take into account any blocks beyond the EOF. It
1311 * may be the case that they were buffered by a write which failed.
1312 * In that case the pages will still be in memory, but the inode size
1313 * will never have been updated.
1315 xfs_fsize_t
1316 xfs_file_last_byte(
1317 xfs_inode_t *ip)
1319 xfs_mount_t *mp;
1320 xfs_fsize_t last_byte;
1321 xfs_fileoff_t last_block;
1322 xfs_fileoff_t size_last_block;
1323 int error;
1325 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1327 mp = ip->i_mount;
1329 * Only check for blocks beyond the EOF if the extents have
1330 * been read in. This eliminates the need for the inode lock,
1331 * and it also saves us from looking when it really isn't
1332 * necessary.
1334 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1335 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1336 XFS_DATA_FORK);
1337 if (error) {
1338 last_block = 0;
1340 } else {
1341 last_block = 0;
1343 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1344 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1346 last_byte = XFS_FSB_TO_B(mp, last_block);
1347 if (last_byte < 0) {
1348 return XFS_MAXIOFFSET(mp);
1350 last_byte += (1 << mp->m_writeio_log);
1351 if (last_byte < 0) {
1352 return XFS_MAXIOFFSET(mp);
1354 return last_byte;
1357 #if defined(XFS_RW_TRACE)
1358 STATIC void
1359 xfs_itrunc_trace(
1360 int tag,
1361 xfs_inode_t *ip,
1362 int flag,
1363 xfs_fsize_t new_size,
1364 xfs_off_t toss_start,
1365 xfs_off_t toss_finish)
1367 if (ip->i_rwtrace == NULL) {
1368 return;
1371 ktrace_enter(ip->i_rwtrace,
1372 (void*)((long)tag),
1373 (void*)ip,
1374 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1375 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1376 (void*)((long)flag),
1377 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1378 (void*)(unsigned long)(new_size & 0xffffffff),
1379 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1380 (void*)(unsigned long)(toss_start & 0xffffffff),
1381 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1382 (void*)(unsigned long)(toss_finish & 0xffffffff),
1383 (void*)(unsigned long)current_cpu(),
1384 (void*)(unsigned long)current_pid(),
1385 (void*)NULL,
1386 (void*)NULL,
1387 (void*)NULL);
1389 #else
1390 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1391 #endif
1394 * Start the truncation of the file to new_size. The new size
1395 * must be smaller than the current size. This routine will
1396 * clear the buffer and page caches of file data in the removed
1397 * range, and xfs_itruncate_finish() will remove the underlying
1398 * disk blocks.
1400 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1401 * must NOT have the inode lock held at all. This is because we're
1402 * calling into the buffer/page cache code and we can't hold the
1403 * inode lock when we do so.
1405 * We need to wait for any direct I/Os in flight to complete before we
1406 * proceed with the truncate. This is needed to prevent the extents
1407 * being read or written by the direct I/Os from being removed while the
1408 * I/O is in flight as there is no other method of synchronising
1409 * direct I/O with the truncate operation. Also, because we hold
1410 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1411 * started until the truncate completes and drops the lock. Essentially,
1412 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1413 * between direct I/Os and the truncate operation.
1415 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1416 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1417 * in the case that the caller is locking things out of order and
1418 * may not be able to call xfs_itruncate_finish() with the inode lock
1419 * held without dropping the I/O lock. If the caller must drop the
1420 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1421 * must be called again with all the same restrictions as the initial
1422 * call.
1424 void
1425 xfs_itruncate_start(
1426 xfs_inode_t *ip,
1427 uint flags,
1428 xfs_fsize_t new_size)
1430 xfs_fsize_t last_byte;
1431 xfs_off_t toss_start;
1432 xfs_mount_t *mp;
1433 bhv_vnode_t *vp;
1435 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1436 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1437 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1438 (flags == XFS_ITRUNC_MAYBE));
1440 mp = ip->i_mount;
1441 vp = XFS_ITOV(ip);
1443 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1446 * Call toss_pages or flushinval_pages to get rid of pages
1447 * overlapping the region being removed. We have to use
1448 * the less efficient flushinval_pages in the case that the
1449 * caller may not be able to finish the truncate without
1450 * dropping the inode's I/O lock. Make sure
1451 * to catch any pages brought in by buffers overlapping
1452 * the EOF by searching out beyond the isize by our
1453 * block size. We round new_size up to a block boundary
1454 * so that we don't toss things on the same block as
1455 * new_size but before it.
1457 * Before calling toss_page or flushinval_pages, make sure to
1458 * call remapf() over the same region if the file is mapped.
1459 * This frees up mapped file references to the pages in the
1460 * given range and for the flushinval_pages case it ensures
1461 * that we get the latest mapped changes flushed out.
1463 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1464 toss_start = XFS_FSB_TO_B(mp, toss_start);
1465 if (toss_start < 0) {
1467 * The place to start tossing is beyond our maximum
1468 * file size, so there is no way that the data extended
1469 * out there.
1471 return;
1473 last_byte = xfs_file_last_byte(ip);
1474 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1475 last_byte);
1476 if (last_byte > toss_start) {
1477 if (flags & XFS_ITRUNC_DEFINITE) {
1478 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1479 } else {
1480 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1484 #ifdef DEBUG
1485 if (new_size == 0) {
1486 ASSERT(VN_CACHED(vp) == 0);
1488 #endif
1492 * Shrink the file to the given new_size. The new
1493 * size must be smaller than the current size.
1494 * This will free up the underlying blocks
1495 * in the removed range after a call to xfs_itruncate_start()
1496 * or xfs_atruncate_start().
1498 * The transaction passed to this routine must have made
1499 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1500 * This routine may commit the given transaction and
1501 * start new ones, so make sure everything involved in
1502 * the transaction is tidy before calling here.
1503 * Some transaction will be returned to the caller to be
1504 * committed. The incoming transaction must already include
1505 * the inode, and both inode locks must be held exclusively.
1506 * The inode must also be "held" within the transaction. On
1507 * return the inode will be "held" within the returned transaction.
1508 * This routine does NOT require any disk space to be reserved
1509 * for it within the transaction.
1511 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1512 * and it indicates the fork which is to be truncated. For the
1513 * attribute fork we only support truncation to size 0.
1515 * We use the sync parameter to indicate whether or not the first
1516 * transaction we perform might have to be synchronous. For the attr fork,
1517 * it needs to be so if the unlink of the inode is not yet known to be
1518 * permanent in the log. This keeps us from freeing and reusing the
1519 * blocks of the attribute fork before the unlink of the inode becomes
1520 * permanent.
1522 * For the data fork, we normally have to run synchronously if we're
1523 * being called out of the inactive path or we're being called
1524 * out of the create path where we're truncating an existing file.
1525 * Either way, the truncate needs to be sync so blocks don't reappear
1526 * in the file with altered data in case of a crash. wsync filesystems
1527 * can run the first case async because anything that shrinks the inode
1528 * has to run sync so by the time we're called here from inactive, the
1529 * inode size is permanently set to 0.
1531 * Calls from the truncate path always need to be sync unless we're
1532 * in a wsync filesystem and the file has already been unlinked.
1534 * The caller is responsible for correctly setting the sync parameter.
1535 * It gets too hard for us to guess here which path we're being called
1536 * out of just based on inode state.
1539 xfs_itruncate_finish(
1540 xfs_trans_t **tp,
1541 xfs_inode_t *ip,
1542 xfs_fsize_t new_size,
1543 int fork,
1544 int sync)
1546 xfs_fsblock_t first_block;
1547 xfs_fileoff_t first_unmap_block;
1548 xfs_fileoff_t last_block;
1549 xfs_filblks_t unmap_len=0;
1550 xfs_mount_t *mp;
1551 xfs_trans_t *ntp;
1552 int done;
1553 int committed;
1554 xfs_bmap_free_t free_list;
1555 int error;
1557 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1558 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1559 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1560 ASSERT(*tp != NULL);
1561 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1562 ASSERT(ip->i_transp == *tp);
1563 ASSERT(ip->i_itemp != NULL);
1564 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1567 ntp = *tp;
1568 mp = (ntp)->t_mountp;
1569 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1572 * We only support truncating the entire attribute fork.
1574 if (fork == XFS_ATTR_FORK) {
1575 new_size = 0LL;
1577 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1578 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1580 * The first thing we do is set the size to new_size permanently
1581 * on disk. This way we don't have to worry about anyone ever
1582 * being able to look at the data being freed even in the face
1583 * of a crash. What we're getting around here is the case where
1584 * we free a block, it is allocated to another file, it is written
1585 * to, and then we crash. If the new data gets written to the
1586 * file but the log buffers containing the free and reallocation
1587 * don't, then we'd end up with garbage in the blocks being freed.
1588 * As long as we make the new_size permanent before actually
1589 * freeing any blocks it doesn't matter if they get writtten to.
1591 * The callers must signal into us whether or not the size
1592 * setting here must be synchronous. There are a few cases
1593 * where it doesn't have to be synchronous. Those cases
1594 * occur if the file is unlinked and we know the unlink is
1595 * permanent or if the blocks being truncated are guaranteed
1596 * to be beyond the inode eof (regardless of the link count)
1597 * and the eof value is permanent. Both of these cases occur
1598 * only on wsync-mounted filesystems. In those cases, we're
1599 * guaranteed that no user will ever see the data in the blocks
1600 * that are being truncated so the truncate can run async.
1601 * In the free beyond eof case, the file may wind up with
1602 * more blocks allocated to it than it needs if we crash
1603 * and that won't get fixed until the next time the file
1604 * is re-opened and closed but that's ok as that shouldn't
1605 * be too many blocks.
1607 * However, we can't just make all wsync xactions run async
1608 * because there's one call out of the create path that needs
1609 * to run sync where it's truncating an existing file to size
1610 * 0 whose size is > 0.
1612 * It's probably possible to come up with a test in this
1613 * routine that would correctly distinguish all the above
1614 * cases from the values of the function parameters and the
1615 * inode state but for sanity's sake, I've decided to let the
1616 * layers above just tell us. It's simpler to correctly figure
1617 * out in the layer above exactly under what conditions we
1618 * can run async and I think it's easier for others read and
1619 * follow the logic in case something has to be changed.
1620 * cscope is your friend -- rcc.
1622 * The attribute fork is much simpler.
1624 * For the attribute fork we allow the caller to tell us whether
1625 * the unlink of the inode that led to this call is yet permanent
1626 * in the on disk log. If it is not and we will be freeing extents
1627 * in this inode then we make the first transaction synchronous
1628 * to make sure that the unlink is permanent by the time we free
1629 * the blocks.
1631 if (fork == XFS_DATA_FORK) {
1632 if (ip->i_d.di_nextents > 0) {
1633 ip->i_d.di_size = new_size;
1634 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1636 } else if (sync) {
1637 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1638 if (ip->i_d.di_anextents > 0)
1639 xfs_trans_set_sync(ntp);
1641 ASSERT(fork == XFS_DATA_FORK ||
1642 (fork == XFS_ATTR_FORK &&
1643 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1644 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1647 * Since it is possible for space to become allocated beyond
1648 * the end of the file (in a crash where the space is allocated
1649 * but the inode size is not yet updated), simply remove any
1650 * blocks which show up between the new EOF and the maximum
1651 * possible file size. If the first block to be removed is
1652 * beyond the maximum file size (ie it is the same as last_block),
1653 * then there is nothing to do.
1655 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1656 ASSERT(first_unmap_block <= last_block);
1657 done = 0;
1658 if (last_block == first_unmap_block) {
1659 done = 1;
1660 } else {
1661 unmap_len = last_block - first_unmap_block + 1;
1663 while (!done) {
1665 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1666 * will tell us whether it freed the entire range or
1667 * not. If this is a synchronous mount (wsync),
1668 * then we can tell bunmapi to keep all the
1669 * transactions asynchronous since the unlink
1670 * transaction that made this inode inactive has
1671 * already hit the disk. There's no danger of
1672 * the freed blocks being reused, there being a
1673 * crash, and the reused blocks suddenly reappearing
1674 * in this file with garbage in them once recovery
1675 * runs.
1677 XFS_BMAP_INIT(&free_list, &first_block);
1678 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1679 first_unmap_block, unmap_len,
1680 XFS_BMAPI_AFLAG(fork) |
1681 (sync ? 0 : XFS_BMAPI_ASYNC),
1682 XFS_ITRUNC_MAX_EXTENTS,
1683 &first_block, &free_list,
1684 NULL, &done);
1685 if (error) {
1687 * If the bunmapi call encounters an error,
1688 * return to the caller where the transaction
1689 * can be properly aborted. We just need to
1690 * make sure we're not holding any resources
1691 * that we were not when we came in.
1693 xfs_bmap_cancel(&free_list);
1694 return error;
1698 * Duplicate the transaction that has the permanent
1699 * reservation and commit the old transaction.
1701 error = xfs_bmap_finish(tp, &free_list, &committed);
1702 ntp = *tp;
1703 if (error) {
1705 * If the bmap finish call encounters an error,
1706 * return to the caller where the transaction
1707 * can be properly aborted. We just need to
1708 * make sure we're not holding any resources
1709 * that we were not when we came in.
1711 * Aborting from this point might lose some
1712 * blocks in the file system, but oh well.
1714 xfs_bmap_cancel(&free_list);
1715 if (committed) {
1717 * If the passed in transaction committed
1718 * in xfs_bmap_finish(), then we want to
1719 * add the inode to this one before returning.
1720 * This keeps things simple for the higher
1721 * level code, because it always knows that
1722 * the inode is locked and held in the
1723 * transaction that returns to it whether
1724 * errors occur or not. We don't mark the
1725 * inode dirty so that this transaction can
1726 * be easily aborted if possible.
1728 xfs_trans_ijoin(ntp, ip,
1729 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1730 xfs_trans_ihold(ntp, ip);
1732 return error;
1735 if (committed) {
1737 * The first xact was committed,
1738 * so add the inode to the new one.
1739 * Mark it dirty so it will be logged
1740 * and moved forward in the log as
1741 * part of every commit.
1743 xfs_trans_ijoin(ntp, ip,
1744 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1745 xfs_trans_ihold(ntp, ip);
1746 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1748 ntp = xfs_trans_dup(ntp);
1749 (void) xfs_trans_commit(*tp, 0, NULL);
1750 *tp = ntp;
1751 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1752 XFS_TRANS_PERM_LOG_RES,
1753 XFS_ITRUNCATE_LOG_COUNT);
1755 * Add the inode being truncated to the next chained
1756 * transaction.
1758 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1759 xfs_trans_ihold(ntp, ip);
1760 if (error)
1761 return (error);
1764 * Only update the size in the case of the data fork, but
1765 * always re-log the inode so that our permanent transaction
1766 * can keep on rolling it forward in the log.
1768 if (fork == XFS_DATA_FORK) {
1769 xfs_isize_check(mp, ip, new_size);
1770 ip->i_d.di_size = new_size;
1772 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1773 ASSERT((new_size != 0) ||
1774 (fork == XFS_ATTR_FORK) ||
1775 (ip->i_delayed_blks == 0));
1776 ASSERT((new_size != 0) ||
1777 (fork == XFS_ATTR_FORK) ||
1778 (ip->i_d.di_nextents == 0));
1779 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1780 return 0;
1785 * xfs_igrow_start
1787 * Do the first part of growing a file: zero any data in the last
1788 * block that is beyond the old EOF. We need to do this before
1789 * the inode is joined to the transaction to modify the i_size.
1790 * That way we can drop the inode lock and call into the buffer
1791 * cache to get the buffer mapping the EOF.
1794 xfs_igrow_start(
1795 xfs_inode_t *ip,
1796 xfs_fsize_t new_size,
1797 cred_t *credp)
1799 int error;
1801 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1802 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1803 ASSERT(new_size > ip->i_d.di_size);
1806 * Zero any pages that may have been created by
1807 * xfs_write_file() beyond the end of the file
1808 * and any blocks between the old and new file sizes.
1810 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1811 ip->i_d.di_size);
1812 return error;
1816 * xfs_igrow_finish
1818 * This routine is called to extend the size of a file.
1819 * The inode must have both the iolock and the ilock locked
1820 * for update and it must be a part of the current transaction.
1821 * The xfs_igrow_start() function must have been called previously.
1822 * If the change_flag is not zero, the inode change timestamp will
1823 * be updated.
1825 void
1826 xfs_igrow_finish(
1827 xfs_trans_t *tp,
1828 xfs_inode_t *ip,
1829 xfs_fsize_t new_size,
1830 int change_flag)
1832 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1833 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1834 ASSERT(ip->i_transp == tp);
1835 ASSERT(new_size > ip->i_d.di_size);
1838 * Update the file size. Update the inode change timestamp
1839 * if change_flag set.
1841 ip->i_d.di_size = new_size;
1842 if (change_flag)
1843 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1844 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1850 * This is called when the inode's link count goes to 0.
1851 * We place the on-disk inode on a list in the AGI. It
1852 * will be pulled from this list when the inode is freed.
1855 xfs_iunlink(
1856 xfs_trans_t *tp,
1857 xfs_inode_t *ip)
1859 xfs_mount_t *mp;
1860 xfs_agi_t *agi;
1861 xfs_dinode_t *dip;
1862 xfs_buf_t *agibp;
1863 xfs_buf_t *ibp;
1864 xfs_agnumber_t agno;
1865 xfs_daddr_t agdaddr;
1866 xfs_agino_t agino;
1867 short bucket_index;
1868 int offset;
1869 int error;
1870 int agi_ok;
1872 ASSERT(ip->i_d.di_nlink == 0);
1873 ASSERT(ip->i_d.di_mode != 0);
1874 ASSERT(ip->i_transp == tp);
1876 mp = tp->t_mountp;
1878 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1879 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1882 * Get the agi buffer first. It ensures lock ordering
1883 * on the list.
1885 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1886 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1887 if (error) {
1888 return error;
1891 * Validate the magic number of the agi block.
1893 agi = XFS_BUF_TO_AGI(agibp);
1894 agi_ok =
1895 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1896 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1897 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1898 XFS_RANDOM_IUNLINK))) {
1899 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1900 xfs_trans_brelse(tp, agibp);
1901 return XFS_ERROR(EFSCORRUPTED);
1904 * Get the index into the agi hash table for the
1905 * list this inode will go on.
1907 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1908 ASSERT(agino != 0);
1909 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1910 ASSERT(agi->agi_unlinked[bucket_index]);
1911 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1913 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1915 * There is already another inode in the bucket we need
1916 * to add ourselves to. Add us at the front of the list.
1917 * Here we put the head pointer into our next pointer,
1918 * and then we fall through to point the head at us.
1920 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1921 if (error) {
1922 return error;
1924 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1925 ASSERT(dip->di_next_unlinked);
1926 /* both on-disk, don't endian flip twice */
1927 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1928 offset = ip->i_boffset +
1929 offsetof(xfs_dinode_t, di_next_unlinked);
1930 xfs_trans_inode_buf(tp, ibp);
1931 xfs_trans_log_buf(tp, ibp, offset,
1932 (offset + sizeof(xfs_agino_t) - 1));
1933 xfs_inobp_check(mp, ibp);
1937 * Point the bucket head pointer at the inode being inserted.
1939 ASSERT(agino != 0);
1940 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1941 offset = offsetof(xfs_agi_t, agi_unlinked) +
1942 (sizeof(xfs_agino_t) * bucket_index);
1943 xfs_trans_log_buf(tp, agibp, offset,
1944 (offset + sizeof(xfs_agino_t) - 1));
1945 return 0;
1949 * Pull the on-disk inode from the AGI unlinked list.
1951 STATIC int
1952 xfs_iunlink_remove(
1953 xfs_trans_t *tp,
1954 xfs_inode_t *ip)
1956 xfs_ino_t next_ino;
1957 xfs_mount_t *mp;
1958 xfs_agi_t *agi;
1959 xfs_dinode_t *dip;
1960 xfs_buf_t *agibp;
1961 xfs_buf_t *ibp;
1962 xfs_agnumber_t agno;
1963 xfs_daddr_t agdaddr;
1964 xfs_agino_t agino;
1965 xfs_agino_t next_agino;
1966 xfs_buf_t *last_ibp;
1967 xfs_dinode_t *last_dip = NULL;
1968 short bucket_index;
1969 int offset, last_offset = 0;
1970 int error;
1971 int agi_ok;
1974 * First pull the on-disk inode from the AGI unlinked list.
1976 mp = tp->t_mountp;
1978 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1979 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1982 * Get the agi buffer first. It ensures lock ordering
1983 * on the list.
1985 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1986 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1987 if (error) {
1988 cmn_err(CE_WARN,
1989 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1990 error, mp->m_fsname);
1991 return error;
1994 * Validate the magic number of the agi block.
1996 agi = XFS_BUF_TO_AGI(agibp);
1997 agi_ok =
1998 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1999 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2000 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2001 XFS_RANDOM_IUNLINK_REMOVE))) {
2002 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2003 mp, agi);
2004 xfs_trans_brelse(tp, agibp);
2005 cmn_err(CE_WARN,
2006 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2007 mp->m_fsname);
2008 return XFS_ERROR(EFSCORRUPTED);
2011 * Get the index into the agi hash table for the
2012 * list this inode will go on.
2014 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2015 ASSERT(agino != 0);
2016 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2017 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2018 ASSERT(agi->agi_unlinked[bucket_index]);
2020 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2022 * We're at the head of the list. Get the inode's
2023 * on-disk buffer to see if there is anyone after us
2024 * on the list. Only modify our next pointer if it
2025 * is not already NULLAGINO. This saves us the overhead
2026 * of dealing with the buffer when there is no need to
2027 * change it.
2029 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2030 if (error) {
2031 cmn_err(CE_WARN,
2032 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2033 error, mp->m_fsname);
2034 return error;
2036 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2037 ASSERT(next_agino != 0);
2038 if (next_agino != NULLAGINO) {
2039 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2040 offset = ip->i_boffset +
2041 offsetof(xfs_dinode_t, di_next_unlinked);
2042 xfs_trans_inode_buf(tp, ibp);
2043 xfs_trans_log_buf(tp, ibp, offset,
2044 (offset + sizeof(xfs_agino_t) - 1));
2045 xfs_inobp_check(mp, ibp);
2046 } else {
2047 xfs_trans_brelse(tp, ibp);
2050 * Point the bucket head pointer at the next inode.
2052 ASSERT(next_agino != 0);
2053 ASSERT(next_agino != agino);
2054 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2055 offset = offsetof(xfs_agi_t, agi_unlinked) +
2056 (sizeof(xfs_agino_t) * bucket_index);
2057 xfs_trans_log_buf(tp, agibp, offset,
2058 (offset + sizeof(xfs_agino_t) - 1));
2059 } else {
2061 * We need to search the list for the inode being freed.
2063 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2064 last_ibp = NULL;
2065 while (next_agino != agino) {
2067 * If the last inode wasn't the one pointing to
2068 * us, then release its buffer since we're not
2069 * going to do anything with it.
2071 if (last_ibp != NULL) {
2072 xfs_trans_brelse(tp, last_ibp);
2074 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2075 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2076 &last_ibp, &last_offset);
2077 if (error) {
2078 cmn_err(CE_WARN,
2079 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2080 error, mp->m_fsname);
2081 return error;
2083 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2084 ASSERT(next_agino != NULLAGINO);
2085 ASSERT(next_agino != 0);
2088 * Now last_ibp points to the buffer previous to us on
2089 * the unlinked list. Pull us from the list.
2091 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2092 if (error) {
2093 cmn_err(CE_WARN,
2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2095 error, mp->m_fsname);
2096 return error;
2098 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2099 ASSERT(next_agino != 0);
2100 ASSERT(next_agino != agino);
2101 if (next_agino != NULLAGINO) {
2102 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2103 offset = ip->i_boffset +
2104 offsetof(xfs_dinode_t, di_next_unlinked);
2105 xfs_trans_inode_buf(tp, ibp);
2106 xfs_trans_log_buf(tp, ibp, offset,
2107 (offset + sizeof(xfs_agino_t) - 1));
2108 xfs_inobp_check(mp, ibp);
2109 } else {
2110 xfs_trans_brelse(tp, ibp);
2113 * Point the previous inode on the list to the next inode.
2115 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2116 ASSERT(next_agino != 0);
2117 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2118 xfs_trans_inode_buf(tp, last_ibp);
2119 xfs_trans_log_buf(tp, last_ibp, offset,
2120 (offset + sizeof(xfs_agino_t) - 1));
2121 xfs_inobp_check(mp, last_ibp);
2123 return 0;
2126 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2128 return (((ip->i_itemp == NULL) ||
2129 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2130 (ip->i_update_core == 0));
2133 STATIC void
2134 xfs_ifree_cluster(
2135 xfs_inode_t *free_ip,
2136 xfs_trans_t *tp,
2137 xfs_ino_t inum)
2139 xfs_mount_t *mp = free_ip->i_mount;
2140 int blks_per_cluster;
2141 int nbufs;
2142 int ninodes;
2143 int i, j, found, pre_flushed;
2144 xfs_daddr_t blkno;
2145 xfs_buf_t *bp;
2146 xfs_ihash_t *ih;
2147 xfs_inode_t *ip, **ip_found;
2148 xfs_inode_log_item_t *iip;
2149 xfs_log_item_t *lip;
2150 SPLDECL(s);
2152 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2153 blks_per_cluster = 1;
2154 ninodes = mp->m_sb.sb_inopblock;
2155 nbufs = XFS_IALLOC_BLOCKS(mp);
2156 } else {
2157 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2158 mp->m_sb.sb_blocksize;
2159 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2160 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2163 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2165 for (j = 0; j < nbufs; j++, inum += ninodes) {
2166 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2167 XFS_INO_TO_AGBNO(mp, inum));
2171 * Look for each inode in memory and attempt to lock it,
2172 * we can be racing with flush and tail pushing here.
2173 * any inode we get the locks on, add to an array of
2174 * inode items to process later.
2176 * The get the buffer lock, we could beat a flush
2177 * or tail pushing thread to the lock here, in which
2178 * case they will go looking for the inode buffer
2179 * and fail, we need some other form of interlock
2180 * here.
2182 found = 0;
2183 for (i = 0; i < ninodes; i++) {
2184 ih = XFS_IHASH(mp, inum + i);
2185 read_lock(&ih->ih_lock);
2186 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2187 if (ip->i_ino == inum + i)
2188 break;
2191 /* Inode not in memory or we found it already,
2192 * nothing to do
2194 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2195 read_unlock(&ih->ih_lock);
2196 continue;
2199 if (xfs_inode_clean(ip)) {
2200 read_unlock(&ih->ih_lock);
2201 continue;
2204 /* If we can get the locks then add it to the
2205 * list, otherwise by the time we get the bp lock
2206 * below it will already be attached to the
2207 * inode buffer.
2210 /* This inode will already be locked - by us, lets
2211 * keep it that way.
2214 if (ip == free_ip) {
2215 if (xfs_iflock_nowait(ip)) {
2216 xfs_iflags_set(ip, XFS_ISTALE);
2217 if (xfs_inode_clean(ip)) {
2218 xfs_ifunlock(ip);
2219 } else {
2220 ip_found[found++] = ip;
2223 read_unlock(&ih->ih_lock);
2224 continue;
2227 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2228 if (xfs_iflock_nowait(ip)) {
2229 xfs_iflags_set(ip, XFS_ISTALE);
2231 if (xfs_inode_clean(ip)) {
2232 xfs_ifunlock(ip);
2233 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2234 } else {
2235 ip_found[found++] = ip;
2237 } else {
2238 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2242 read_unlock(&ih->ih_lock);
2245 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246 mp->m_bsize * blks_per_cluster,
2247 XFS_BUF_LOCK);
2249 pre_flushed = 0;
2250 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2251 while (lip) {
2252 if (lip->li_type == XFS_LI_INODE) {
2253 iip = (xfs_inode_log_item_t *)lip;
2254 ASSERT(iip->ili_logged == 1);
2255 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2256 AIL_LOCK(mp,s);
2257 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2258 AIL_UNLOCK(mp, s);
2259 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2260 pre_flushed++;
2262 lip = lip->li_bio_list;
2265 for (i = 0; i < found; i++) {
2266 ip = ip_found[i];
2267 iip = ip->i_itemp;
2269 if (!iip) {
2270 ip->i_update_core = 0;
2271 xfs_ifunlock(ip);
2272 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2273 continue;
2276 iip->ili_last_fields = iip->ili_format.ilf_fields;
2277 iip->ili_format.ilf_fields = 0;
2278 iip->ili_logged = 1;
2279 AIL_LOCK(mp,s);
2280 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2281 AIL_UNLOCK(mp, s);
2283 xfs_buf_attach_iodone(bp,
2284 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2285 xfs_istale_done, (xfs_log_item_t *)iip);
2286 if (ip != free_ip) {
2287 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2291 if (found || pre_flushed)
2292 xfs_trans_stale_inode_buf(tp, bp);
2293 xfs_trans_binval(tp, bp);
2296 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2300 * This is called to return an inode to the inode free list.
2301 * The inode should already be truncated to 0 length and have
2302 * no pages associated with it. This routine also assumes that
2303 * the inode is already a part of the transaction.
2305 * The on-disk copy of the inode will have been added to the list
2306 * of unlinked inodes in the AGI. We need to remove the inode from
2307 * that list atomically with respect to freeing it here.
2310 xfs_ifree(
2311 xfs_trans_t *tp,
2312 xfs_inode_t *ip,
2313 xfs_bmap_free_t *flist)
2315 int error;
2316 int delete;
2317 xfs_ino_t first_ino;
2319 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2320 ASSERT(ip->i_transp == tp);
2321 ASSERT(ip->i_d.di_nlink == 0);
2322 ASSERT(ip->i_d.di_nextents == 0);
2323 ASSERT(ip->i_d.di_anextents == 0);
2324 ASSERT((ip->i_d.di_size == 0) ||
2325 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2326 ASSERT(ip->i_d.di_nblocks == 0);
2329 * Pull the on-disk inode from the AGI unlinked list.
2331 error = xfs_iunlink_remove(tp, ip);
2332 if (error != 0) {
2333 return error;
2336 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2337 if (error != 0) {
2338 return error;
2340 ip->i_d.di_mode = 0; /* mark incore inode as free */
2341 ip->i_d.di_flags = 0;
2342 ip->i_d.di_dmevmask = 0;
2343 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2344 ip->i_df.if_ext_max =
2345 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2346 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2347 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2349 * Bump the generation count so no one will be confused
2350 * by reincarnations of this inode.
2352 ip->i_d.di_gen++;
2353 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2355 if (delete) {
2356 xfs_ifree_cluster(ip, tp, first_ino);
2359 return 0;
2363 * Reallocate the space for if_broot based on the number of records
2364 * being added or deleted as indicated in rec_diff. Move the records
2365 * and pointers in if_broot to fit the new size. When shrinking this
2366 * will eliminate holes between the records and pointers created by
2367 * the caller. When growing this will create holes to be filled in
2368 * by the caller.
2370 * The caller must not request to add more records than would fit in
2371 * the on-disk inode root. If the if_broot is currently NULL, then
2372 * if we adding records one will be allocated. The caller must also
2373 * not request that the number of records go below zero, although
2374 * it can go to zero.
2376 * ip -- the inode whose if_broot area is changing
2377 * ext_diff -- the change in the number of records, positive or negative,
2378 * requested for the if_broot array.
2380 void
2381 xfs_iroot_realloc(
2382 xfs_inode_t *ip,
2383 int rec_diff,
2384 int whichfork)
2386 int cur_max;
2387 xfs_ifork_t *ifp;
2388 xfs_bmbt_block_t *new_broot;
2389 int new_max;
2390 size_t new_size;
2391 char *np;
2392 char *op;
2395 * Handle the degenerate case quietly.
2397 if (rec_diff == 0) {
2398 return;
2401 ifp = XFS_IFORK_PTR(ip, whichfork);
2402 if (rec_diff > 0) {
2404 * If there wasn't any memory allocated before, just
2405 * allocate it now and get out.
2407 if (ifp->if_broot_bytes == 0) {
2408 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2409 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2410 KM_SLEEP);
2411 ifp->if_broot_bytes = (int)new_size;
2412 return;
2416 * If there is already an existing if_broot, then we need
2417 * to realloc() it and shift the pointers to their new
2418 * location. The records don't change location because
2419 * they are kept butted up against the btree block header.
2421 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2422 new_max = cur_max + rec_diff;
2423 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2424 ifp->if_broot = (xfs_bmbt_block_t *)
2425 kmem_realloc(ifp->if_broot,
2426 new_size,
2427 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2428 KM_SLEEP);
2429 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2430 ifp->if_broot_bytes);
2431 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2432 (int)new_size);
2433 ifp->if_broot_bytes = (int)new_size;
2434 ASSERT(ifp->if_broot_bytes <=
2435 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2436 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2437 return;
2441 * rec_diff is less than 0. In this case, we are shrinking the
2442 * if_broot buffer. It must already exist. If we go to zero
2443 * records, just get rid of the root and clear the status bit.
2445 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2446 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2447 new_max = cur_max + rec_diff;
2448 ASSERT(new_max >= 0);
2449 if (new_max > 0)
2450 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2451 else
2452 new_size = 0;
2453 if (new_size > 0) {
2454 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2456 * First copy over the btree block header.
2458 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2459 } else {
2460 new_broot = NULL;
2461 ifp->if_flags &= ~XFS_IFBROOT;
2465 * Only copy the records and pointers if there are any.
2467 if (new_max > 0) {
2469 * First copy the records.
2471 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2472 ifp->if_broot_bytes);
2473 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2474 (int)new_size);
2475 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2478 * Then copy the pointers.
2480 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2481 ifp->if_broot_bytes);
2482 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2483 (int)new_size);
2484 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2486 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2487 ifp->if_broot = new_broot;
2488 ifp->if_broot_bytes = (int)new_size;
2489 ASSERT(ifp->if_broot_bytes <=
2490 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2491 return;
2496 * This is called when the amount of space needed for if_data
2497 * is increased or decreased. The change in size is indicated by
2498 * the number of bytes that need to be added or deleted in the
2499 * byte_diff parameter.
2501 * If the amount of space needed has decreased below the size of the
2502 * inline buffer, then switch to using the inline buffer. Otherwise,
2503 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2504 * to what is needed.
2506 * ip -- the inode whose if_data area is changing
2507 * byte_diff -- the change in the number of bytes, positive or negative,
2508 * requested for the if_data array.
2510 void
2511 xfs_idata_realloc(
2512 xfs_inode_t *ip,
2513 int byte_diff,
2514 int whichfork)
2516 xfs_ifork_t *ifp;
2517 int new_size;
2518 int real_size;
2520 if (byte_diff == 0) {
2521 return;
2524 ifp = XFS_IFORK_PTR(ip, whichfork);
2525 new_size = (int)ifp->if_bytes + byte_diff;
2526 ASSERT(new_size >= 0);
2528 if (new_size == 0) {
2529 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2530 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2532 ifp->if_u1.if_data = NULL;
2533 real_size = 0;
2534 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2536 * If the valid extents/data can fit in if_inline_ext/data,
2537 * copy them from the malloc'd vector and free it.
2539 if (ifp->if_u1.if_data == NULL) {
2540 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2541 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2542 ASSERT(ifp->if_real_bytes != 0);
2543 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2544 new_size);
2545 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2546 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2548 real_size = 0;
2549 } else {
2551 * Stuck with malloc/realloc.
2552 * For inline data, the underlying buffer must be
2553 * a multiple of 4 bytes in size so that it can be
2554 * logged and stay on word boundaries. We enforce
2555 * that here.
2557 real_size = roundup(new_size, 4);
2558 if (ifp->if_u1.if_data == NULL) {
2559 ASSERT(ifp->if_real_bytes == 0);
2560 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2561 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2563 * Only do the realloc if the underlying size
2564 * is really changing.
2566 if (ifp->if_real_bytes != real_size) {
2567 ifp->if_u1.if_data =
2568 kmem_realloc(ifp->if_u1.if_data,
2569 real_size,
2570 ifp->if_real_bytes,
2571 KM_SLEEP);
2573 } else {
2574 ASSERT(ifp->if_real_bytes == 0);
2575 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2576 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2577 ifp->if_bytes);
2580 ifp->if_real_bytes = real_size;
2581 ifp->if_bytes = new_size;
2582 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2589 * Map inode to disk block and offset.
2591 * mp -- the mount point structure for the current file system
2592 * tp -- the current transaction
2593 * ino -- the inode number of the inode to be located
2594 * imap -- this structure is filled in with the information necessary
2595 * to retrieve the given inode from disk
2596 * flags -- flags to pass to xfs_dilocate indicating whether or not
2597 * lookups in the inode btree were OK or not
2600 xfs_imap(
2601 xfs_mount_t *mp,
2602 xfs_trans_t *tp,
2603 xfs_ino_t ino,
2604 xfs_imap_t *imap,
2605 uint flags)
2607 xfs_fsblock_t fsbno;
2608 int len;
2609 int off;
2610 int error;
2612 fsbno = imap->im_blkno ?
2613 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2614 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2615 if (error != 0) {
2616 return error;
2618 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2619 imap->im_len = XFS_FSB_TO_BB(mp, len);
2620 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2621 imap->im_ioffset = (ushort)off;
2622 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2623 return 0;
2626 void
2627 xfs_idestroy_fork(
2628 xfs_inode_t *ip,
2629 int whichfork)
2631 xfs_ifork_t *ifp;
2633 ifp = XFS_IFORK_PTR(ip, whichfork);
2634 if (ifp->if_broot != NULL) {
2635 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2636 ifp->if_broot = NULL;
2640 * If the format is local, then we can't have an extents
2641 * array so just look for an inline data array. If we're
2642 * not local then we may or may not have an extents list,
2643 * so check and free it up if we do.
2645 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2646 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2647 (ifp->if_u1.if_data != NULL)) {
2648 ASSERT(ifp->if_real_bytes != 0);
2649 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2650 ifp->if_u1.if_data = NULL;
2651 ifp->if_real_bytes = 0;
2653 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2654 ((ifp->if_flags & XFS_IFEXTIREC) ||
2655 ((ifp->if_u1.if_extents != NULL) &&
2656 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2657 ASSERT(ifp->if_real_bytes != 0);
2658 xfs_iext_destroy(ifp);
2660 ASSERT(ifp->if_u1.if_extents == NULL ||
2661 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2662 ASSERT(ifp->if_real_bytes == 0);
2663 if (whichfork == XFS_ATTR_FORK) {
2664 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2665 ip->i_afp = NULL;
2670 * This is called free all the memory associated with an inode.
2671 * It must free the inode itself and any buffers allocated for
2672 * if_extents/if_data and if_broot. It must also free the lock
2673 * associated with the inode.
2675 void
2676 xfs_idestroy(
2677 xfs_inode_t *ip)
2680 switch (ip->i_d.di_mode & S_IFMT) {
2681 case S_IFREG:
2682 case S_IFDIR:
2683 case S_IFLNK:
2684 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2685 break;
2687 if (ip->i_afp)
2688 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2689 mrfree(&ip->i_lock);
2690 mrfree(&ip->i_iolock);
2691 freesema(&ip->i_flock);
2692 #ifdef XFS_BMAP_TRACE
2693 ktrace_free(ip->i_xtrace);
2694 #endif
2695 #ifdef XFS_BMBT_TRACE
2696 ktrace_free(ip->i_btrace);
2697 #endif
2698 #ifdef XFS_RW_TRACE
2699 ktrace_free(ip->i_rwtrace);
2700 #endif
2701 #ifdef XFS_ILOCK_TRACE
2702 ktrace_free(ip->i_lock_trace);
2703 #endif
2704 #ifdef XFS_DIR2_TRACE
2705 ktrace_free(ip->i_dir_trace);
2706 #endif
2707 if (ip->i_itemp) {
2709 * Only if we are shutting down the fs will we see an
2710 * inode still in the AIL. If it is there, we should remove
2711 * it to prevent a use-after-free from occurring.
2713 xfs_mount_t *mp = ip->i_mount;
2714 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2715 int s;
2717 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2718 XFS_FORCED_SHUTDOWN(ip->i_mount));
2719 if (lip->li_flags & XFS_LI_IN_AIL) {
2720 AIL_LOCK(mp, s);
2721 if (lip->li_flags & XFS_LI_IN_AIL)
2722 xfs_trans_delete_ail(mp, lip, s);
2723 else
2724 AIL_UNLOCK(mp, s);
2726 xfs_inode_item_destroy(ip);
2728 kmem_zone_free(xfs_inode_zone, ip);
2733 * Increment the pin count of the given buffer.
2734 * This value is protected by ipinlock spinlock in the mount structure.
2736 void
2737 xfs_ipin(
2738 xfs_inode_t *ip)
2740 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2742 atomic_inc(&ip->i_pincount);
2746 * Decrement the pin count of the given inode, and wake up
2747 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2748 * inode must have been previously pinned with a call to xfs_ipin().
2750 void
2751 xfs_iunpin(
2752 xfs_inode_t *ip)
2754 ASSERT(atomic_read(&ip->i_pincount) > 0);
2756 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2759 * If the inode is currently being reclaimed, the link between
2760 * the bhv_vnode and the xfs_inode will be broken after the
2761 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2762 * set, then we can move forward and mark the linux inode dirty
2763 * knowing that it is still valid as it won't freed until after
2764 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2765 * i_flags_lock is used to synchronise the setting of the
2766 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2767 * can execute atomically w.r.t to reclaim by holding this lock
2768 * here.
2770 * However, we still need to issue the unpin wakeup call as the
2771 * inode reclaim may be blocked waiting for the inode to become
2772 * unpinned.
2775 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2776 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2777 struct inode *inode = NULL;
2779 BUG_ON(vp == NULL);
2780 inode = vn_to_inode(vp);
2781 BUG_ON(inode->i_state & I_CLEAR);
2783 /* make sync come back and flush this inode */
2784 if (!(inode->i_state & (I_NEW|I_FREEING)))
2785 mark_inode_dirty_sync(inode);
2787 spin_unlock(&ip->i_flags_lock);
2788 wake_up(&ip->i_ipin_wait);
2793 * This is called to wait for the given inode to be unpinned.
2794 * It will sleep until this happens. The caller must have the
2795 * inode locked in at least shared mode so that the buffer cannot
2796 * be subsequently pinned once someone is waiting for it to be
2797 * unpinned.
2799 STATIC void
2800 xfs_iunpin_wait(
2801 xfs_inode_t *ip)
2803 xfs_inode_log_item_t *iip;
2804 xfs_lsn_t lsn;
2806 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2808 if (atomic_read(&ip->i_pincount) == 0) {
2809 return;
2812 iip = ip->i_itemp;
2813 if (iip && iip->ili_last_lsn) {
2814 lsn = iip->ili_last_lsn;
2815 } else {
2816 lsn = (xfs_lsn_t)0;
2820 * Give the log a push so we don't wait here too long.
2822 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2824 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2829 * xfs_iextents_copy()
2831 * This is called to copy the REAL extents (as opposed to the delayed
2832 * allocation extents) from the inode into the given buffer. It
2833 * returns the number of bytes copied into the buffer.
2835 * If there are no delayed allocation extents, then we can just
2836 * memcpy() the extents into the buffer. Otherwise, we need to
2837 * examine each extent in turn and skip those which are delayed.
2840 xfs_iextents_copy(
2841 xfs_inode_t *ip,
2842 xfs_bmbt_rec_t *buffer,
2843 int whichfork)
2845 int copied;
2846 xfs_bmbt_rec_t *dest_ep;
2847 xfs_bmbt_rec_t *ep;
2848 #ifdef XFS_BMAP_TRACE
2849 static char fname[] = "xfs_iextents_copy";
2850 #endif
2851 int i;
2852 xfs_ifork_t *ifp;
2853 int nrecs;
2854 xfs_fsblock_t start_block;
2856 ifp = XFS_IFORK_PTR(ip, whichfork);
2857 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2858 ASSERT(ifp->if_bytes > 0);
2860 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2861 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2862 ASSERT(nrecs > 0);
2865 * There are some delayed allocation extents in the
2866 * inode, so copy the extents one at a time and skip
2867 * the delayed ones. There must be at least one
2868 * non-delayed extent.
2870 dest_ep = buffer;
2871 copied = 0;
2872 for (i = 0; i < nrecs; i++) {
2873 ep = xfs_iext_get_ext(ifp, i);
2874 start_block = xfs_bmbt_get_startblock(ep);
2875 if (ISNULLSTARTBLOCK(start_block)) {
2877 * It's a delayed allocation extent, so skip it.
2879 continue;
2882 /* Translate to on disk format */
2883 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2884 (__uint64_t*)&dest_ep->l0);
2885 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2886 (__uint64_t*)&dest_ep->l1);
2887 dest_ep++;
2888 copied++;
2890 ASSERT(copied != 0);
2891 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2893 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2897 * Each of the following cases stores data into the same region
2898 * of the on-disk inode, so only one of them can be valid at
2899 * any given time. While it is possible to have conflicting formats
2900 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2901 * in EXTENTS format, this can only happen when the fork has
2902 * changed formats after being modified but before being flushed.
2903 * In these cases, the format always takes precedence, because the
2904 * format indicates the current state of the fork.
2906 /*ARGSUSED*/
2907 STATIC int
2908 xfs_iflush_fork(
2909 xfs_inode_t *ip,
2910 xfs_dinode_t *dip,
2911 xfs_inode_log_item_t *iip,
2912 int whichfork,
2913 xfs_buf_t *bp)
2915 char *cp;
2916 xfs_ifork_t *ifp;
2917 xfs_mount_t *mp;
2918 #ifdef XFS_TRANS_DEBUG
2919 int first;
2920 #endif
2921 static const short brootflag[2] =
2922 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2923 static const short dataflag[2] =
2924 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2925 static const short extflag[2] =
2926 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2928 if (iip == NULL)
2929 return 0;
2930 ifp = XFS_IFORK_PTR(ip, whichfork);
2932 * This can happen if we gave up in iformat in an error path,
2933 * for the attribute fork.
2935 if (ifp == NULL) {
2936 ASSERT(whichfork == XFS_ATTR_FORK);
2937 return 0;
2939 cp = XFS_DFORK_PTR(dip, whichfork);
2940 mp = ip->i_mount;
2941 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2942 case XFS_DINODE_FMT_LOCAL:
2943 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2944 (ifp->if_bytes > 0)) {
2945 ASSERT(ifp->if_u1.if_data != NULL);
2946 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2947 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2949 break;
2951 case XFS_DINODE_FMT_EXTENTS:
2952 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2953 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2954 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2955 (ifp->if_bytes == 0));
2956 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2957 (ifp->if_bytes > 0));
2958 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2959 (ifp->if_bytes > 0)) {
2960 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2961 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2962 whichfork);
2964 break;
2966 case XFS_DINODE_FMT_BTREE:
2967 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2968 (ifp->if_broot_bytes > 0)) {
2969 ASSERT(ifp->if_broot != NULL);
2970 ASSERT(ifp->if_broot_bytes <=
2971 (XFS_IFORK_SIZE(ip, whichfork) +
2972 XFS_BROOT_SIZE_ADJ));
2973 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2974 (xfs_bmdr_block_t *)cp,
2975 XFS_DFORK_SIZE(dip, mp, whichfork));
2977 break;
2979 case XFS_DINODE_FMT_DEV:
2980 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2981 ASSERT(whichfork == XFS_DATA_FORK);
2982 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2984 break;
2986 case XFS_DINODE_FMT_UUID:
2987 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2988 ASSERT(whichfork == XFS_DATA_FORK);
2989 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2990 sizeof(uuid_t));
2992 break;
2994 default:
2995 ASSERT(0);
2996 break;
2999 return 0;
3003 * xfs_iflush() will write a modified inode's changes out to the
3004 * inode's on disk home. The caller must have the inode lock held
3005 * in at least shared mode and the inode flush semaphore must be
3006 * held as well. The inode lock will still be held upon return from
3007 * the call and the caller is free to unlock it.
3008 * The inode flush lock will be unlocked when the inode reaches the disk.
3009 * The flags indicate how the inode's buffer should be written out.
3012 xfs_iflush(
3013 xfs_inode_t *ip,
3014 uint flags)
3016 xfs_inode_log_item_t *iip;
3017 xfs_buf_t *bp;
3018 xfs_dinode_t *dip;
3019 xfs_mount_t *mp;
3020 int error;
3021 /* REFERENCED */
3022 xfs_chash_t *ch;
3023 xfs_inode_t *iq;
3024 int clcount; /* count of inodes clustered */
3025 int bufwasdelwri;
3026 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3027 SPLDECL(s);
3029 XFS_STATS_INC(xs_iflush_count);
3031 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3032 ASSERT(issemalocked(&(ip->i_flock)));
3033 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3034 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3036 iip = ip->i_itemp;
3037 mp = ip->i_mount;
3040 * If the inode isn't dirty, then just release the inode
3041 * flush lock and do nothing.
3043 if ((ip->i_update_core == 0) &&
3044 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3045 ASSERT((iip != NULL) ?
3046 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3047 xfs_ifunlock(ip);
3048 return 0;
3052 * We can't flush the inode until it is unpinned, so
3053 * wait for it. We know noone new can pin it, because
3054 * we are holding the inode lock shared and you need
3055 * to hold it exclusively to pin the inode.
3057 xfs_iunpin_wait(ip);
3060 * This may have been unpinned because the filesystem is shutting
3061 * down forcibly. If that's the case we must not write this inode
3062 * to disk, because the log record didn't make it to disk!
3064 if (XFS_FORCED_SHUTDOWN(mp)) {
3065 ip->i_update_core = 0;
3066 if (iip)
3067 iip->ili_format.ilf_fields = 0;
3068 xfs_ifunlock(ip);
3069 return XFS_ERROR(EIO);
3073 * Get the buffer containing the on-disk inode.
3075 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3076 if (error) {
3077 xfs_ifunlock(ip);
3078 return error;
3082 * Decide how buffer will be flushed out. This is done before
3083 * the call to xfs_iflush_int because this field is zeroed by it.
3085 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3087 * Flush out the inode buffer according to the directions
3088 * of the caller. In the cases where the caller has given
3089 * us a choice choose the non-delwri case. This is because
3090 * the inode is in the AIL and we need to get it out soon.
3092 switch (flags) {
3093 case XFS_IFLUSH_SYNC:
3094 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3095 flags = 0;
3096 break;
3097 case XFS_IFLUSH_ASYNC:
3098 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3099 flags = INT_ASYNC;
3100 break;
3101 case XFS_IFLUSH_DELWRI:
3102 flags = INT_DELWRI;
3103 break;
3104 default:
3105 ASSERT(0);
3106 flags = 0;
3107 break;
3109 } else {
3110 switch (flags) {
3111 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3112 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3113 case XFS_IFLUSH_DELWRI:
3114 flags = INT_DELWRI;
3115 break;
3116 case XFS_IFLUSH_ASYNC:
3117 flags = INT_ASYNC;
3118 break;
3119 case XFS_IFLUSH_SYNC:
3120 flags = 0;
3121 break;
3122 default:
3123 ASSERT(0);
3124 flags = 0;
3125 break;
3130 * First flush out the inode that xfs_iflush was called with.
3132 error = xfs_iflush_int(ip, bp);
3133 if (error) {
3134 goto corrupt_out;
3138 * inode clustering:
3139 * see if other inodes can be gathered into this write
3142 ip->i_chash->chl_buf = bp;
3144 ch = XFS_CHASH(mp, ip->i_blkno);
3145 s = mutex_spinlock(&ch->ch_lock);
3147 clcount = 0;
3148 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3150 * Do an un-protected check to see if the inode is dirty and
3151 * is a candidate for flushing. These checks will be repeated
3152 * later after the appropriate locks are acquired.
3154 iip = iq->i_itemp;
3155 if ((iq->i_update_core == 0) &&
3156 ((iip == NULL) ||
3157 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3158 xfs_ipincount(iq) == 0) {
3159 continue;
3163 * Try to get locks. If any are unavailable,
3164 * then this inode cannot be flushed and is skipped.
3167 /* get inode locks (just i_lock) */
3168 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3169 /* get inode flush lock */
3170 if (xfs_iflock_nowait(iq)) {
3171 /* check if pinned */
3172 if (xfs_ipincount(iq) == 0) {
3173 /* arriving here means that
3174 * this inode can be flushed.
3175 * first re-check that it's
3176 * dirty
3178 iip = iq->i_itemp;
3179 if ((iq->i_update_core != 0)||
3180 ((iip != NULL) &&
3181 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3182 clcount++;
3183 error = xfs_iflush_int(iq, bp);
3184 if (error) {
3185 xfs_iunlock(iq,
3186 XFS_ILOCK_SHARED);
3187 goto cluster_corrupt_out;
3189 } else {
3190 xfs_ifunlock(iq);
3192 } else {
3193 xfs_ifunlock(iq);
3196 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3199 mutex_spinunlock(&ch->ch_lock, s);
3201 if (clcount) {
3202 XFS_STATS_INC(xs_icluster_flushcnt);
3203 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3207 * If the buffer is pinned then push on the log so we won't
3208 * get stuck waiting in the write for too long.
3210 if (XFS_BUF_ISPINNED(bp)){
3211 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3214 if (flags & INT_DELWRI) {
3215 xfs_bdwrite(mp, bp);
3216 } else if (flags & INT_ASYNC) {
3217 xfs_bawrite(mp, bp);
3218 } else {
3219 error = xfs_bwrite(mp, bp);
3221 return error;
3223 corrupt_out:
3224 xfs_buf_relse(bp);
3225 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3226 xfs_iflush_abort(ip);
3228 * Unlocks the flush lock
3230 return XFS_ERROR(EFSCORRUPTED);
3232 cluster_corrupt_out:
3233 /* Corruption detected in the clustering loop. Invalidate the
3234 * inode buffer and shut down the filesystem.
3236 mutex_spinunlock(&ch->ch_lock, s);
3239 * Clean up the buffer. If it was B_DELWRI, just release it --
3240 * brelse can handle it with no problems. If not, shut down the
3241 * filesystem before releasing the buffer.
3243 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3244 xfs_buf_relse(bp);
3247 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3249 if(!bufwasdelwri) {
3251 * Just like incore_relse: if we have b_iodone functions,
3252 * mark the buffer as an error and call them. Otherwise
3253 * mark it as stale and brelse.
3255 if (XFS_BUF_IODONE_FUNC(bp)) {
3256 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3257 XFS_BUF_UNDONE(bp);
3258 XFS_BUF_STALE(bp);
3259 XFS_BUF_SHUT(bp);
3260 XFS_BUF_ERROR(bp,EIO);
3261 xfs_biodone(bp);
3262 } else {
3263 XFS_BUF_STALE(bp);
3264 xfs_buf_relse(bp);
3268 xfs_iflush_abort(iq);
3270 * Unlocks the flush lock
3272 return XFS_ERROR(EFSCORRUPTED);
3276 STATIC int
3277 xfs_iflush_int(
3278 xfs_inode_t *ip,
3279 xfs_buf_t *bp)
3281 xfs_inode_log_item_t *iip;
3282 xfs_dinode_t *dip;
3283 xfs_mount_t *mp;
3284 #ifdef XFS_TRANS_DEBUG
3285 int first;
3286 #endif
3287 SPLDECL(s);
3289 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3290 ASSERT(issemalocked(&(ip->i_flock)));
3291 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3292 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3294 iip = ip->i_itemp;
3295 mp = ip->i_mount;
3299 * If the inode isn't dirty, then just release the inode
3300 * flush lock and do nothing.
3302 if ((ip->i_update_core == 0) &&
3303 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3304 xfs_ifunlock(ip);
3305 return 0;
3308 /* set *dip = inode's place in the buffer */
3309 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3312 * Clear i_update_core before copying out the data.
3313 * This is for coordination with our timestamp updates
3314 * that don't hold the inode lock. They will always
3315 * update the timestamps BEFORE setting i_update_core,
3316 * so if we clear i_update_core after they set it we
3317 * are guaranteed to see their updates to the timestamps.
3318 * I believe that this depends on strongly ordered memory
3319 * semantics, but we have that. We use the SYNCHRONIZE
3320 * macro to make sure that the compiler does not reorder
3321 * the i_update_core access below the data copy below.
3323 ip->i_update_core = 0;
3324 SYNCHRONIZE();
3327 * Make sure to get the latest atime from the Linux inode.
3329 xfs_synchronize_atime(ip);
3331 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3332 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3333 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3334 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3335 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3336 goto corrupt_out;
3338 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3339 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3340 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3341 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3342 ip->i_ino, ip, ip->i_d.di_magic);
3343 goto corrupt_out;
3345 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3346 if (XFS_TEST_ERROR(
3347 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3348 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3349 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3350 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3351 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3352 ip->i_ino, ip);
3353 goto corrupt_out;
3355 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3356 if (XFS_TEST_ERROR(
3357 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3358 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3359 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3360 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3361 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3362 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3363 ip->i_ino, ip);
3364 goto corrupt_out;
3367 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3368 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3369 XFS_RANDOM_IFLUSH_5)) {
3370 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3371 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3372 ip->i_ino,
3373 ip->i_d.di_nextents + ip->i_d.di_anextents,
3374 ip->i_d.di_nblocks,
3375 ip);
3376 goto corrupt_out;
3378 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3379 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3382 ip->i_ino, ip->i_d.di_forkoff, ip);
3383 goto corrupt_out;
3386 * bump the flush iteration count, used to detect flushes which
3387 * postdate a log record during recovery.
3390 ip->i_d.di_flushiter++;
3393 * Copy the dirty parts of the inode into the on-disk
3394 * inode. We always copy out the core of the inode,
3395 * because if the inode is dirty at all the core must
3396 * be.
3398 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3400 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3401 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3402 ip->i_d.di_flushiter = 0;
3405 * If this is really an old format inode and the superblock version
3406 * has not been updated to support only new format inodes, then
3407 * convert back to the old inode format. If the superblock version
3408 * has been updated, then make the conversion permanent.
3410 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3411 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3412 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3413 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3415 * Convert it back.
3417 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3418 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3419 } else {
3421 * The superblock version has already been bumped,
3422 * so just make the conversion to the new inode
3423 * format permanent.
3425 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3426 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3427 ip->i_d.di_onlink = 0;
3428 dip->di_core.di_onlink = 0;
3429 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3430 memset(&(dip->di_core.di_pad[0]), 0,
3431 sizeof(dip->di_core.di_pad));
3432 ASSERT(ip->i_d.di_projid == 0);
3436 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3437 goto corrupt_out;
3440 if (XFS_IFORK_Q(ip)) {
3442 * The only error from xfs_iflush_fork is on the data fork.
3444 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3446 xfs_inobp_check(mp, bp);
3449 * We've recorded everything logged in the inode, so we'd
3450 * like to clear the ilf_fields bits so we don't log and
3451 * flush things unnecessarily. However, we can't stop
3452 * logging all this information until the data we've copied
3453 * into the disk buffer is written to disk. If we did we might
3454 * overwrite the copy of the inode in the log with all the
3455 * data after re-logging only part of it, and in the face of
3456 * a crash we wouldn't have all the data we need to recover.
3458 * What we do is move the bits to the ili_last_fields field.
3459 * When logging the inode, these bits are moved back to the
3460 * ilf_fields field. In the xfs_iflush_done() routine we
3461 * clear ili_last_fields, since we know that the information
3462 * those bits represent is permanently on disk. As long as
3463 * the flush completes before the inode is logged again, then
3464 * both ilf_fields and ili_last_fields will be cleared.
3466 * We can play with the ilf_fields bits here, because the inode
3467 * lock must be held exclusively in order to set bits there
3468 * and the flush lock protects the ili_last_fields bits.
3469 * Set ili_logged so the flush done
3470 * routine can tell whether or not to look in the AIL.
3471 * Also, store the current LSN of the inode so that we can tell
3472 * whether the item has moved in the AIL from xfs_iflush_done().
3473 * In order to read the lsn we need the AIL lock, because
3474 * it is a 64 bit value that cannot be read atomically.
3476 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3477 iip->ili_last_fields = iip->ili_format.ilf_fields;
3478 iip->ili_format.ilf_fields = 0;
3479 iip->ili_logged = 1;
3481 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3482 AIL_LOCK(mp,s);
3483 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3484 AIL_UNLOCK(mp, s);
3487 * Attach the function xfs_iflush_done to the inode's
3488 * buffer. This will remove the inode from the AIL
3489 * and unlock the inode's flush lock when the inode is
3490 * completely written to disk.
3492 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3493 xfs_iflush_done, (xfs_log_item_t *)iip);
3495 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3496 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3497 } else {
3499 * We're flushing an inode which is not in the AIL and has
3500 * not been logged but has i_update_core set. For this
3501 * case we can use a B_DELWRI flush and immediately drop
3502 * the inode flush lock because we can avoid the whole
3503 * AIL state thing. It's OK to drop the flush lock now,
3504 * because we've already locked the buffer and to do anything
3505 * you really need both.
3507 if (iip != NULL) {
3508 ASSERT(iip->ili_logged == 0);
3509 ASSERT(iip->ili_last_fields == 0);
3510 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3512 xfs_ifunlock(ip);
3515 return 0;
3517 corrupt_out:
3518 return XFS_ERROR(EFSCORRUPTED);
3523 * Flush all inactive inodes in mp.
3525 void
3526 xfs_iflush_all(
3527 xfs_mount_t *mp)
3529 xfs_inode_t *ip;
3530 bhv_vnode_t *vp;
3532 again:
3533 XFS_MOUNT_ILOCK(mp);
3534 ip = mp->m_inodes;
3535 if (ip == NULL)
3536 goto out;
3538 do {
3539 /* Make sure we skip markers inserted by sync */
3540 if (ip->i_mount == NULL) {
3541 ip = ip->i_mnext;
3542 continue;
3545 vp = XFS_ITOV_NULL(ip);
3546 if (!vp) {
3547 XFS_MOUNT_IUNLOCK(mp);
3548 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3549 goto again;
3552 ASSERT(vn_count(vp) == 0);
3554 ip = ip->i_mnext;
3555 } while (ip != mp->m_inodes);
3556 out:
3557 XFS_MOUNT_IUNLOCK(mp);
3561 * xfs_iaccess: check accessibility of inode for mode.
3564 xfs_iaccess(
3565 xfs_inode_t *ip,
3566 mode_t mode,
3567 cred_t *cr)
3569 int error;
3570 mode_t orgmode = mode;
3571 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3573 if (mode & S_IWUSR) {
3574 umode_t imode = inode->i_mode;
3576 if (IS_RDONLY(inode) &&
3577 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3578 return XFS_ERROR(EROFS);
3580 if (IS_IMMUTABLE(inode))
3581 return XFS_ERROR(EACCES);
3585 * If there's an Access Control List it's used instead of
3586 * the mode bits.
3588 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3589 return error ? XFS_ERROR(error) : 0;
3591 if (current_fsuid(cr) != ip->i_d.di_uid) {
3592 mode >>= 3;
3593 if (!in_group_p((gid_t)ip->i_d.di_gid))
3594 mode >>= 3;
3598 * If the DACs are ok we don't need any capability check.
3600 if ((ip->i_d.di_mode & mode) == mode)
3601 return 0;
3603 * Read/write DACs are always overridable.
3604 * Executable DACs are overridable if at least one exec bit is set.
3606 if (!(orgmode & S_IXUSR) ||
3607 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3608 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3609 return 0;
3611 if ((orgmode == S_IRUSR) ||
3612 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3613 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3614 return 0;
3615 #ifdef NOISE
3616 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3617 #endif /* NOISE */
3618 return XFS_ERROR(EACCES);
3620 return XFS_ERROR(EACCES);
3624 * xfs_iroundup: round up argument to next power of two
3626 uint
3627 xfs_iroundup(
3628 uint v)
3630 int i;
3631 uint m;
3633 if ((v & (v - 1)) == 0)
3634 return v;
3635 ASSERT((v & 0x80000000) == 0);
3636 if ((v & (v + 1)) == 0)
3637 return v + 1;
3638 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3639 if (v & m)
3640 continue;
3641 v |= m;
3642 if ((v & (v + 1)) == 0)
3643 return v + 1;
3645 ASSERT(0);
3646 return( 0 );
3649 #ifdef XFS_ILOCK_TRACE
3650 ktrace_t *xfs_ilock_trace_buf;
3652 void
3653 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3655 ktrace_enter(ip->i_lock_trace,
3656 (void *)ip,
3657 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3658 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3659 (void *)ra, /* caller of ilock */
3660 (void *)(unsigned long)current_cpu(),
3661 (void *)(unsigned long)current_pid(),
3662 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3664 #endif
3667 * Return a pointer to the extent record at file index idx.
3669 xfs_bmbt_rec_t *
3670 xfs_iext_get_ext(
3671 xfs_ifork_t *ifp, /* inode fork pointer */
3672 xfs_extnum_t idx) /* index of target extent */
3674 ASSERT(idx >= 0);
3675 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3676 return ifp->if_u1.if_ext_irec->er_extbuf;
3677 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3678 xfs_ext_irec_t *erp; /* irec pointer */
3679 int erp_idx = 0; /* irec index */
3680 xfs_extnum_t page_idx = idx; /* ext index in target list */
3682 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3683 return &erp->er_extbuf[page_idx];
3684 } else if (ifp->if_bytes) {
3685 return &ifp->if_u1.if_extents[idx];
3686 } else {
3687 return NULL;
3692 * Insert new item(s) into the extent records for incore inode
3693 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3695 void
3696 xfs_iext_insert(
3697 xfs_ifork_t *ifp, /* inode fork pointer */
3698 xfs_extnum_t idx, /* starting index of new items */
3699 xfs_extnum_t count, /* number of inserted items */
3700 xfs_bmbt_irec_t *new) /* items to insert */
3702 xfs_bmbt_rec_t *ep; /* extent record pointer */
3703 xfs_extnum_t i; /* extent record index */
3705 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3706 xfs_iext_add(ifp, idx, count);
3707 for (i = idx; i < idx + count; i++, new++) {
3708 ep = xfs_iext_get_ext(ifp, i);
3709 xfs_bmbt_set_all(ep, new);
3714 * This is called when the amount of space required for incore file
3715 * extents needs to be increased. The ext_diff parameter stores the
3716 * number of new extents being added and the idx parameter contains
3717 * the extent index where the new extents will be added. If the new
3718 * extents are being appended, then we just need to (re)allocate and
3719 * initialize the space. Otherwise, if the new extents are being
3720 * inserted into the middle of the existing entries, a bit more work
3721 * is required to make room for the new extents to be inserted. The
3722 * caller is responsible for filling in the new extent entries upon
3723 * return.
3725 void
3726 xfs_iext_add(
3727 xfs_ifork_t *ifp, /* inode fork pointer */
3728 xfs_extnum_t idx, /* index to begin adding exts */
3729 int ext_diff) /* number of extents to add */
3731 int byte_diff; /* new bytes being added */
3732 int new_size; /* size of extents after adding */
3733 xfs_extnum_t nextents; /* number of extents in file */
3735 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3736 ASSERT((idx >= 0) && (idx <= nextents));
3737 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3738 new_size = ifp->if_bytes + byte_diff;
3740 * If the new number of extents (nextents + ext_diff)
3741 * fits inside the inode, then continue to use the inline
3742 * extent buffer.
3744 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3745 if (idx < nextents) {
3746 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3747 &ifp->if_u2.if_inline_ext[idx],
3748 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3749 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3751 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3752 ifp->if_real_bytes = 0;
3753 ifp->if_lastex = nextents + ext_diff;
3756 * Otherwise use a linear (direct) extent list.
3757 * If the extents are currently inside the inode,
3758 * xfs_iext_realloc_direct will switch us from
3759 * inline to direct extent allocation mode.
3761 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3762 xfs_iext_realloc_direct(ifp, new_size);
3763 if (idx < nextents) {
3764 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3765 &ifp->if_u1.if_extents[idx],
3766 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3767 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3770 /* Indirection array */
3771 else {
3772 xfs_ext_irec_t *erp;
3773 int erp_idx = 0;
3774 int page_idx = idx;
3776 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3777 if (ifp->if_flags & XFS_IFEXTIREC) {
3778 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3779 } else {
3780 xfs_iext_irec_init(ifp);
3781 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3782 erp = ifp->if_u1.if_ext_irec;
3784 /* Extents fit in target extent page */
3785 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3786 if (page_idx < erp->er_extcount) {
3787 memmove(&erp->er_extbuf[page_idx + ext_diff],
3788 &erp->er_extbuf[page_idx],
3789 (erp->er_extcount - page_idx) *
3790 sizeof(xfs_bmbt_rec_t));
3791 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3793 erp->er_extcount += ext_diff;
3794 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3796 /* Insert a new extent page */
3797 else if (erp) {
3798 xfs_iext_add_indirect_multi(ifp,
3799 erp_idx, page_idx, ext_diff);
3802 * If extent(s) are being appended to the last page in
3803 * the indirection array and the new extent(s) don't fit
3804 * in the page, then erp is NULL and erp_idx is set to
3805 * the next index needed in the indirection array.
3807 else {
3808 int count = ext_diff;
3810 while (count) {
3811 erp = xfs_iext_irec_new(ifp, erp_idx);
3812 erp->er_extcount = count;
3813 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3814 if (count) {
3815 erp_idx++;
3820 ifp->if_bytes = new_size;
3824 * This is called when incore extents are being added to the indirection
3825 * array and the new extents do not fit in the target extent list. The
3826 * erp_idx parameter contains the irec index for the target extent list
3827 * in the indirection array, and the idx parameter contains the extent
3828 * index within the list. The number of extents being added is stored
3829 * in the count parameter.
3831 * |-------| |-------|
3832 * | | | | idx - number of extents before idx
3833 * | idx | | count |
3834 * | | | | count - number of extents being inserted at idx
3835 * |-------| |-------|
3836 * | count | | nex2 | nex2 - number of extents after idx + count
3837 * |-------| |-------|
3839 void
3840 xfs_iext_add_indirect_multi(
3841 xfs_ifork_t *ifp, /* inode fork pointer */
3842 int erp_idx, /* target extent irec index */
3843 xfs_extnum_t idx, /* index within target list */
3844 int count) /* new extents being added */
3846 int byte_diff; /* new bytes being added */
3847 xfs_ext_irec_t *erp; /* pointer to irec entry */
3848 xfs_extnum_t ext_diff; /* number of extents to add */
3849 xfs_extnum_t ext_cnt; /* new extents still needed */
3850 xfs_extnum_t nex2; /* extents after idx + count */
3851 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3852 int nlists; /* number of irec's (lists) */
3854 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3855 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3856 nex2 = erp->er_extcount - idx;
3857 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3860 * Save second part of target extent list
3861 * (all extents past */
3862 if (nex2) {
3863 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3864 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3865 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3866 erp->er_extcount -= nex2;
3867 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3868 memset(&erp->er_extbuf[idx], 0, byte_diff);
3872 * Add the new extents to the end of the target
3873 * list, then allocate new irec record(s) and
3874 * extent buffer(s) as needed to store the rest
3875 * of the new extents.
3877 ext_cnt = count;
3878 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3879 if (ext_diff) {
3880 erp->er_extcount += ext_diff;
3881 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3882 ext_cnt -= ext_diff;
3884 while (ext_cnt) {
3885 erp_idx++;
3886 erp = xfs_iext_irec_new(ifp, erp_idx);
3887 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3888 erp->er_extcount = ext_diff;
3889 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3890 ext_cnt -= ext_diff;
3893 /* Add nex2 extents back to indirection array */
3894 if (nex2) {
3895 xfs_extnum_t ext_avail;
3896 int i;
3898 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3899 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3900 i = 0;
3902 * If nex2 extents fit in the current page, append
3903 * nex2_ep after the new extents.
3905 if (nex2 <= ext_avail) {
3906 i = erp->er_extcount;
3909 * Otherwise, check if space is available in the
3910 * next page.
3912 else if ((erp_idx < nlists - 1) &&
3913 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3914 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3915 erp_idx++;
3916 erp++;
3917 /* Create a hole for nex2 extents */
3918 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3919 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3922 * Final choice, create a new extent page for
3923 * nex2 extents.
3925 else {
3926 erp_idx++;
3927 erp = xfs_iext_irec_new(ifp, erp_idx);
3929 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3930 kmem_free(nex2_ep, byte_diff);
3931 erp->er_extcount += nex2;
3932 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3937 * This is called when the amount of space required for incore file
3938 * extents needs to be decreased. The ext_diff parameter stores the
3939 * number of extents to be removed and the idx parameter contains
3940 * the extent index where the extents will be removed from.
3942 * If the amount of space needed has decreased below the linear
3943 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3944 * extent array. Otherwise, use kmem_realloc() to adjust the
3945 * size to what is needed.
3947 void
3948 xfs_iext_remove(
3949 xfs_ifork_t *ifp, /* inode fork pointer */
3950 xfs_extnum_t idx, /* index to begin removing exts */
3951 int ext_diff) /* number of extents to remove */
3953 xfs_extnum_t nextents; /* number of extents in file */
3954 int new_size; /* size of extents after removal */
3956 ASSERT(ext_diff > 0);
3957 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3958 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3960 if (new_size == 0) {
3961 xfs_iext_destroy(ifp);
3962 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3963 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3964 } else if (ifp->if_real_bytes) {
3965 xfs_iext_remove_direct(ifp, idx, ext_diff);
3966 } else {
3967 xfs_iext_remove_inline(ifp, idx, ext_diff);
3969 ifp->if_bytes = new_size;
3973 * This removes ext_diff extents from the inline buffer, beginning
3974 * at extent index idx.
3976 void
3977 xfs_iext_remove_inline(
3978 xfs_ifork_t *ifp, /* inode fork pointer */
3979 xfs_extnum_t idx, /* index to begin removing exts */
3980 int ext_diff) /* number of extents to remove */
3982 int nextents; /* number of extents in file */
3984 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3985 ASSERT(idx < XFS_INLINE_EXTS);
3986 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3987 ASSERT(((nextents - ext_diff) > 0) &&
3988 (nextents - ext_diff) < XFS_INLINE_EXTS);
3990 if (idx + ext_diff < nextents) {
3991 memmove(&ifp->if_u2.if_inline_ext[idx],
3992 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3993 (nextents - (idx + ext_diff)) *
3994 sizeof(xfs_bmbt_rec_t));
3995 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3996 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3997 } else {
3998 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3999 ext_diff * sizeof(xfs_bmbt_rec_t));
4004 * This removes ext_diff extents from a linear (direct) extent list,
4005 * beginning at extent index idx. If the extents are being removed
4006 * from the end of the list (ie. truncate) then we just need to re-
4007 * allocate the list to remove the extra space. Otherwise, if the
4008 * extents are being removed from the middle of the existing extent
4009 * entries, then we first need to move the extent records beginning
4010 * at idx + ext_diff up in the list to overwrite the records being
4011 * removed, then remove the extra space via kmem_realloc.
4013 void
4014 xfs_iext_remove_direct(
4015 xfs_ifork_t *ifp, /* inode fork pointer */
4016 xfs_extnum_t idx, /* index to begin removing exts */
4017 int ext_diff) /* number of extents to remove */
4019 xfs_extnum_t nextents; /* number of extents in file */
4020 int new_size; /* size of extents after removal */
4022 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4023 new_size = ifp->if_bytes -
4024 (ext_diff * sizeof(xfs_bmbt_rec_t));
4025 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4027 if (new_size == 0) {
4028 xfs_iext_destroy(ifp);
4029 return;
4031 /* Move extents up in the list (if needed) */
4032 if (idx + ext_diff < nextents) {
4033 memmove(&ifp->if_u1.if_extents[idx],
4034 &ifp->if_u1.if_extents[idx + ext_diff],
4035 (nextents - (idx + ext_diff)) *
4036 sizeof(xfs_bmbt_rec_t));
4038 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4039 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4041 * Reallocate the direct extent list. If the extents
4042 * will fit inside the inode then xfs_iext_realloc_direct
4043 * will switch from direct to inline extent allocation
4044 * mode for us.
4046 xfs_iext_realloc_direct(ifp, new_size);
4047 ifp->if_bytes = new_size;
4051 * This is called when incore extents are being removed from the
4052 * indirection array and the extents being removed span multiple extent
4053 * buffers. The idx parameter contains the file extent index where we
4054 * want to begin removing extents, and the count parameter contains
4055 * how many extents need to be removed.
4057 * |-------| |-------|
4058 * | nex1 | | | nex1 - number of extents before idx
4059 * |-------| | count |
4060 * | | | | count - number of extents being removed at idx
4061 * | count | |-------|
4062 * | | | nex2 | nex2 - number of extents after idx + count
4063 * |-------| |-------|
4065 void
4066 xfs_iext_remove_indirect(
4067 xfs_ifork_t *ifp, /* inode fork pointer */
4068 xfs_extnum_t idx, /* index to begin removing extents */
4069 int count) /* number of extents to remove */
4071 xfs_ext_irec_t *erp; /* indirection array pointer */
4072 int erp_idx = 0; /* indirection array index */
4073 xfs_extnum_t ext_cnt; /* extents left to remove */
4074 xfs_extnum_t ext_diff; /* extents to remove in current list */
4075 xfs_extnum_t nex1; /* number of extents before idx */
4076 xfs_extnum_t nex2; /* extents after idx + count */
4077 int nlists; /* entries in indirection array */
4078 int page_idx = idx; /* index in target extent list */
4080 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4081 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4082 ASSERT(erp != NULL);
4083 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4084 nex1 = page_idx;
4085 ext_cnt = count;
4086 while (ext_cnt) {
4087 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4088 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4090 * Check for deletion of entire list;
4091 * xfs_iext_irec_remove() updates extent offsets.
4093 if (ext_diff == erp->er_extcount) {
4094 xfs_iext_irec_remove(ifp, erp_idx);
4095 ext_cnt -= ext_diff;
4096 nex1 = 0;
4097 if (ext_cnt) {
4098 ASSERT(erp_idx < ifp->if_real_bytes /
4099 XFS_IEXT_BUFSZ);
4100 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4101 nex1 = 0;
4102 continue;
4103 } else {
4104 break;
4107 /* Move extents up (if needed) */
4108 if (nex2) {
4109 memmove(&erp->er_extbuf[nex1],
4110 &erp->er_extbuf[nex1 + ext_diff],
4111 nex2 * sizeof(xfs_bmbt_rec_t));
4113 /* Zero out rest of page */
4114 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4115 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4116 /* Update remaining counters */
4117 erp->er_extcount -= ext_diff;
4118 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4119 ext_cnt -= ext_diff;
4120 nex1 = 0;
4121 erp_idx++;
4122 erp++;
4124 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4125 xfs_iext_irec_compact(ifp);
4129 * Create, destroy, or resize a linear (direct) block of extents.
4131 void
4132 xfs_iext_realloc_direct(
4133 xfs_ifork_t *ifp, /* inode fork pointer */
4134 int new_size) /* new size of extents */
4136 int rnew_size; /* real new size of extents */
4138 rnew_size = new_size;
4140 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4141 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4142 (new_size != ifp->if_real_bytes)));
4144 /* Free extent records */
4145 if (new_size == 0) {
4146 xfs_iext_destroy(ifp);
4148 /* Resize direct extent list and zero any new bytes */
4149 else if (ifp->if_real_bytes) {
4150 /* Check if extents will fit inside the inode */
4151 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4152 xfs_iext_direct_to_inline(ifp, new_size /
4153 (uint)sizeof(xfs_bmbt_rec_t));
4154 ifp->if_bytes = new_size;
4155 return;
4157 if ((new_size & (new_size - 1)) != 0) {
4158 rnew_size = xfs_iroundup(new_size);
4160 if (rnew_size != ifp->if_real_bytes) {
4161 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4162 kmem_realloc(ifp->if_u1.if_extents,
4163 rnew_size,
4164 ifp->if_real_bytes,
4165 KM_SLEEP);
4167 if (rnew_size > ifp->if_real_bytes) {
4168 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4169 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4170 rnew_size - ifp->if_real_bytes);
4174 * Switch from the inline extent buffer to a direct
4175 * extent list. Be sure to include the inline extent
4176 * bytes in new_size.
4178 else {
4179 new_size += ifp->if_bytes;
4180 if ((new_size & (new_size - 1)) != 0) {
4181 rnew_size = xfs_iroundup(new_size);
4183 xfs_iext_inline_to_direct(ifp, rnew_size);
4185 ifp->if_real_bytes = rnew_size;
4186 ifp->if_bytes = new_size;
4190 * Switch from linear (direct) extent records to inline buffer.
4192 void
4193 xfs_iext_direct_to_inline(
4194 xfs_ifork_t *ifp, /* inode fork pointer */
4195 xfs_extnum_t nextents) /* number of extents in file */
4197 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4198 ASSERT(nextents <= XFS_INLINE_EXTS);
4200 * The inline buffer was zeroed when we switched
4201 * from inline to direct extent allocation mode,
4202 * so we don't need to clear it here.
4204 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4205 nextents * sizeof(xfs_bmbt_rec_t));
4206 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4207 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4208 ifp->if_real_bytes = 0;
4212 * Switch from inline buffer to linear (direct) extent records.
4213 * new_size should already be rounded up to the next power of 2
4214 * by the caller (when appropriate), so use new_size as it is.
4215 * However, since new_size may be rounded up, we can't update
4216 * if_bytes here. It is the caller's responsibility to update
4217 * if_bytes upon return.
4219 void
4220 xfs_iext_inline_to_direct(
4221 xfs_ifork_t *ifp, /* inode fork pointer */
4222 int new_size) /* number of extents in file */
4224 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4225 kmem_alloc(new_size, KM_SLEEP);
4226 memset(ifp->if_u1.if_extents, 0, new_size);
4227 if (ifp->if_bytes) {
4228 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4229 ifp->if_bytes);
4230 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4231 sizeof(xfs_bmbt_rec_t));
4233 ifp->if_real_bytes = new_size;
4237 * Resize an extent indirection array to new_size bytes.
4239 void
4240 xfs_iext_realloc_indirect(
4241 xfs_ifork_t *ifp, /* inode fork pointer */
4242 int new_size) /* new indirection array size */
4244 int nlists; /* number of irec's (ex lists) */
4245 int size; /* current indirection array size */
4247 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4248 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4249 size = nlists * sizeof(xfs_ext_irec_t);
4250 ASSERT(ifp->if_real_bytes);
4251 ASSERT((new_size >= 0) && (new_size != size));
4252 if (new_size == 0) {
4253 xfs_iext_destroy(ifp);
4254 } else {
4255 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4256 kmem_realloc(ifp->if_u1.if_ext_irec,
4257 new_size, size, KM_SLEEP);
4262 * Switch from indirection array to linear (direct) extent allocations.
4264 void
4265 xfs_iext_indirect_to_direct(
4266 xfs_ifork_t *ifp) /* inode fork pointer */
4268 xfs_bmbt_rec_t *ep; /* extent record pointer */
4269 xfs_extnum_t nextents; /* number of extents in file */
4270 int size; /* size of file extents */
4272 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4273 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4274 ASSERT(nextents <= XFS_LINEAR_EXTS);
4275 size = nextents * sizeof(xfs_bmbt_rec_t);
4277 xfs_iext_irec_compact_full(ifp);
4278 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4280 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4281 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4282 ifp->if_flags &= ~XFS_IFEXTIREC;
4283 ifp->if_u1.if_extents = ep;
4284 ifp->if_bytes = size;
4285 if (nextents < XFS_LINEAR_EXTS) {
4286 xfs_iext_realloc_direct(ifp, size);
4291 * Free incore file extents.
4293 void
4294 xfs_iext_destroy(
4295 xfs_ifork_t *ifp) /* inode fork pointer */
4297 if (ifp->if_flags & XFS_IFEXTIREC) {
4298 int erp_idx;
4299 int nlists;
4301 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4302 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4303 xfs_iext_irec_remove(ifp, erp_idx);
4305 ifp->if_flags &= ~XFS_IFEXTIREC;
4306 } else if (ifp->if_real_bytes) {
4307 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4308 } else if (ifp->if_bytes) {
4309 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4310 sizeof(xfs_bmbt_rec_t));
4312 ifp->if_u1.if_extents = NULL;
4313 ifp->if_real_bytes = 0;
4314 ifp->if_bytes = 0;
4318 * Return a pointer to the extent record for file system block bno.
4320 xfs_bmbt_rec_t * /* pointer to found extent record */
4321 xfs_iext_bno_to_ext(
4322 xfs_ifork_t *ifp, /* inode fork pointer */
4323 xfs_fileoff_t bno, /* block number to search for */
4324 xfs_extnum_t *idxp) /* index of target extent */
4326 xfs_bmbt_rec_t *base; /* pointer to first extent */
4327 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4328 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4329 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4330 int high; /* upper boundary in search */
4331 xfs_extnum_t idx = 0; /* index of target extent */
4332 int low; /* lower boundary in search */
4333 xfs_extnum_t nextents; /* number of file extents */
4334 xfs_fileoff_t startoff = 0; /* start offset of extent */
4336 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4337 if (nextents == 0) {
4338 *idxp = 0;
4339 return NULL;
4341 low = 0;
4342 if (ifp->if_flags & XFS_IFEXTIREC) {
4343 /* Find target extent list */
4344 int erp_idx = 0;
4345 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4346 base = erp->er_extbuf;
4347 high = erp->er_extcount - 1;
4348 } else {
4349 base = ifp->if_u1.if_extents;
4350 high = nextents - 1;
4352 /* Binary search extent records */
4353 while (low <= high) {
4354 idx = (low + high) >> 1;
4355 ep = base + idx;
4356 startoff = xfs_bmbt_get_startoff(ep);
4357 blockcount = xfs_bmbt_get_blockcount(ep);
4358 if (bno < startoff) {
4359 high = idx - 1;
4360 } else if (bno >= startoff + blockcount) {
4361 low = idx + 1;
4362 } else {
4363 /* Convert back to file-based extent index */
4364 if (ifp->if_flags & XFS_IFEXTIREC) {
4365 idx += erp->er_extoff;
4367 *idxp = idx;
4368 return ep;
4371 /* Convert back to file-based extent index */
4372 if (ifp->if_flags & XFS_IFEXTIREC) {
4373 idx += erp->er_extoff;
4375 if (bno >= startoff + blockcount) {
4376 if (++idx == nextents) {
4377 ep = NULL;
4378 } else {
4379 ep = xfs_iext_get_ext(ifp, idx);
4382 *idxp = idx;
4383 return ep;
4387 * Return a pointer to the indirection array entry containing the
4388 * extent record for filesystem block bno. Store the index of the
4389 * target irec in *erp_idxp.
4391 xfs_ext_irec_t * /* pointer to found extent record */
4392 xfs_iext_bno_to_irec(
4393 xfs_ifork_t *ifp, /* inode fork pointer */
4394 xfs_fileoff_t bno, /* block number to search for */
4395 int *erp_idxp) /* irec index of target ext list */
4397 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4398 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4399 int erp_idx; /* indirection array index */
4400 int nlists; /* number of extent irec's (lists) */
4401 int high; /* binary search upper limit */
4402 int low; /* binary search lower limit */
4404 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4405 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4406 erp_idx = 0;
4407 low = 0;
4408 high = nlists - 1;
4409 while (low <= high) {
4410 erp_idx = (low + high) >> 1;
4411 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4412 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4413 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4414 high = erp_idx - 1;
4415 } else if (erp_next && bno >=
4416 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4417 low = erp_idx + 1;
4418 } else {
4419 break;
4422 *erp_idxp = erp_idx;
4423 return erp;
4427 * Return a pointer to the indirection array entry containing the
4428 * extent record at file extent index *idxp. Store the index of the
4429 * target irec in *erp_idxp and store the page index of the target
4430 * extent record in *idxp.
4432 xfs_ext_irec_t *
4433 xfs_iext_idx_to_irec(
4434 xfs_ifork_t *ifp, /* inode fork pointer */
4435 xfs_extnum_t *idxp, /* extent index (file -> page) */
4436 int *erp_idxp, /* pointer to target irec */
4437 int realloc) /* new bytes were just added */
4439 xfs_ext_irec_t *prev; /* pointer to previous irec */
4440 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4441 int erp_idx; /* indirection array index */
4442 int nlists; /* number of irec's (ex lists) */
4443 int high; /* binary search upper limit */
4444 int low; /* binary search lower limit */
4445 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4447 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4448 ASSERT(page_idx >= 0 && page_idx <=
4449 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4450 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4451 erp_idx = 0;
4452 low = 0;
4453 high = nlists - 1;
4455 /* Binary search extent irec's */
4456 while (low <= high) {
4457 erp_idx = (low + high) >> 1;
4458 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4459 prev = erp_idx > 0 ? erp - 1 : NULL;
4460 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4461 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4462 high = erp_idx - 1;
4463 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4464 (page_idx == erp->er_extoff + erp->er_extcount &&
4465 !realloc)) {
4466 low = erp_idx + 1;
4467 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4468 erp->er_extcount == XFS_LINEAR_EXTS) {
4469 ASSERT(realloc);
4470 page_idx = 0;
4471 erp_idx++;
4472 erp = erp_idx < nlists ? erp + 1 : NULL;
4473 break;
4474 } else {
4475 page_idx -= erp->er_extoff;
4476 break;
4479 *idxp = page_idx;
4480 *erp_idxp = erp_idx;
4481 return(erp);
4485 * Allocate and initialize an indirection array once the space needed
4486 * for incore extents increases above XFS_IEXT_BUFSZ.
4488 void
4489 xfs_iext_irec_init(
4490 xfs_ifork_t *ifp) /* inode fork pointer */
4492 xfs_ext_irec_t *erp; /* indirection array pointer */
4493 xfs_extnum_t nextents; /* number of extents in file */
4495 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4496 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4497 ASSERT(nextents <= XFS_LINEAR_EXTS);
4499 erp = (xfs_ext_irec_t *)
4500 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4502 if (nextents == 0) {
4503 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4504 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4505 } else if (!ifp->if_real_bytes) {
4506 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4507 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4508 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4510 erp->er_extbuf = ifp->if_u1.if_extents;
4511 erp->er_extcount = nextents;
4512 erp->er_extoff = 0;
4514 ifp->if_flags |= XFS_IFEXTIREC;
4515 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4516 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4517 ifp->if_u1.if_ext_irec = erp;
4519 return;
4523 * Allocate and initialize a new entry in the indirection array.
4525 xfs_ext_irec_t *
4526 xfs_iext_irec_new(
4527 xfs_ifork_t *ifp, /* inode fork pointer */
4528 int erp_idx) /* index for new irec */
4530 xfs_ext_irec_t *erp; /* indirection array pointer */
4531 int i; /* loop counter */
4532 int nlists; /* number of irec's (ex lists) */
4534 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4535 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4537 /* Resize indirection array */
4538 xfs_iext_realloc_indirect(ifp, ++nlists *
4539 sizeof(xfs_ext_irec_t));
4541 * Move records down in the array so the
4542 * new page can use erp_idx.
4544 erp = ifp->if_u1.if_ext_irec;
4545 for (i = nlists - 1; i > erp_idx; i--) {
4546 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4548 ASSERT(i == erp_idx);
4550 /* Initialize new extent record */
4551 erp = ifp->if_u1.if_ext_irec;
4552 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4553 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4554 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4555 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4556 erp[erp_idx].er_extcount = 0;
4557 erp[erp_idx].er_extoff = erp_idx > 0 ?
4558 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4559 return (&erp[erp_idx]);
4563 * Remove a record from the indirection array.
4565 void
4566 xfs_iext_irec_remove(
4567 xfs_ifork_t *ifp, /* inode fork pointer */
4568 int erp_idx) /* irec index to remove */
4570 xfs_ext_irec_t *erp; /* indirection array pointer */
4571 int i; /* loop counter */
4572 int nlists; /* number of irec's (ex lists) */
4574 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4575 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4576 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4577 if (erp->er_extbuf) {
4578 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4579 -erp->er_extcount);
4580 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4582 /* Compact extent records */
4583 erp = ifp->if_u1.if_ext_irec;
4584 for (i = erp_idx; i < nlists - 1; i++) {
4585 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4588 * Manually free the last extent record from the indirection
4589 * array. A call to xfs_iext_realloc_indirect() with a size
4590 * of zero would result in a call to xfs_iext_destroy() which
4591 * would in turn call this function again, creating a nasty
4592 * infinite loop.
4594 if (--nlists) {
4595 xfs_iext_realloc_indirect(ifp,
4596 nlists * sizeof(xfs_ext_irec_t));
4597 } else {
4598 kmem_free(ifp->if_u1.if_ext_irec,
4599 sizeof(xfs_ext_irec_t));
4601 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4605 * This is called to clean up large amounts of unused memory allocated
4606 * by the indirection array. Before compacting anything though, verify
4607 * that the indirection array is still needed and switch back to the
4608 * linear extent list (or even the inline buffer) if possible. The
4609 * compaction policy is as follows:
4611 * Full Compaction: Extents fit into a single page (or inline buffer)
4612 * Full Compaction: Extents occupy less than 10% of allocated space
4613 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4614 * No Compaction: Extents occupy at least 50% of allocated space
4616 void
4617 xfs_iext_irec_compact(
4618 xfs_ifork_t *ifp) /* inode fork pointer */
4620 xfs_extnum_t nextents; /* number of extents in file */
4621 int nlists; /* number of irec's (ex lists) */
4623 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4624 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4625 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4627 if (nextents == 0) {
4628 xfs_iext_destroy(ifp);
4629 } else if (nextents <= XFS_INLINE_EXTS) {
4630 xfs_iext_indirect_to_direct(ifp);
4631 xfs_iext_direct_to_inline(ifp, nextents);
4632 } else if (nextents <= XFS_LINEAR_EXTS) {
4633 xfs_iext_indirect_to_direct(ifp);
4634 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4635 xfs_iext_irec_compact_full(ifp);
4636 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4637 xfs_iext_irec_compact_pages(ifp);
4642 * Combine extents from neighboring extent pages.
4644 void
4645 xfs_iext_irec_compact_pages(
4646 xfs_ifork_t *ifp) /* inode fork pointer */
4648 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4649 int erp_idx = 0; /* indirection array index */
4650 int nlists; /* number of irec's (ex lists) */
4652 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4653 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4654 while (erp_idx < nlists - 1) {
4655 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4656 erp_next = erp + 1;
4657 if (erp_next->er_extcount <=
4658 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4659 memmove(&erp->er_extbuf[erp->er_extcount],
4660 erp_next->er_extbuf, erp_next->er_extcount *
4661 sizeof(xfs_bmbt_rec_t));
4662 erp->er_extcount += erp_next->er_extcount;
4664 * Free page before removing extent record
4665 * so er_extoffs don't get modified in
4666 * xfs_iext_irec_remove.
4668 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4669 erp_next->er_extbuf = NULL;
4670 xfs_iext_irec_remove(ifp, erp_idx + 1);
4671 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4672 } else {
4673 erp_idx++;
4679 * Fully compact the extent records managed by the indirection array.
4681 void
4682 xfs_iext_irec_compact_full(
4683 xfs_ifork_t *ifp) /* inode fork pointer */
4685 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4686 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4687 int erp_idx = 0; /* extent irec index */
4688 int ext_avail; /* empty entries in ex list */
4689 int ext_diff; /* number of exts to add */
4690 int nlists; /* number of irec's (ex lists) */
4692 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4693 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4694 erp = ifp->if_u1.if_ext_irec;
4695 ep = &erp->er_extbuf[erp->er_extcount];
4696 erp_next = erp + 1;
4697 ep_next = erp_next->er_extbuf;
4698 while (erp_idx < nlists - 1) {
4699 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4700 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4701 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4702 erp->er_extcount += ext_diff;
4703 erp_next->er_extcount -= ext_diff;
4704 /* Remove next page */
4705 if (erp_next->er_extcount == 0) {
4707 * Free page before removing extent record
4708 * so er_extoffs don't get modified in
4709 * xfs_iext_irec_remove.
4711 kmem_free(erp_next->er_extbuf,
4712 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4713 erp_next->er_extbuf = NULL;
4714 xfs_iext_irec_remove(ifp, erp_idx + 1);
4715 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4716 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4717 /* Update next page */
4718 } else {
4719 /* Move rest of page up to become next new page */
4720 memmove(erp_next->er_extbuf, ep_next,
4721 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4722 ep_next = erp_next->er_extbuf;
4723 memset(&ep_next[erp_next->er_extcount], 0,
4724 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4725 sizeof(xfs_bmbt_rec_t));
4727 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4728 erp_idx++;
4729 if (erp_idx < nlists)
4730 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4731 else
4732 break;
4734 ep = &erp->er_extbuf[erp->er_extcount];
4735 erp_next = erp + 1;
4736 ep_next = erp_next->er_extbuf;
4741 * This is called to update the er_extoff field in the indirection
4742 * array when extents have been added or removed from one of the
4743 * extent lists. erp_idx contains the irec index to begin updating
4744 * at and ext_diff contains the number of extents that were added
4745 * or removed.
4747 void
4748 xfs_iext_irec_update_extoffs(
4749 xfs_ifork_t *ifp, /* inode fork pointer */
4750 int erp_idx, /* irec index to update */
4751 int ext_diff) /* number of new extents */
4753 int i; /* loop counter */
4754 int nlists; /* number of irec's (ex lists */
4756 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4757 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4758 for (i = erp_idx; i < nlists; i++) {
4759 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;