[PATCH] Kprobes: preempt_disable/enable() simplification
[linux-2.6/linux-loongson.git] / kernel / fork.c
blobefac2c58ec7d7eb4889b962af69b372b669640f1
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
55 * Protected counters by write_lock_irq(&tasklist_lock)
57 unsigned long total_forks; /* Handle normal Linux uptimes. */
58 int nr_threads; /* The idle threads do not count.. */
60 int max_threads; /* tunable limit on nr_threads */
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66 EXPORT_SYMBOL(tasklist_lock);
68 int nr_processes(void)
70 int cpu;
71 int total = 0;
73 for_each_online_cpu(cpu)
74 total += per_cpu(process_counts, cpu);
76 return total;
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 kmem_cache_t *signal_cachep;
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
103 void free_task(struct task_struct *tsk)
105 free_thread_info(tsk->thread_info);
106 free_task_struct(tsk);
108 EXPORT_SYMBOL(free_task);
110 void __put_task_struct(struct task_struct *tsk)
112 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
113 WARN_ON(atomic_read(&tsk->usage));
114 WARN_ON(tsk == current);
116 if (unlikely(tsk->audit_context))
117 audit_free(tsk);
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
122 if (!profile_handoff_task(tsk))
123 free_task(tsk);
126 void __init fork_init(unsigned long mempages)
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 #endif
132 /* create a slab on which task_structs can be allocated */
133 task_struct_cachep =
134 kmem_cache_create("task_struct", sizeof(struct task_struct),
135 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
141 * of memory.
143 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
146 * we need to allow at least 20 threads to boot a system
148 if(max_threads < 20)
149 max_threads = 20;
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 init_task.signal->rlim[RLIMIT_NPROC];
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 struct task_struct *tsk;
160 struct thread_info *ti;
162 prepare_to_copy(orig);
164 tsk = alloc_task_struct();
165 if (!tsk)
166 return NULL;
168 ti = alloc_thread_info(tsk);
169 if (!ti) {
170 free_task_struct(tsk);
171 return NULL;
174 *ti = *orig->thread_info;
175 *tsk = *orig;
176 tsk->thread_info = ti;
177 ti->task = tsk;
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk->usage,2);
181 atomic_set(&tsk->fs_excl, 0);
182 return tsk;
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 struct vm_area_struct *mpnt, *tmp, **pprev;
189 struct rb_node **rb_link, *rb_parent;
190 int retval;
191 unsigned long charge;
192 struct mempolicy *pol;
194 down_write(&oldmm->mmap_sem);
195 flush_cache_mm(oldmm);
196 down_write(&mm->mmap_sem);
198 mm->locked_vm = 0;
199 mm->mmap = NULL;
200 mm->mmap_cache = NULL;
201 mm->free_area_cache = oldmm->mmap_base;
202 mm->cached_hole_size = ~0UL;
203 mm->map_count = 0;
204 cpus_clear(mm->cpu_vm_mask);
205 mm->mm_rb = RB_ROOT;
206 rb_link = &mm->mm_rb.rb_node;
207 rb_parent = NULL;
208 pprev = &mm->mmap;
210 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
211 struct file *file;
213 if (mpnt->vm_flags & VM_DONTCOPY) {
214 long pages = vma_pages(mpnt);
215 mm->total_vm -= pages;
216 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
217 -pages);
218 continue;
220 charge = 0;
221 if (mpnt->vm_flags & VM_ACCOUNT) {
222 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
223 if (security_vm_enough_memory(len))
224 goto fail_nomem;
225 charge = len;
227 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
228 if (!tmp)
229 goto fail_nomem;
230 *tmp = *mpnt;
231 pol = mpol_copy(vma_policy(mpnt));
232 retval = PTR_ERR(pol);
233 if (IS_ERR(pol))
234 goto fail_nomem_policy;
235 vma_set_policy(tmp, pol);
236 tmp->vm_flags &= ~VM_LOCKED;
237 tmp->vm_mm = mm;
238 tmp->vm_next = NULL;
239 anon_vma_link(tmp);
240 file = tmp->vm_file;
241 if (file) {
242 struct inode *inode = file->f_dentry->d_inode;
243 get_file(file);
244 if (tmp->vm_flags & VM_DENYWRITE)
245 atomic_dec(&inode->i_writecount);
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file->f_mapping->i_mmap_lock);
249 tmp->vm_truncate_count = mpnt->vm_truncate_count;
250 flush_dcache_mmap_lock(file->f_mapping);
251 vma_prio_tree_add(tmp, mpnt);
252 flush_dcache_mmap_unlock(file->f_mapping);
253 spin_unlock(&file->f_mapping->i_mmap_lock);
257 * Link in the new vma and copy the page table entries.
259 *pprev = tmp;
260 pprev = &tmp->vm_next;
262 __vma_link_rb(mm, tmp, rb_link, rb_parent);
263 rb_link = &tmp->vm_rb.rb_right;
264 rb_parent = &tmp->vm_rb;
266 mm->map_count++;
267 retval = copy_page_range(mm, oldmm, tmp);
269 if (tmp->vm_ops && tmp->vm_ops->open)
270 tmp->vm_ops->open(tmp);
272 if (retval)
273 goto out;
275 retval = 0;
276 out:
277 up_write(&mm->mmap_sem);
278 flush_tlb_mm(oldmm);
279 up_write(&oldmm->mmap_sem);
280 return retval;
281 fail_nomem_policy:
282 kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 retval = -ENOMEM;
285 vm_unacct_memory(charge);
286 goto out;
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 mm->pgd = pgd_alloc(mm);
292 if (unlikely(!mm->pgd))
293 return -ENOMEM;
294 return 0;
297 static inline void mm_free_pgd(struct mm_struct * mm)
299 pgd_free(mm->pgd);
301 #else
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
307 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312 #include <linux/init_task.h>
314 static struct mm_struct * mm_init(struct mm_struct * mm)
316 atomic_set(&mm->mm_users, 1);
317 atomic_set(&mm->mm_count, 1);
318 init_rwsem(&mm->mmap_sem);
319 INIT_LIST_HEAD(&mm->mmlist);
320 mm->core_waiters = 0;
321 mm->nr_ptes = 0;
322 set_mm_counter(mm, file_rss, 0);
323 set_mm_counter(mm, anon_rss, 0);
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
327 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
328 mm->free_area_cache = TASK_UNMAPPED_BASE;
329 mm->cached_hole_size = ~0UL;
331 if (likely(!mm_alloc_pgd(mm))) {
332 mm->def_flags = 0;
333 return mm;
335 free_mm(mm);
336 return NULL;
340 * Allocate and initialize an mm_struct.
342 struct mm_struct * mm_alloc(void)
344 struct mm_struct * mm;
346 mm = allocate_mm();
347 if (mm) {
348 memset(mm, 0, sizeof(*mm));
349 mm = mm_init(mm);
351 return mm;
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
359 void fastcall __mmdrop(struct mm_struct *mm)
361 BUG_ON(mm == &init_mm);
362 mm_free_pgd(mm);
363 destroy_context(mm);
364 free_mm(mm);
368 * Decrement the use count and release all resources for an mm.
370 void mmput(struct mm_struct *mm)
372 if (atomic_dec_and_test(&mm->mm_users)) {
373 exit_aio(mm);
374 exit_mmap(mm);
375 if (!list_empty(&mm->mmlist)) {
376 spin_lock(&mmlist_lock);
377 list_del(&mm->mmlist);
378 spin_unlock(&mmlist_lock);
380 put_swap_token(mm);
381 mmdrop(mm);
384 EXPORT_SYMBOL_GPL(mmput);
387 * get_task_mm - acquire a reference to the task's mm
389 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
390 * this kernel workthread has transiently adopted a user mm with use_mm,
391 * to do its AIO) is not set and if so returns a reference to it, after
392 * bumping up the use count. User must release the mm via mmput()
393 * after use. Typically used by /proc and ptrace.
395 struct mm_struct *get_task_mm(struct task_struct *task)
397 struct mm_struct *mm;
399 task_lock(task);
400 mm = task->mm;
401 if (mm) {
402 if (task->flags & PF_BORROWED_MM)
403 mm = NULL;
404 else
405 atomic_inc(&mm->mm_users);
407 task_unlock(task);
408 return mm;
410 EXPORT_SYMBOL_GPL(get_task_mm);
412 /* Please note the differences between mmput and mm_release.
413 * mmput is called whenever we stop holding onto a mm_struct,
414 * error success whatever.
416 * mm_release is called after a mm_struct has been removed
417 * from the current process.
419 * This difference is important for error handling, when we
420 * only half set up a mm_struct for a new process and need to restore
421 * the old one. Because we mmput the new mm_struct before
422 * restoring the old one. . .
423 * Eric Biederman 10 January 1998
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 struct completion *vfork_done = tsk->vfork_done;
429 /* Get rid of any cached register state */
430 deactivate_mm(tsk, mm);
432 /* notify parent sleeping on vfork() */
433 if (vfork_done) {
434 tsk->vfork_done = NULL;
435 complete(vfork_done);
437 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438 u32 __user * tidptr = tsk->clear_child_tid;
439 tsk->clear_child_tid = NULL;
442 * We don't check the error code - if userspace has
443 * not set up a proper pointer then tough luck.
445 put_user(0, tidptr);
446 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
450 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
452 struct mm_struct * mm, *oldmm;
453 int retval;
455 tsk->min_flt = tsk->maj_flt = 0;
456 tsk->nvcsw = tsk->nivcsw = 0;
458 tsk->mm = NULL;
459 tsk->active_mm = NULL;
462 * Are we cloning a kernel thread?
464 * We need to steal a active VM for that..
466 oldmm = current->mm;
467 if (!oldmm)
468 return 0;
470 if (clone_flags & CLONE_VM) {
471 atomic_inc(&oldmm->mm_users);
472 mm = oldmm;
474 * There are cases where the PTL is held to ensure no
475 * new threads start up in user mode using an mm, which
476 * allows optimizing out ipis; the tlb_gather_mmu code
477 * is an example.
479 spin_unlock_wait(&oldmm->page_table_lock);
480 goto good_mm;
483 retval = -ENOMEM;
484 mm = allocate_mm();
485 if (!mm)
486 goto fail_nomem;
488 /* Copy the current MM stuff.. */
489 memcpy(mm, oldmm, sizeof(*mm));
490 if (!mm_init(mm))
491 goto fail_nomem;
493 if (init_new_context(tsk,mm))
494 goto fail_nocontext;
496 retval = dup_mmap(mm, oldmm);
497 if (retval)
498 goto free_pt;
500 mm->hiwater_rss = get_mm_rss(mm);
501 mm->hiwater_vm = mm->total_vm;
503 good_mm:
504 tsk->mm = mm;
505 tsk->active_mm = mm;
506 return 0;
508 free_pt:
509 mmput(mm);
510 fail_nomem:
511 return retval;
513 fail_nocontext:
515 * If init_new_context() failed, we cannot use mmput() to free the mm
516 * because it calls destroy_context()
518 mm_free_pgd(mm);
519 free_mm(mm);
520 return retval;
523 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
525 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
526 /* We don't need to lock fs - think why ;-) */
527 if (fs) {
528 atomic_set(&fs->count, 1);
529 rwlock_init(&fs->lock);
530 fs->umask = old->umask;
531 read_lock(&old->lock);
532 fs->rootmnt = mntget(old->rootmnt);
533 fs->root = dget(old->root);
534 fs->pwdmnt = mntget(old->pwdmnt);
535 fs->pwd = dget(old->pwd);
536 if (old->altroot) {
537 fs->altrootmnt = mntget(old->altrootmnt);
538 fs->altroot = dget(old->altroot);
539 } else {
540 fs->altrootmnt = NULL;
541 fs->altroot = NULL;
543 read_unlock(&old->lock);
545 return fs;
548 struct fs_struct *copy_fs_struct(struct fs_struct *old)
550 return __copy_fs_struct(old);
553 EXPORT_SYMBOL_GPL(copy_fs_struct);
555 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
557 if (clone_flags & CLONE_FS) {
558 atomic_inc(&current->fs->count);
559 return 0;
561 tsk->fs = __copy_fs_struct(current->fs);
562 if (!tsk->fs)
563 return -ENOMEM;
564 return 0;
567 static int count_open_files(struct fdtable *fdt)
569 int size = fdt->max_fdset;
570 int i;
572 /* Find the last open fd */
573 for (i = size/(8*sizeof(long)); i > 0; ) {
574 if (fdt->open_fds->fds_bits[--i])
575 break;
577 i = (i+1) * 8 * sizeof(long);
578 return i;
581 static struct files_struct *alloc_files(void)
583 struct files_struct *newf;
584 struct fdtable *fdt;
586 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
587 if (!newf)
588 goto out;
590 atomic_set(&newf->count, 1);
592 spin_lock_init(&newf->file_lock);
593 fdt = &newf->fdtab;
594 fdt->next_fd = 0;
595 fdt->max_fds = NR_OPEN_DEFAULT;
596 fdt->max_fdset = __FD_SETSIZE;
597 fdt->close_on_exec = &newf->close_on_exec_init;
598 fdt->open_fds = &newf->open_fds_init;
599 fdt->fd = &newf->fd_array[0];
600 INIT_RCU_HEAD(&fdt->rcu);
601 fdt->free_files = NULL;
602 fdt->next = NULL;
603 rcu_assign_pointer(newf->fdt, fdt);
604 out:
605 return newf;
608 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
610 struct files_struct *oldf, *newf;
611 struct file **old_fds, **new_fds;
612 int open_files, size, i, error = 0, expand;
613 struct fdtable *old_fdt, *new_fdt;
616 * A background process may not have any files ...
618 oldf = current->files;
619 if (!oldf)
620 goto out;
622 if (clone_flags & CLONE_FILES) {
623 atomic_inc(&oldf->count);
624 goto out;
628 * Note: we may be using current for both targets (See exec.c)
629 * This works because we cache current->files (old) as oldf. Don't
630 * break this.
632 tsk->files = NULL;
633 error = -ENOMEM;
634 newf = alloc_files();
635 if (!newf)
636 goto out;
638 spin_lock(&oldf->file_lock);
639 old_fdt = files_fdtable(oldf);
640 new_fdt = files_fdtable(newf);
641 size = old_fdt->max_fdset;
642 open_files = count_open_files(old_fdt);
643 expand = 0;
646 * Check whether we need to allocate a larger fd array or fd set.
647 * Note: we're not a clone task, so the open count won't change.
649 if (open_files > new_fdt->max_fdset) {
650 new_fdt->max_fdset = 0;
651 expand = 1;
653 if (open_files > new_fdt->max_fds) {
654 new_fdt->max_fds = 0;
655 expand = 1;
658 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
659 if (expand) {
660 spin_unlock(&oldf->file_lock);
661 spin_lock(&newf->file_lock);
662 error = expand_files(newf, open_files-1);
663 spin_unlock(&newf->file_lock);
664 if (error < 0)
665 goto out_release;
666 new_fdt = files_fdtable(newf);
668 * Reacquire the oldf lock and a pointer to its fd table
669 * who knows it may have a new bigger fd table. We need
670 * the latest pointer.
672 spin_lock(&oldf->file_lock);
673 old_fdt = files_fdtable(oldf);
676 old_fds = old_fdt->fd;
677 new_fds = new_fdt->fd;
679 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
680 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
682 for (i = open_files; i != 0; i--) {
683 struct file *f = *old_fds++;
684 if (f) {
685 get_file(f);
686 } else {
688 * The fd may be claimed in the fd bitmap but not yet
689 * instantiated in the files array if a sibling thread
690 * is partway through open(). So make sure that this
691 * fd is available to the new process.
693 FD_CLR(open_files - i, new_fdt->open_fds);
695 rcu_assign_pointer(*new_fds++, f);
697 spin_unlock(&oldf->file_lock);
699 /* compute the remainder to be cleared */
700 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
702 /* This is long word aligned thus could use a optimized version */
703 memset(new_fds, 0, size);
705 if (new_fdt->max_fdset > open_files) {
706 int left = (new_fdt->max_fdset-open_files)/8;
707 int start = open_files / (8 * sizeof(unsigned long));
709 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
710 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
713 tsk->files = newf;
714 error = 0;
715 out:
716 return error;
718 out_release:
719 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
720 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
721 free_fd_array(new_fdt->fd, new_fdt->max_fds);
722 kmem_cache_free(files_cachep, newf);
723 goto out;
727 * Helper to unshare the files of the current task.
728 * We don't want to expose copy_files internals to
729 * the exec layer of the kernel.
732 int unshare_files(void)
734 struct files_struct *files = current->files;
735 int rc;
737 if(!files)
738 BUG();
740 /* This can race but the race causes us to copy when we don't
741 need to and drop the copy */
742 if(atomic_read(&files->count) == 1)
744 atomic_inc(&files->count);
745 return 0;
747 rc = copy_files(0, current);
748 if(rc)
749 current->files = files;
750 return rc;
753 EXPORT_SYMBOL(unshare_files);
755 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
757 struct sighand_struct *sig;
759 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
760 atomic_inc(&current->sighand->count);
761 return 0;
763 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
764 tsk->sighand = sig;
765 if (!sig)
766 return -ENOMEM;
767 spin_lock_init(&sig->siglock);
768 atomic_set(&sig->count, 1);
769 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
770 return 0;
773 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
775 struct signal_struct *sig;
776 int ret;
778 if (clone_flags & CLONE_THREAD) {
779 atomic_inc(&current->signal->count);
780 atomic_inc(&current->signal->live);
781 return 0;
783 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
784 tsk->signal = sig;
785 if (!sig)
786 return -ENOMEM;
788 ret = copy_thread_group_keys(tsk);
789 if (ret < 0) {
790 kmem_cache_free(signal_cachep, sig);
791 return ret;
794 atomic_set(&sig->count, 1);
795 atomic_set(&sig->live, 1);
796 init_waitqueue_head(&sig->wait_chldexit);
797 sig->flags = 0;
798 sig->group_exit_code = 0;
799 sig->group_exit_task = NULL;
800 sig->group_stop_count = 0;
801 sig->curr_target = NULL;
802 init_sigpending(&sig->shared_pending);
803 INIT_LIST_HEAD(&sig->posix_timers);
805 sig->it_real_value = sig->it_real_incr = 0;
806 sig->real_timer.function = it_real_fn;
807 sig->real_timer.data = (unsigned long) tsk;
808 init_timer(&sig->real_timer);
810 sig->it_virt_expires = cputime_zero;
811 sig->it_virt_incr = cputime_zero;
812 sig->it_prof_expires = cputime_zero;
813 sig->it_prof_incr = cputime_zero;
815 sig->tty = current->signal->tty;
816 sig->pgrp = process_group(current);
817 sig->session = current->signal->session;
818 sig->leader = 0; /* session leadership doesn't inherit */
819 sig->tty_old_pgrp = 0;
821 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
822 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
823 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
824 sig->sched_time = 0;
825 INIT_LIST_HEAD(&sig->cpu_timers[0]);
826 INIT_LIST_HEAD(&sig->cpu_timers[1]);
827 INIT_LIST_HEAD(&sig->cpu_timers[2]);
829 task_lock(current->group_leader);
830 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
831 task_unlock(current->group_leader);
833 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
835 * New sole thread in the process gets an expiry time
836 * of the whole CPU time limit.
838 tsk->it_prof_expires =
839 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
842 return 0;
845 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
847 unsigned long new_flags = p->flags;
849 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
850 new_flags |= PF_FORKNOEXEC;
851 if (!(clone_flags & CLONE_PTRACE))
852 p->ptrace = 0;
853 p->flags = new_flags;
856 asmlinkage long sys_set_tid_address(int __user *tidptr)
858 current->clear_child_tid = tidptr;
860 return current->pid;
864 * This creates a new process as a copy of the old one,
865 * but does not actually start it yet.
867 * It copies the registers, and all the appropriate
868 * parts of the process environment (as per the clone
869 * flags). The actual kick-off is left to the caller.
871 static task_t *copy_process(unsigned long clone_flags,
872 unsigned long stack_start,
873 struct pt_regs *regs,
874 unsigned long stack_size,
875 int __user *parent_tidptr,
876 int __user *child_tidptr,
877 int pid)
879 int retval;
880 struct task_struct *p = NULL;
882 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
883 return ERR_PTR(-EINVAL);
886 * Thread groups must share signals as well, and detached threads
887 * can only be started up within the thread group.
889 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
890 return ERR_PTR(-EINVAL);
893 * Shared signal handlers imply shared VM. By way of the above,
894 * thread groups also imply shared VM. Blocking this case allows
895 * for various simplifications in other code.
897 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
898 return ERR_PTR(-EINVAL);
900 retval = security_task_create(clone_flags);
901 if (retval)
902 goto fork_out;
904 retval = -ENOMEM;
905 p = dup_task_struct(current);
906 if (!p)
907 goto fork_out;
909 retval = -EAGAIN;
910 if (atomic_read(&p->user->processes) >=
911 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
912 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
913 p->user != &root_user)
914 goto bad_fork_free;
917 atomic_inc(&p->user->__count);
918 atomic_inc(&p->user->processes);
919 get_group_info(p->group_info);
922 * If multiple threads are within copy_process(), then this check
923 * triggers too late. This doesn't hurt, the check is only there
924 * to stop root fork bombs.
926 if (nr_threads >= max_threads)
927 goto bad_fork_cleanup_count;
929 if (!try_module_get(p->thread_info->exec_domain->module))
930 goto bad_fork_cleanup_count;
932 if (p->binfmt && !try_module_get(p->binfmt->module))
933 goto bad_fork_cleanup_put_domain;
935 p->did_exec = 0;
936 copy_flags(clone_flags, p);
937 p->pid = pid;
938 retval = -EFAULT;
939 if (clone_flags & CLONE_PARENT_SETTID)
940 if (put_user(p->pid, parent_tidptr))
941 goto bad_fork_cleanup;
943 p->proc_dentry = NULL;
945 INIT_LIST_HEAD(&p->children);
946 INIT_LIST_HEAD(&p->sibling);
947 p->vfork_done = NULL;
948 spin_lock_init(&p->alloc_lock);
949 spin_lock_init(&p->proc_lock);
951 clear_tsk_thread_flag(p, TIF_SIGPENDING);
952 init_sigpending(&p->pending);
954 p->utime = cputime_zero;
955 p->stime = cputime_zero;
956 p->sched_time = 0;
957 p->rchar = 0; /* I/O counter: bytes read */
958 p->wchar = 0; /* I/O counter: bytes written */
959 p->syscr = 0; /* I/O counter: read syscalls */
960 p->syscw = 0; /* I/O counter: write syscalls */
961 acct_clear_integrals(p);
963 p->it_virt_expires = cputime_zero;
964 p->it_prof_expires = cputime_zero;
965 p->it_sched_expires = 0;
966 INIT_LIST_HEAD(&p->cpu_timers[0]);
967 INIT_LIST_HEAD(&p->cpu_timers[1]);
968 INIT_LIST_HEAD(&p->cpu_timers[2]);
970 p->lock_depth = -1; /* -1 = no lock */
971 do_posix_clock_monotonic_gettime(&p->start_time);
972 p->security = NULL;
973 p->io_context = NULL;
974 p->io_wait = NULL;
975 p->audit_context = NULL;
976 #ifdef CONFIG_NUMA
977 p->mempolicy = mpol_copy(p->mempolicy);
978 if (IS_ERR(p->mempolicy)) {
979 retval = PTR_ERR(p->mempolicy);
980 p->mempolicy = NULL;
981 goto bad_fork_cleanup;
983 #endif
985 p->tgid = p->pid;
986 if (clone_flags & CLONE_THREAD)
987 p->tgid = current->tgid;
989 if ((retval = security_task_alloc(p)))
990 goto bad_fork_cleanup_policy;
991 if ((retval = audit_alloc(p)))
992 goto bad_fork_cleanup_security;
993 /* copy all the process information */
994 if ((retval = copy_semundo(clone_flags, p)))
995 goto bad_fork_cleanup_audit;
996 if ((retval = copy_files(clone_flags, p)))
997 goto bad_fork_cleanup_semundo;
998 if ((retval = copy_fs(clone_flags, p)))
999 goto bad_fork_cleanup_files;
1000 if ((retval = copy_sighand(clone_flags, p)))
1001 goto bad_fork_cleanup_fs;
1002 if ((retval = copy_signal(clone_flags, p)))
1003 goto bad_fork_cleanup_sighand;
1004 if ((retval = copy_mm(clone_flags, p)))
1005 goto bad_fork_cleanup_signal;
1006 if ((retval = copy_keys(clone_flags, p)))
1007 goto bad_fork_cleanup_mm;
1008 if ((retval = copy_namespace(clone_flags, p)))
1009 goto bad_fork_cleanup_keys;
1010 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1011 if (retval)
1012 goto bad_fork_cleanup_namespace;
1014 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1016 * Clear TID on mm_release()?
1018 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1021 * Syscall tracing should be turned off in the child regardless
1022 * of CLONE_PTRACE.
1024 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1025 #ifdef TIF_SYSCALL_EMU
1026 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1027 #endif
1029 /* Our parent execution domain becomes current domain
1030 These must match for thread signalling to apply */
1032 p->parent_exec_id = p->self_exec_id;
1034 /* ok, now we should be set up.. */
1035 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1036 p->pdeath_signal = 0;
1037 p->exit_state = 0;
1040 * Ok, make it visible to the rest of the system.
1041 * We dont wake it up yet.
1043 p->group_leader = p;
1044 INIT_LIST_HEAD(&p->ptrace_children);
1045 INIT_LIST_HEAD(&p->ptrace_list);
1047 /* Perform scheduler related setup. Assign this task to a CPU. */
1048 sched_fork(p, clone_flags);
1050 /* Need tasklist lock for parent etc handling! */
1051 write_lock_irq(&tasklist_lock);
1054 * The task hasn't been attached yet, so its cpus_allowed mask will
1055 * not be changed, nor will its assigned CPU.
1057 * The cpus_allowed mask of the parent may have changed after it was
1058 * copied first time - so re-copy it here, then check the child's CPU
1059 * to ensure it is on a valid CPU (and if not, just force it back to
1060 * parent's CPU). This avoids alot of nasty races.
1062 p->cpus_allowed = current->cpus_allowed;
1063 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1064 !cpu_online(task_cpu(p))))
1065 set_task_cpu(p, smp_processor_id());
1068 * Check for pending SIGKILL! The new thread should not be allowed
1069 * to slip out of an OOM kill. (or normal SIGKILL.)
1071 if (sigismember(&current->pending.signal, SIGKILL)) {
1072 write_unlock_irq(&tasklist_lock);
1073 retval = -EINTR;
1074 goto bad_fork_cleanup_namespace;
1077 /* CLONE_PARENT re-uses the old parent */
1078 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1079 p->real_parent = current->real_parent;
1080 else
1081 p->real_parent = current;
1082 p->parent = p->real_parent;
1084 if (clone_flags & CLONE_THREAD) {
1085 spin_lock(&current->sighand->siglock);
1087 * Important: if an exit-all has been started then
1088 * do not create this new thread - the whole thread
1089 * group is supposed to exit anyway.
1091 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1092 spin_unlock(&current->sighand->siglock);
1093 write_unlock_irq(&tasklist_lock);
1094 retval = -EAGAIN;
1095 goto bad_fork_cleanup_namespace;
1097 p->group_leader = current->group_leader;
1099 if (current->signal->group_stop_count > 0) {
1101 * There is an all-stop in progress for the group.
1102 * We ourselves will stop as soon as we check signals.
1103 * Make the new thread part of that group stop too.
1105 current->signal->group_stop_count++;
1106 set_tsk_thread_flag(p, TIF_SIGPENDING);
1109 if (!cputime_eq(current->signal->it_virt_expires,
1110 cputime_zero) ||
1111 !cputime_eq(current->signal->it_prof_expires,
1112 cputime_zero) ||
1113 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1114 !list_empty(&current->signal->cpu_timers[0]) ||
1115 !list_empty(&current->signal->cpu_timers[1]) ||
1116 !list_empty(&current->signal->cpu_timers[2])) {
1118 * Have child wake up on its first tick to check
1119 * for process CPU timers.
1121 p->it_prof_expires = jiffies_to_cputime(1);
1124 spin_unlock(&current->sighand->siglock);
1128 * inherit ioprio
1130 p->ioprio = current->ioprio;
1132 SET_LINKS(p);
1133 if (unlikely(p->ptrace & PT_PTRACED))
1134 __ptrace_link(p, current->parent);
1136 cpuset_fork(p);
1138 attach_pid(p, PIDTYPE_PID, p->pid);
1139 attach_pid(p, PIDTYPE_TGID, p->tgid);
1140 if (thread_group_leader(p)) {
1141 attach_pid(p, PIDTYPE_PGID, process_group(p));
1142 attach_pid(p, PIDTYPE_SID, p->signal->session);
1143 if (p->pid)
1144 __get_cpu_var(process_counts)++;
1147 proc_fork_connector(p);
1148 if (!current->signal->tty && p->signal->tty)
1149 p->signal->tty = NULL;
1151 nr_threads++;
1152 total_forks++;
1153 write_unlock_irq(&tasklist_lock);
1154 retval = 0;
1156 fork_out:
1157 if (retval)
1158 return ERR_PTR(retval);
1159 return p;
1161 bad_fork_cleanup_namespace:
1162 exit_namespace(p);
1163 bad_fork_cleanup_keys:
1164 exit_keys(p);
1165 bad_fork_cleanup_mm:
1166 if (p->mm)
1167 mmput(p->mm);
1168 bad_fork_cleanup_signal:
1169 exit_signal(p);
1170 bad_fork_cleanup_sighand:
1171 exit_sighand(p);
1172 bad_fork_cleanup_fs:
1173 exit_fs(p); /* blocking */
1174 bad_fork_cleanup_files:
1175 exit_files(p); /* blocking */
1176 bad_fork_cleanup_semundo:
1177 exit_sem(p);
1178 bad_fork_cleanup_audit:
1179 audit_free(p);
1180 bad_fork_cleanup_security:
1181 security_task_free(p);
1182 bad_fork_cleanup_policy:
1183 #ifdef CONFIG_NUMA
1184 mpol_free(p->mempolicy);
1185 #endif
1186 bad_fork_cleanup:
1187 if (p->binfmt)
1188 module_put(p->binfmt->module);
1189 bad_fork_cleanup_put_domain:
1190 module_put(p->thread_info->exec_domain->module);
1191 bad_fork_cleanup_count:
1192 put_group_info(p->group_info);
1193 atomic_dec(&p->user->processes);
1194 free_uid(p->user);
1195 bad_fork_free:
1196 free_task(p);
1197 goto fork_out;
1200 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1202 memset(regs, 0, sizeof(struct pt_regs));
1203 return regs;
1206 task_t * __devinit fork_idle(int cpu)
1208 task_t *task;
1209 struct pt_regs regs;
1211 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1212 if (!task)
1213 return ERR_PTR(-ENOMEM);
1214 init_idle(task, cpu);
1215 unhash_process(task);
1216 return task;
1219 static inline int fork_traceflag (unsigned clone_flags)
1221 if (clone_flags & CLONE_UNTRACED)
1222 return 0;
1223 else if (clone_flags & CLONE_VFORK) {
1224 if (current->ptrace & PT_TRACE_VFORK)
1225 return PTRACE_EVENT_VFORK;
1226 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1227 if (current->ptrace & PT_TRACE_CLONE)
1228 return PTRACE_EVENT_CLONE;
1229 } else if (current->ptrace & PT_TRACE_FORK)
1230 return PTRACE_EVENT_FORK;
1232 return 0;
1236 * Ok, this is the main fork-routine.
1238 * It copies the process, and if successful kick-starts
1239 * it and waits for it to finish using the VM if required.
1241 long do_fork(unsigned long clone_flags,
1242 unsigned long stack_start,
1243 struct pt_regs *regs,
1244 unsigned long stack_size,
1245 int __user *parent_tidptr,
1246 int __user *child_tidptr)
1248 struct task_struct *p;
1249 int trace = 0;
1250 long pid = alloc_pidmap();
1252 if (pid < 0)
1253 return -EAGAIN;
1254 if (unlikely(current->ptrace)) {
1255 trace = fork_traceflag (clone_flags);
1256 if (trace)
1257 clone_flags |= CLONE_PTRACE;
1260 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1262 * Do this prior waking up the new thread - the thread pointer
1263 * might get invalid after that point, if the thread exits quickly.
1265 if (!IS_ERR(p)) {
1266 struct completion vfork;
1268 if (clone_flags & CLONE_VFORK) {
1269 p->vfork_done = &vfork;
1270 init_completion(&vfork);
1273 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1275 * We'll start up with an immediate SIGSTOP.
1277 sigaddset(&p->pending.signal, SIGSTOP);
1278 set_tsk_thread_flag(p, TIF_SIGPENDING);
1281 if (!(clone_flags & CLONE_STOPPED))
1282 wake_up_new_task(p, clone_flags);
1283 else
1284 p->state = TASK_STOPPED;
1286 if (unlikely (trace)) {
1287 current->ptrace_message = pid;
1288 ptrace_notify ((trace << 8) | SIGTRAP);
1291 if (clone_flags & CLONE_VFORK) {
1292 wait_for_completion(&vfork);
1293 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1294 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1296 } else {
1297 free_pidmap(pid);
1298 pid = PTR_ERR(p);
1300 return pid;
1303 void __init proc_caches_init(void)
1305 sighand_cachep = kmem_cache_create("sighand_cache",
1306 sizeof(struct sighand_struct), 0,
1307 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1308 signal_cachep = kmem_cache_create("signal_cache",
1309 sizeof(struct signal_struct), 0,
1310 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1311 files_cachep = kmem_cache_create("files_cache",
1312 sizeof(struct files_struct), 0,
1313 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1314 fs_cachep = kmem_cache_create("fs_cache",
1315 sizeof(struct fs_struct), 0,
1316 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1317 vm_area_cachep = kmem_cache_create("vm_area_struct",
1318 sizeof(struct vm_area_struct), 0,
1319 SLAB_PANIC, NULL, NULL);
1320 mm_cachep = kmem_cache_create("mm_struct",
1321 sizeof(struct mm_struct), 0,
1322 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);