vt-add-color-support-to-the-underline-and-italic-attributes-fix
[linux-2.6/linux-loongson.git] / kernel / sched.c
bloba3a04085e79407a94a0fa79b8b2da7e77be33185
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <linux/reciprocal_div.h>
57 #include <asm/tlb.h>
58 #include <asm/unistd.h>
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
65 unsigned long long __attribute__((weak)) sched_clock(void)
67 return (unsigned long long)jiffies * (1000000000 / HZ);
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
75 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
84 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
89 * Some helpers for converting nanosecond timing to jiffy resolution
91 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
95 * These are the 'tuning knobs' of the scheduler:
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
101 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102 #define DEF_TIMESLICE (100 * HZ / 1000)
103 #define ON_RUNQUEUE_WEIGHT 30
104 #define CHILD_PENALTY 95
105 #define PARENT_PENALTY 100
106 #define EXIT_WEIGHT 3
107 #define PRIO_BONUS_RATIO 25
108 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109 #define INTERACTIVE_DELTA 2
110 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
112 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
120 * This part scales the interactivity limit depending on niceness.
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
142 #define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
146 #define GRANULARITY (10 * HZ / 1000 ? : 1)
148 #ifdef CONFIG_SMP
149 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152 #else
153 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155 #endif
157 #define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
160 #define DELTA(p) \
161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
164 #define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
167 #define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
171 #define TASK_PREEMPTS_CURR(p, rq) \
172 (((p)->prio < (rq)->curr->prio) && ((p)->array == (rq)->active))
174 #define SCALE_PRIO(x, prio) \
175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
177 static unsigned int static_prio_timeslice(int static_prio)
179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
181 else
182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
185 #ifdef CONFIG_SMP
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
190 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
199 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
204 #endif
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
215 static inline unsigned int task_timeslice(struct task_struct *p)
217 return static_prio_timeslice(p->static_prio);
221 * These are the runqueue data structures:
224 struct prio_array {
225 unsigned int nr_active;
226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
227 struct list_head queue[MAX_PRIO];
231 * This is the main, per-CPU runqueue data structure.
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
237 struct rq {
238 spinlock_t lock;
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
244 unsigned long nr_running;
245 unsigned long raw_weighted_load;
246 #ifdef CONFIG_SMP
247 unsigned long cpu_load[3];
248 unsigned char idle_at_tick;
249 #ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251 #endif
252 #endif
253 unsigned long long nr_switches;
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
261 unsigned long nr_uninterruptible;
263 unsigned long expired_timestamp;
264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
266 struct task_struct *curr, *idle;
267 unsigned long next_balance;
268 struct mm_struct *prev_mm;
269 struct prio_array *active, *expired, arrays[2];
270 int best_expired_prio;
271 atomic_t nr_iowait;
273 #ifdef CONFIG_SMP
274 struct sched_domain *sd;
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
279 int cpu; /* cpu of this runqueue */
281 struct task_struct *migration_thread;
282 struct list_head migration_queue;
283 #endif
285 #ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303 #endif
304 struct lock_class_key rq_lock_key;
307 static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
309 static inline int cpu_of(struct rq *rq)
311 #ifdef CONFIG_SMP
312 return rq->cpu;
313 #else
314 return 0;
315 #endif
319 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
320 * See detach_destroy_domains: synchronize_sched for details.
322 * The domain tree of any CPU may only be accessed from within
323 * preempt-disabled sections.
325 #define for_each_domain(cpu, __sd) \
326 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
328 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
329 #define this_rq() (&__get_cpu_var(runqueues))
330 #define task_rq(p) cpu_rq(task_cpu(p))
331 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
333 #ifndef prepare_arch_switch
334 # define prepare_arch_switch(next) do { } while (0)
335 #endif
336 #ifndef finish_arch_switch
337 # define finish_arch_switch(prev) do { } while (0)
338 #endif
340 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
341 static inline int task_running(struct rq *rq, struct task_struct *p)
343 return rq->curr == p;
346 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
350 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
352 #ifdef CONFIG_DEBUG_SPINLOCK
353 /* this is a valid case when another task releases the spinlock */
354 rq->lock.owner = current;
355 #endif
357 * If we are tracking spinlock dependencies then we have to
358 * fix up the runqueue lock - which gets 'carried over' from
359 * prev into current:
361 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
363 spin_unlock_irq(&rq->lock);
366 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
367 static inline int task_running(struct rq *rq, struct task_struct *p)
369 #ifdef CONFIG_SMP
370 return p->oncpu;
371 #else
372 return rq->curr == p;
373 #endif
376 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
378 #ifdef CONFIG_SMP
380 * We can optimise this out completely for !SMP, because the
381 * SMP rebalancing from interrupt is the only thing that cares
382 * here.
384 next->oncpu = 1;
385 #endif
386 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
387 spin_unlock_irq(&rq->lock);
388 #else
389 spin_unlock(&rq->lock);
390 #endif
393 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
395 #ifdef CONFIG_SMP
397 * After ->oncpu is cleared, the task can be moved to a different CPU.
398 * We must ensure this doesn't happen until the switch is completely
399 * finished.
401 smp_wmb();
402 prev->oncpu = 0;
403 #endif
404 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
405 local_irq_enable();
406 #endif
408 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
411 * __task_rq_lock - lock the runqueue a given task resides on.
412 * Must be called interrupts disabled.
414 static inline struct rq *__task_rq_lock(struct task_struct *p)
415 __acquires(rq->lock)
417 struct rq *rq;
419 repeat_lock_task:
420 rq = task_rq(p);
421 spin_lock(&rq->lock);
422 if (unlikely(rq != task_rq(p))) {
423 spin_unlock(&rq->lock);
424 goto repeat_lock_task;
426 return rq;
430 * task_rq_lock - lock the runqueue a given task resides on and disable
431 * interrupts. Note the ordering: we can safely lookup the task_rq without
432 * explicitly disabling preemption.
434 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
435 __acquires(rq->lock)
437 struct rq *rq;
439 repeat_lock_task:
440 local_irq_save(*flags);
441 rq = task_rq(p);
442 spin_lock(&rq->lock);
443 if (unlikely(rq != task_rq(p))) {
444 spin_unlock_irqrestore(&rq->lock, *flags);
445 goto repeat_lock_task;
447 return rq;
450 static inline void __task_rq_unlock(struct rq *rq)
451 __releases(rq->lock)
453 spin_unlock(&rq->lock);
456 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
457 __releases(rq->lock)
459 spin_unlock_irqrestore(&rq->lock, *flags);
462 #ifdef CONFIG_SCHEDSTATS
464 * bump this up when changing the output format or the meaning of an existing
465 * format, so that tools can adapt (or abort)
467 #define SCHEDSTAT_VERSION 14
469 static int show_schedstat(struct seq_file *seq, void *v)
471 int cpu;
473 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
474 seq_printf(seq, "timestamp %lu\n", jiffies);
475 for_each_online_cpu(cpu) {
476 struct rq *rq = cpu_rq(cpu);
477 #ifdef CONFIG_SMP
478 struct sched_domain *sd;
479 int dcnt = 0;
480 #endif
482 /* runqueue-specific stats */
483 seq_printf(seq,
484 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
485 cpu, rq->yld_both_empty,
486 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
487 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
488 rq->ttwu_cnt, rq->ttwu_local,
489 rq->rq_sched_info.cpu_time,
490 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
492 seq_printf(seq, "\n");
494 #ifdef CONFIG_SMP
495 /* domain-specific stats */
496 preempt_disable();
497 for_each_domain(cpu, sd) {
498 enum idle_type itype;
499 char mask_str[NR_CPUS];
501 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
502 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
503 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
504 itype++) {
505 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
506 "%lu",
507 sd->lb_cnt[itype],
508 sd->lb_balanced[itype],
509 sd->lb_failed[itype],
510 sd->lb_imbalance[itype],
511 sd->lb_gained[itype],
512 sd->lb_hot_gained[itype],
513 sd->lb_nobusyq[itype],
514 sd->lb_nobusyg[itype]);
516 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
517 " %lu %lu %lu\n",
518 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
519 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
520 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
521 sd->ttwu_wake_remote, sd->ttwu_move_affine,
522 sd->ttwu_move_balance);
524 preempt_enable();
525 #endif
527 return 0;
530 static int schedstat_open(struct inode *inode, struct file *file)
532 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
533 char *buf = kmalloc(size, GFP_KERNEL);
534 struct seq_file *m;
535 int res;
537 if (!buf)
538 return -ENOMEM;
539 res = single_open(file, show_schedstat, NULL);
540 if (!res) {
541 m = file->private_data;
542 m->buf = buf;
543 m->size = size;
544 } else
545 kfree(buf);
546 return res;
549 const struct file_operations proc_schedstat_operations = {
550 .open = schedstat_open,
551 .read = seq_read,
552 .llseek = seq_lseek,
553 .release = single_release,
557 * Expects runqueue lock to be held for atomicity of update
559 static inline void
560 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
562 if (rq) {
563 rq->rq_sched_info.run_delay += delta_jiffies;
564 rq->rq_sched_info.pcnt++;
569 * Expects runqueue lock to be held for atomicity of update
571 static inline void
572 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
574 if (rq)
575 rq->rq_sched_info.cpu_time += delta_jiffies;
577 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
578 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
579 #else /* !CONFIG_SCHEDSTATS */
580 static inline void
581 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
583 static inline void
584 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
586 # define schedstat_inc(rq, field) do { } while (0)
587 # define schedstat_add(rq, field, amt) do { } while (0)
588 #endif
591 * this_rq_lock - lock this runqueue and disable interrupts.
593 static inline struct rq *this_rq_lock(void)
594 __acquires(rq->lock)
596 struct rq *rq;
598 local_irq_disable();
599 rq = this_rq();
600 spin_lock(&rq->lock);
602 return rq;
605 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
607 * Called when a process is dequeued from the active array and given
608 * the cpu. We should note that with the exception of interactive
609 * tasks, the expired queue will become the active queue after the active
610 * queue is empty, without explicitly dequeuing and requeuing tasks in the
611 * expired queue. (Interactive tasks may be requeued directly to the
612 * active queue, thus delaying tasks in the expired queue from running;
613 * see scheduler_tick()).
615 * This function is only called from sched_info_arrive(), rather than
616 * dequeue_task(). Even though a task may be queued and dequeued multiple
617 * times as it is shuffled about, we're really interested in knowing how
618 * long it was from the *first* time it was queued to the time that it
619 * finally hit a cpu.
621 static inline void sched_info_dequeued(struct task_struct *t)
623 t->sched_info.last_queued = 0;
627 * Called when a task finally hits the cpu. We can now calculate how
628 * long it was waiting to run. We also note when it began so that we
629 * can keep stats on how long its timeslice is.
631 static void sched_info_arrive(struct task_struct *t)
633 unsigned long now = jiffies, delta_jiffies = 0;
635 if (t->sched_info.last_queued)
636 delta_jiffies = now - t->sched_info.last_queued;
637 sched_info_dequeued(t);
638 t->sched_info.run_delay += delta_jiffies;
639 t->sched_info.last_arrival = now;
640 t->sched_info.pcnt++;
642 rq_sched_info_arrive(task_rq(t), delta_jiffies);
646 * Called when a process is queued into either the active or expired
647 * array. The time is noted and later used to determine how long we
648 * had to wait for us to reach the cpu. Since the expired queue will
649 * become the active queue after active queue is empty, without dequeuing
650 * and requeuing any tasks, we are interested in queuing to either. It
651 * is unusual but not impossible for tasks to be dequeued and immediately
652 * requeued in the same or another array: this can happen in sched_yield(),
653 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
654 * to runqueue.
656 * This function is only called from enqueue_task(), but also only updates
657 * the timestamp if it is already not set. It's assumed that
658 * sched_info_dequeued() will clear that stamp when appropriate.
660 static inline void sched_info_queued(struct task_struct *t)
662 if (unlikely(sched_info_on()))
663 if (!t->sched_info.last_queued)
664 t->sched_info.last_queued = jiffies;
668 * Called when a process ceases being the active-running process, either
669 * voluntarily or involuntarily. Now we can calculate how long we ran.
671 static inline void sched_info_depart(struct task_struct *t)
673 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
675 t->sched_info.cpu_time += delta_jiffies;
676 rq_sched_info_depart(task_rq(t), delta_jiffies);
680 * Called when tasks are switched involuntarily due, typically, to expiring
681 * their time slice. (This may also be called when switching to or from
682 * the idle task.) We are only called when prev != next.
684 static inline void
685 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
687 struct rq *rq = task_rq(prev);
690 * prev now departs the cpu. It's not interesting to record
691 * stats about how efficient we were at scheduling the idle
692 * process, however.
694 if (prev != rq->idle)
695 sched_info_depart(prev);
697 if (next != rq->idle)
698 sched_info_arrive(next);
700 static inline void
701 sched_info_switch(struct task_struct *prev, struct task_struct *next)
703 if (unlikely(sched_info_on()))
704 __sched_info_switch(prev, next);
706 #else
707 #define sched_info_queued(t) do { } while (0)
708 #define sched_info_switch(t, next) do { } while (0)
709 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
712 * Adding/removing a task to/from a priority array:
714 static void dequeue_task(struct task_struct *p, struct prio_array *array)
716 array->nr_active--;
717 list_del(&p->run_list);
718 if (list_empty(array->queue + p->prio))
719 __clear_bit(p->prio, array->bitmap);
722 static void enqueue_task(struct task_struct *p, struct prio_array *array)
724 sched_info_queued(p);
725 list_add_tail(&p->run_list, array->queue + p->prio);
726 __set_bit(p->prio, array->bitmap);
727 array->nr_active++;
728 p->array = array;
732 * Put task to the end of the run list without the overhead of dequeue
733 * followed by enqueue.
735 static void requeue_task(struct task_struct *p, struct prio_array *array)
737 list_move_tail(&p->run_list, array->queue + p->prio);
740 static inline void
741 enqueue_task_head(struct task_struct *p, struct prio_array *array)
743 list_add(&p->run_list, array->queue + p->prio);
744 __set_bit(p->prio, array->bitmap);
745 array->nr_active++;
746 p->array = array;
750 * __normal_prio - return the priority that is based on the static
751 * priority but is modified by bonuses/penalties.
753 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
754 * into the -5 ... 0 ... +5 bonus/penalty range.
756 * We use 25% of the full 0...39 priority range so that:
758 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
759 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
761 * Both properties are important to certain workloads.
764 static inline int __normal_prio(struct task_struct *p)
766 int bonus, prio;
768 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
770 prio = p->static_prio - bonus;
771 if (prio < MAX_RT_PRIO)
772 prio = MAX_RT_PRIO;
773 if (prio > MAX_PRIO-1)
774 prio = MAX_PRIO-1;
775 return prio;
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
788 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
789 * If static_prio_timeslice() is ever changed to break this assumption then
790 * this code will need modification
792 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
793 #define LOAD_WEIGHT(lp) \
794 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
795 #define PRIO_TO_LOAD_WEIGHT(prio) \
796 LOAD_WEIGHT(static_prio_timeslice(prio))
797 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
798 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
800 static void set_load_weight(struct task_struct *p)
802 if (has_rt_policy(p)) {
803 #ifdef CONFIG_SMP
804 if (p == task_rq(p)->migration_thread)
806 * The migration thread does the actual balancing.
807 * Giving its load any weight will skew balancing
808 * adversely.
810 p->load_weight = 0;
811 else
812 #endif
813 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
814 } else
815 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
818 static inline void
819 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
821 rq->raw_weighted_load += p->load_weight;
824 static inline void
825 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
827 rq->raw_weighted_load -= p->load_weight;
830 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
832 rq->nr_running++;
833 inc_raw_weighted_load(rq, p);
836 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
838 rq->nr_running--;
839 dec_raw_weighted_load(rq, p);
843 * Calculate the expected normal priority: i.e. priority
844 * without taking RT-inheritance into account. Might be
845 * boosted by interactivity modifiers. Changes upon fork,
846 * setprio syscalls, and whenever the interactivity
847 * estimator recalculates.
849 static inline int normal_prio(struct task_struct *p)
851 int prio;
853 if (has_rt_policy(p))
854 prio = MAX_RT_PRIO-1 - p->rt_priority;
855 else
856 prio = __normal_prio(p);
857 return prio;
861 * Calculate the current priority, i.e. the priority
862 * taken into account by the scheduler. This value might
863 * be boosted by RT tasks, or might be boosted by
864 * interactivity modifiers. Will be RT if the task got
865 * RT-boosted. If not then it returns p->normal_prio.
867 static int effective_prio(struct task_struct *p)
869 p->normal_prio = normal_prio(p);
871 * If we are RT tasks or we were boosted to RT priority,
872 * keep the priority unchanged. Otherwise, update priority
873 * to the normal priority:
875 if (!rt_prio(p->prio))
876 return p->normal_prio;
877 return p->prio;
881 * __activate_task - move a task to the runqueue.
883 static void __activate_task(struct task_struct *p, struct rq *rq)
885 struct prio_array *target = rq->active;
887 if (batch_task(p))
888 target = rq->expired;
889 enqueue_task(p, target);
890 inc_nr_running(p, rq);
894 * __activate_idle_task - move idle task to the _front_ of runqueue.
896 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
898 enqueue_task_head(p, rq->active);
899 inc_nr_running(p, rq);
903 * Recalculate p->normal_prio and p->prio after having slept,
904 * updating the sleep-average too:
906 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
908 /* Caller must always ensure 'now >= p->timestamp' */
909 unsigned long sleep_time = now - p->timestamp;
911 if (batch_task(p))
912 sleep_time = 0;
914 if (likely(sleep_time > 0)) {
916 * This ceiling is set to the lowest priority that would allow
917 * a task to be reinserted into the active array on timeslice
918 * completion.
920 unsigned long ceiling = INTERACTIVE_SLEEP(p);
922 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
924 * Prevents user tasks from achieving best priority
925 * with one single large enough sleep.
927 p->sleep_avg = ceiling;
929 * Using INTERACTIVE_SLEEP() as a ceiling places a
930 * nice(0) task 1ms sleep away from promotion, and
931 * gives it 700ms to round-robin with no chance of
932 * being demoted. This is more than generous, so
933 * mark this sleep as non-interactive to prevent the
934 * on-runqueue bonus logic from intervening should
935 * this task not receive cpu immediately.
937 p->sleep_type = SLEEP_NONINTERACTIVE;
938 } else {
940 * Tasks waking from uninterruptible sleep are
941 * limited in their sleep_avg rise as they
942 * are likely to be waiting on I/O
944 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
945 if (p->sleep_avg >= ceiling)
946 sleep_time = 0;
947 else if (p->sleep_avg + sleep_time >=
948 ceiling) {
949 p->sleep_avg = ceiling;
950 sleep_time = 0;
955 * This code gives a bonus to interactive tasks.
957 * The boost works by updating the 'average sleep time'
958 * value here, based on ->timestamp. The more time a
959 * task spends sleeping, the higher the average gets -
960 * and the higher the priority boost gets as well.
962 p->sleep_avg += sleep_time;
965 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
966 p->sleep_avg = NS_MAX_SLEEP_AVG;
969 return effective_prio(p);
973 * activate_task - move a task to the runqueue and do priority recalculation
975 * Update all the scheduling statistics stuff. (sleep average
976 * calculation, priority modifiers, etc.)
978 static void activate_task(struct task_struct *p, struct rq *rq, int local)
980 unsigned long long now;
982 if (rt_task(p))
983 goto out;
985 now = sched_clock();
986 #ifdef CONFIG_SMP
987 if (!local) {
988 /* Compensate for drifting sched_clock */
989 struct rq *this_rq = this_rq();
990 now = (now - this_rq->most_recent_timestamp)
991 + rq->most_recent_timestamp;
993 #endif
996 * Sleep time is in units of nanosecs, so shift by 20 to get a
997 * milliseconds-range estimation of the amount of time that the task
998 * spent sleeping:
1000 if (unlikely(prof_on == SLEEP_PROFILING)) {
1001 if (p->state == TASK_UNINTERRUPTIBLE)
1002 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1003 (now - p->timestamp) >> 20);
1006 p->prio = recalc_task_prio(p, now);
1009 * This checks to make sure it's not an uninterruptible task
1010 * that is now waking up.
1012 if (p->sleep_type == SLEEP_NORMAL) {
1014 * Tasks which were woken up by interrupts (ie. hw events)
1015 * are most likely of interactive nature. So we give them
1016 * the credit of extending their sleep time to the period
1017 * of time they spend on the runqueue, waiting for execution
1018 * on a CPU, first time around:
1020 if (in_interrupt())
1021 p->sleep_type = SLEEP_INTERRUPTED;
1022 else {
1024 * Normal first-time wakeups get a credit too for
1025 * on-runqueue time, but it will be weighted down:
1027 p->sleep_type = SLEEP_INTERACTIVE;
1030 p->timestamp = now;
1031 out:
1032 __activate_task(p, rq);
1036 * deactivate_task - remove a task from the runqueue.
1038 static void deactivate_task(struct task_struct *p, struct rq *rq)
1040 dec_nr_running(p, rq);
1041 dequeue_task(p, p->array);
1042 p->array = NULL;
1046 * resched_task - mark a task 'to be rescheduled now'.
1048 * On UP this means the setting of the need_resched flag, on SMP it
1049 * might also involve a cross-CPU call to trigger the scheduler on
1050 * the target CPU.
1052 #ifdef CONFIG_SMP
1054 #ifndef tsk_is_polling
1055 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1056 #endif
1058 static void resched_task(struct task_struct *p)
1060 int cpu;
1062 assert_spin_locked(&task_rq(p)->lock);
1064 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1065 return;
1067 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1069 cpu = task_cpu(p);
1070 if (cpu == smp_processor_id())
1071 return;
1073 /* NEED_RESCHED must be visible before we test polling */
1074 smp_mb();
1075 if (!tsk_is_polling(p))
1076 smp_send_reschedule(cpu);
1079 static void resched_cpu(int cpu)
1081 struct rq *rq = cpu_rq(cpu);
1082 unsigned long flags;
1084 if (!spin_trylock_irqsave(&rq->lock, flags))
1085 return;
1086 resched_task(cpu_curr(cpu));
1087 spin_unlock_irqrestore(&rq->lock, flags);
1089 #else
1090 static inline void resched_task(struct task_struct *p)
1092 assert_spin_locked(&task_rq(p)->lock);
1093 set_tsk_need_resched(p);
1095 #endif
1098 * task_curr - is this task currently executing on a CPU?
1099 * @p: the task in question.
1101 inline int task_curr(const struct task_struct *p)
1103 return cpu_curr(task_cpu(p)) == p;
1106 /* Used instead of source_load when we know the type == 0 */
1107 unsigned long weighted_cpuload(const int cpu)
1109 return cpu_rq(cpu)->raw_weighted_load;
1112 #ifdef CONFIG_SMP
1113 struct migration_req {
1114 struct list_head list;
1116 struct task_struct *task;
1117 int dest_cpu;
1119 struct completion done;
1123 * The task's runqueue lock must be held.
1124 * Returns true if you have to wait for migration thread.
1126 static int
1127 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1129 struct rq *rq = task_rq(p);
1132 * If the task is not on a runqueue (and not running), then
1133 * it is sufficient to simply update the task's cpu field.
1135 if (!p->array && !task_running(rq, p)) {
1136 set_task_cpu(p, dest_cpu);
1137 return 0;
1140 init_completion(&req->done);
1141 req->task = p;
1142 req->dest_cpu = dest_cpu;
1143 list_add(&req->list, &rq->migration_queue);
1145 return 1;
1149 * wait_task_inactive - wait for a thread to unschedule.
1151 * The caller must ensure that the task *will* unschedule sometime soon,
1152 * else this function might spin for a *long* time. This function can't
1153 * be called with interrupts off, or it may introduce deadlock with
1154 * smp_call_function() if an IPI is sent by the same process we are
1155 * waiting to become inactive.
1157 void wait_task_inactive(struct task_struct *p)
1159 unsigned long flags;
1160 struct rq *rq;
1161 int preempted;
1163 repeat:
1164 rq = task_rq_lock(p, &flags);
1165 /* Must be off runqueue entirely, not preempted. */
1166 if (unlikely(p->array || task_running(rq, p))) {
1167 /* If it's preempted, we yield. It could be a while. */
1168 preempted = !task_running(rq, p);
1169 task_rq_unlock(rq, &flags);
1170 cpu_relax();
1171 if (preempted)
1172 yield();
1173 goto repeat;
1175 task_rq_unlock(rq, &flags);
1178 /***
1179 * kick_process - kick a running thread to enter/exit the kernel
1180 * @p: the to-be-kicked thread
1182 * Cause a process which is running on another CPU to enter
1183 * kernel-mode, without any delay. (to get signals handled.)
1185 * NOTE: this function doesnt have to take the runqueue lock,
1186 * because all it wants to ensure is that the remote task enters
1187 * the kernel. If the IPI races and the task has been migrated
1188 * to another CPU then no harm is done and the purpose has been
1189 * achieved as well.
1191 void kick_process(struct task_struct *p)
1193 int cpu;
1195 preempt_disable();
1196 cpu = task_cpu(p);
1197 if ((cpu != smp_processor_id()) && task_curr(p))
1198 smp_send_reschedule(cpu);
1199 preempt_enable();
1203 * Return a low guess at the load of a migration-source cpu weighted
1204 * according to the scheduling class and "nice" value.
1206 * We want to under-estimate the load of migration sources, to
1207 * balance conservatively.
1209 static inline unsigned long source_load(int cpu, int type)
1211 struct rq *rq = cpu_rq(cpu);
1213 if (type == 0)
1214 return rq->raw_weighted_load;
1216 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1220 * Return a high guess at the load of a migration-target cpu weighted
1221 * according to the scheduling class and "nice" value.
1223 static inline unsigned long target_load(int cpu, int type)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (type == 0)
1228 return rq->raw_weighted_load;
1230 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1234 * Return the average load per task on the cpu's run queue
1236 static inline unsigned long cpu_avg_load_per_task(int cpu)
1238 struct rq *rq = cpu_rq(cpu);
1239 unsigned long n = rq->nr_running;
1241 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1245 * find_idlest_group finds and returns the least busy CPU group within the
1246 * domain.
1248 static struct sched_group *
1249 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int load_idx = sd->forkexec_idx;
1254 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256 do {
1257 unsigned long load, avg_load;
1258 int local_group;
1259 int i;
1261 /* Skip over this group if it has no CPUs allowed */
1262 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1263 goto nextgroup;
1265 local_group = cpu_isset(this_cpu, group->cpumask);
1267 /* Tally up the load of all CPUs in the group */
1268 avg_load = 0;
1270 for_each_cpu_mask(i, group->cpumask) {
1271 /* Bias balancing toward cpus of our domain */
1272 if (local_group)
1273 load = source_load(i, load_idx);
1274 else
1275 load = target_load(i, load_idx);
1277 avg_load += load;
1280 /* Adjust by relative CPU power of the group */
1281 avg_load = sg_div_cpu_power(group,
1282 avg_load * SCHED_LOAD_SCALE);
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1291 nextgroup:
1292 group = group->next;
1293 } while (group != sd->groups);
1295 if (!idlest || 100*this_load < imbalance*min_load)
1296 return NULL;
1297 return idlest;
1301 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1303 static int
1304 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1306 cpumask_t tmp;
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1311 /* Traverse only the allowed CPUs */
1312 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1314 for_each_cpu_mask(i, tmp) {
1315 load = weighted_cpuload(i);
1317 if (load < min_load || (load == min_load && i == this_cpu)) {
1318 min_load = load;
1319 idlest = i;
1323 return idlest;
1327 * sched_balance_self: balance the current task (running on cpu) in domains
1328 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1329 * SD_BALANCE_EXEC.
1331 * Balance, ie. select the least loaded group.
1333 * Returns the target CPU number, or the same CPU if no balancing is needed.
1335 * preempt must be disabled.
1337 static int sched_balance_self(int cpu, int flag)
1339 struct task_struct *t = current;
1340 struct sched_domain *tmp, *sd = NULL;
1342 for_each_domain(cpu, tmp) {
1344 * If power savings logic is enabled for a domain, stop there.
1346 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1347 break;
1348 if (tmp->flags & flag)
1349 sd = tmp;
1352 while (sd) {
1353 cpumask_t span;
1354 struct sched_group *group;
1355 int new_cpu, weight;
1357 if (!(sd->flags & flag)) {
1358 sd = sd->child;
1359 continue;
1362 span = sd->span;
1363 group = find_idlest_group(sd, t, cpu);
1364 if (!group) {
1365 sd = sd->child;
1366 continue;
1369 new_cpu = find_idlest_cpu(group, t, cpu);
1370 if (new_cpu == -1 || new_cpu == cpu) {
1371 /* Now try balancing at a lower domain level of cpu */
1372 sd = sd->child;
1373 continue;
1376 /* Now try balancing at a lower domain level of new_cpu */
1377 cpu = new_cpu;
1378 sd = NULL;
1379 weight = cpus_weight(span);
1380 for_each_domain(cpu, tmp) {
1381 if (weight <= cpus_weight(tmp->span))
1382 break;
1383 if (tmp->flags & flag)
1384 sd = tmp;
1386 /* while loop will break here if sd == NULL */
1389 return cpu;
1392 #endif /* CONFIG_SMP */
1395 * wake_idle() will wake a task on an idle cpu if task->cpu is
1396 * not idle and an idle cpu is available. The span of cpus to
1397 * search starts with cpus closest then further out as needed,
1398 * so we always favor a closer, idle cpu.
1400 * Returns the CPU we should wake onto.
1402 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1403 static int wake_idle(int cpu, struct task_struct *p)
1405 cpumask_t tmp;
1406 struct sched_domain *sd;
1407 int i;
1410 * If it is idle, then it is the best cpu to run this task.
1412 * This cpu is also the best, if it has more than one task already.
1413 * Siblings must be also busy(in most cases) as they didn't already
1414 * pickup the extra load from this cpu and hence we need not check
1415 * sibling runqueue info. This will avoid the checks and cache miss
1416 * penalities associated with that.
1418 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1419 return cpu;
1421 for_each_domain(cpu, sd) {
1422 if (sd->flags & SD_WAKE_IDLE) {
1423 cpus_and(tmp, sd->span, p->cpus_allowed);
1424 for_each_cpu_mask(i, tmp) {
1425 if (idle_cpu(i))
1426 return i;
1429 else
1430 break;
1432 return cpu;
1434 #else
1435 static inline int wake_idle(int cpu, struct task_struct *p)
1437 return cpu;
1439 #endif
1441 /***
1442 * try_to_wake_up - wake up a thread
1443 * @p: the to-be-woken-up thread
1444 * @state: the mask of task states that can be woken
1445 * @sync: do a synchronous wakeup?
1447 * Put it on the run-queue if it's not already there. The "current"
1448 * thread is always on the run-queue (except when the actual
1449 * re-schedule is in progress), and as such you're allowed to do
1450 * the simpler "current->state = TASK_RUNNING" to mark yourself
1451 * runnable without the overhead of this.
1453 * returns failure only if the task is already active.
1455 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1457 int cpu, this_cpu, success = 0;
1458 unsigned long flags;
1459 long old_state;
1460 struct rq *rq;
1461 #ifdef CONFIG_SMP
1462 struct sched_domain *sd, *this_sd = NULL;
1463 unsigned long load, this_load;
1464 int new_cpu;
1465 #endif
1467 rq = task_rq_lock(p, &flags);
1468 old_state = p->state;
1469 if (!(old_state & state))
1470 goto out;
1472 if (p->array)
1473 goto out_running;
1475 cpu = task_cpu(p);
1476 this_cpu = smp_processor_id();
1478 #ifdef CONFIG_SMP
1479 if (unlikely(task_running(rq, p)))
1480 goto out_activate;
1482 new_cpu = cpu;
1484 schedstat_inc(rq, ttwu_cnt);
1485 if (cpu == this_cpu) {
1486 schedstat_inc(rq, ttwu_local);
1487 goto out_set_cpu;
1490 for_each_domain(this_cpu, sd) {
1491 if (cpu_isset(cpu, sd->span)) {
1492 schedstat_inc(sd, ttwu_wake_remote);
1493 this_sd = sd;
1494 break;
1498 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1499 goto out_set_cpu;
1502 * Check for affine wakeup and passive balancing possibilities.
1504 if (this_sd) {
1505 int idx = this_sd->wake_idx;
1506 unsigned int imbalance;
1508 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1510 load = source_load(cpu, idx);
1511 this_load = target_load(this_cpu, idx);
1513 new_cpu = this_cpu; /* Wake to this CPU if we can */
1515 if (this_sd->flags & SD_WAKE_AFFINE) {
1516 unsigned long tl = this_load;
1517 unsigned long tl_per_task;
1519 tl_per_task = cpu_avg_load_per_task(this_cpu);
1522 * If sync wakeup then subtract the (maximum possible)
1523 * effect of the currently running task from the load
1524 * of the current CPU:
1526 if (sync)
1527 tl -= current->load_weight;
1529 if ((tl <= load &&
1530 tl + target_load(cpu, idx) <= tl_per_task) ||
1531 100*(tl + p->load_weight) <= imbalance*load) {
1533 * This domain has SD_WAKE_AFFINE and
1534 * p is cache cold in this domain, and
1535 * there is no bad imbalance.
1537 schedstat_inc(this_sd, ttwu_move_affine);
1538 goto out_set_cpu;
1543 * Start passive balancing when half the imbalance_pct
1544 * limit is reached.
1546 if (this_sd->flags & SD_WAKE_BALANCE) {
1547 if (imbalance*this_load <= 100*load) {
1548 schedstat_inc(this_sd, ttwu_move_balance);
1549 goto out_set_cpu;
1554 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1555 out_set_cpu:
1556 new_cpu = wake_idle(new_cpu, p);
1557 if (new_cpu != cpu) {
1558 set_task_cpu(p, new_cpu);
1559 task_rq_unlock(rq, &flags);
1560 /* might preempt at this point */
1561 rq = task_rq_lock(p, &flags);
1562 old_state = p->state;
1563 if (!(old_state & state))
1564 goto out;
1565 if (p->array)
1566 goto out_running;
1568 this_cpu = smp_processor_id();
1569 cpu = task_cpu(p);
1572 out_activate:
1573 #endif /* CONFIG_SMP */
1574 if (old_state == TASK_UNINTERRUPTIBLE) {
1575 rq->nr_uninterruptible--;
1577 * Tasks on involuntary sleep don't earn
1578 * sleep_avg beyond just interactive state.
1580 p->sleep_type = SLEEP_NONINTERACTIVE;
1581 } else
1584 * Tasks that have marked their sleep as noninteractive get
1585 * woken up with their sleep average not weighted in an
1586 * interactive way.
1588 if (old_state & TASK_NONINTERACTIVE)
1589 p->sleep_type = SLEEP_NONINTERACTIVE;
1592 activate_task(p, rq, cpu == this_cpu);
1594 * Sync wakeups (i.e. those types of wakeups where the waker
1595 * has indicated that it will leave the CPU in short order)
1596 * don't trigger a preemption, if the woken up task will run on
1597 * this cpu. (in this case the 'I will reschedule' promise of
1598 * the waker guarantees that the freshly woken up task is going
1599 * to be considered on this CPU.)
1601 if (!sync || cpu != this_cpu) {
1602 if (TASK_PREEMPTS_CURR(p, rq))
1603 resched_task(rq->curr);
1605 success = 1;
1607 out_running:
1608 p->state = TASK_RUNNING;
1609 out:
1610 task_rq_unlock(rq, &flags);
1612 return success;
1615 int fastcall wake_up_process(struct task_struct *p)
1617 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1618 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1620 EXPORT_SYMBOL(wake_up_process);
1622 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1624 return try_to_wake_up(p, state, 0);
1627 static void task_running_tick(struct rq *rq, struct task_struct *p);
1629 * Perform scheduler related setup for a newly forked process p.
1630 * p is forked by current.
1632 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1634 int cpu = get_cpu();
1636 #ifdef CONFIG_SMP
1637 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1638 #endif
1639 set_task_cpu(p, cpu);
1642 * We mark the process as running here, but have not actually
1643 * inserted it onto the runqueue yet. This guarantees that
1644 * nobody will actually run it, and a signal or other external
1645 * event cannot wake it up and insert it on the runqueue either.
1647 p->state = TASK_RUNNING;
1650 * Make sure we do not leak PI boosting priority to the child:
1652 p->prio = current->normal_prio;
1654 INIT_LIST_HEAD(&p->run_list);
1655 p->array = NULL;
1656 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1657 if (unlikely(sched_info_on()))
1658 memset(&p->sched_info, 0, sizeof(p->sched_info));
1659 #endif
1660 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1661 p->oncpu = 0;
1662 #endif
1663 #ifdef CONFIG_PREEMPT
1664 /* Want to start with kernel preemption disabled. */
1665 task_thread_info(p)->preempt_count = 1;
1666 #endif
1668 * Share the timeslice between parent and child, thus the
1669 * total amount of pending timeslices in the system doesn't change,
1670 * resulting in more scheduling fairness.
1672 local_irq_disable();
1673 p->time_slice = (current->time_slice + 1) >> 1;
1675 * The remainder of the first timeslice might be recovered by
1676 * the parent if the child exits early enough.
1678 p->first_time_slice = 1;
1679 current->time_slice >>= 1;
1680 p->timestamp = sched_clock();
1681 if (unlikely(!current->time_slice)) {
1683 * This case is rare, it happens when the parent has only
1684 * a single jiffy left from its timeslice. Taking the
1685 * runqueue lock is not a problem.
1687 current->time_slice = 1;
1688 task_running_tick(cpu_rq(cpu), current);
1690 local_irq_enable();
1691 put_cpu();
1695 * wake_up_new_task - wake up a newly created task for the first time.
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1701 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1703 struct rq *rq, *this_rq;
1704 unsigned long flags;
1705 int this_cpu, cpu;
1707 rq = task_rq_lock(p, &flags);
1708 BUG_ON(p->state != TASK_RUNNING);
1709 this_cpu = smp_processor_id();
1710 cpu = task_cpu(p);
1713 * We decrease the sleep average of forking parents
1714 * and children as well, to keep max-interactive tasks
1715 * from forking tasks that are max-interactive. The parent
1716 * (current) is done further down, under its lock.
1718 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1719 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1721 p->prio = effective_prio(p);
1723 if (likely(cpu == this_cpu)) {
1724 if (!(clone_flags & CLONE_VM)) {
1726 * The VM isn't cloned, so we're in a good position to
1727 * do child-runs-first in anticipation of an exec. This
1728 * usually avoids a lot of COW overhead.
1730 if (unlikely(!current->array))
1731 __activate_task(p, rq);
1732 else {
1733 p->prio = current->prio;
1734 p->normal_prio = current->normal_prio;
1735 list_add_tail(&p->run_list, &current->run_list);
1736 p->array = current->array;
1737 p->array->nr_active++;
1738 inc_nr_running(p, rq);
1740 set_need_resched();
1741 } else
1742 /* Run child last */
1743 __activate_task(p, rq);
1745 * We skip the following code due to cpu == this_cpu
1747 * task_rq_unlock(rq, &flags);
1748 * this_rq = task_rq_lock(current, &flags);
1750 this_rq = rq;
1751 } else {
1752 this_rq = cpu_rq(this_cpu);
1755 * Not the local CPU - must adjust timestamp. This should
1756 * get optimised away in the !CONFIG_SMP case.
1758 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1759 + rq->most_recent_timestamp;
1760 __activate_task(p, rq);
1761 if (TASK_PREEMPTS_CURR(p, rq))
1762 resched_task(rq->curr);
1765 * Parent and child are on different CPUs, now get the
1766 * parent runqueue to update the parent's ->sleep_avg:
1768 task_rq_unlock(rq, &flags);
1769 this_rq = task_rq_lock(current, &flags);
1771 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1772 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1773 task_rq_unlock(this_rq, &flags);
1777 * Potentially available exiting-child timeslices are
1778 * retrieved here - this way the parent does not get
1779 * penalized for creating too many threads.
1781 * (this cannot be used to 'generate' timeslices
1782 * artificially, because any timeslice recovered here
1783 * was given away by the parent in the first place.)
1785 void fastcall sched_exit(struct task_struct *p)
1787 unsigned long flags;
1788 struct rq *rq;
1791 * If the child was a (relative-) CPU hog then decrease
1792 * the sleep_avg of the parent as well.
1794 rq = task_rq_lock(p->parent, &flags);
1795 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1796 p->parent->time_slice += p->time_slice;
1797 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1798 p->parent->time_slice = task_timeslice(p);
1800 if (p->sleep_avg < p->parent->sleep_avg)
1801 p->parent->sleep_avg = p->parent->sleep_avg /
1802 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1803 (EXIT_WEIGHT + 1);
1804 task_rq_unlock(rq, &flags);
1808 * prepare_task_switch - prepare to switch tasks
1809 * @rq: the runqueue preparing to switch
1810 * @next: the task we are going to switch to.
1812 * This is called with the rq lock held and interrupts off. It must
1813 * be paired with a subsequent finish_task_switch after the context
1814 * switch.
1816 * prepare_task_switch sets up locking and calls architecture specific
1817 * hooks.
1819 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1821 prepare_lock_switch(rq, next);
1822 prepare_arch_switch(next);
1826 * finish_task_switch - clean up after a task-switch
1827 * @rq: runqueue associated with task-switch
1828 * @prev: the thread we just switched away from.
1830 * finish_task_switch must be called after the context switch, paired
1831 * with a prepare_task_switch call before the context switch.
1832 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1833 * and do any other architecture-specific cleanup actions.
1835 * Note that we may have delayed dropping an mm in context_switch(). If
1836 * so, we finish that here outside of the runqueue lock. (Doing it
1837 * with the lock held can cause deadlocks; see schedule() for
1838 * details.)
1840 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1841 __releases(rq->lock)
1843 struct mm_struct *mm = rq->prev_mm;
1844 long prev_state;
1846 rq->prev_mm = NULL;
1849 * A task struct has one reference for the use as "current".
1850 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1851 * schedule one last time. The schedule call will never return, and
1852 * the scheduled task must drop that reference.
1853 * The test for TASK_DEAD must occur while the runqueue locks are
1854 * still held, otherwise prev could be scheduled on another cpu, die
1855 * there before we look at prev->state, and then the reference would
1856 * be dropped twice.
1857 * Manfred Spraul <manfred@colorfullife.com>
1859 prev_state = prev->state;
1860 finish_arch_switch(prev);
1861 finish_lock_switch(rq, prev);
1862 if (mm)
1863 mmdrop(mm);
1864 if (unlikely(prev_state == TASK_DEAD)) {
1866 * Remove function-return probe instances associated with this
1867 * task and put them back on the free list.
1869 kprobe_flush_task(prev);
1870 put_task_struct(prev);
1875 * schedule_tail - first thing a freshly forked thread must call.
1876 * @prev: the thread we just switched away from.
1878 asmlinkage void schedule_tail(struct task_struct *prev)
1879 __releases(rq->lock)
1881 struct rq *rq = this_rq();
1883 finish_task_switch(rq, prev);
1884 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1885 /* In this case, finish_task_switch does not reenable preemption */
1886 preempt_enable();
1887 #endif
1888 if (current->set_child_tid)
1889 put_user(current->pid, current->set_child_tid);
1893 * context_switch - switch to the new MM and the new
1894 * thread's register state.
1896 static inline struct task_struct *
1897 context_switch(struct rq *rq, struct task_struct *prev,
1898 struct task_struct *next)
1900 struct mm_struct *mm = next->mm;
1901 struct mm_struct *oldmm = prev->active_mm;
1904 * For paravirt, this is coupled with an exit in switch_to to
1905 * combine the page table reload and the switch backend into
1906 * one hypercall.
1908 arch_enter_lazy_cpu_mode();
1910 if (!mm) {
1911 next->active_mm = oldmm;
1912 atomic_inc(&oldmm->mm_count);
1913 enter_lazy_tlb(oldmm, next);
1914 } else
1915 switch_mm(oldmm, mm, next);
1917 if (!prev->mm) {
1918 prev->active_mm = NULL;
1919 WARN_ON(rq->prev_mm);
1920 rq->prev_mm = oldmm;
1923 * Since the runqueue lock will be released by the next
1924 * task (which is an invalid locking op but in the case
1925 * of the scheduler it's an obvious special-case), so we
1926 * do an early lockdep release here:
1928 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1929 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1930 #endif
1932 /* Here we just switch the register state and the stack. */
1933 switch_to(prev, next, prev);
1935 return prev;
1939 * nr_running, nr_uninterruptible and nr_context_switches:
1941 * externally visible scheduler statistics: current number of runnable
1942 * threads, current number of uninterruptible-sleeping threads, total
1943 * number of context switches performed since bootup.
1945 unsigned long nr_running(void)
1947 unsigned long i, sum = 0;
1949 for_each_online_cpu(i)
1950 sum += cpu_rq(i)->nr_running;
1952 return sum;
1955 unsigned long nr_uninterruptible(void)
1957 unsigned long i, sum = 0;
1959 for_each_possible_cpu(i)
1960 sum += cpu_rq(i)->nr_uninterruptible;
1963 * Since we read the counters lockless, it might be slightly
1964 * inaccurate. Do not allow it to go below zero though:
1966 if (unlikely((long)sum < 0))
1967 sum = 0;
1969 return sum;
1972 unsigned long long nr_context_switches(void)
1974 int i;
1975 unsigned long long sum = 0;
1977 for_each_possible_cpu(i)
1978 sum += cpu_rq(i)->nr_switches;
1980 return sum;
1983 unsigned long nr_iowait(void)
1985 unsigned long i, sum = 0;
1987 for_each_possible_cpu(i)
1988 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1990 return sum;
1993 unsigned long nr_active(void)
1995 unsigned long i, running = 0, uninterruptible = 0;
1997 for_each_online_cpu(i) {
1998 running += cpu_rq(i)->nr_running;
1999 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2002 if (unlikely((long)uninterruptible < 0))
2003 uninterruptible = 0;
2005 return running + uninterruptible;
2008 #ifdef CONFIG_SMP
2011 * Is this task likely cache-hot:
2013 static inline int
2014 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2016 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2020 * double_rq_lock - safely lock two runqueues
2022 * Note this does not disable interrupts like task_rq_lock,
2023 * you need to do so manually before calling.
2025 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2026 __acquires(rq1->lock)
2027 __acquires(rq2->lock)
2029 BUG_ON(!irqs_disabled());
2030 if (rq1 == rq2) {
2031 spin_lock(&rq1->lock);
2032 __acquire(rq2->lock); /* Fake it out ;) */
2033 } else {
2034 if (rq1 < rq2) {
2035 spin_lock(&rq1->lock);
2036 spin_lock(&rq2->lock);
2037 } else {
2038 spin_lock(&rq2->lock);
2039 spin_lock(&rq1->lock);
2045 * double_rq_unlock - safely unlock two runqueues
2047 * Note this does not restore interrupts like task_rq_unlock,
2048 * you need to do so manually after calling.
2050 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2051 __releases(rq1->lock)
2052 __releases(rq2->lock)
2054 spin_unlock(&rq1->lock);
2055 if (rq1 != rq2)
2056 spin_unlock(&rq2->lock);
2057 else
2058 __release(rq2->lock);
2062 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2064 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2065 __releases(this_rq->lock)
2066 __acquires(busiest->lock)
2067 __acquires(this_rq->lock)
2069 if (unlikely(!irqs_disabled())) {
2070 /* printk() doesn't work good under rq->lock */
2071 spin_unlock(&this_rq->lock);
2072 BUG_ON(1);
2074 if (unlikely(!spin_trylock(&busiest->lock))) {
2075 if (busiest < this_rq) {
2076 spin_unlock(&this_rq->lock);
2077 spin_lock(&busiest->lock);
2078 spin_lock(&this_rq->lock);
2079 } else
2080 spin_lock(&busiest->lock);
2085 * If dest_cpu is allowed for this process, migrate the task to it.
2086 * This is accomplished by forcing the cpu_allowed mask to only
2087 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2088 * the cpu_allowed mask is restored.
2090 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2092 struct migration_req req;
2093 unsigned long flags;
2094 struct rq *rq;
2096 rq = task_rq_lock(p, &flags);
2097 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2098 || unlikely(cpu_is_offline(dest_cpu)))
2099 goto out;
2101 /* force the process onto the specified CPU */
2102 if (migrate_task(p, dest_cpu, &req)) {
2103 /* Need to wait for migration thread (might exit: take ref). */
2104 struct task_struct *mt = rq->migration_thread;
2106 get_task_struct(mt);
2107 task_rq_unlock(rq, &flags);
2108 wake_up_process(mt);
2109 put_task_struct(mt);
2110 wait_for_completion(&req.done);
2112 return;
2114 out:
2115 task_rq_unlock(rq, &flags);
2119 * sched_exec - execve() is a valuable balancing opportunity, because at
2120 * this point the task has the smallest effective memory and cache footprint.
2122 void sched_exec(void)
2124 int new_cpu, this_cpu = get_cpu();
2125 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2126 put_cpu();
2127 if (new_cpu != this_cpu)
2128 sched_migrate_task(current, new_cpu);
2132 * pull_task - move a task from a remote runqueue to the local runqueue.
2133 * Both runqueues must be locked.
2135 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2136 struct task_struct *p, struct rq *this_rq,
2137 struct prio_array *this_array, int this_cpu)
2139 dequeue_task(p, src_array);
2140 dec_nr_running(p, src_rq);
2141 set_task_cpu(p, this_cpu);
2142 inc_nr_running(p, this_rq);
2143 enqueue_task(p, this_array);
2144 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2145 + this_rq->most_recent_timestamp;
2147 * Note that idle threads have a prio of MAX_PRIO, for this test
2148 * to be always true for them.
2150 if (TASK_PREEMPTS_CURR(p, this_rq))
2151 resched_task(this_rq->curr);
2155 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2157 static
2158 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2159 struct sched_domain *sd, enum idle_type idle,
2160 int *all_pinned)
2163 * We do not migrate tasks that are:
2164 * 1) running (obviously), or
2165 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2166 * 3) are cache-hot on their current CPU.
2168 if (!cpu_isset(this_cpu, p->cpus_allowed))
2169 return 0;
2170 *all_pinned = 0;
2172 if (task_running(rq, p))
2173 return 0;
2176 * Aggressive migration if:
2177 * 1) task is cache cold, or
2178 * 2) too many balance attempts have failed.
2181 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2182 #ifdef CONFIG_SCHEDSTATS
2183 if (task_hot(p, rq->most_recent_timestamp, sd))
2184 schedstat_inc(sd, lb_hot_gained[idle]);
2185 #endif
2186 return 1;
2189 if (task_hot(p, rq->most_recent_timestamp, sd))
2190 return 0;
2191 return 1;
2194 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2197 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2198 * load from busiest to this_rq, as part of a balancing operation within
2199 * "domain". Returns the number of tasks moved.
2201 * Called with both runqueues locked.
2203 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2204 unsigned long max_nr_move, unsigned long max_load_move,
2205 struct sched_domain *sd, enum idle_type idle,
2206 int *all_pinned)
2208 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2209 best_prio_seen, skip_for_load;
2210 struct prio_array *array, *dst_array;
2211 struct list_head *head, *curr;
2212 struct task_struct *tmp;
2213 long rem_load_move;
2215 if (max_nr_move == 0 || max_load_move == 0)
2216 goto out;
2218 rem_load_move = max_load_move;
2219 pinned = 1;
2220 this_best_prio = rq_best_prio(this_rq);
2221 best_prio = rq_best_prio(busiest);
2223 * Enable handling of the case where there is more than one task
2224 * with the best priority. If the current running task is one
2225 * of those with prio==best_prio we know it won't be moved
2226 * and therefore it's safe to override the skip (based on load) of
2227 * any task we find with that prio.
2229 best_prio_seen = best_prio == busiest->curr->prio;
2232 * We first consider expired tasks. Those will likely not be
2233 * executed in the near future, and they are most likely to
2234 * be cache-cold, thus switching CPUs has the least effect
2235 * on them.
2237 if (busiest->expired->nr_active) {
2238 array = busiest->expired;
2239 dst_array = this_rq->expired;
2240 } else {
2241 array = busiest->active;
2242 dst_array = this_rq->active;
2245 new_array:
2246 /* Start searching at priority 0: */
2247 idx = 0;
2248 skip_bitmap:
2249 if (!idx)
2250 idx = sched_find_first_bit(array->bitmap);
2251 else
2252 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2253 if (idx >= MAX_PRIO) {
2254 if (array == busiest->expired && busiest->active->nr_active) {
2255 array = busiest->active;
2256 dst_array = this_rq->active;
2257 goto new_array;
2259 goto out;
2262 head = array->queue + idx;
2263 curr = head->prev;
2264 skip_queue:
2265 tmp = list_entry(curr, struct task_struct, run_list);
2267 curr = curr->prev;
2270 * To help distribute high priority tasks accross CPUs we don't
2271 * skip a task if it will be the highest priority task (i.e. smallest
2272 * prio value) on its new queue regardless of its load weight
2274 skip_for_load = tmp->load_weight > rem_load_move;
2275 if (skip_for_load && idx < this_best_prio)
2276 skip_for_load = !best_prio_seen && idx == best_prio;
2277 if (skip_for_load ||
2278 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2280 best_prio_seen |= idx == best_prio;
2281 if (curr != head)
2282 goto skip_queue;
2283 idx++;
2284 goto skip_bitmap;
2287 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2288 pulled++;
2289 rem_load_move -= tmp->load_weight;
2292 * We only want to steal up to the prescribed number of tasks
2293 * and the prescribed amount of weighted load.
2295 if (pulled < max_nr_move && rem_load_move > 0) {
2296 if (idx < this_best_prio)
2297 this_best_prio = idx;
2298 if (curr != head)
2299 goto skip_queue;
2300 idx++;
2301 goto skip_bitmap;
2303 out:
2305 * Right now, this is the only place pull_task() is called,
2306 * so we can safely collect pull_task() stats here rather than
2307 * inside pull_task().
2309 schedstat_add(sd, lb_gained[idle], pulled);
2311 if (all_pinned)
2312 *all_pinned = pinned;
2313 return pulled;
2317 * find_busiest_group finds and returns the busiest CPU group within the
2318 * domain. It calculates and returns the amount of weighted load which
2319 * should be moved to restore balance via the imbalance parameter.
2321 static struct sched_group *
2322 find_busiest_group(struct sched_domain *sd, int this_cpu,
2323 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2324 cpumask_t *cpus, int *balance)
2326 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2327 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2328 unsigned long max_pull;
2329 unsigned long busiest_load_per_task, busiest_nr_running;
2330 unsigned long this_load_per_task, this_nr_running;
2331 int load_idx;
2332 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2333 int power_savings_balance = 1;
2334 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2335 unsigned long min_nr_running = ULONG_MAX;
2336 struct sched_group *group_min = NULL, *group_leader = NULL;
2337 #endif
2339 max_load = this_load = total_load = total_pwr = 0;
2340 busiest_load_per_task = busiest_nr_running = 0;
2341 this_load_per_task = this_nr_running = 0;
2342 if (idle == NOT_IDLE)
2343 load_idx = sd->busy_idx;
2344 else if (idle == NEWLY_IDLE)
2345 load_idx = sd->newidle_idx;
2346 else
2347 load_idx = sd->idle_idx;
2349 do {
2350 unsigned long load, group_capacity;
2351 int local_group;
2352 int i;
2353 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2354 unsigned long sum_nr_running, sum_weighted_load;
2356 local_group = cpu_isset(this_cpu, group->cpumask);
2358 if (local_group)
2359 balance_cpu = first_cpu(group->cpumask);
2361 /* Tally up the load of all CPUs in the group */
2362 sum_weighted_load = sum_nr_running = avg_load = 0;
2364 for_each_cpu_mask(i, group->cpumask) {
2365 struct rq *rq;
2367 if (!cpu_isset(i, *cpus))
2368 continue;
2370 rq = cpu_rq(i);
2372 if (*sd_idle && !idle_cpu(i))
2373 *sd_idle = 0;
2375 /* Bias balancing toward cpus of our domain */
2376 if (local_group) {
2377 if (idle_cpu(i) && !first_idle_cpu) {
2378 first_idle_cpu = 1;
2379 balance_cpu = i;
2382 load = target_load(i, load_idx);
2383 } else
2384 load = source_load(i, load_idx);
2386 avg_load += load;
2387 sum_nr_running += rq->nr_running;
2388 sum_weighted_load += rq->raw_weighted_load;
2392 * First idle cpu or the first cpu(busiest) in this sched group
2393 * is eligible for doing load balancing at this and above
2394 * domains.
2396 if (local_group && balance_cpu != this_cpu && balance) {
2397 *balance = 0;
2398 goto ret;
2401 total_load += avg_load;
2402 total_pwr += group->__cpu_power;
2404 /* Adjust by relative CPU power of the group */
2405 avg_load = sg_div_cpu_power(group,
2406 avg_load * SCHED_LOAD_SCALE);
2408 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2410 if (local_group) {
2411 this_load = avg_load;
2412 this = group;
2413 this_nr_running = sum_nr_running;
2414 this_load_per_task = sum_weighted_load;
2415 } else if (avg_load > max_load &&
2416 sum_nr_running > group_capacity) {
2417 max_load = avg_load;
2418 busiest = group;
2419 busiest_nr_running = sum_nr_running;
2420 busiest_load_per_task = sum_weighted_load;
2423 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2425 * Busy processors will not participate in power savings
2426 * balance.
2428 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2429 goto group_next;
2432 * If the local group is idle or completely loaded
2433 * no need to do power savings balance at this domain
2435 if (local_group && (this_nr_running >= group_capacity ||
2436 !this_nr_running))
2437 power_savings_balance = 0;
2440 * If a group is already running at full capacity or idle,
2441 * don't include that group in power savings calculations
2443 if (!power_savings_balance || sum_nr_running >= group_capacity
2444 || !sum_nr_running)
2445 goto group_next;
2448 * Calculate the group which has the least non-idle load.
2449 * This is the group from where we need to pick up the load
2450 * for saving power
2452 if ((sum_nr_running < min_nr_running) ||
2453 (sum_nr_running == min_nr_running &&
2454 first_cpu(group->cpumask) <
2455 first_cpu(group_min->cpumask))) {
2456 group_min = group;
2457 min_nr_running = sum_nr_running;
2458 min_load_per_task = sum_weighted_load /
2459 sum_nr_running;
2463 * Calculate the group which is almost near its
2464 * capacity but still has some space to pick up some load
2465 * from other group and save more power
2467 if (sum_nr_running <= group_capacity - 1) {
2468 if (sum_nr_running > leader_nr_running ||
2469 (sum_nr_running == leader_nr_running &&
2470 first_cpu(group->cpumask) >
2471 first_cpu(group_leader->cpumask))) {
2472 group_leader = group;
2473 leader_nr_running = sum_nr_running;
2476 group_next:
2477 #endif
2478 group = group->next;
2479 } while (group != sd->groups);
2481 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2482 goto out_balanced;
2484 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2486 if (this_load >= avg_load ||
2487 100*max_load <= sd->imbalance_pct*this_load)
2488 goto out_balanced;
2490 busiest_load_per_task /= busiest_nr_running;
2492 * We're trying to get all the cpus to the average_load, so we don't
2493 * want to push ourselves above the average load, nor do we wish to
2494 * reduce the max loaded cpu below the average load, as either of these
2495 * actions would just result in more rebalancing later, and ping-pong
2496 * tasks around. Thus we look for the minimum possible imbalance.
2497 * Negative imbalances (*we* are more loaded than anyone else) will
2498 * be counted as no imbalance for these purposes -- we can't fix that
2499 * by pulling tasks to us. Be careful of negative numbers as they'll
2500 * appear as very large values with unsigned longs.
2502 if (max_load <= busiest_load_per_task)
2503 goto out_balanced;
2506 * In the presence of smp nice balancing, certain scenarios can have
2507 * max load less than avg load(as we skip the groups at or below
2508 * its cpu_power, while calculating max_load..)
2510 if (max_load < avg_load) {
2511 *imbalance = 0;
2512 goto small_imbalance;
2515 /* Don't want to pull so many tasks that a group would go idle */
2516 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2518 /* How much load to actually move to equalise the imbalance */
2519 *imbalance = min(max_pull * busiest->__cpu_power,
2520 (avg_load - this_load) * this->__cpu_power)
2521 / SCHED_LOAD_SCALE;
2524 * if *imbalance is less than the average load per runnable task
2525 * there is no gaurantee that any tasks will be moved so we'll have
2526 * a think about bumping its value to force at least one task to be
2527 * moved
2529 if (*imbalance < busiest_load_per_task) {
2530 unsigned long tmp, pwr_now, pwr_move;
2531 unsigned int imbn;
2533 small_imbalance:
2534 pwr_move = pwr_now = 0;
2535 imbn = 2;
2536 if (this_nr_running) {
2537 this_load_per_task /= this_nr_running;
2538 if (busiest_load_per_task > this_load_per_task)
2539 imbn = 1;
2540 } else
2541 this_load_per_task = SCHED_LOAD_SCALE;
2543 if (max_load - this_load >= busiest_load_per_task * imbn) {
2544 *imbalance = busiest_load_per_task;
2545 return busiest;
2549 * OK, we don't have enough imbalance to justify moving tasks,
2550 * however we may be able to increase total CPU power used by
2551 * moving them.
2554 pwr_now += busiest->__cpu_power *
2555 min(busiest_load_per_task, max_load);
2556 pwr_now += this->__cpu_power *
2557 min(this_load_per_task, this_load);
2558 pwr_now /= SCHED_LOAD_SCALE;
2560 /* Amount of load we'd subtract */
2561 tmp = sg_div_cpu_power(busiest,
2562 busiest_load_per_task * SCHED_LOAD_SCALE);
2563 if (max_load > tmp)
2564 pwr_move += busiest->__cpu_power *
2565 min(busiest_load_per_task, max_load - tmp);
2567 /* Amount of load we'd add */
2568 if (max_load * busiest->__cpu_power <
2569 busiest_load_per_task * SCHED_LOAD_SCALE)
2570 tmp = sg_div_cpu_power(this,
2571 max_load * busiest->__cpu_power);
2572 else
2573 tmp = sg_div_cpu_power(this,
2574 busiest_load_per_task * SCHED_LOAD_SCALE);
2575 pwr_move += this->__cpu_power *
2576 min(this_load_per_task, this_load + tmp);
2577 pwr_move /= SCHED_LOAD_SCALE;
2579 /* Move if we gain throughput */
2580 if (pwr_move <= pwr_now)
2581 goto out_balanced;
2583 *imbalance = busiest_load_per_task;
2586 return busiest;
2588 out_balanced:
2589 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2590 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2591 goto ret;
2593 if (this == group_leader && group_leader != group_min) {
2594 *imbalance = min_load_per_task;
2595 return group_min;
2597 #endif
2598 ret:
2599 *imbalance = 0;
2600 return NULL;
2604 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2606 static struct rq *
2607 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2608 unsigned long imbalance, cpumask_t *cpus)
2610 struct rq *busiest = NULL, *rq;
2611 unsigned long max_load = 0;
2612 int i;
2614 for_each_cpu_mask(i, group->cpumask) {
2616 if (!cpu_isset(i, *cpus))
2617 continue;
2619 rq = cpu_rq(i);
2621 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2622 continue;
2624 if (rq->raw_weighted_load > max_load) {
2625 max_load = rq->raw_weighted_load;
2626 busiest = rq;
2630 return busiest;
2634 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2635 * so long as it is large enough.
2637 #define MAX_PINNED_INTERVAL 512
2639 static inline unsigned long minus_1_or_zero(unsigned long n)
2641 return n > 0 ? n - 1 : 0;
2645 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2646 * tasks if there is an imbalance.
2648 static int load_balance(int this_cpu, struct rq *this_rq,
2649 struct sched_domain *sd, enum idle_type idle,
2650 int *balance)
2652 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2653 struct sched_group *group;
2654 unsigned long imbalance;
2655 struct rq *busiest;
2656 cpumask_t cpus = CPU_MASK_ALL;
2657 unsigned long flags;
2660 * When power savings policy is enabled for the parent domain, idle
2661 * sibling can pick up load irrespective of busy siblings. In this case,
2662 * let the state of idle sibling percolate up as IDLE, instead of
2663 * portraying it as NOT_IDLE.
2665 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2666 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2667 sd_idle = 1;
2669 schedstat_inc(sd, lb_cnt[idle]);
2671 redo:
2672 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2673 &cpus, balance);
2675 if (*balance == 0)
2676 goto out_balanced;
2678 if (!group) {
2679 schedstat_inc(sd, lb_nobusyg[idle]);
2680 goto out_balanced;
2683 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2684 if (!busiest) {
2685 schedstat_inc(sd, lb_nobusyq[idle]);
2686 goto out_balanced;
2689 BUG_ON(busiest == this_rq);
2691 schedstat_add(sd, lb_imbalance[idle], imbalance);
2693 nr_moved = 0;
2694 if (busiest->nr_running > 1) {
2696 * Attempt to move tasks. If find_busiest_group has found
2697 * an imbalance but busiest->nr_running <= 1, the group is
2698 * still unbalanced. nr_moved simply stays zero, so it is
2699 * correctly treated as an imbalance.
2701 local_irq_save(flags);
2702 double_rq_lock(this_rq, busiest);
2703 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2704 minus_1_or_zero(busiest->nr_running),
2705 imbalance, sd, idle, &all_pinned);
2706 double_rq_unlock(this_rq, busiest);
2707 local_irq_restore(flags);
2710 * some other cpu did the load balance for us.
2712 if (nr_moved && this_cpu != smp_processor_id())
2713 resched_cpu(this_cpu);
2715 /* All tasks on this runqueue were pinned by CPU affinity */
2716 if (unlikely(all_pinned)) {
2717 cpu_clear(cpu_of(busiest), cpus);
2718 if (!cpus_empty(cpus))
2719 goto redo;
2720 goto out_balanced;
2724 if (!nr_moved) {
2725 schedstat_inc(sd, lb_failed[idle]);
2726 sd->nr_balance_failed++;
2728 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2730 spin_lock_irqsave(&busiest->lock, flags);
2732 /* don't kick the migration_thread, if the curr
2733 * task on busiest cpu can't be moved to this_cpu
2735 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2736 spin_unlock_irqrestore(&busiest->lock, flags);
2737 all_pinned = 1;
2738 goto out_one_pinned;
2741 if (!busiest->active_balance) {
2742 busiest->active_balance = 1;
2743 busiest->push_cpu = this_cpu;
2744 active_balance = 1;
2746 spin_unlock_irqrestore(&busiest->lock, flags);
2747 if (active_balance)
2748 wake_up_process(busiest->migration_thread);
2751 * We've kicked active balancing, reset the failure
2752 * counter.
2754 sd->nr_balance_failed = sd->cache_nice_tries+1;
2756 } else
2757 sd->nr_balance_failed = 0;
2759 if (likely(!active_balance)) {
2760 /* We were unbalanced, so reset the balancing interval */
2761 sd->balance_interval = sd->min_interval;
2762 } else {
2764 * If we've begun active balancing, start to back off. This
2765 * case may not be covered by the all_pinned logic if there
2766 * is only 1 task on the busy runqueue (because we don't call
2767 * move_tasks).
2769 if (sd->balance_interval < sd->max_interval)
2770 sd->balance_interval *= 2;
2773 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2775 return -1;
2776 return nr_moved;
2778 out_balanced:
2779 schedstat_inc(sd, lb_balanced[idle]);
2781 sd->nr_balance_failed = 0;
2783 out_one_pinned:
2784 /* tune up the balancing interval */
2785 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2786 (sd->balance_interval < sd->max_interval))
2787 sd->balance_interval *= 2;
2789 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2790 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2791 return -1;
2792 return 0;
2796 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2797 * tasks if there is an imbalance.
2799 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2800 * this_rq is locked.
2802 static int
2803 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2805 struct sched_group *group;
2806 struct rq *busiest = NULL;
2807 unsigned long imbalance;
2808 int nr_moved = 0;
2809 int sd_idle = 0;
2810 cpumask_t cpus = CPU_MASK_ALL;
2813 * When power savings policy is enabled for the parent domain, idle
2814 * sibling can pick up load irrespective of busy siblings. In this case,
2815 * let the state of idle sibling percolate up as IDLE, instead of
2816 * portraying it as NOT_IDLE.
2818 if (sd->flags & SD_SHARE_CPUPOWER &&
2819 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2820 sd_idle = 1;
2822 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2823 redo:
2824 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2825 &sd_idle, &cpus, NULL);
2826 if (!group) {
2827 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2828 goto out_balanced;
2831 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2832 &cpus);
2833 if (!busiest) {
2834 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2835 goto out_balanced;
2838 BUG_ON(busiest == this_rq);
2840 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2842 nr_moved = 0;
2843 if (busiest->nr_running > 1) {
2844 /* Attempt to move tasks */
2845 double_lock_balance(this_rq, busiest);
2846 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2847 minus_1_or_zero(busiest->nr_running),
2848 imbalance, sd, NEWLY_IDLE, NULL);
2849 spin_unlock(&busiest->lock);
2851 if (!nr_moved) {
2852 cpu_clear(cpu_of(busiest), cpus);
2853 if (!cpus_empty(cpus))
2854 goto redo;
2858 if (!nr_moved) {
2859 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2860 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2861 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2862 return -1;
2863 } else
2864 sd->nr_balance_failed = 0;
2866 return nr_moved;
2868 out_balanced:
2869 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2870 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2871 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2872 return -1;
2873 sd->nr_balance_failed = 0;
2875 return 0;
2879 * idle_balance is called by schedule() if this_cpu is about to become
2880 * idle. Attempts to pull tasks from other CPUs.
2882 static void idle_balance(int this_cpu, struct rq *this_rq)
2884 struct sched_domain *sd;
2885 int pulled_task = 0;
2886 unsigned long next_balance = jiffies + 60 * HZ;
2888 for_each_domain(this_cpu, sd) {
2889 if (sd->flags & SD_BALANCE_NEWIDLE) {
2890 /* If we've pulled tasks over stop searching: */
2891 pulled_task = load_balance_newidle(this_cpu,
2892 this_rq, sd);
2893 if (time_after(next_balance,
2894 sd->last_balance + sd->balance_interval))
2895 next_balance = sd->last_balance
2896 + sd->balance_interval;
2897 if (pulled_task)
2898 break;
2901 if (!pulled_task)
2903 * We are going idle. next_balance may be set based on
2904 * a busy processor. So reset next_balance.
2906 this_rq->next_balance = next_balance;
2910 * active_load_balance is run by migration threads. It pushes running tasks
2911 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2912 * running on each physical CPU where possible, and avoids physical /
2913 * logical imbalances.
2915 * Called with busiest_rq locked.
2917 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2919 int target_cpu = busiest_rq->push_cpu;
2920 struct sched_domain *sd;
2921 struct rq *target_rq;
2923 /* Is there any task to move? */
2924 if (busiest_rq->nr_running <= 1)
2925 return;
2927 target_rq = cpu_rq(target_cpu);
2930 * This condition is "impossible", if it occurs
2931 * we need to fix it. Originally reported by
2932 * Bjorn Helgaas on a 128-cpu setup.
2934 BUG_ON(busiest_rq == target_rq);
2936 /* move a task from busiest_rq to target_rq */
2937 double_lock_balance(busiest_rq, target_rq);
2939 /* Search for an sd spanning us and the target CPU. */
2940 for_each_domain(target_cpu, sd) {
2941 if ((sd->flags & SD_LOAD_BALANCE) &&
2942 cpu_isset(busiest_cpu, sd->span))
2943 break;
2946 if (likely(sd)) {
2947 schedstat_inc(sd, alb_cnt);
2949 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2950 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2951 NULL))
2952 schedstat_inc(sd, alb_pushed);
2953 else
2954 schedstat_inc(sd, alb_failed);
2956 spin_unlock(&target_rq->lock);
2959 static void update_load(struct rq *this_rq)
2961 unsigned long this_load;
2962 unsigned int i, scale;
2964 this_load = this_rq->raw_weighted_load;
2966 /* Update our load: */
2967 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
2968 unsigned long old_load, new_load;
2970 /* scale is effectively 1 << i now, and >> i divides by scale */
2972 old_load = this_rq->cpu_load[i];
2973 new_load = this_load;
2975 * Round up the averaging division if load is increasing. This
2976 * prevents us from getting stuck on 9 if the load is 10, for
2977 * example.
2979 if (new_load > old_load)
2980 new_load += scale-1;
2981 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2985 #ifdef CONFIG_NO_HZ
2986 static struct {
2987 atomic_t load_balancer;
2988 cpumask_t cpu_mask;
2989 } nohz ____cacheline_aligned = {
2990 .load_balancer = ATOMIC_INIT(-1),
2991 .cpu_mask = CPU_MASK_NONE,
2995 * This routine will try to nominate the ilb (idle load balancing)
2996 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2997 * load balancing on behalf of all those cpus. If all the cpus in the system
2998 * go into this tickless mode, then there will be no ilb owner (as there is
2999 * no need for one) and all the cpus will sleep till the next wakeup event
3000 * arrives...
3002 * For the ilb owner, tick is not stopped. And this tick will be used
3003 * for idle load balancing. ilb owner will still be part of
3004 * nohz.cpu_mask..
3006 * While stopping the tick, this cpu will become the ilb owner if there
3007 * is no other owner. And will be the owner till that cpu becomes busy
3008 * or if all cpus in the system stop their ticks at which point
3009 * there is no need for ilb owner.
3011 * When the ilb owner becomes busy, it nominates another owner, during the
3012 * next busy scheduler_tick()
3014 int select_nohz_load_balancer(int stop_tick)
3016 int cpu = smp_processor_id();
3018 if (stop_tick) {
3019 cpu_set(cpu, nohz.cpu_mask);
3020 cpu_rq(cpu)->in_nohz_recently = 1;
3023 * If we are going offline and still the leader, give up!
3025 if (cpu_is_offline(cpu) &&
3026 atomic_read(&nohz.load_balancer) == cpu) {
3027 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3028 BUG();
3029 return 0;
3032 /* time for ilb owner also to sleep */
3033 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3034 if (atomic_read(&nohz.load_balancer) == cpu)
3035 atomic_set(&nohz.load_balancer, -1);
3036 return 0;
3039 if (atomic_read(&nohz.load_balancer) == -1) {
3040 /* make me the ilb owner */
3041 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3042 return 1;
3043 } else if (atomic_read(&nohz.load_balancer) == cpu)
3044 return 1;
3045 } else {
3046 if (!cpu_isset(cpu, nohz.cpu_mask))
3047 return 0;
3049 cpu_clear(cpu, nohz.cpu_mask);
3051 if (atomic_read(&nohz.load_balancer) == cpu)
3052 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3053 BUG();
3055 return 0;
3057 #endif
3059 static DEFINE_SPINLOCK(balancing);
3062 * It checks each scheduling domain to see if it is due to be balanced,
3063 * and initiates a balancing operation if so.
3065 * Balancing parameters are set up in arch_init_sched_domains.
3067 static inline void rebalance_domains(int cpu, enum idle_type idle)
3069 int balance = 1;
3070 struct rq *rq = cpu_rq(cpu);
3071 unsigned long interval;
3072 struct sched_domain *sd;
3073 /* Earliest time when we have to do rebalance again */
3074 unsigned long next_balance = jiffies + 60*HZ;
3076 for_each_domain(cpu, sd) {
3077 if (!(sd->flags & SD_LOAD_BALANCE))
3078 continue;
3080 interval = sd->balance_interval;
3081 if (idle != SCHED_IDLE)
3082 interval *= sd->busy_factor;
3084 /* scale ms to jiffies */
3085 interval = msecs_to_jiffies(interval);
3086 if (unlikely(!interval))
3087 interval = 1;
3089 if (sd->flags & SD_SERIALIZE) {
3090 if (!spin_trylock(&balancing))
3091 goto out;
3094 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3095 if (load_balance(cpu, rq, sd, idle, &balance)) {
3097 * We've pulled tasks over so either we're no
3098 * longer idle, or one of our SMT siblings is
3099 * not idle.
3101 idle = NOT_IDLE;
3103 sd->last_balance = jiffies;
3105 if (sd->flags & SD_SERIALIZE)
3106 spin_unlock(&balancing);
3107 out:
3108 if (time_after(next_balance, sd->last_balance + interval))
3109 next_balance = sd->last_balance + interval;
3112 * Stop the load balance at this level. There is another
3113 * CPU in our sched group which is doing load balancing more
3114 * actively.
3116 if (!balance)
3117 break;
3119 rq->next_balance = next_balance;
3123 * run_rebalance_domains is triggered when needed from the scheduler tick.
3124 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3125 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3127 static void run_rebalance_domains(struct softirq_action *h)
3129 int local_cpu = smp_processor_id();
3130 struct rq *local_rq = cpu_rq(local_cpu);
3131 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3133 rebalance_domains(local_cpu, idle);
3135 #ifdef CONFIG_NO_HZ
3137 * If this cpu is the owner for idle load balancing, then do the
3138 * balancing on behalf of the other idle cpus whose ticks are
3139 * stopped.
3141 if (local_rq->idle_at_tick &&
3142 atomic_read(&nohz.load_balancer) == local_cpu) {
3143 cpumask_t cpus = nohz.cpu_mask;
3144 struct rq *rq;
3145 int balance_cpu;
3147 cpu_clear(local_cpu, cpus);
3148 for_each_cpu_mask(balance_cpu, cpus) {
3150 * If this cpu gets work to do, stop the load balancing
3151 * work being done for other cpus. Next load
3152 * balancing owner will pick it up.
3154 if (need_resched())
3155 break;
3157 rebalance_domains(balance_cpu, SCHED_IDLE);
3159 rq = cpu_rq(balance_cpu);
3160 if (time_after(local_rq->next_balance, rq->next_balance))
3161 local_rq->next_balance = rq->next_balance;
3164 #endif
3168 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3170 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3171 * idle load balancing owner or decide to stop the periodic load balancing,
3172 * if the whole system is idle.
3174 static inline void trigger_load_balance(int cpu)
3176 struct rq *rq = cpu_rq(cpu);
3177 #ifdef CONFIG_NO_HZ
3179 * If we were in the nohz mode recently and busy at the current
3180 * scheduler tick, then check if we need to nominate new idle
3181 * load balancer.
3183 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3184 rq->in_nohz_recently = 0;
3186 if (atomic_read(&nohz.load_balancer) == cpu) {
3187 cpu_clear(cpu, nohz.cpu_mask);
3188 atomic_set(&nohz.load_balancer, -1);
3191 if (atomic_read(&nohz.load_balancer) == -1) {
3193 * simple selection for now: Nominate the
3194 * first cpu in the nohz list to be the next
3195 * ilb owner.
3197 * TBD: Traverse the sched domains and nominate
3198 * the nearest cpu in the nohz.cpu_mask.
3200 int ilb = first_cpu(nohz.cpu_mask);
3202 if (ilb != NR_CPUS)
3203 resched_cpu(ilb);
3208 * If this cpu is idle and doing idle load balancing for all the
3209 * cpus with ticks stopped, is it time for that to stop?
3211 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3212 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3213 resched_cpu(cpu);
3214 return;
3218 * If this cpu is idle and the idle load balancing is done by
3219 * someone else, then no need raise the SCHED_SOFTIRQ
3221 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3222 cpu_isset(cpu, nohz.cpu_mask))
3223 return;
3224 #endif
3225 if (time_after_eq(jiffies, rq->next_balance))
3226 raise_softirq(SCHED_SOFTIRQ);
3228 #else
3230 * on UP we do not need to balance between CPUs:
3232 static inline void idle_balance(int cpu, struct rq *rq)
3235 #endif
3237 DEFINE_PER_CPU(struct kernel_stat, kstat);
3239 EXPORT_PER_CPU_SYMBOL(kstat);
3242 * This is called on clock ticks and on context switches.
3243 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3245 static inline void
3246 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3248 p->sched_time += now - p->last_ran;
3249 p->last_ran = rq->most_recent_timestamp = now;
3253 * Return current->sched_time plus any more ns on the sched_clock
3254 * that have not yet been banked.
3256 unsigned long long current_sched_time(const struct task_struct *p)
3258 unsigned long long ns;
3259 unsigned long flags;
3261 local_irq_save(flags);
3262 ns = p->sched_time + sched_clock() - p->last_ran;
3263 local_irq_restore(flags);
3265 return ns;
3269 * We place interactive tasks back into the active array, if possible.
3271 * To guarantee that this does not starve expired tasks we ignore the
3272 * interactivity of a task if the first expired task had to wait more
3273 * than a 'reasonable' amount of time. This deadline timeout is
3274 * load-dependent, as the frequency of array switched decreases with
3275 * increasing number of running tasks. We also ignore the interactivity
3276 * if a better static_prio task has expired:
3278 static inline int expired_starving(struct rq *rq)
3280 if (rq->curr->static_prio > rq->best_expired_prio)
3281 return 1;
3282 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3283 return 0;
3284 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3285 return 1;
3286 return 0;
3290 * Account user cpu time to a process.
3291 * @p: the process that the cpu time gets accounted to
3292 * @hardirq_offset: the offset to subtract from hardirq_count()
3293 * @cputime: the cpu time spent in user space since the last update
3295 void account_user_time(struct task_struct *p, cputime_t cputime)
3297 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3298 cputime64_t tmp;
3300 p->utime = cputime_add(p->utime, cputime);
3302 /* Add user time to cpustat. */
3303 tmp = cputime_to_cputime64(cputime);
3304 if (TASK_NICE(p) > 0)
3305 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3306 else
3307 cpustat->user = cputime64_add(cpustat->user, tmp);
3311 * Account system cpu time to a process.
3312 * @p: the process that the cpu time gets accounted to
3313 * @hardirq_offset: the offset to subtract from hardirq_count()
3314 * @cputime: the cpu time spent in kernel space since the last update
3316 void account_system_time(struct task_struct *p, int hardirq_offset,
3317 cputime_t cputime)
3319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3320 struct rq *rq = this_rq();
3321 cputime64_t tmp;
3323 p->stime = cputime_add(p->stime, cputime);
3325 /* Add system time to cpustat. */
3326 tmp = cputime_to_cputime64(cputime);
3327 if (hardirq_count() - hardirq_offset)
3328 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3329 else if (softirq_count())
3330 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3331 else if (p != rq->idle)
3332 cpustat->system = cputime64_add(cpustat->system, tmp);
3333 else if (atomic_read(&rq->nr_iowait) > 0)
3334 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3335 else
3336 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3337 /* Account for system time used */
3338 acct_update_integrals(p);
3342 * Account for involuntary wait time.
3343 * @p: the process from which the cpu time has been stolen
3344 * @steal: the cpu time spent in involuntary wait
3346 void account_steal_time(struct task_struct *p, cputime_t steal)
3348 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3349 cputime64_t tmp = cputime_to_cputime64(steal);
3350 struct rq *rq = this_rq();
3352 if (p == rq->idle) {
3353 p->stime = cputime_add(p->stime, steal);
3354 if (atomic_read(&rq->nr_iowait) > 0)
3355 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3356 else
3357 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3358 } else
3359 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3362 static void task_running_tick(struct rq *rq, struct task_struct *p)
3364 if (p->array != rq->active) {
3365 /* Task has expired but was not scheduled yet */
3366 set_tsk_need_resched(p);
3367 return;
3369 spin_lock(&rq->lock);
3371 * The task was running during this tick - update the
3372 * time slice counter. Note: we do not update a thread's
3373 * priority until it either goes to sleep or uses up its
3374 * timeslice. This makes it possible for interactive tasks
3375 * to use up their timeslices at their highest priority levels.
3377 if (rt_task(p)) {
3379 * RR tasks need a special form of timeslice management.
3380 * FIFO tasks have no timeslices.
3382 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3383 p->time_slice = task_timeslice(p);
3384 p->first_time_slice = 0;
3385 set_tsk_need_resched(p);
3387 /* put it at the end of the queue: */
3388 requeue_task(p, rq->active);
3390 goto out_unlock;
3392 if (!--p->time_slice) {
3393 dequeue_task(p, rq->active);
3394 set_tsk_need_resched(p);
3395 p->prio = effective_prio(p);
3396 p->time_slice = task_timeslice(p);
3397 p->first_time_slice = 0;
3399 if (!rq->expired_timestamp)
3400 rq->expired_timestamp = jiffies;
3401 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3402 enqueue_task(p, rq->expired);
3403 if (p->static_prio < rq->best_expired_prio)
3404 rq->best_expired_prio = p->static_prio;
3405 } else
3406 enqueue_task(p, rq->active);
3407 } else {
3409 * Prevent a too long timeslice allowing a task to monopolize
3410 * the CPU. We do this by splitting up the timeslice into
3411 * smaller pieces.
3413 * Note: this does not mean the task's timeslices expire or
3414 * get lost in any way, they just might be preempted by
3415 * another task of equal priority. (one with higher
3416 * priority would have preempted this task already.) We
3417 * requeue this task to the end of the list on this priority
3418 * level, which is in essence a round-robin of tasks with
3419 * equal priority.
3421 * This only applies to tasks in the interactive
3422 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3424 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3425 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3426 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3427 (p->array == rq->active)) {
3429 requeue_task(p, rq->active);
3430 set_tsk_need_resched(p);
3433 out_unlock:
3434 spin_unlock(&rq->lock);
3438 * This function gets called by the timer code, with HZ frequency.
3439 * We call it with interrupts disabled.
3441 * It also gets called by the fork code, when changing the parent's
3442 * timeslices.
3444 void scheduler_tick(void)
3446 unsigned long long now = sched_clock();
3447 struct task_struct *p = current;
3448 int cpu = smp_processor_id();
3449 int idle_at_tick = idle_cpu(cpu);
3450 struct rq *rq = cpu_rq(cpu);
3452 update_cpu_clock(p, rq, now);
3454 if (!idle_at_tick)
3455 task_running_tick(rq, p);
3456 #ifdef CONFIG_SMP
3457 update_load(rq);
3458 rq->idle_at_tick = idle_at_tick;
3459 trigger_load_balance(cpu);
3460 #endif
3463 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3465 void fastcall add_preempt_count(int val)
3468 * Underflow?
3470 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3471 return;
3472 preempt_count() += val;
3474 * Spinlock count overflowing soon?
3476 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3477 PREEMPT_MASK - 10);
3479 EXPORT_SYMBOL(add_preempt_count);
3481 void fastcall sub_preempt_count(int val)
3484 * Underflow?
3486 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487 return;
3489 * Is the spinlock portion underflowing?
3491 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3492 !(preempt_count() & PREEMPT_MASK)))
3493 return;
3495 preempt_count() -= val;
3497 EXPORT_SYMBOL(sub_preempt_count);
3499 #endif
3501 static inline int interactive_sleep(enum sleep_type sleep_type)
3503 return (sleep_type == SLEEP_INTERACTIVE ||
3504 sleep_type == SLEEP_INTERRUPTED);
3508 * schedule() is the main scheduler function.
3510 asmlinkage void __sched schedule(void)
3512 struct task_struct *prev, *next;
3513 struct prio_array *array;
3514 struct list_head *queue;
3515 unsigned long long now;
3516 unsigned long run_time;
3517 int cpu, idx, new_prio;
3518 long *switch_count;
3519 struct rq *rq;
3522 * Test if we are atomic. Since do_exit() needs to call into
3523 * schedule() atomically, we ignore that path for now.
3524 * Otherwise, whine if we are scheduling when we should not be.
3526 if (unlikely(in_atomic() && !current->exit_state)) {
3527 printk(KERN_ERR "BUG: scheduling while atomic: "
3528 "%s/0x%08x/%d\n",
3529 current->comm, preempt_count(), current->pid);
3530 debug_show_held_locks(current);
3531 if (irqs_disabled())
3532 print_irqtrace_events(current);
3533 dump_stack();
3535 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3537 need_resched:
3538 preempt_disable();
3539 prev = current;
3540 release_kernel_lock(prev);
3541 need_resched_nonpreemptible:
3542 rq = this_rq();
3545 * The idle thread is not allowed to schedule!
3546 * Remove this check after it has been exercised a bit.
3548 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3549 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3550 dump_stack();
3553 schedstat_inc(rq, sched_cnt);
3554 now = sched_clock();
3555 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3556 run_time = now - prev->timestamp;
3557 if (unlikely((long long)(now - prev->timestamp) < 0))
3558 run_time = 0;
3559 } else
3560 run_time = NS_MAX_SLEEP_AVG;
3563 * Tasks charged proportionately less run_time at high sleep_avg to
3564 * delay them losing their interactive status
3566 run_time /= (CURRENT_BONUS(prev) ? : 1);
3568 spin_lock_irq(&rq->lock);
3570 switch_count = &prev->nivcsw;
3571 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3572 switch_count = &prev->nvcsw;
3573 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3574 unlikely(signal_pending(prev))))
3575 prev->state = TASK_RUNNING;
3576 else {
3577 if (prev->state == TASK_UNINTERRUPTIBLE)
3578 rq->nr_uninterruptible++;
3579 deactivate_task(prev, rq);
3583 cpu = smp_processor_id();
3584 if (unlikely(!rq->nr_running)) {
3585 idle_balance(cpu, rq);
3586 if (!rq->nr_running) {
3587 next = rq->idle;
3588 rq->expired_timestamp = 0;
3589 goto switch_tasks;
3593 array = rq->active;
3594 if (unlikely(!array->nr_active)) {
3596 * Switch the active and expired arrays.
3598 schedstat_inc(rq, sched_switch);
3599 rq->active = rq->expired;
3600 rq->expired = array;
3601 array = rq->active;
3602 rq->expired_timestamp = 0;
3603 rq->best_expired_prio = MAX_PRIO;
3606 idx = sched_find_first_bit(array->bitmap);
3607 queue = array->queue + idx;
3608 next = list_entry(queue->next, struct task_struct, run_list);
3610 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3611 unsigned long long delta = now - next->timestamp;
3612 if (unlikely((long long)(now - next->timestamp) < 0))
3613 delta = 0;
3615 if (next->sleep_type == SLEEP_INTERACTIVE)
3616 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3618 array = next->array;
3619 new_prio = recalc_task_prio(next, next->timestamp + delta);
3621 if (unlikely(next->prio != new_prio)) {
3622 dequeue_task(next, array);
3623 next->prio = new_prio;
3624 enqueue_task(next, array);
3627 next->sleep_type = SLEEP_NORMAL;
3628 switch_tasks:
3629 if (next == rq->idle)
3630 schedstat_inc(rq, sched_goidle);
3631 prefetch(next);
3632 prefetch_stack(next);
3633 clear_tsk_need_resched(prev);
3634 rcu_qsctr_inc(task_cpu(prev));
3636 update_cpu_clock(prev, rq, now);
3638 prev->sleep_avg -= run_time;
3639 if ((long)prev->sleep_avg <= 0)
3640 prev->sleep_avg = 0;
3641 prev->timestamp = prev->last_ran = now;
3643 sched_info_switch(prev, next);
3644 if (likely(prev != next)) {
3645 next->timestamp = next->last_ran = now;
3646 rq->nr_switches++;
3647 rq->curr = next;
3648 ++*switch_count;
3650 prepare_task_switch(rq, next);
3651 prev = context_switch(rq, prev, next);
3652 barrier();
3654 * this_rq must be evaluated again because prev may have moved
3655 * CPUs since it called schedule(), thus the 'rq' on its stack
3656 * frame will be invalid.
3658 finish_task_switch(this_rq(), prev);
3659 } else
3660 spin_unlock_irq(&rq->lock);
3662 prev = current;
3663 if (unlikely(reacquire_kernel_lock(prev) < 0))
3664 goto need_resched_nonpreemptible;
3665 preempt_enable_no_resched();
3666 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3667 goto need_resched;
3669 EXPORT_SYMBOL(schedule);
3671 #ifdef CONFIG_PREEMPT
3673 * this is the entry point to schedule() from in-kernel preemption
3674 * off of preempt_enable. Kernel preemptions off return from interrupt
3675 * occur there and call schedule directly.
3677 asmlinkage void __sched preempt_schedule(void)
3679 struct thread_info *ti = current_thread_info();
3680 #ifdef CONFIG_PREEMPT_BKL
3681 struct task_struct *task = current;
3682 int saved_lock_depth;
3683 #endif
3685 * If there is a non-zero preempt_count or interrupts are disabled,
3686 * we do not want to preempt the current task. Just return..
3688 if (likely(ti->preempt_count || irqs_disabled()))
3689 return;
3691 need_resched:
3692 add_preempt_count(PREEMPT_ACTIVE);
3694 * We keep the big kernel semaphore locked, but we
3695 * clear ->lock_depth so that schedule() doesnt
3696 * auto-release the semaphore:
3698 #ifdef CONFIG_PREEMPT_BKL
3699 saved_lock_depth = task->lock_depth;
3700 task->lock_depth = -1;
3701 #endif
3702 schedule();
3703 #ifdef CONFIG_PREEMPT_BKL
3704 task->lock_depth = saved_lock_depth;
3705 #endif
3706 sub_preempt_count(PREEMPT_ACTIVE);
3708 /* we could miss a preemption opportunity between schedule and now */
3709 barrier();
3710 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3711 goto need_resched;
3713 EXPORT_SYMBOL(preempt_schedule);
3716 * this is the entry point to schedule() from kernel preemption
3717 * off of irq context.
3718 * Note, that this is called and return with irqs disabled. This will
3719 * protect us against recursive calling from irq.
3721 asmlinkage void __sched preempt_schedule_irq(void)
3723 struct thread_info *ti = current_thread_info();
3724 #ifdef CONFIG_PREEMPT_BKL
3725 struct task_struct *task = current;
3726 int saved_lock_depth;
3727 #endif
3728 /* Catch callers which need to be fixed */
3729 BUG_ON(ti->preempt_count || !irqs_disabled());
3731 need_resched:
3732 add_preempt_count(PREEMPT_ACTIVE);
3734 * We keep the big kernel semaphore locked, but we
3735 * clear ->lock_depth so that schedule() doesnt
3736 * auto-release the semaphore:
3738 #ifdef CONFIG_PREEMPT_BKL
3739 saved_lock_depth = task->lock_depth;
3740 task->lock_depth = -1;
3741 #endif
3742 local_irq_enable();
3743 schedule();
3744 local_irq_disable();
3745 #ifdef CONFIG_PREEMPT_BKL
3746 task->lock_depth = saved_lock_depth;
3747 #endif
3748 sub_preempt_count(PREEMPT_ACTIVE);
3750 /* we could miss a preemption opportunity between schedule and now */
3751 barrier();
3752 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3753 goto need_resched;
3756 #endif /* CONFIG_PREEMPT */
3758 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3759 void *key)
3761 return try_to_wake_up(curr->private, mode, sync);
3763 EXPORT_SYMBOL(default_wake_function);
3766 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3767 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3768 * number) then we wake all the non-exclusive tasks and one exclusive task.
3770 * There are circumstances in which we can try to wake a task which has already
3771 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3772 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3774 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3775 int nr_exclusive, int sync, void *key)
3777 struct list_head *tmp, *next;
3779 list_for_each_safe(tmp, next, &q->task_list) {
3780 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3781 unsigned flags = curr->flags;
3783 if (curr->func(curr, mode, sync, key) &&
3784 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3785 break;
3790 * __wake_up - wake up threads blocked on a waitqueue.
3791 * @q: the waitqueue
3792 * @mode: which threads
3793 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3794 * @key: is directly passed to the wakeup function
3796 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3797 int nr_exclusive, void *key)
3799 unsigned long flags;
3801 spin_lock_irqsave(&q->lock, flags);
3802 __wake_up_common(q, mode, nr_exclusive, 0, key);
3803 spin_unlock_irqrestore(&q->lock, flags);
3805 EXPORT_SYMBOL(__wake_up);
3808 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3810 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3812 __wake_up_common(q, mode, 1, 0, NULL);
3816 * __wake_up_sync - wake up threads blocked on a waitqueue.
3817 * @q: the waitqueue
3818 * @mode: which threads
3819 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3821 * The sync wakeup differs that the waker knows that it will schedule
3822 * away soon, so while the target thread will be woken up, it will not
3823 * be migrated to another CPU - ie. the two threads are 'synchronized'
3824 * with each other. This can prevent needless bouncing between CPUs.
3826 * On UP it can prevent extra preemption.
3828 void fastcall
3829 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3831 unsigned long flags;
3832 int sync = 1;
3834 if (unlikely(!q))
3835 return;
3837 if (unlikely(!nr_exclusive))
3838 sync = 0;
3840 spin_lock_irqsave(&q->lock, flags);
3841 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3842 spin_unlock_irqrestore(&q->lock, flags);
3844 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3846 void fastcall complete(struct completion *x)
3848 unsigned long flags;
3850 spin_lock_irqsave(&x->wait.lock, flags);
3851 x->done++;
3852 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3853 1, 0, NULL);
3854 spin_unlock_irqrestore(&x->wait.lock, flags);
3856 EXPORT_SYMBOL(complete);
3858 void fastcall complete_all(struct completion *x)
3860 unsigned long flags;
3862 spin_lock_irqsave(&x->wait.lock, flags);
3863 x->done += UINT_MAX/2;
3864 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3865 0, 0, NULL);
3866 spin_unlock_irqrestore(&x->wait.lock, flags);
3868 EXPORT_SYMBOL(complete_all);
3870 void fastcall __sched wait_for_completion(struct completion *x)
3872 might_sleep();
3874 spin_lock_irq(&x->wait.lock);
3875 if (!x->done) {
3876 DECLARE_WAITQUEUE(wait, current);
3878 wait.flags |= WQ_FLAG_EXCLUSIVE;
3879 __add_wait_queue_tail(&x->wait, &wait);
3880 do {
3881 __set_current_state(TASK_UNINTERRUPTIBLE);
3882 spin_unlock_irq(&x->wait.lock);
3883 schedule();
3884 spin_lock_irq(&x->wait.lock);
3885 } while (!x->done);
3886 __remove_wait_queue(&x->wait, &wait);
3888 x->done--;
3889 spin_unlock_irq(&x->wait.lock);
3891 EXPORT_SYMBOL(wait_for_completion);
3893 unsigned long fastcall __sched
3894 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3896 might_sleep();
3898 spin_lock_irq(&x->wait.lock);
3899 if (!x->done) {
3900 DECLARE_WAITQUEUE(wait, current);
3902 wait.flags |= WQ_FLAG_EXCLUSIVE;
3903 __add_wait_queue_tail(&x->wait, &wait);
3904 do {
3905 __set_current_state(TASK_UNINTERRUPTIBLE);
3906 spin_unlock_irq(&x->wait.lock);
3907 timeout = schedule_timeout(timeout);
3908 spin_lock_irq(&x->wait.lock);
3909 if (!timeout) {
3910 __remove_wait_queue(&x->wait, &wait);
3911 goto out;
3913 } while (!x->done);
3914 __remove_wait_queue(&x->wait, &wait);
3916 x->done--;
3917 out:
3918 spin_unlock_irq(&x->wait.lock);
3919 return timeout;
3921 EXPORT_SYMBOL(wait_for_completion_timeout);
3923 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3925 int ret = 0;
3927 might_sleep();
3929 spin_lock_irq(&x->wait.lock);
3930 if (!x->done) {
3931 DECLARE_WAITQUEUE(wait, current);
3933 wait.flags |= WQ_FLAG_EXCLUSIVE;
3934 __add_wait_queue_tail(&x->wait, &wait);
3935 do {
3936 if (signal_pending(current)) {
3937 ret = -ERESTARTSYS;
3938 __remove_wait_queue(&x->wait, &wait);
3939 goto out;
3941 __set_current_state(TASK_INTERRUPTIBLE);
3942 spin_unlock_irq(&x->wait.lock);
3943 schedule();
3944 spin_lock_irq(&x->wait.lock);
3945 } while (!x->done);
3946 __remove_wait_queue(&x->wait, &wait);
3948 x->done--;
3949 out:
3950 spin_unlock_irq(&x->wait.lock);
3952 return ret;
3954 EXPORT_SYMBOL(wait_for_completion_interruptible);
3956 unsigned long fastcall __sched
3957 wait_for_completion_interruptible_timeout(struct completion *x,
3958 unsigned long timeout)
3960 might_sleep();
3962 spin_lock_irq(&x->wait.lock);
3963 if (!x->done) {
3964 DECLARE_WAITQUEUE(wait, current);
3966 wait.flags |= WQ_FLAG_EXCLUSIVE;
3967 __add_wait_queue_tail(&x->wait, &wait);
3968 do {
3969 if (signal_pending(current)) {
3970 timeout = -ERESTARTSYS;
3971 __remove_wait_queue(&x->wait, &wait);
3972 goto out;
3974 __set_current_state(TASK_INTERRUPTIBLE);
3975 spin_unlock_irq(&x->wait.lock);
3976 timeout = schedule_timeout(timeout);
3977 spin_lock_irq(&x->wait.lock);
3978 if (!timeout) {
3979 __remove_wait_queue(&x->wait, &wait);
3980 goto out;
3982 } while (!x->done);
3983 __remove_wait_queue(&x->wait, &wait);
3985 x->done--;
3986 out:
3987 spin_unlock_irq(&x->wait.lock);
3988 return timeout;
3990 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3993 #define SLEEP_ON_VAR \
3994 unsigned long flags; \
3995 wait_queue_t wait; \
3996 init_waitqueue_entry(&wait, current);
3998 #define SLEEP_ON_HEAD \
3999 spin_lock_irqsave(&q->lock,flags); \
4000 __add_wait_queue(q, &wait); \
4001 spin_unlock(&q->lock);
4003 #define SLEEP_ON_TAIL \
4004 spin_lock_irq(&q->lock); \
4005 __remove_wait_queue(q, &wait); \
4006 spin_unlock_irqrestore(&q->lock, flags);
4008 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4010 SLEEP_ON_VAR
4012 current->state = TASK_INTERRUPTIBLE;
4014 SLEEP_ON_HEAD
4015 schedule();
4016 SLEEP_ON_TAIL
4018 EXPORT_SYMBOL(interruptible_sleep_on);
4020 long fastcall __sched
4021 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4023 SLEEP_ON_VAR
4025 current->state = TASK_INTERRUPTIBLE;
4027 SLEEP_ON_HEAD
4028 timeout = schedule_timeout(timeout);
4029 SLEEP_ON_TAIL
4031 return timeout;
4033 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4035 void fastcall __sched sleep_on(wait_queue_head_t *q)
4037 SLEEP_ON_VAR
4039 current->state = TASK_UNINTERRUPTIBLE;
4041 SLEEP_ON_HEAD
4042 schedule();
4043 SLEEP_ON_TAIL
4045 EXPORT_SYMBOL(sleep_on);
4047 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4049 SLEEP_ON_VAR
4051 current->state = TASK_UNINTERRUPTIBLE;
4053 SLEEP_ON_HEAD
4054 timeout = schedule_timeout(timeout);
4055 SLEEP_ON_TAIL
4057 return timeout;
4060 EXPORT_SYMBOL(sleep_on_timeout);
4062 #ifdef CONFIG_RT_MUTEXES
4065 * rt_mutex_setprio - set the current priority of a task
4066 * @p: task
4067 * @prio: prio value (kernel-internal form)
4069 * This function changes the 'effective' priority of a task. It does
4070 * not touch ->normal_prio like __setscheduler().
4072 * Used by the rt_mutex code to implement priority inheritance logic.
4074 void rt_mutex_setprio(struct task_struct *p, int prio)
4076 struct prio_array *array;
4077 unsigned long flags;
4078 struct rq *rq;
4079 int delta;
4081 BUG_ON(prio < 0 || prio > MAX_PRIO);
4083 rq = task_rq_lock(p, &flags);
4085 delta = prio - p->prio;
4086 array = p->array;
4087 if (array)
4088 dequeue_task(p, array);
4089 p->prio = prio;
4091 if (array) {
4093 * If changing to an RT priority then queue it
4094 * in the active array!
4096 if (rt_task(p))
4097 array = rq->active;
4098 enqueue_task(p, array);
4100 * Reschedule if we are currently running on this runqueue and
4101 * our priority decreased, or if our priority became higher
4102 * than the current's.
4104 if (TASK_PREEMPTS_CURR(p, rq) ||
4105 (delta > 0 && task_running(rq, p)))
4106 resched_task(rq->curr);
4108 task_rq_unlock(rq, &flags);
4111 #endif
4113 void set_user_nice(struct task_struct *p, long nice)
4115 struct prio_array *array;
4116 int old_prio, delta;
4117 unsigned long flags;
4118 struct rq *rq;
4120 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4121 return;
4123 * We have to be careful, if called from sys_setpriority(),
4124 * the task might be in the middle of scheduling on another CPU.
4126 rq = task_rq_lock(p, &flags);
4128 * The RT priorities are set via sched_setscheduler(), but we still
4129 * allow the 'normal' nice value to be set - but as expected
4130 * it wont have any effect on scheduling until the task is
4131 * not SCHED_NORMAL/SCHED_BATCH:
4133 if (has_rt_policy(p)) {
4134 p->static_prio = NICE_TO_PRIO(nice);
4135 goto out_unlock;
4137 array = p->array;
4138 if (array) {
4139 dequeue_task(p, array);
4140 dec_raw_weighted_load(rq, p);
4143 p->static_prio = NICE_TO_PRIO(nice);
4144 set_load_weight(p);
4145 old_prio = p->prio;
4146 p->prio = effective_prio(p);
4147 delta = p->prio - old_prio;
4149 if (array) {
4150 enqueue_task(p, array);
4151 inc_raw_weighted_load(rq, p);
4153 * Reschedule if we are currently running on this runqueue and
4154 * our priority decreased, or if our priority became higher
4155 * than the current's.
4157 if (TASK_PREEMPTS_CURR(p, rq) ||
4158 (delta > 0 && task_running(rq, p)))
4159 resched_task(rq->curr);
4161 out_unlock:
4162 task_rq_unlock(rq, &flags);
4164 EXPORT_SYMBOL(set_user_nice);
4167 * can_nice - check if a task can reduce its nice value
4168 * @p: task
4169 * @nice: nice value
4171 int can_nice(const struct task_struct *p, const int nice)
4173 /* convert nice value [19,-20] to rlimit style value [1,40] */
4174 int nice_rlim = 20 - nice;
4176 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4177 capable(CAP_SYS_NICE));
4180 #ifdef __ARCH_WANT_SYS_NICE
4183 * sys_nice - change the priority of the current process.
4184 * @increment: priority increment
4186 * sys_setpriority is a more generic, but much slower function that
4187 * does similar things.
4189 asmlinkage long sys_nice(int increment)
4191 long nice, retval;
4194 * Setpriority might change our priority at the same moment.
4195 * We don't have to worry. Conceptually one call occurs first
4196 * and we have a single winner.
4198 if (increment < -40)
4199 increment = -40;
4200 if (increment > 40)
4201 increment = 40;
4203 nice = PRIO_TO_NICE(current->static_prio) + increment;
4204 if (nice < -20)
4205 nice = -20;
4206 if (nice > 19)
4207 nice = 19;
4209 if (increment < 0 && !can_nice(current, nice))
4210 return -EPERM;
4212 retval = security_task_setnice(current, nice);
4213 if (retval)
4214 return retval;
4216 set_user_nice(current, nice);
4217 return 0;
4220 #endif
4223 * task_prio - return the priority value of a given task.
4224 * @p: the task in question.
4226 * This is the priority value as seen by users in /proc.
4227 * RT tasks are offset by -200. Normal tasks are centered
4228 * around 0, value goes from -16 to +15.
4230 int task_prio(const struct task_struct *p)
4232 return p->prio - MAX_RT_PRIO;
4236 * task_nice - return the nice value of a given task.
4237 * @p: the task in question.
4239 int task_nice(const struct task_struct *p)
4241 return TASK_NICE(p);
4243 EXPORT_SYMBOL_GPL(task_nice);
4246 * idle_cpu - is a given cpu idle currently?
4247 * @cpu: the processor in question.
4249 int idle_cpu(int cpu)
4251 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4255 * idle_task - return the idle task for a given cpu.
4256 * @cpu: the processor in question.
4258 struct task_struct *idle_task(int cpu)
4260 return cpu_rq(cpu)->idle;
4264 * find_process_by_pid - find a process with a matching PID value.
4265 * @pid: the pid in question.
4267 static inline struct task_struct *find_process_by_pid(pid_t pid)
4269 return pid ? find_task_by_pid(pid) : current;
4272 /* Actually do priority change: must hold rq lock. */
4273 static void __setscheduler(struct task_struct *p, int policy, int prio)
4275 BUG_ON(p->array);
4277 p->policy = policy;
4278 p->rt_priority = prio;
4279 p->normal_prio = normal_prio(p);
4280 /* we are holding p->pi_lock already */
4281 p->prio = rt_mutex_getprio(p);
4283 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4285 if (policy == SCHED_BATCH)
4286 p->sleep_avg = 0;
4287 set_load_weight(p);
4291 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4292 * @p: the task in question.
4293 * @policy: new policy.
4294 * @param: structure containing the new RT priority.
4296 * NOTE that the task may be already dead.
4298 int sched_setscheduler(struct task_struct *p, int policy,
4299 struct sched_param *param)
4301 int retval, oldprio, oldpolicy = -1;
4302 struct prio_array *array;
4303 unsigned long flags;
4304 struct rq *rq;
4306 /* may grab non-irq protected spin_locks */
4307 BUG_ON(in_interrupt());
4308 recheck:
4309 /* double check policy once rq lock held */
4310 if (policy < 0)
4311 policy = oldpolicy = p->policy;
4312 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4313 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4314 return -EINVAL;
4316 * Valid priorities for SCHED_FIFO and SCHED_RR are
4317 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4318 * SCHED_BATCH is 0.
4320 if (param->sched_priority < 0 ||
4321 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4322 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4323 return -EINVAL;
4324 if (is_rt_policy(policy) != (param->sched_priority != 0))
4325 return -EINVAL;
4328 * Allow unprivileged RT tasks to decrease priority:
4330 if (!capable(CAP_SYS_NICE)) {
4331 if (is_rt_policy(policy)) {
4332 unsigned long rlim_rtprio;
4333 unsigned long flags;
4335 if (!lock_task_sighand(p, &flags))
4336 return -ESRCH;
4337 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4338 unlock_task_sighand(p, &flags);
4340 /* can't set/change the rt policy */
4341 if (policy != p->policy && !rlim_rtprio)
4342 return -EPERM;
4344 /* can't increase priority */
4345 if (param->sched_priority > p->rt_priority &&
4346 param->sched_priority > rlim_rtprio)
4347 return -EPERM;
4350 /* can't change other user's priorities */
4351 if ((current->euid != p->euid) &&
4352 (current->euid != p->uid))
4353 return -EPERM;
4356 retval = security_task_setscheduler(p, policy, param);
4357 if (retval)
4358 return retval;
4360 * make sure no PI-waiters arrive (or leave) while we are
4361 * changing the priority of the task:
4363 spin_lock_irqsave(&p->pi_lock, flags);
4365 * To be able to change p->policy safely, the apropriate
4366 * runqueue lock must be held.
4368 rq = __task_rq_lock(p);
4369 /* recheck policy now with rq lock held */
4370 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4371 policy = oldpolicy = -1;
4372 __task_rq_unlock(rq);
4373 spin_unlock_irqrestore(&p->pi_lock, flags);
4374 goto recheck;
4376 array = p->array;
4377 if (array)
4378 deactivate_task(p, rq);
4379 oldprio = p->prio;
4380 __setscheduler(p, policy, param->sched_priority);
4381 if (array) {
4382 __activate_task(p, rq);
4384 * Reschedule if we are currently running on this runqueue and
4385 * our priority decreased, or our priority became higher
4386 * than the current's.
4388 if (TASK_PREEMPTS_CURR(p, rq) ||
4389 (task_running(rq, p) && p->prio > oldprio))
4390 resched_task(rq->curr);
4392 __task_rq_unlock(rq);
4393 spin_unlock_irqrestore(&p->pi_lock, flags);
4395 rt_mutex_adjust_pi(p);
4397 return 0;
4399 EXPORT_SYMBOL_GPL(sched_setscheduler);
4401 static int
4402 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4404 struct sched_param lparam;
4405 struct task_struct *p;
4406 int retval;
4408 if (!param || pid < 0)
4409 return -EINVAL;
4410 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4411 return -EFAULT;
4413 rcu_read_lock();
4414 retval = -ESRCH;
4415 p = find_process_by_pid(pid);
4416 if (p != NULL)
4417 retval = sched_setscheduler(p, policy, &lparam);
4418 rcu_read_unlock();
4420 return retval;
4424 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4425 * @pid: the pid in question.
4426 * @policy: new policy.
4427 * @param: structure containing the new RT priority.
4429 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4430 struct sched_param __user *param)
4432 /* negative values for policy are not valid */
4433 if (policy < 0)
4434 return -EINVAL;
4436 return do_sched_setscheduler(pid, policy, param);
4440 * sys_sched_setparam - set/change the RT priority of a thread
4441 * @pid: the pid in question.
4442 * @param: structure containing the new RT priority.
4444 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4446 return do_sched_setscheduler(pid, -1, param);
4450 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4451 * @pid: the pid in question.
4453 asmlinkage long sys_sched_getscheduler(pid_t pid)
4455 struct task_struct *p;
4456 int retval = -EINVAL;
4458 if (pid < 0)
4459 goto out_nounlock;
4461 retval = -ESRCH;
4462 read_lock(&tasklist_lock);
4463 p = find_process_by_pid(pid);
4464 if (p) {
4465 retval = security_task_getscheduler(p);
4466 if (!retval)
4467 retval = p->policy;
4469 read_unlock(&tasklist_lock);
4471 out_nounlock:
4472 return retval;
4476 * sys_sched_getscheduler - get the RT priority of a thread
4477 * @pid: the pid in question.
4478 * @param: structure containing the RT priority.
4480 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4482 struct sched_param lp;
4483 struct task_struct *p;
4484 int retval = -EINVAL;
4486 if (!param || pid < 0)
4487 goto out_nounlock;
4489 read_lock(&tasklist_lock);
4490 p = find_process_by_pid(pid);
4491 retval = -ESRCH;
4492 if (!p)
4493 goto out_unlock;
4495 retval = security_task_getscheduler(p);
4496 if (retval)
4497 goto out_unlock;
4499 lp.sched_priority = p->rt_priority;
4500 read_unlock(&tasklist_lock);
4503 * This one might sleep, we cannot do it with a spinlock held ...
4505 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4507 out_nounlock:
4508 return retval;
4510 out_unlock:
4511 read_unlock(&tasklist_lock);
4512 return retval;
4515 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4517 cpumask_t cpus_allowed;
4518 struct task_struct *p;
4519 int retval;
4521 lock_cpu_hotplug();
4522 read_lock(&tasklist_lock);
4524 p = find_process_by_pid(pid);
4525 if (!p) {
4526 read_unlock(&tasklist_lock);
4527 unlock_cpu_hotplug();
4528 return -ESRCH;
4532 * It is not safe to call set_cpus_allowed with the
4533 * tasklist_lock held. We will bump the task_struct's
4534 * usage count and then drop tasklist_lock.
4536 get_task_struct(p);
4537 read_unlock(&tasklist_lock);
4539 retval = -EPERM;
4540 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4541 !capable(CAP_SYS_NICE))
4542 goto out_unlock;
4544 retval = security_task_setscheduler(p, 0, NULL);
4545 if (retval)
4546 goto out_unlock;
4548 cpus_allowed = cpuset_cpus_allowed(p);
4549 cpus_and(new_mask, new_mask, cpus_allowed);
4550 retval = set_cpus_allowed(p, new_mask);
4552 out_unlock:
4553 put_task_struct(p);
4554 unlock_cpu_hotplug();
4555 return retval;
4558 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4559 cpumask_t *new_mask)
4561 if (len < sizeof(cpumask_t)) {
4562 memset(new_mask, 0, sizeof(cpumask_t));
4563 } else if (len > sizeof(cpumask_t)) {
4564 len = sizeof(cpumask_t);
4566 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4570 * sys_sched_setaffinity - set the cpu affinity of a process
4571 * @pid: pid of the process
4572 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4573 * @user_mask_ptr: user-space pointer to the new cpu mask
4575 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4576 unsigned long __user *user_mask_ptr)
4578 cpumask_t new_mask;
4579 int retval;
4581 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4582 if (retval)
4583 return retval;
4585 return sched_setaffinity(pid, new_mask);
4589 * Represents all cpu's present in the system
4590 * In systems capable of hotplug, this map could dynamically grow
4591 * as new cpu's are detected in the system via any platform specific
4592 * method, such as ACPI for e.g.
4595 cpumask_t cpu_present_map __read_mostly;
4596 EXPORT_SYMBOL(cpu_present_map);
4598 #ifndef CONFIG_SMP
4599 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4600 EXPORT_SYMBOL(cpu_online_map);
4602 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4603 EXPORT_SYMBOL(cpu_possible_map);
4604 #endif
4606 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4608 struct task_struct *p;
4609 int retval;
4611 lock_cpu_hotplug();
4612 read_lock(&tasklist_lock);
4614 retval = -ESRCH;
4615 p = find_process_by_pid(pid);
4616 if (!p)
4617 goto out_unlock;
4619 retval = security_task_getscheduler(p);
4620 if (retval)
4621 goto out_unlock;
4623 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4625 out_unlock:
4626 read_unlock(&tasklist_lock);
4627 unlock_cpu_hotplug();
4628 if (retval)
4629 return retval;
4631 return 0;
4635 * sys_sched_getaffinity - get the cpu affinity of a process
4636 * @pid: pid of the process
4637 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4638 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4640 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4641 unsigned long __user *user_mask_ptr)
4643 int ret;
4644 cpumask_t mask;
4646 if (len < sizeof(cpumask_t))
4647 return -EINVAL;
4649 ret = sched_getaffinity(pid, &mask);
4650 if (ret < 0)
4651 return ret;
4653 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4654 return -EFAULT;
4656 return sizeof(cpumask_t);
4660 * sys_sched_yield - yield the current processor to other threads.
4662 * This function yields the current CPU by moving the calling thread
4663 * to the expired array. If there are no other threads running on this
4664 * CPU then this function will return.
4666 asmlinkage long sys_sched_yield(void)
4668 struct rq *rq = this_rq_lock();
4669 struct prio_array *array = current->array, *target = rq->expired;
4671 schedstat_inc(rq, yld_cnt);
4673 * We implement yielding by moving the task into the expired
4674 * queue.
4676 * (special rule: RT tasks will just roundrobin in the active
4677 * array.)
4679 if (rt_task(current))
4680 target = rq->active;
4682 if (array->nr_active == 1) {
4683 schedstat_inc(rq, yld_act_empty);
4684 if (!rq->expired->nr_active)
4685 schedstat_inc(rq, yld_both_empty);
4686 } else if (!rq->expired->nr_active)
4687 schedstat_inc(rq, yld_exp_empty);
4689 if (array != target) {
4690 dequeue_task(current, array);
4691 enqueue_task(current, target);
4692 } else
4694 * requeue_task is cheaper so perform that if possible.
4696 requeue_task(current, array);
4699 * Since we are going to call schedule() anyway, there's
4700 * no need to preempt or enable interrupts:
4702 __release(rq->lock);
4703 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4704 _raw_spin_unlock(&rq->lock);
4705 preempt_enable_no_resched();
4707 schedule();
4709 return 0;
4712 static void __cond_resched(void)
4714 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4715 __might_sleep(__FILE__, __LINE__);
4716 #endif
4718 * The BKS might be reacquired before we have dropped
4719 * PREEMPT_ACTIVE, which could trigger a second
4720 * cond_resched() call.
4722 do {
4723 add_preempt_count(PREEMPT_ACTIVE);
4724 schedule();
4725 sub_preempt_count(PREEMPT_ACTIVE);
4726 } while (need_resched());
4729 int __sched cond_resched(void)
4731 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4732 system_state == SYSTEM_RUNNING) {
4733 __cond_resched();
4734 return 1;
4736 return 0;
4738 EXPORT_SYMBOL(cond_resched);
4741 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4742 * call schedule, and on return reacquire the lock.
4744 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4745 * operations here to prevent schedule() from being called twice (once via
4746 * spin_unlock(), once by hand).
4748 int cond_resched_lock(spinlock_t *lock)
4750 int ret = 0;
4752 if (need_lockbreak(lock)) {
4753 spin_unlock(lock);
4754 cpu_relax();
4755 ret = 1;
4756 spin_lock(lock);
4758 if (need_resched() && system_state == SYSTEM_RUNNING) {
4759 spin_release(&lock->dep_map, 1, _THIS_IP_);
4760 _raw_spin_unlock(lock);
4761 preempt_enable_no_resched();
4762 __cond_resched();
4763 ret = 1;
4764 spin_lock(lock);
4766 return ret;
4768 EXPORT_SYMBOL(cond_resched_lock);
4770 int __sched cond_resched_softirq(void)
4772 BUG_ON(!in_softirq());
4774 if (need_resched() && system_state == SYSTEM_RUNNING) {
4775 raw_local_irq_disable();
4776 _local_bh_enable();
4777 raw_local_irq_enable();
4778 __cond_resched();
4779 local_bh_disable();
4780 return 1;
4782 return 0;
4784 EXPORT_SYMBOL(cond_resched_softirq);
4787 * yield - yield the current processor to other threads.
4789 * This is a shortcut for kernel-space yielding - it marks the
4790 * thread runnable and calls sys_sched_yield().
4792 void __sched yield(void)
4794 set_current_state(TASK_RUNNING);
4795 sys_sched_yield();
4797 EXPORT_SYMBOL(yield);
4800 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4801 * that process accounting knows that this is a task in IO wait state.
4803 * But don't do that if it is a deliberate, throttling IO wait (this task
4804 * has set its backing_dev_info: the queue against which it should throttle)
4806 void __sched io_schedule(void)
4808 struct rq *rq = &__raw_get_cpu_var(runqueues);
4810 delayacct_blkio_start();
4811 atomic_inc(&rq->nr_iowait);
4812 schedule();
4813 atomic_dec(&rq->nr_iowait);
4814 delayacct_blkio_end();
4816 EXPORT_SYMBOL(io_schedule);
4818 long __sched io_schedule_timeout(long timeout)
4820 struct rq *rq = &__raw_get_cpu_var(runqueues);
4821 long ret;
4823 delayacct_blkio_start();
4824 atomic_inc(&rq->nr_iowait);
4825 ret = schedule_timeout(timeout);
4826 atomic_dec(&rq->nr_iowait);
4827 delayacct_blkio_end();
4828 return ret;
4832 * sys_sched_get_priority_max - return maximum RT priority.
4833 * @policy: scheduling class.
4835 * this syscall returns the maximum rt_priority that can be used
4836 * by a given scheduling class.
4838 asmlinkage long sys_sched_get_priority_max(int policy)
4840 int ret = -EINVAL;
4842 switch (policy) {
4843 case SCHED_FIFO:
4844 case SCHED_RR:
4845 ret = MAX_USER_RT_PRIO-1;
4846 break;
4847 case SCHED_NORMAL:
4848 case SCHED_BATCH:
4849 ret = 0;
4850 break;
4852 return ret;
4856 * sys_sched_get_priority_min - return minimum RT priority.
4857 * @policy: scheduling class.
4859 * this syscall returns the minimum rt_priority that can be used
4860 * by a given scheduling class.
4862 asmlinkage long sys_sched_get_priority_min(int policy)
4864 int ret = -EINVAL;
4866 switch (policy) {
4867 case SCHED_FIFO:
4868 case SCHED_RR:
4869 ret = 1;
4870 break;
4871 case SCHED_NORMAL:
4872 case SCHED_BATCH:
4873 ret = 0;
4875 return ret;
4879 * sys_sched_rr_get_interval - return the default timeslice of a process.
4880 * @pid: pid of the process.
4881 * @interval: userspace pointer to the timeslice value.
4883 * this syscall writes the default timeslice value of a given process
4884 * into the user-space timespec buffer. A value of '0' means infinity.
4886 asmlinkage
4887 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4889 struct task_struct *p;
4890 int retval = -EINVAL;
4891 struct timespec t;
4893 if (pid < 0)
4894 goto out_nounlock;
4896 retval = -ESRCH;
4897 read_lock(&tasklist_lock);
4898 p = find_process_by_pid(pid);
4899 if (!p)
4900 goto out_unlock;
4902 retval = security_task_getscheduler(p);
4903 if (retval)
4904 goto out_unlock;
4906 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4907 0 : task_timeslice(p), &t);
4908 read_unlock(&tasklist_lock);
4909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4910 out_nounlock:
4911 return retval;
4912 out_unlock:
4913 read_unlock(&tasklist_lock);
4914 return retval;
4917 static const char stat_nam[] = "RSDTtZX";
4919 static void show_task(struct task_struct *p)
4921 unsigned long free = 0;
4922 unsigned state;
4924 state = p->state ? __ffs(p->state) + 1 : 0;
4925 printk("%-13.13s %c", p->comm,
4926 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4927 #if (BITS_PER_LONG == 32)
4928 if (state == TASK_RUNNING)
4929 printk(" running ");
4930 else
4931 printk(" %08lX ", thread_saved_pc(p));
4932 #else
4933 if (state == TASK_RUNNING)
4934 printk(" running task ");
4935 else
4936 printk(" %016lx ", thread_saved_pc(p));
4937 #endif
4938 #ifdef CONFIG_DEBUG_STACK_USAGE
4940 unsigned long *n = end_of_stack(p);
4941 while (!*n)
4942 n++;
4943 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4945 #endif
4946 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
4947 if (!p->mm)
4948 printk(" (L-TLB)\n");
4949 else
4950 printk(" (NOTLB)\n");
4952 if (state != TASK_RUNNING)
4953 show_stack(p, NULL);
4956 void show_state_filter(unsigned long state_filter)
4958 struct task_struct *g, *p;
4960 #if (BITS_PER_LONG == 32)
4961 printk("\n"
4962 " free sibling\n");
4963 printk(" task PC stack pid father child younger older\n");
4964 #else
4965 printk("\n"
4966 " free sibling\n");
4967 printk(" task PC stack pid father child younger older\n");
4968 #endif
4969 read_lock(&tasklist_lock);
4970 do_each_thread(g, p) {
4972 * reset the NMI-timeout, listing all files on a slow
4973 * console might take alot of time:
4975 touch_nmi_watchdog();
4976 if (!state_filter || (p->state & state_filter))
4977 show_task(p);
4978 } while_each_thread(g, p);
4980 touch_all_softlockup_watchdogs();
4982 read_unlock(&tasklist_lock);
4984 * Only show locks if all tasks are dumped:
4986 if (state_filter == -1)
4987 debug_show_all_locks();
4991 * init_idle - set up an idle thread for a given CPU
4992 * @idle: task in question
4993 * @cpu: cpu the idle task belongs to
4995 * NOTE: this function does not set the idle thread's NEED_RESCHED
4996 * flag, to make booting more robust.
4998 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5000 struct rq *rq = cpu_rq(cpu);
5001 unsigned long flags;
5003 idle->timestamp = sched_clock();
5004 idle->sleep_avg = 0;
5005 idle->array = NULL;
5006 idle->prio = idle->normal_prio = MAX_PRIO;
5007 idle->state = TASK_RUNNING;
5008 idle->cpus_allowed = cpumask_of_cpu(cpu);
5009 set_task_cpu(idle, cpu);
5011 spin_lock_irqsave(&rq->lock, flags);
5012 rq->curr = rq->idle = idle;
5013 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5014 idle->oncpu = 1;
5015 #endif
5016 spin_unlock_irqrestore(&rq->lock, flags);
5018 /* Set the preempt count _outside_ the spinlocks! */
5019 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5020 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5021 #else
5022 task_thread_info(idle)->preempt_count = 0;
5023 #endif
5027 * In a system that switches off the HZ timer nohz_cpu_mask
5028 * indicates which cpus entered this state. This is used
5029 * in the rcu update to wait only for active cpus. For system
5030 * which do not switch off the HZ timer nohz_cpu_mask should
5031 * always be CPU_MASK_NONE.
5033 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5035 #ifdef CONFIG_SMP
5037 * This is how migration works:
5039 * 1) we queue a struct migration_req structure in the source CPU's
5040 * runqueue and wake up that CPU's migration thread.
5041 * 2) we down() the locked semaphore => thread blocks.
5042 * 3) migration thread wakes up (implicitly it forces the migrated
5043 * thread off the CPU)
5044 * 4) it gets the migration request and checks whether the migrated
5045 * task is still in the wrong runqueue.
5046 * 5) if it's in the wrong runqueue then the migration thread removes
5047 * it and puts it into the right queue.
5048 * 6) migration thread up()s the semaphore.
5049 * 7) we wake up and the migration is done.
5053 * Change a given task's CPU affinity. Migrate the thread to a
5054 * proper CPU and schedule it away if the CPU it's executing on
5055 * is removed from the allowed bitmask.
5057 * NOTE: the caller must have a valid reference to the task, the
5058 * task must not exit() & deallocate itself prematurely. The
5059 * call is not atomic; no spinlocks may be held.
5061 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5063 struct migration_req req;
5064 unsigned long flags;
5065 struct rq *rq;
5066 int ret = 0;
5068 rq = task_rq_lock(p, &flags);
5069 if (!cpus_intersects(new_mask, cpu_online_map)) {
5070 ret = -EINVAL;
5071 goto out;
5074 p->cpus_allowed = new_mask;
5075 /* Can the task run on the task's current CPU? If so, we're done */
5076 if (cpu_isset(task_cpu(p), new_mask))
5077 goto out;
5079 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5080 /* Need help from migration thread: drop lock and wait. */
5081 task_rq_unlock(rq, &flags);
5082 wake_up_process(rq->migration_thread);
5083 wait_for_completion(&req.done);
5084 tlb_migrate_finish(p->mm);
5085 return 0;
5087 out:
5088 task_rq_unlock(rq, &flags);
5090 return ret;
5092 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5095 * Move (not current) task off this cpu, onto dest cpu. We're doing
5096 * this because either it can't run here any more (set_cpus_allowed()
5097 * away from this CPU, or CPU going down), or because we're
5098 * attempting to rebalance this task on exec (sched_exec).
5100 * So we race with normal scheduler movements, but that's OK, as long
5101 * as the task is no longer on this CPU.
5103 * Returns non-zero if task was successfully migrated.
5105 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5107 struct rq *rq_dest, *rq_src;
5108 int ret = 0;
5110 if (unlikely(cpu_is_offline(dest_cpu)))
5111 return ret;
5113 rq_src = cpu_rq(src_cpu);
5114 rq_dest = cpu_rq(dest_cpu);
5116 double_rq_lock(rq_src, rq_dest);
5117 /* Already moved. */
5118 if (task_cpu(p) != src_cpu)
5119 goto out;
5120 /* Affinity changed (again). */
5121 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5122 goto out;
5124 set_task_cpu(p, dest_cpu);
5125 if (p->array) {
5127 * Sync timestamp with rq_dest's before activating.
5128 * The same thing could be achieved by doing this step
5129 * afterwards, and pretending it was a local activate.
5130 * This way is cleaner and logically correct.
5132 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5133 + rq_dest->most_recent_timestamp;
5134 deactivate_task(p, rq_src);
5135 __activate_task(p, rq_dest);
5136 if (TASK_PREEMPTS_CURR(p, rq_dest))
5137 resched_task(rq_dest->curr);
5139 ret = 1;
5140 out:
5141 double_rq_unlock(rq_src, rq_dest);
5142 return ret;
5146 * migration_thread - this is a highprio system thread that performs
5147 * thread migration by bumping thread off CPU then 'pushing' onto
5148 * another runqueue.
5150 static int migration_thread(void *data)
5152 int cpu = (long)data;
5153 struct rq *rq;
5155 rq = cpu_rq(cpu);
5156 BUG_ON(rq->migration_thread != current);
5158 set_current_state(TASK_INTERRUPTIBLE);
5159 while (!kthread_should_stop()) {
5160 struct migration_req *req;
5161 struct list_head *head;
5163 try_to_freeze();
5165 spin_lock_irq(&rq->lock);
5167 if (cpu_is_offline(cpu)) {
5168 spin_unlock_irq(&rq->lock);
5169 goto wait_to_die;
5172 if (rq->active_balance) {
5173 active_load_balance(rq, cpu);
5174 rq->active_balance = 0;
5177 head = &rq->migration_queue;
5179 if (list_empty(head)) {
5180 spin_unlock_irq(&rq->lock);
5181 schedule();
5182 set_current_state(TASK_INTERRUPTIBLE);
5183 continue;
5185 req = list_entry(head->next, struct migration_req, list);
5186 list_del_init(head->next);
5188 spin_unlock(&rq->lock);
5189 __migrate_task(req->task, cpu, req->dest_cpu);
5190 local_irq_enable();
5192 complete(&req->done);
5194 __set_current_state(TASK_RUNNING);
5195 return 0;
5197 wait_to_die:
5198 /* Wait for kthread_stop */
5199 set_current_state(TASK_INTERRUPTIBLE);
5200 while (!kthread_should_stop()) {
5201 schedule();
5202 set_current_state(TASK_INTERRUPTIBLE);
5204 __set_current_state(TASK_RUNNING);
5205 return 0;
5208 #ifdef CONFIG_HOTPLUG_CPU
5210 * Figure out where task on dead CPU should go, use force if neccessary.
5211 * NOTE: interrupts should be disabled by the caller
5213 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5215 unsigned long flags;
5216 cpumask_t mask;
5217 struct rq *rq;
5218 int dest_cpu;
5220 restart:
5221 /* On same node? */
5222 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5223 cpus_and(mask, mask, p->cpus_allowed);
5224 dest_cpu = any_online_cpu(mask);
5226 /* On any allowed CPU? */
5227 if (dest_cpu == NR_CPUS)
5228 dest_cpu = any_online_cpu(p->cpus_allowed);
5230 /* No more Mr. Nice Guy. */
5231 if (dest_cpu == NR_CPUS) {
5232 rq = task_rq_lock(p, &flags);
5233 cpus_setall(p->cpus_allowed);
5234 dest_cpu = any_online_cpu(p->cpus_allowed);
5235 task_rq_unlock(rq, &flags);
5238 * Don't tell them about moving exiting tasks or
5239 * kernel threads (both mm NULL), since they never
5240 * leave kernel.
5242 if (p->mm && printk_ratelimit())
5243 printk(KERN_INFO "process %d (%s) no "
5244 "longer affine to cpu%d\n",
5245 p->pid, p->comm, dead_cpu);
5247 if (!__migrate_task(p, dead_cpu, dest_cpu))
5248 goto restart;
5252 * While a dead CPU has no uninterruptible tasks queued at this point,
5253 * it might still have a nonzero ->nr_uninterruptible counter, because
5254 * for performance reasons the counter is not stricly tracking tasks to
5255 * their home CPUs. So we just add the counter to another CPU's counter,
5256 * to keep the global sum constant after CPU-down:
5258 static void migrate_nr_uninterruptible(struct rq *rq_src)
5260 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5261 unsigned long flags;
5263 local_irq_save(flags);
5264 double_rq_lock(rq_src, rq_dest);
5265 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5266 rq_src->nr_uninterruptible = 0;
5267 double_rq_unlock(rq_src, rq_dest);
5268 local_irq_restore(flags);
5271 /* Run through task list and migrate tasks from the dead cpu. */
5272 static void migrate_live_tasks(int src_cpu)
5274 struct task_struct *p, *t;
5276 write_lock_irq(&tasklist_lock);
5278 do_each_thread(t, p) {
5279 if (p == current)
5280 continue;
5282 if (task_cpu(p) == src_cpu)
5283 move_task_off_dead_cpu(src_cpu, p);
5284 } while_each_thread(t, p);
5286 write_unlock_irq(&tasklist_lock);
5289 /* Schedules idle task to be the next runnable task on current CPU.
5290 * It does so by boosting its priority to highest possible and adding it to
5291 * the _front_ of the runqueue. Used by CPU offline code.
5293 void sched_idle_next(void)
5295 int this_cpu = smp_processor_id();
5296 struct rq *rq = cpu_rq(this_cpu);
5297 struct task_struct *p = rq->idle;
5298 unsigned long flags;
5300 /* cpu has to be offline */
5301 BUG_ON(cpu_online(this_cpu));
5304 * Strictly not necessary since rest of the CPUs are stopped by now
5305 * and interrupts disabled on the current cpu.
5307 spin_lock_irqsave(&rq->lock, flags);
5309 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5311 /* Add idle task to the _front_ of its priority queue: */
5312 __activate_idle_task(p, rq);
5314 spin_unlock_irqrestore(&rq->lock, flags);
5318 * Ensures that the idle task is using init_mm right before its cpu goes
5319 * offline.
5321 void idle_task_exit(void)
5323 struct mm_struct *mm = current->active_mm;
5325 BUG_ON(cpu_online(smp_processor_id()));
5327 if (mm != &init_mm)
5328 switch_mm(mm, &init_mm, current);
5329 mmdrop(mm);
5332 /* called under rq->lock with disabled interrupts */
5333 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5335 struct rq *rq = cpu_rq(dead_cpu);
5337 /* Must be exiting, otherwise would be on tasklist. */
5338 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5340 /* Cannot have done final schedule yet: would have vanished. */
5341 BUG_ON(p->state == TASK_DEAD);
5343 get_task_struct(p);
5346 * Drop lock around migration; if someone else moves it,
5347 * that's OK. No task can be added to this CPU, so iteration is
5348 * fine.
5349 * NOTE: interrupts should be left disabled --dev@
5351 spin_unlock(&rq->lock);
5352 move_task_off_dead_cpu(dead_cpu, p);
5353 spin_lock(&rq->lock);
5355 put_task_struct(p);
5358 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5359 static void migrate_dead_tasks(unsigned int dead_cpu)
5361 struct rq *rq = cpu_rq(dead_cpu);
5362 unsigned int arr, i;
5364 for (arr = 0; arr < 2; arr++) {
5365 for (i = 0; i < MAX_PRIO; i++) {
5366 struct list_head *list = &rq->arrays[arr].queue[i];
5368 while (!list_empty(list))
5369 migrate_dead(dead_cpu, list_entry(list->next,
5370 struct task_struct, run_list));
5374 #endif /* CONFIG_HOTPLUG_CPU */
5377 * migration_call - callback that gets triggered when a CPU is added.
5378 * Here we can start up the necessary migration thread for the new CPU.
5380 static int __cpuinit
5381 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5383 struct task_struct *p;
5384 int cpu = (long)hcpu;
5385 unsigned long flags;
5386 struct rq *rq;
5388 switch (action) {
5389 case CPU_UP_PREPARE:
5390 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5391 if (IS_ERR(p))
5392 return NOTIFY_BAD;
5393 p->flags |= PF_NOFREEZE;
5394 kthread_bind(p, cpu);
5395 /* Must be high prio: stop_machine expects to yield to it. */
5396 rq = task_rq_lock(p, &flags);
5397 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5398 task_rq_unlock(rq, &flags);
5399 cpu_rq(cpu)->migration_thread = p;
5400 break;
5402 case CPU_ONLINE:
5403 /* Strictly unneccessary, as first user will wake it. */
5404 wake_up_process(cpu_rq(cpu)->migration_thread);
5405 break;
5407 #ifdef CONFIG_HOTPLUG_CPU
5408 case CPU_UP_CANCELED:
5409 if (!cpu_rq(cpu)->migration_thread)
5410 break;
5411 /* Unbind it from offline cpu so it can run. Fall thru. */
5412 kthread_bind(cpu_rq(cpu)->migration_thread,
5413 any_online_cpu(cpu_online_map));
5414 kthread_stop(cpu_rq(cpu)->migration_thread);
5415 cpu_rq(cpu)->migration_thread = NULL;
5416 break;
5418 case CPU_DEAD:
5419 migrate_live_tasks(cpu);
5420 rq = cpu_rq(cpu);
5421 kthread_stop(rq->migration_thread);
5422 rq->migration_thread = NULL;
5423 /* Idle task back to normal (off runqueue, low prio) */
5424 rq = task_rq_lock(rq->idle, &flags);
5425 deactivate_task(rq->idle, rq);
5426 rq->idle->static_prio = MAX_PRIO;
5427 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5428 migrate_dead_tasks(cpu);
5429 task_rq_unlock(rq, &flags);
5430 migrate_nr_uninterruptible(rq);
5431 BUG_ON(rq->nr_running != 0);
5433 /* No need to migrate the tasks: it was best-effort if
5434 * they didn't do lock_cpu_hotplug(). Just wake up
5435 * the requestors. */
5436 spin_lock_irq(&rq->lock);
5437 while (!list_empty(&rq->migration_queue)) {
5438 struct migration_req *req;
5440 req = list_entry(rq->migration_queue.next,
5441 struct migration_req, list);
5442 list_del_init(&req->list);
5443 complete(&req->done);
5445 spin_unlock_irq(&rq->lock);
5446 break;
5447 #endif
5449 return NOTIFY_OK;
5452 /* Register at highest priority so that task migration (migrate_all_tasks)
5453 * happens before everything else.
5455 static struct notifier_block __cpuinitdata migration_notifier = {
5456 .notifier_call = migration_call,
5457 .priority = 10
5460 int __init migration_init(void)
5462 void *cpu = (void *)(long)smp_processor_id();
5463 int err;
5465 /* Start one for the boot CPU: */
5466 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5467 BUG_ON(err == NOTIFY_BAD);
5468 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5469 register_cpu_notifier(&migration_notifier);
5471 return 0;
5473 #endif
5475 #ifdef CONFIG_SMP
5477 /* Number of possible processor ids */
5478 int nr_cpu_ids __read_mostly = NR_CPUS;
5479 EXPORT_SYMBOL(nr_cpu_ids);
5481 #undef SCHED_DOMAIN_DEBUG
5482 #ifdef SCHED_DOMAIN_DEBUG
5483 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5485 int level = 0;
5487 if (!sd) {
5488 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5489 return;
5492 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5494 do {
5495 int i;
5496 char str[NR_CPUS];
5497 struct sched_group *group = sd->groups;
5498 cpumask_t groupmask;
5500 cpumask_scnprintf(str, NR_CPUS, sd->span);
5501 cpus_clear(groupmask);
5503 printk(KERN_DEBUG);
5504 for (i = 0; i < level + 1; i++)
5505 printk(" ");
5506 printk("domain %d: ", level);
5508 if (!(sd->flags & SD_LOAD_BALANCE)) {
5509 printk("does not load-balance\n");
5510 if (sd->parent)
5511 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5512 " has parent");
5513 break;
5516 printk("span %s\n", str);
5518 if (!cpu_isset(cpu, sd->span))
5519 printk(KERN_ERR "ERROR: domain->span does not contain "
5520 "CPU%d\n", cpu);
5521 if (!cpu_isset(cpu, group->cpumask))
5522 printk(KERN_ERR "ERROR: domain->groups does not contain"
5523 " CPU%d\n", cpu);
5525 printk(KERN_DEBUG);
5526 for (i = 0; i < level + 2; i++)
5527 printk(" ");
5528 printk("groups:");
5529 do {
5530 if (!group) {
5531 printk("\n");
5532 printk(KERN_ERR "ERROR: group is NULL\n");
5533 break;
5536 if (!group->__cpu_power) {
5537 printk("\n");
5538 printk(KERN_ERR "ERROR: domain->cpu_power not "
5539 "set\n");
5542 if (!cpus_weight(group->cpumask)) {
5543 printk("\n");
5544 printk(KERN_ERR "ERROR: empty group\n");
5547 if (cpus_intersects(groupmask, group->cpumask)) {
5548 printk("\n");
5549 printk(KERN_ERR "ERROR: repeated CPUs\n");
5552 cpus_or(groupmask, groupmask, group->cpumask);
5554 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5555 printk(" %s", str);
5557 group = group->next;
5558 } while (group != sd->groups);
5559 printk("\n");
5561 if (!cpus_equal(sd->span, groupmask))
5562 printk(KERN_ERR "ERROR: groups don't span "
5563 "domain->span\n");
5565 level++;
5566 sd = sd->parent;
5567 if (!sd)
5568 continue;
5570 if (!cpus_subset(groupmask, sd->span))
5571 printk(KERN_ERR "ERROR: parent span is not a superset "
5572 "of domain->span\n");
5574 } while (sd);
5576 #else
5577 # define sched_domain_debug(sd, cpu) do { } while (0)
5578 #endif
5580 static int sd_degenerate(struct sched_domain *sd)
5582 if (cpus_weight(sd->span) == 1)
5583 return 1;
5585 /* Following flags need at least 2 groups */
5586 if (sd->flags & (SD_LOAD_BALANCE |
5587 SD_BALANCE_NEWIDLE |
5588 SD_BALANCE_FORK |
5589 SD_BALANCE_EXEC |
5590 SD_SHARE_CPUPOWER |
5591 SD_SHARE_PKG_RESOURCES)) {
5592 if (sd->groups != sd->groups->next)
5593 return 0;
5596 /* Following flags don't use groups */
5597 if (sd->flags & (SD_WAKE_IDLE |
5598 SD_WAKE_AFFINE |
5599 SD_WAKE_BALANCE))
5600 return 0;
5602 return 1;
5605 static int
5606 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5608 unsigned long cflags = sd->flags, pflags = parent->flags;
5610 if (sd_degenerate(parent))
5611 return 1;
5613 if (!cpus_equal(sd->span, parent->span))
5614 return 0;
5616 /* Does parent contain flags not in child? */
5617 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5618 if (cflags & SD_WAKE_AFFINE)
5619 pflags &= ~SD_WAKE_BALANCE;
5620 /* Flags needing groups don't count if only 1 group in parent */
5621 if (parent->groups == parent->groups->next) {
5622 pflags &= ~(SD_LOAD_BALANCE |
5623 SD_BALANCE_NEWIDLE |
5624 SD_BALANCE_FORK |
5625 SD_BALANCE_EXEC |
5626 SD_SHARE_CPUPOWER |
5627 SD_SHARE_PKG_RESOURCES);
5629 if (~cflags & pflags)
5630 return 0;
5632 return 1;
5636 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5637 * hold the hotplug lock.
5639 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5641 struct rq *rq = cpu_rq(cpu);
5642 struct sched_domain *tmp;
5644 /* Remove the sched domains which do not contribute to scheduling. */
5645 for (tmp = sd; tmp; tmp = tmp->parent) {
5646 struct sched_domain *parent = tmp->parent;
5647 if (!parent)
5648 break;
5649 if (sd_parent_degenerate(tmp, parent)) {
5650 tmp->parent = parent->parent;
5651 if (parent->parent)
5652 parent->parent->child = tmp;
5656 if (sd && sd_degenerate(sd)) {
5657 sd = sd->parent;
5658 if (sd)
5659 sd->child = NULL;
5662 sched_domain_debug(sd, cpu);
5664 rcu_assign_pointer(rq->sd, sd);
5667 /* cpus with isolated domains */
5668 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5670 /* Setup the mask of cpus configured for isolated domains */
5671 static int __init isolated_cpu_setup(char *str)
5673 int ints[NR_CPUS], i;
5675 str = get_options(str, ARRAY_SIZE(ints), ints);
5676 cpus_clear(cpu_isolated_map);
5677 for (i = 1; i <= ints[0]; i++)
5678 if (ints[i] < NR_CPUS)
5679 cpu_set(ints[i], cpu_isolated_map);
5680 return 1;
5683 __setup ("isolcpus=", isolated_cpu_setup);
5686 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5687 * to a function which identifies what group(along with sched group) a CPU
5688 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5689 * (due to the fact that we keep track of groups covered with a cpumask_t).
5691 * init_sched_build_groups will build a circular linked list of the groups
5692 * covered by the given span, and will set each group's ->cpumask correctly,
5693 * and ->cpu_power to 0.
5695 static void
5696 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5697 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5698 struct sched_group **sg))
5700 struct sched_group *first = NULL, *last = NULL;
5701 cpumask_t covered = CPU_MASK_NONE;
5702 int i;
5704 for_each_cpu_mask(i, span) {
5705 struct sched_group *sg;
5706 int group = group_fn(i, cpu_map, &sg);
5707 int j;
5709 if (cpu_isset(i, covered))
5710 continue;
5712 sg->cpumask = CPU_MASK_NONE;
5713 sg->__cpu_power = 0;
5715 for_each_cpu_mask(j, span) {
5716 if (group_fn(j, cpu_map, NULL) != group)
5717 continue;
5719 cpu_set(j, covered);
5720 cpu_set(j, sg->cpumask);
5722 if (!first)
5723 first = sg;
5724 if (last)
5725 last->next = sg;
5726 last = sg;
5728 last->next = first;
5731 #define SD_NODES_PER_DOMAIN 16
5734 * Self-tuning task migration cost measurement between source and target CPUs.
5736 * This is done by measuring the cost of manipulating buffers of varying
5737 * sizes. For a given buffer-size here are the steps that are taken:
5739 * 1) the source CPU reads+dirties a shared buffer
5740 * 2) the target CPU reads+dirties the same shared buffer
5742 * We measure how long they take, in the following 4 scenarios:
5744 * - source: CPU1, target: CPU2 | cost1
5745 * - source: CPU2, target: CPU1 | cost2
5746 * - source: CPU1, target: CPU1 | cost3
5747 * - source: CPU2, target: CPU2 | cost4
5749 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5750 * the cost of migration.
5752 * We then start off from a small buffer-size and iterate up to larger
5753 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5754 * doing a maximum search for the cost. (The maximum cost for a migration
5755 * normally occurs when the working set size is around the effective cache
5756 * size.)
5758 #define SEARCH_SCOPE 2
5759 #define MIN_CACHE_SIZE (64*1024U)
5760 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5761 #define ITERATIONS 1
5762 #define SIZE_THRESH 130
5763 #define COST_THRESH 130
5766 * The migration cost is a function of 'domain distance'. Domain
5767 * distance is the number of steps a CPU has to iterate down its
5768 * domain tree to share a domain with the other CPU. The farther
5769 * two CPUs are from each other, the larger the distance gets.
5771 * Note that we use the distance only to cache measurement results,
5772 * the distance value is not used numerically otherwise. When two
5773 * CPUs have the same distance it is assumed that the migration
5774 * cost is the same. (this is a simplification but quite practical)
5776 #define MAX_DOMAIN_DISTANCE 32
5778 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5779 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5781 * Architectures may override the migration cost and thus avoid
5782 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5783 * virtualized hardware:
5785 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5786 CONFIG_DEFAULT_MIGRATION_COST
5787 #else
5788 -1LL
5789 #endif
5793 * Allow override of migration cost - in units of microseconds.
5794 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5795 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5797 static int __init migration_cost_setup(char *str)
5799 int ints[MAX_DOMAIN_DISTANCE+1], i;
5801 str = get_options(str, ARRAY_SIZE(ints), ints);
5803 printk("#ints: %d\n", ints[0]);
5804 for (i = 1; i <= ints[0]; i++) {
5805 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5806 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5808 return 1;
5811 __setup ("migration_cost=", migration_cost_setup);
5814 * Global multiplier (divisor) for migration-cutoff values,
5815 * in percentiles. E.g. use a value of 150 to get 1.5 times
5816 * longer cache-hot cutoff times.
5818 * (We scale it from 100 to 128 to long long handling easier.)
5821 #define MIGRATION_FACTOR_SCALE 128
5823 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5825 static int __init setup_migration_factor(char *str)
5827 get_option(&str, &migration_factor);
5828 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5829 return 1;
5832 __setup("migration_factor=", setup_migration_factor);
5835 * Estimated distance of two CPUs, measured via the number of domains
5836 * we have to pass for the two CPUs to be in the same span:
5838 static unsigned long domain_distance(int cpu1, int cpu2)
5840 unsigned long distance = 0;
5841 struct sched_domain *sd;
5843 for_each_domain(cpu1, sd) {
5844 WARN_ON(!cpu_isset(cpu1, sd->span));
5845 if (cpu_isset(cpu2, sd->span))
5846 return distance;
5847 distance++;
5849 if (distance >= MAX_DOMAIN_DISTANCE) {
5850 WARN_ON(1);
5851 distance = MAX_DOMAIN_DISTANCE-1;
5854 return distance;
5857 static unsigned int migration_debug;
5859 static int __init setup_migration_debug(char *str)
5861 get_option(&str, &migration_debug);
5862 return 1;
5865 __setup("migration_debug=", setup_migration_debug);
5868 * Maximum cache-size that the scheduler should try to measure.
5869 * Architectures with larger caches should tune this up during
5870 * bootup. Gets used in the domain-setup code (i.e. during SMP
5871 * bootup).
5873 unsigned int max_cache_size;
5875 static int __init setup_max_cache_size(char *str)
5877 get_option(&str, &max_cache_size);
5878 return 1;
5881 __setup("max_cache_size=", setup_max_cache_size);
5884 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5885 * is the operation that is timed, so we try to generate unpredictable
5886 * cachemisses that still end up filling the L2 cache:
5888 static void touch_cache(void *__cache, unsigned long __size)
5890 unsigned long size = __size / sizeof(long);
5891 unsigned long chunk1 = size / 3;
5892 unsigned long chunk2 = 2 * size / 3;
5893 unsigned long *cache = __cache;
5894 int i;
5896 for (i = 0; i < size/6; i += 8) {
5897 switch (i % 6) {
5898 case 0: cache[i]++;
5899 case 1: cache[size-1-i]++;
5900 case 2: cache[chunk1-i]++;
5901 case 3: cache[chunk1+i]++;
5902 case 4: cache[chunk2-i]++;
5903 case 5: cache[chunk2+i]++;
5909 * Measure the cache-cost of one task migration. Returns in units of nsec.
5911 static unsigned long long
5912 measure_one(void *cache, unsigned long size, int source, int target)
5914 cpumask_t mask, saved_mask;
5915 unsigned long long t0, t1, t2, t3, cost;
5917 saved_mask = current->cpus_allowed;
5920 * Flush source caches to RAM and invalidate them:
5922 sched_cacheflush();
5925 * Migrate to the source CPU:
5927 mask = cpumask_of_cpu(source);
5928 set_cpus_allowed(current, mask);
5929 WARN_ON(smp_processor_id() != source);
5932 * Dirty the working set:
5934 t0 = sched_clock();
5935 touch_cache(cache, size);
5936 t1 = sched_clock();
5939 * Migrate to the target CPU, dirty the L2 cache and access
5940 * the shared buffer. (which represents the working set
5941 * of a migrated task.)
5943 mask = cpumask_of_cpu(target);
5944 set_cpus_allowed(current, mask);
5945 WARN_ON(smp_processor_id() != target);
5947 t2 = sched_clock();
5948 touch_cache(cache, size);
5949 t3 = sched_clock();
5951 cost = t1-t0 + t3-t2;
5953 if (migration_debug >= 2)
5954 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5955 source, target, t1-t0, t1-t0, t3-t2, cost);
5957 * Flush target caches to RAM and invalidate them:
5959 sched_cacheflush();
5961 set_cpus_allowed(current, saved_mask);
5963 return cost;
5967 * Measure a series of task migrations and return the average
5968 * result. Since this code runs early during bootup the system
5969 * is 'undisturbed' and the average latency makes sense.
5971 * The algorithm in essence auto-detects the relevant cache-size,
5972 * so it will properly detect different cachesizes for different
5973 * cache-hierarchies, depending on how the CPUs are connected.
5975 * Architectures can prime the upper limit of the search range via
5976 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5978 static unsigned long long
5979 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5981 unsigned long long cost1, cost2;
5982 int i;
5985 * Measure the migration cost of 'size' bytes, over an
5986 * average of 10 runs:
5988 * (We perturb the cache size by a small (0..4k)
5989 * value to compensate size/alignment related artifacts.
5990 * We also subtract the cost of the operation done on
5991 * the same CPU.)
5993 cost1 = 0;
5996 * dry run, to make sure we start off cache-cold on cpu1,
5997 * and to get any vmalloc pagefaults in advance:
5999 measure_one(cache, size, cpu1, cpu2);
6000 for (i = 0; i < ITERATIONS; i++)
6001 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
6003 measure_one(cache, size, cpu2, cpu1);
6004 for (i = 0; i < ITERATIONS; i++)
6005 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
6008 * (We measure the non-migrating [cached] cost on both
6009 * cpu1 and cpu2, to handle CPUs with different speeds)
6011 cost2 = 0;
6013 measure_one(cache, size, cpu1, cpu1);
6014 for (i = 0; i < ITERATIONS; i++)
6015 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
6017 measure_one(cache, size, cpu2, cpu2);
6018 for (i = 0; i < ITERATIONS; i++)
6019 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
6022 * Get the per-iteration migration cost:
6024 do_div(cost1, 2 * ITERATIONS);
6025 do_div(cost2, 2 * ITERATIONS);
6027 return cost1 - cost2;
6030 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
6032 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6033 unsigned int max_size, size, size_found = 0;
6034 long long cost = 0, prev_cost;
6035 void *cache;
6038 * Search from max_cache_size*5 down to 64K - the real relevant
6039 * cachesize has to lie somewhere inbetween.
6041 if (max_cache_size) {
6042 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6043 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6044 } else {
6046 * Since we have no estimation about the relevant
6047 * search range
6049 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6050 size = MIN_CACHE_SIZE;
6053 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6054 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6055 return 0;
6059 * Allocate the working set:
6061 cache = vmalloc(max_size);
6062 if (!cache) {
6063 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6064 return 1000000; /* return 1 msec on very small boxen */
6067 while (size <= max_size) {
6068 prev_cost = cost;
6069 cost = measure_cost(cpu1, cpu2, cache, size);
6072 * Update the max:
6074 if (cost > 0) {
6075 if (max_cost < cost) {
6076 max_cost = cost;
6077 size_found = size;
6081 * Calculate average fluctuation, we use this to prevent
6082 * noise from triggering an early break out of the loop:
6084 fluct = abs(cost - prev_cost);
6085 avg_fluct = (avg_fluct + fluct)/2;
6087 if (migration_debug)
6088 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6089 "(%8Ld %8Ld)\n",
6090 cpu1, cpu2, size,
6091 (long)cost / 1000000,
6092 ((long)cost / 100000) % 10,
6093 (long)max_cost / 1000000,
6094 ((long)max_cost / 100000) % 10,
6095 domain_distance(cpu1, cpu2),
6096 cost, avg_fluct);
6099 * If we iterated at least 20% past the previous maximum,
6100 * and the cost has dropped by more than 20% already,
6101 * (taking fluctuations into account) then we assume to
6102 * have found the maximum and break out of the loop early:
6104 if (size_found && (size*100 > size_found*SIZE_THRESH))
6105 if (cost+avg_fluct <= 0 ||
6106 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6108 if (migration_debug)
6109 printk("-> found max.\n");
6110 break;
6113 * Increase the cachesize in 10% steps:
6115 size = size * 10 / 9;
6118 if (migration_debug)
6119 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6120 cpu1, cpu2, size_found, max_cost);
6122 vfree(cache);
6125 * A task is considered 'cache cold' if at least 2 times
6126 * the worst-case cost of migration has passed.
6128 * (this limit is only listened to if the load-balancing
6129 * situation is 'nice' - if there is a large imbalance we
6130 * ignore it for the sake of CPU utilization and
6131 * processing fairness.)
6133 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6136 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6138 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6139 unsigned long j0, j1, distance, max_distance = 0;
6140 struct sched_domain *sd;
6142 j0 = jiffies;
6145 * First pass - calculate the cacheflush times:
6147 for_each_cpu_mask(cpu1, *cpu_map) {
6148 for_each_cpu_mask(cpu2, *cpu_map) {
6149 if (cpu1 == cpu2)
6150 continue;
6151 distance = domain_distance(cpu1, cpu2);
6152 max_distance = max(max_distance, distance);
6154 * No result cached yet?
6156 if (migration_cost[distance] == -1LL)
6157 migration_cost[distance] =
6158 measure_migration_cost(cpu1, cpu2);
6162 * Second pass - update the sched domain hierarchy with
6163 * the new cache-hot-time estimations:
6165 for_each_cpu_mask(cpu, *cpu_map) {
6166 distance = 0;
6167 for_each_domain(cpu, sd) {
6168 sd->cache_hot_time = migration_cost[distance];
6169 distance++;
6173 * Print the matrix:
6175 if (migration_debug)
6176 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6177 max_cache_size,
6178 #ifdef CONFIG_X86
6179 cpu_khz/1000
6180 #else
6182 #endif
6184 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6185 printk("migration_cost=");
6186 for (distance = 0; distance <= max_distance; distance++) {
6187 if (distance)
6188 printk(",");
6189 printk("%ld", (long)migration_cost[distance] / 1000);
6191 printk("\n");
6193 j1 = jiffies;
6194 if (migration_debug)
6195 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6198 * Move back to the original CPU. NUMA-Q gets confused
6199 * if we migrate to another quad during bootup.
6201 if (raw_smp_processor_id() != orig_cpu) {
6202 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6203 saved_mask = current->cpus_allowed;
6205 set_cpus_allowed(current, mask);
6206 set_cpus_allowed(current, saved_mask);
6210 #ifdef CONFIG_NUMA
6213 * find_next_best_node - find the next node to include in a sched_domain
6214 * @node: node whose sched_domain we're building
6215 * @used_nodes: nodes already in the sched_domain
6217 * Find the next node to include in a given scheduling domain. Simply
6218 * finds the closest node not already in the @used_nodes map.
6220 * Should use nodemask_t.
6222 static int find_next_best_node(int node, unsigned long *used_nodes)
6224 int i, n, val, min_val, best_node = 0;
6226 min_val = INT_MAX;
6228 for (i = 0; i < MAX_NUMNODES; i++) {
6229 /* Start at @node */
6230 n = (node + i) % MAX_NUMNODES;
6232 if (!nr_cpus_node(n))
6233 continue;
6235 /* Skip already used nodes */
6236 if (test_bit(n, used_nodes))
6237 continue;
6239 /* Simple min distance search */
6240 val = node_distance(node, n);
6242 if (val < min_val) {
6243 min_val = val;
6244 best_node = n;
6248 set_bit(best_node, used_nodes);
6249 return best_node;
6253 * sched_domain_node_span - get a cpumask for a node's sched_domain
6254 * @node: node whose cpumask we're constructing
6255 * @size: number of nodes to include in this span
6257 * Given a node, construct a good cpumask for its sched_domain to span. It
6258 * should be one that prevents unnecessary balancing, but also spreads tasks
6259 * out optimally.
6261 static cpumask_t sched_domain_node_span(int node)
6263 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6264 cpumask_t span, nodemask;
6265 int i;
6267 cpus_clear(span);
6268 bitmap_zero(used_nodes, MAX_NUMNODES);
6270 nodemask = node_to_cpumask(node);
6271 cpus_or(span, span, nodemask);
6272 set_bit(node, used_nodes);
6274 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6275 int next_node = find_next_best_node(node, used_nodes);
6277 nodemask = node_to_cpumask(next_node);
6278 cpus_or(span, span, nodemask);
6281 return span;
6283 #endif
6285 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6288 * SMT sched-domains:
6290 #ifdef CONFIG_SCHED_SMT
6291 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6292 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6294 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6295 struct sched_group **sg)
6297 if (sg)
6298 *sg = &per_cpu(sched_group_cpus, cpu);
6299 return cpu;
6301 #endif
6304 * multi-core sched-domains:
6306 #ifdef CONFIG_SCHED_MC
6307 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6308 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6309 #endif
6311 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6312 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6313 struct sched_group **sg)
6315 int group;
6316 cpumask_t mask = cpu_sibling_map[cpu];
6317 cpus_and(mask, mask, *cpu_map);
6318 group = first_cpu(mask);
6319 if (sg)
6320 *sg = &per_cpu(sched_group_core, group);
6321 return group;
6323 #elif defined(CONFIG_SCHED_MC)
6324 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6325 struct sched_group **sg)
6327 if (sg)
6328 *sg = &per_cpu(sched_group_core, cpu);
6329 return cpu;
6331 #endif
6333 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6334 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6336 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6337 struct sched_group **sg)
6339 int group;
6340 #ifdef CONFIG_SCHED_MC
6341 cpumask_t mask = cpu_coregroup_map(cpu);
6342 cpus_and(mask, mask, *cpu_map);
6343 group = first_cpu(mask);
6344 #elif defined(CONFIG_SCHED_SMT)
6345 cpumask_t mask = cpu_sibling_map[cpu];
6346 cpus_and(mask, mask, *cpu_map);
6347 group = first_cpu(mask);
6348 #else
6349 group = cpu;
6350 #endif
6351 if (sg)
6352 *sg = &per_cpu(sched_group_phys, group);
6353 return group;
6356 #ifdef CONFIG_NUMA
6358 * The init_sched_build_groups can't handle what we want to do with node
6359 * groups, so roll our own. Now each node has its own list of groups which
6360 * gets dynamically allocated.
6362 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6363 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6365 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6366 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6368 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6369 struct sched_group **sg)
6371 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6372 int group;
6374 cpus_and(nodemask, nodemask, *cpu_map);
6375 group = first_cpu(nodemask);
6377 if (sg)
6378 *sg = &per_cpu(sched_group_allnodes, group);
6379 return group;
6382 static void init_numa_sched_groups_power(struct sched_group *group_head)
6384 struct sched_group *sg = group_head;
6385 int j;
6387 if (!sg)
6388 return;
6389 next_sg:
6390 for_each_cpu_mask(j, sg->cpumask) {
6391 struct sched_domain *sd;
6393 sd = &per_cpu(phys_domains, j);
6394 if (j != first_cpu(sd->groups->cpumask)) {
6396 * Only add "power" once for each
6397 * physical package.
6399 continue;
6402 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6404 sg = sg->next;
6405 if (sg != group_head)
6406 goto next_sg;
6408 #endif
6410 #ifdef CONFIG_NUMA
6411 /* Free memory allocated for various sched_group structures */
6412 static void free_sched_groups(const cpumask_t *cpu_map)
6414 int cpu, i;
6416 for_each_cpu_mask(cpu, *cpu_map) {
6417 struct sched_group **sched_group_nodes
6418 = sched_group_nodes_bycpu[cpu];
6420 if (!sched_group_nodes)
6421 continue;
6423 for (i = 0; i < MAX_NUMNODES; i++) {
6424 cpumask_t nodemask = node_to_cpumask(i);
6425 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6427 cpus_and(nodemask, nodemask, *cpu_map);
6428 if (cpus_empty(nodemask))
6429 continue;
6431 if (sg == NULL)
6432 continue;
6433 sg = sg->next;
6434 next_sg:
6435 oldsg = sg;
6436 sg = sg->next;
6437 kfree(oldsg);
6438 if (oldsg != sched_group_nodes[i])
6439 goto next_sg;
6441 kfree(sched_group_nodes);
6442 sched_group_nodes_bycpu[cpu] = NULL;
6445 #else
6446 static void free_sched_groups(const cpumask_t *cpu_map)
6449 #endif
6452 * Initialize sched groups cpu_power.
6454 * cpu_power indicates the capacity of sched group, which is used while
6455 * distributing the load between different sched groups in a sched domain.
6456 * Typically cpu_power for all the groups in a sched domain will be same unless
6457 * there are asymmetries in the topology. If there are asymmetries, group
6458 * having more cpu_power will pickup more load compared to the group having
6459 * less cpu_power.
6461 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6462 * the maximum number of tasks a group can handle in the presence of other idle
6463 * or lightly loaded groups in the same sched domain.
6465 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6467 struct sched_domain *child;
6468 struct sched_group *group;
6470 WARN_ON(!sd || !sd->groups);
6472 if (cpu != first_cpu(sd->groups->cpumask))
6473 return;
6475 child = sd->child;
6477 sd->groups->__cpu_power = 0;
6480 * For perf policy, if the groups in child domain share resources
6481 * (for example cores sharing some portions of the cache hierarchy
6482 * or SMT), then set this domain groups cpu_power such that each group
6483 * can handle only one task, when there are other idle groups in the
6484 * same sched domain.
6486 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6487 (child->flags &
6488 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6489 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6490 return;
6494 * add cpu_power of each child group to this groups cpu_power
6496 group = child->groups;
6497 do {
6498 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6499 group = group->next;
6500 } while (group != child->groups);
6504 * Build sched domains for a given set of cpus and attach the sched domains
6505 * to the individual cpus
6507 static int build_sched_domains(const cpumask_t *cpu_map)
6509 int i;
6510 struct sched_domain *sd;
6511 #ifdef CONFIG_NUMA
6512 struct sched_group **sched_group_nodes = NULL;
6513 int sd_allnodes = 0;
6516 * Allocate the per-node list of sched groups
6518 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6519 GFP_KERNEL);
6520 if (!sched_group_nodes) {
6521 printk(KERN_WARNING "Can not alloc sched group node list\n");
6522 return -ENOMEM;
6524 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6525 #endif
6528 * Set up domains for cpus specified by the cpu_map.
6530 for_each_cpu_mask(i, *cpu_map) {
6531 struct sched_domain *sd = NULL, *p;
6532 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6534 cpus_and(nodemask, nodemask, *cpu_map);
6536 #ifdef CONFIG_NUMA
6537 if (cpus_weight(*cpu_map)
6538 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6539 sd = &per_cpu(allnodes_domains, i);
6540 *sd = SD_ALLNODES_INIT;
6541 sd->span = *cpu_map;
6542 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6543 p = sd;
6544 sd_allnodes = 1;
6545 } else
6546 p = NULL;
6548 sd = &per_cpu(node_domains, i);
6549 *sd = SD_NODE_INIT;
6550 sd->span = sched_domain_node_span(cpu_to_node(i));
6551 sd->parent = p;
6552 if (p)
6553 p->child = sd;
6554 cpus_and(sd->span, sd->span, *cpu_map);
6555 #endif
6557 p = sd;
6558 sd = &per_cpu(phys_domains, i);
6559 *sd = SD_CPU_INIT;
6560 sd->span = nodemask;
6561 sd->parent = p;
6562 if (p)
6563 p->child = sd;
6564 cpu_to_phys_group(i, cpu_map, &sd->groups);
6566 #ifdef CONFIG_SCHED_MC
6567 p = sd;
6568 sd = &per_cpu(core_domains, i);
6569 *sd = SD_MC_INIT;
6570 sd->span = cpu_coregroup_map(i);
6571 cpus_and(sd->span, sd->span, *cpu_map);
6572 sd->parent = p;
6573 p->child = sd;
6574 cpu_to_core_group(i, cpu_map, &sd->groups);
6575 #endif
6577 #ifdef CONFIG_SCHED_SMT
6578 p = sd;
6579 sd = &per_cpu(cpu_domains, i);
6580 *sd = SD_SIBLING_INIT;
6581 sd->span = cpu_sibling_map[i];
6582 cpus_and(sd->span, sd->span, *cpu_map);
6583 sd->parent = p;
6584 p->child = sd;
6585 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6586 #endif
6589 #ifdef CONFIG_SCHED_SMT
6590 /* Set up CPU (sibling) groups */
6591 for_each_cpu_mask(i, *cpu_map) {
6592 cpumask_t this_sibling_map = cpu_sibling_map[i];
6593 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6594 if (i != first_cpu(this_sibling_map))
6595 continue;
6597 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6599 #endif
6601 #ifdef CONFIG_SCHED_MC
6602 /* Set up multi-core groups */
6603 for_each_cpu_mask(i, *cpu_map) {
6604 cpumask_t this_core_map = cpu_coregroup_map(i);
6605 cpus_and(this_core_map, this_core_map, *cpu_map);
6606 if (i != first_cpu(this_core_map))
6607 continue;
6608 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6610 #endif
6613 /* Set up physical groups */
6614 for (i = 0; i < MAX_NUMNODES; i++) {
6615 cpumask_t nodemask = node_to_cpumask(i);
6617 cpus_and(nodemask, nodemask, *cpu_map);
6618 if (cpus_empty(nodemask))
6619 continue;
6621 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6624 #ifdef CONFIG_NUMA
6625 /* Set up node groups */
6626 if (sd_allnodes)
6627 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6629 for (i = 0; i < MAX_NUMNODES; i++) {
6630 /* Set up node groups */
6631 struct sched_group *sg, *prev;
6632 cpumask_t nodemask = node_to_cpumask(i);
6633 cpumask_t domainspan;
6634 cpumask_t covered = CPU_MASK_NONE;
6635 int j;
6637 cpus_and(nodemask, nodemask, *cpu_map);
6638 if (cpus_empty(nodemask)) {
6639 sched_group_nodes[i] = NULL;
6640 continue;
6643 domainspan = sched_domain_node_span(i);
6644 cpus_and(domainspan, domainspan, *cpu_map);
6646 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6647 if (!sg) {
6648 printk(KERN_WARNING "Can not alloc domain group for "
6649 "node %d\n", i);
6650 goto error;
6652 sched_group_nodes[i] = sg;
6653 for_each_cpu_mask(j, nodemask) {
6654 struct sched_domain *sd;
6655 sd = &per_cpu(node_domains, j);
6656 sd->groups = sg;
6658 sg->__cpu_power = 0;
6659 sg->cpumask = nodemask;
6660 sg->next = sg;
6661 cpus_or(covered, covered, nodemask);
6662 prev = sg;
6664 for (j = 0; j < MAX_NUMNODES; j++) {
6665 cpumask_t tmp, notcovered;
6666 int n = (i + j) % MAX_NUMNODES;
6668 cpus_complement(notcovered, covered);
6669 cpus_and(tmp, notcovered, *cpu_map);
6670 cpus_and(tmp, tmp, domainspan);
6671 if (cpus_empty(tmp))
6672 break;
6674 nodemask = node_to_cpumask(n);
6675 cpus_and(tmp, tmp, nodemask);
6676 if (cpus_empty(tmp))
6677 continue;
6679 sg = kmalloc_node(sizeof(struct sched_group),
6680 GFP_KERNEL, i);
6681 if (!sg) {
6682 printk(KERN_WARNING
6683 "Can not alloc domain group for node %d\n", j);
6684 goto error;
6686 sg->__cpu_power = 0;
6687 sg->cpumask = tmp;
6688 sg->next = prev->next;
6689 cpus_or(covered, covered, tmp);
6690 prev->next = sg;
6691 prev = sg;
6694 #endif
6696 /* Calculate CPU power for physical packages and nodes */
6697 #ifdef CONFIG_SCHED_SMT
6698 for_each_cpu_mask(i, *cpu_map) {
6699 sd = &per_cpu(cpu_domains, i);
6700 init_sched_groups_power(i, sd);
6702 #endif
6703 #ifdef CONFIG_SCHED_MC
6704 for_each_cpu_mask(i, *cpu_map) {
6705 sd = &per_cpu(core_domains, i);
6706 init_sched_groups_power(i, sd);
6708 #endif
6710 for_each_cpu_mask(i, *cpu_map) {
6711 sd = &per_cpu(phys_domains, i);
6712 init_sched_groups_power(i, sd);
6715 #ifdef CONFIG_NUMA
6716 for (i = 0; i < MAX_NUMNODES; i++)
6717 init_numa_sched_groups_power(sched_group_nodes[i]);
6719 if (sd_allnodes) {
6720 struct sched_group *sg;
6722 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6723 init_numa_sched_groups_power(sg);
6725 #endif
6727 /* Attach the domains */
6728 for_each_cpu_mask(i, *cpu_map) {
6729 struct sched_domain *sd;
6730 #ifdef CONFIG_SCHED_SMT
6731 sd = &per_cpu(cpu_domains, i);
6732 #elif defined(CONFIG_SCHED_MC)
6733 sd = &per_cpu(core_domains, i);
6734 #else
6735 sd = &per_cpu(phys_domains, i);
6736 #endif
6737 cpu_attach_domain(sd, i);
6740 * Tune cache-hot values:
6742 calibrate_migration_costs(cpu_map);
6744 return 0;
6746 #ifdef CONFIG_NUMA
6747 error:
6748 free_sched_groups(cpu_map);
6749 return -ENOMEM;
6750 #endif
6753 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6755 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6757 cpumask_t cpu_default_map;
6758 int err;
6761 * Setup mask for cpus without special case scheduling requirements.
6762 * For now this just excludes isolated cpus, but could be used to
6763 * exclude other special cases in the future.
6765 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6767 err = build_sched_domains(&cpu_default_map);
6769 return err;
6772 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6774 free_sched_groups(cpu_map);
6778 * Detach sched domains from a group of cpus specified in cpu_map
6779 * These cpus will now be attached to the NULL domain
6781 static void detach_destroy_domains(const cpumask_t *cpu_map)
6783 int i;
6785 for_each_cpu_mask(i, *cpu_map)
6786 cpu_attach_domain(NULL, i);
6787 synchronize_sched();
6788 arch_destroy_sched_domains(cpu_map);
6792 * Partition sched domains as specified by the cpumasks below.
6793 * This attaches all cpus from the cpumasks to the NULL domain,
6794 * waits for a RCU quiescent period, recalculates sched
6795 * domain information and then attaches them back to the
6796 * correct sched domains
6797 * Call with hotplug lock held
6799 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6801 cpumask_t change_map;
6802 int err = 0;
6804 cpus_and(*partition1, *partition1, cpu_online_map);
6805 cpus_and(*partition2, *partition2, cpu_online_map);
6806 cpus_or(change_map, *partition1, *partition2);
6808 /* Detach sched domains from all of the affected cpus */
6809 detach_destroy_domains(&change_map);
6810 if (!cpus_empty(*partition1))
6811 err = build_sched_domains(partition1);
6812 if (!err && !cpus_empty(*partition2))
6813 err = build_sched_domains(partition2);
6815 return err;
6818 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6819 int arch_reinit_sched_domains(void)
6821 int err;
6823 lock_cpu_hotplug();
6824 detach_destroy_domains(&cpu_online_map);
6825 err = arch_init_sched_domains(&cpu_online_map);
6826 unlock_cpu_hotplug();
6828 return err;
6831 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6833 int ret;
6835 if (buf[0] != '0' && buf[0] != '1')
6836 return -EINVAL;
6838 if (smt)
6839 sched_smt_power_savings = (buf[0] == '1');
6840 else
6841 sched_mc_power_savings = (buf[0] == '1');
6843 ret = arch_reinit_sched_domains();
6845 return ret ? ret : count;
6848 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6850 int err = 0;
6852 #ifdef CONFIG_SCHED_SMT
6853 if (smt_capable())
6854 err = sysfs_create_file(&cls->kset.kobj,
6855 &attr_sched_smt_power_savings.attr);
6856 #endif
6857 #ifdef CONFIG_SCHED_MC
6858 if (!err && mc_capable())
6859 err = sysfs_create_file(&cls->kset.kobj,
6860 &attr_sched_mc_power_savings.attr);
6861 #endif
6862 return err;
6864 #endif
6866 #ifdef CONFIG_SCHED_MC
6867 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6869 return sprintf(page, "%u\n", sched_mc_power_savings);
6871 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6872 const char *buf, size_t count)
6874 return sched_power_savings_store(buf, count, 0);
6876 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6877 sched_mc_power_savings_store);
6878 #endif
6880 #ifdef CONFIG_SCHED_SMT
6881 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6883 return sprintf(page, "%u\n", sched_smt_power_savings);
6885 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6886 const char *buf, size_t count)
6888 return sched_power_savings_store(buf, count, 1);
6890 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6891 sched_smt_power_savings_store);
6892 #endif
6895 * Force a reinitialization of the sched domains hierarchy. The domains
6896 * and groups cannot be updated in place without racing with the balancing
6897 * code, so we temporarily attach all running cpus to the NULL domain
6898 * which will prevent rebalancing while the sched domains are recalculated.
6900 static int update_sched_domains(struct notifier_block *nfb,
6901 unsigned long action, void *hcpu)
6903 switch (action) {
6904 case CPU_UP_PREPARE:
6905 case CPU_DOWN_PREPARE:
6906 detach_destroy_domains(&cpu_online_map);
6907 return NOTIFY_OK;
6909 case CPU_UP_CANCELED:
6910 case CPU_DOWN_FAILED:
6911 case CPU_ONLINE:
6912 case CPU_DEAD:
6914 * Fall through and re-initialise the domains.
6916 break;
6917 default:
6918 return NOTIFY_DONE;
6921 /* The hotplug lock is already held by cpu_up/cpu_down */
6922 arch_init_sched_domains(&cpu_online_map);
6924 return NOTIFY_OK;
6927 void __init sched_init_smp(void)
6929 cpumask_t non_isolated_cpus;
6931 lock_cpu_hotplug();
6932 arch_init_sched_domains(&cpu_online_map);
6933 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6934 if (cpus_empty(non_isolated_cpus))
6935 cpu_set(smp_processor_id(), non_isolated_cpus);
6936 unlock_cpu_hotplug();
6937 /* XXX: Theoretical race here - CPU may be hotplugged now */
6938 hotcpu_notifier(update_sched_domains, 0);
6940 /* Move init over to a non-isolated CPU */
6941 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6942 BUG();
6944 #else
6945 void __init sched_init_smp(void)
6948 #endif /* CONFIG_SMP */
6950 int in_sched_functions(unsigned long addr)
6952 /* Linker adds these: start and end of __sched functions */
6953 extern char __sched_text_start[], __sched_text_end[];
6955 return in_lock_functions(addr) ||
6956 (addr >= (unsigned long)__sched_text_start
6957 && addr < (unsigned long)__sched_text_end);
6960 void __init sched_init(void)
6962 int i, j, k;
6963 int highest_cpu = 0;
6965 for_each_possible_cpu(i) {
6966 struct prio_array *array;
6967 struct rq *rq;
6969 rq = cpu_rq(i);
6970 spin_lock_init(&rq->lock);
6971 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6972 rq->nr_running = 0;
6973 rq->active = rq->arrays;
6974 rq->expired = rq->arrays + 1;
6975 rq->best_expired_prio = MAX_PRIO;
6977 #ifdef CONFIG_SMP
6978 rq->sd = NULL;
6979 for (j = 1; j < 3; j++)
6980 rq->cpu_load[j] = 0;
6981 rq->active_balance = 0;
6982 rq->push_cpu = 0;
6983 rq->cpu = i;
6984 rq->migration_thread = NULL;
6985 INIT_LIST_HEAD(&rq->migration_queue);
6986 #endif
6987 atomic_set(&rq->nr_iowait, 0);
6989 for (j = 0; j < 2; j++) {
6990 array = rq->arrays + j;
6991 for (k = 0; k < MAX_PRIO; k++) {
6992 INIT_LIST_HEAD(array->queue + k);
6993 __clear_bit(k, array->bitmap);
6995 // delimiter for bitsearch
6996 __set_bit(MAX_PRIO, array->bitmap);
6998 highest_cpu = i;
7001 set_load_weight(&init_task);
7003 #ifdef CONFIG_SMP
7004 nr_cpu_ids = highest_cpu + 1;
7005 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7006 #endif
7008 #ifdef CONFIG_RT_MUTEXES
7009 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7010 #endif
7013 * The boot idle thread does lazy MMU switching as well:
7015 atomic_inc(&init_mm.mm_count);
7016 enter_lazy_tlb(&init_mm, current);
7019 * Make us the idle thread. Technically, schedule() should not be
7020 * called from this thread, however somewhere below it might be,
7021 * but because we are the idle thread, we just pick up running again
7022 * when this runqueue becomes "idle".
7024 init_idle(current, smp_processor_id());
7027 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7028 void __might_sleep(char *file, int line)
7030 #ifdef in_atomic
7031 static unsigned long prev_jiffy; /* ratelimiting */
7033 if ((in_atomic() || irqs_disabled()) &&
7034 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7035 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7036 return;
7037 prev_jiffy = jiffies;
7038 printk(KERN_ERR "BUG: sleeping function called from invalid"
7039 " context at %s:%d\n", file, line);
7040 printk("in_atomic():%d, irqs_disabled():%d\n",
7041 in_atomic(), irqs_disabled());
7042 debug_show_held_locks(current);
7043 if (irqs_disabled())
7044 print_irqtrace_events(current);
7045 dump_stack();
7047 #endif
7049 EXPORT_SYMBOL(__might_sleep);
7050 #endif
7052 #ifdef CONFIG_MAGIC_SYSRQ
7053 void normalize_rt_tasks(void)
7055 struct prio_array *array;
7056 struct task_struct *p;
7057 unsigned long flags;
7058 struct rq *rq;
7060 read_lock_irq(&tasklist_lock);
7061 for_each_process(p) {
7062 if (!rt_task(p))
7063 continue;
7065 spin_lock_irqsave(&p->pi_lock, flags);
7066 rq = __task_rq_lock(p);
7068 array = p->array;
7069 if (array)
7070 deactivate_task(p, task_rq(p));
7071 __setscheduler(p, SCHED_NORMAL, 0);
7072 if (array) {
7073 __activate_task(p, task_rq(p));
7074 resched_task(rq->curr);
7077 __task_rq_unlock(rq);
7078 spin_unlock_irqrestore(&p->pi_lock, flags);
7080 read_unlock_irq(&tasklist_lock);
7083 #endif /* CONFIG_MAGIC_SYSRQ */
7085 #ifdef CONFIG_IA64
7087 * These functions are only useful for the IA64 MCA handling.
7089 * They can only be called when the whole system has been
7090 * stopped - every CPU needs to be quiescent, and no scheduling
7091 * activity can take place. Using them for anything else would
7092 * be a serious bug, and as a result, they aren't even visible
7093 * under any other configuration.
7097 * curr_task - return the current task for a given cpu.
7098 * @cpu: the processor in question.
7100 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7102 struct task_struct *curr_task(int cpu)
7104 return cpu_curr(cpu);
7108 * set_curr_task - set the current task for a given cpu.
7109 * @cpu: the processor in question.
7110 * @p: the task pointer to set.
7112 * Description: This function must only be used when non-maskable interrupts
7113 * are serviced on a separate stack. It allows the architecture to switch the
7114 * notion of the current task on a cpu in a non-blocking manner. This function
7115 * must be called with all CPU's synchronized, and interrupts disabled, the
7116 * and caller must save the original value of the current task (see
7117 * curr_task() above) and restore that value before reenabling interrupts and
7118 * re-starting the system.
7120 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7122 void set_curr_task(int cpu, struct task_struct *p)
7124 cpu_curr(cpu) = p;
7127 #endif