1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
16 #include "vxge-traffic.h"
17 #include "vxge-config.h"
18 #include "vxge-main.h"
21 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22 * @vp: Virtual Path handle.
24 * Enable vpath interrupts. The function is to be executed the last in
25 * vpath initialization sequence.
27 * See also: vxge_hw_vpath_intr_disable()
29 enum vxge_hw_status
vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle
*vp
)
33 struct __vxge_hw_virtualpath
*vpath
;
34 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
35 enum vxge_hw_status status
= VXGE_HW_OK
;
37 status
= VXGE_HW_ERR_INVALID_HANDLE
;
43 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
44 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
48 vp_reg
= vpath
->vp_reg
;
50 writeq(VXGE_HW_INTR_MASK_ALL
, &vp_reg
->kdfcctl_errors_reg
);
52 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
53 &vp_reg
->general_errors_reg
);
55 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
56 &vp_reg
->pci_config_errors_reg
);
58 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
59 &vp_reg
->mrpcim_to_vpath_alarm_reg
);
61 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
62 &vp_reg
->srpcim_to_vpath_alarm_reg
);
64 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
65 &vp_reg
->vpath_ppif_int_status
);
67 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
68 &vp_reg
->srpcim_msg_to_vpath_reg
);
70 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
71 &vp_reg
->vpath_pcipif_int_status
);
73 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
74 &vp_reg
->prc_alarm_reg
);
76 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
77 &vp_reg
->wrdma_alarm_status
);
79 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
80 &vp_reg
->asic_ntwk_vp_err_reg
);
82 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
83 &vp_reg
->xgmac_vp_int_status
);
85 val64
= readq(&vp_reg
->vpath_general_int_status
);
87 /* Mask unwanted interrupts */
89 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
90 &vp_reg
->vpath_pcipif_int_mask
);
92 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
93 &vp_reg
->srpcim_msg_to_vpath_mask
);
95 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
96 &vp_reg
->srpcim_to_vpath_alarm_mask
);
98 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
99 &vp_reg
->mrpcim_to_vpath_alarm_mask
);
101 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
102 &vp_reg
->pci_config_errors_mask
);
104 /* Unmask the individual interrupts */
106 writeq((u32
)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW
|
107 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW
|
108 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ
|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR
), 0, 32),
110 &vp_reg
->general_errors_mask
);
112 __vxge_hw_pio_mem_write32_upper(
113 (u32
)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR
|
114 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR
|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON
|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON
|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR
|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR
), 0, 32),
119 &vp_reg
->kdfcctl_errors_mask
);
121 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->vpath_ppif_int_mask
);
123 __vxge_hw_pio_mem_write32_upper(
124 (u32
)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP
, 0, 32),
125 &vp_reg
->prc_alarm_mask
);
127 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->wrdma_alarm_mask
);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg
->xgmac_vp_int_mask
);
130 if (vpath
->hldev
->first_vp_id
!= vpath
->vp_id
)
131 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
132 &vp_reg
->asic_ntwk_vp_err_mask
);
134 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn((
135 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT
|
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK
), 0, 32),
137 &vp_reg
->asic_ntwk_vp_err_mask
);
139 __vxge_hw_pio_mem_write32_upper(0,
140 &vp_reg
->vpath_general_int_mask
);
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
153 * See also: vxge_hw_vpath_intr_enable()
155 enum vxge_hw_status
vxge_hw_vpath_intr_disable(
156 struct __vxge_hw_vpath_handle
*vp
)
160 struct __vxge_hw_virtualpath
*vpath
;
161 enum vxge_hw_status status
= VXGE_HW_OK
;
162 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
164 status
= VXGE_HW_ERR_INVALID_HANDLE
;
170 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
171 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
174 vp_reg
= vpath
->vp_reg
;
176 __vxge_hw_pio_mem_write32_upper(
177 (u32
)VXGE_HW_INTR_MASK_ALL
,
178 &vp_reg
->vpath_general_int_mask
);
180 val64
= VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath
->vp_id
));
182 writeq(VXGE_HW_INTR_MASK_ALL
, &vp_reg
->kdfcctl_errors_mask
);
184 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
185 &vp_reg
->general_errors_mask
);
187 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
188 &vp_reg
->pci_config_errors_mask
);
190 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
191 &vp_reg
->mrpcim_to_vpath_alarm_mask
);
193 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
194 &vp_reg
->srpcim_to_vpath_alarm_mask
);
196 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
197 &vp_reg
->vpath_ppif_int_mask
);
199 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
200 &vp_reg
->srpcim_msg_to_vpath_mask
);
202 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
203 &vp_reg
->vpath_pcipif_int_mask
);
205 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
206 &vp_reg
->wrdma_alarm_mask
);
208 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
209 &vp_reg
->prc_alarm_mask
);
211 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
212 &vp_reg
->xgmac_vp_int_mask
);
214 __vxge_hw_pio_mem_write32_upper((u32
)VXGE_HW_INTR_MASK_ALL
,
215 &vp_reg
->asic_ntwk_vp_err_mask
);
222 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223 * @channeh: Channel for rx or tx handle
226 * The function masks the msix interrupt for the given msix_id
230 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel
*channel
, int msix_id
)
233 __vxge_hw_pio_mem_write32_upper(
234 (u32
)vxge_bVALn(vxge_mBIT(channel
->first_vp_id
+(msix_id
/4)),
236 &channel
->common_reg
->set_msix_mask_vect
[msix_id
%4]);
242 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
243 * @channeh: Channel for rx or tx handle
246 * The function unmasks the msix interrupt for the given msix_id
251 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel
*channel
, int msix_id
)
254 __vxge_hw_pio_mem_write32_upper(
255 (u32
)vxge_bVALn(vxge_mBIT(channel
->first_vp_id
+(msix_id
/4)),
257 &channel
->common_reg
->clear_msix_mask_vect
[msix_id
%4]);
263 * vxge_hw_device_set_intr_type - Updates the configuration
264 * with new interrupt type.
265 * @hldev: HW device handle.
266 * @intr_mode: New interrupt type
268 u32
vxge_hw_device_set_intr_type(struct __vxge_hw_device
*hldev
, u32 intr_mode
)
271 if ((intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
272 (intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
273 (intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
274 (intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
275 intr_mode
= VXGE_HW_INTR_MODE_IRQLINE
;
277 hldev
->config
.intr_mode
= intr_mode
;
282 * vxge_hw_device_intr_enable - Enable interrupts.
283 * @hldev: HW device handle.
284 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
285 * the type(s) of interrupts to enable.
287 * Enable Titan interrupts. The function is to be executed the last in
288 * Titan initialization sequence.
290 * See also: vxge_hw_device_intr_disable()
292 void vxge_hw_device_intr_enable(struct __vxge_hw_device
*hldev
)
298 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
300 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
303 vxge_hw_vpath_intr_enable(
304 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev
->virtual_paths
[i
]));
307 if (hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_IRQLINE
) {
308 val64
= hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
309 hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
];
312 writeq(val64
, &hldev
->common_reg
->tim_int_status0
);
314 writeq(~val64
, &hldev
->common_reg
->tim_int_mask0
);
317 val32
= hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
318 hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
];
321 __vxge_hw_pio_mem_write32_upper(val32
,
322 &hldev
->common_reg
->tim_int_status1
);
324 __vxge_hw_pio_mem_write32_upper(~val32
,
325 &hldev
->common_reg
->tim_int_mask1
);
329 val64
= readq(&hldev
->common_reg
->titan_general_int_status
);
331 vxge_hw_device_unmask_all(hldev
);
337 * vxge_hw_device_intr_disable - Disable Titan interrupts.
338 * @hldev: HW device handle.
339 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
340 * the type(s) of interrupts to disable.
342 * Disable Titan interrupts.
344 * See also: vxge_hw_device_intr_enable()
346 void vxge_hw_device_intr_disable(struct __vxge_hw_device
*hldev
)
350 vxge_hw_device_mask_all(hldev
);
352 /* mask all the tim interrupts */
353 writeq(VXGE_HW_INTR_MASK_ALL
, &hldev
->common_reg
->tim_int_mask0
);
354 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32
,
355 &hldev
->common_reg
->tim_int_mask1
);
357 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
359 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
362 vxge_hw_vpath_intr_disable(
363 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev
->virtual_paths
[i
]));
370 * vxge_hw_device_mask_all - Mask all device interrupts.
371 * @hldev: HW device handle.
373 * Mask all device interrupts.
375 * See also: vxge_hw_device_unmask_all()
377 void vxge_hw_device_mask_all(struct __vxge_hw_device
*hldev
)
381 val64
= VXGE_HW_TITAN_MASK_ALL_INT_ALARM
|
382 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC
;
384 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
385 &hldev
->common_reg
->titan_mask_all_int
);
391 * vxge_hw_device_unmask_all - Unmask all device interrupts.
392 * @hldev: HW device handle.
394 * Unmask all device interrupts.
396 * See also: vxge_hw_device_mask_all()
398 void vxge_hw_device_unmask_all(struct __vxge_hw_device
*hldev
)
402 if (hldev
->config
.intr_mode
== VXGE_HW_INTR_MODE_IRQLINE
)
403 val64
= VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC
;
405 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
406 &hldev
->common_reg
->titan_mask_all_int
);
412 * vxge_hw_device_flush_io - Flush io writes.
413 * @hldev: HW device handle.
415 * The function performs a read operation to flush io writes.
419 void vxge_hw_device_flush_io(struct __vxge_hw_device
*hldev
)
423 val32
= readl(&hldev
->common_reg
->titan_general_int_status
);
427 * vxge_hw_device_begin_irq - Begin IRQ processing.
428 * @hldev: HW device handle.
429 * @skip_alarms: Do not clear the alarms
430 * @reason: "Reason" for the interrupt, the value of Titan's
431 * general_int_status register.
433 * The function performs two actions, It first checks whether (shared IRQ) the
434 * interrupt was raised by the device. Next, it masks the device interrupts.
437 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
438 * bridge. Therefore, two back-to-back interrupts are potentially possible.
440 * Returns: 0, if the interrupt is not "ours" (note that in this case the
441 * device remain enabled).
442 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
445 enum vxge_hw_status
vxge_hw_device_begin_irq(struct __vxge_hw_device
*hldev
,
446 u32 skip_alarms
, u64
*reason
)
452 enum vxge_hw_status ret
= VXGE_HW_OK
;
454 val64
= readq(&hldev
->common_reg
->titan_general_int_status
);
456 if (unlikely(!val64
)) {
457 /* not Titan interrupt */
459 ret
= VXGE_HW_ERR_WRONG_IRQ
;
463 if (unlikely(val64
== VXGE_HW_ALL_FOXES
)) {
465 adapter_status
= readq(&hldev
->common_reg
->adapter_status
);
467 if (adapter_status
== VXGE_HW_ALL_FOXES
) {
469 __vxge_hw_device_handle_error(hldev
,
470 NULL_VPID
, VXGE_HW_EVENT_SLOT_FREEZE
);
472 ret
= VXGE_HW_ERR_SLOT_FREEZE
;
477 hldev
->stats
.sw_dev_info_stats
.total_intr_cnt
++;
481 vpath_mask
= hldev
->vpaths_deployed
>>
482 (64 - VXGE_HW_MAX_VIRTUAL_PATHS
);
485 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask
)) {
486 hldev
->stats
.sw_dev_info_stats
.traffic_intr_cnt
++;
491 hldev
->stats
.sw_dev_info_stats
.not_traffic_intr_cnt
++;
494 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT
)) {
496 enum vxge_hw_status error_level
= VXGE_HW_OK
;
498 hldev
->stats
.sw_dev_err_stats
.vpath_alarms
++;
500 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
502 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
505 ret
= __vxge_hw_vpath_alarm_process(
506 &hldev
->virtual_paths
[i
], skip_alarms
);
508 error_level
= VXGE_HW_SET_LEVEL(ret
, error_level
);
510 if (unlikely((ret
== VXGE_HW_ERR_CRITICAL
) ||
511 (ret
== VXGE_HW_ERR_SLOT_FREEZE
)))
522 * __vxge_hw_device_handle_link_up_ind
523 * @hldev: HW device handle.
525 * Link up indication handler. The function is invoked by HW when
526 * Titan indicates that the link is up for programmable amount of time.
529 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device
*hldev
)
532 * If the previous link state is not down, return.
534 if (hldev
->link_state
== VXGE_HW_LINK_UP
)
537 hldev
->link_state
= VXGE_HW_LINK_UP
;
540 if (hldev
->uld_callbacks
.link_up
)
541 hldev
->uld_callbacks
.link_up(hldev
);
547 * __vxge_hw_device_handle_link_down_ind
548 * @hldev: HW device handle.
550 * Link down indication handler. The function is invoked by HW when
551 * Titan indicates that the link is down.
554 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device
*hldev
)
557 * If the previous link state is not down, return.
559 if (hldev
->link_state
== VXGE_HW_LINK_DOWN
)
562 hldev
->link_state
= VXGE_HW_LINK_DOWN
;
565 if (hldev
->uld_callbacks
.link_down
)
566 hldev
->uld_callbacks
.link_down(hldev
);
572 * __vxge_hw_device_handle_error - Handle error
575 * @type: Error type. Please see enum vxge_hw_event{}
580 __vxge_hw_device_handle_error(
581 struct __vxge_hw_device
*hldev
,
583 enum vxge_hw_event type
)
586 case VXGE_HW_EVENT_UNKNOWN
:
588 case VXGE_HW_EVENT_RESET_START
:
589 case VXGE_HW_EVENT_RESET_COMPLETE
:
590 case VXGE_HW_EVENT_LINK_DOWN
:
591 case VXGE_HW_EVENT_LINK_UP
:
593 case VXGE_HW_EVENT_ALARM_CLEARED
:
595 case VXGE_HW_EVENT_ECCERR
:
596 case VXGE_HW_EVENT_MRPCIM_ECCERR
:
598 case VXGE_HW_EVENT_FIFO_ERR
:
599 case VXGE_HW_EVENT_VPATH_ERR
:
600 case VXGE_HW_EVENT_CRITICAL_ERR
:
601 case VXGE_HW_EVENT_SERR
:
603 case VXGE_HW_EVENT_SRPCIM_SERR
:
604 case VXGE_HW_EVENT_MRPCIM_SERR
:
606 case VXGE_HW_EVENT_SLOT_FREEZE
:
614 if (hldev
->uld_callbacks
.crit_err
)
615 hldev
->uld_callbacks
.crit_err(
616 (struct __vxge_hw_device
*)hldev
,
624 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
625 * condition that has caused the Tx and RX interrupt.
628 * Acknowledge (that is, clear) the condition that has caused
629 * the Tx and Rx interrupt.
630 * See also: vxge_hw_device_begin_irq(),
631 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
633 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device
*hldev
)
636 if ((hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
637 (hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
638 writeq((hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
639 hldev
->tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
]),
640 &hldev
->common_reg
->tim_int_status0
);
643 if ((hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
644 (hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
645 __vxge_hw_pio_mem_write32_upper(
646 (hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
647 hldev
->tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
]),
648 &hldev
->common_reg
->tim_int_status1
);
655 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
657 * @dtrh: Buffer to return the DTR pointer
659 * Allocates a dtr from the reserve array. If the reserve array is empty,
660 * it swaps the reserve and free arrays.
664 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel
*channel
, void **dtrh
)
668 if (channel
->reserve_ptr
- channel
->reserve_top
> 0) {
670 *dtrh
= channel
->reserve_arr
[--channel
->reserve_ptr
];
675 /* switch between empty and full arrays */
677 /* the idea behind such a design is that by having free and reserved
678 * arrays separated we basically separated irq and non-irq parts.
679 * i.e. no additional lock need to be done when we free a resource */
681 if (channel
->length
- channel
->free_ptr
> 0) {
683 tmp_arr
= channel
->reserve_arr
;
684 channel
->reserve_arr
= channel
->free_arr
;
685 channel
->free_arr
= tmp_arr
;
686 channel
->reserve_ptr
= channel
->length
;
687 channel
->reserve_top
= channel
->free_ptr
;
688 channel
->free_ptr
= channel
->length
;
690 channel
->stats
->reserve_free_swaps_cnt
++;
692 goto _alloc_after_swap
;
695 channel
->stats
->full_cnt
++;
698 return VXGE_HW_INF_OUT_OF_DESCRIPTORS
;
702 * vxge_hw_channel_dtr_post - Post a dtr to the channel
706 * Posts a dtr to work array.
709 void vxge_hw_channel_dtr_post(struct __vxge_hw_channel
*channel
, void *dtrh
)
711 vxge_assert(channel
->work_arr
[channel
->post_index
] == NULL
);
713 channel
->work_arr
[channel
->post_index
++] = dtrh
;
716 if (channel
->post_index
== channel
->length
)
717 channel
->post_index
= 0;
721 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
723 * @dtr: Buffer to return the next completed DTR pointer
725 * Returns the next completed dtr with out removing it from work array
729 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel
*channel
, void **dtrh
)
731 vxge_assert(channel
->compl_index
< channel
->length
);
733 *dtrh
= channel
->work_arr
[channel
->compl_index
];
737 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
738 * @channel: Channel handle
740 * Removes the next completed dtr from work array
743 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel
*channel
)
745 channel
->work_arr
[channel
->compl_index
] = NULL
;
748 if (++channel
->compl_index
== channel
->length
)
749 channel
->compl_index
= 0;
751 channel
->stats
->total_compl_cnt
++;
755 * vxge_hw_channel_dtr_free - Frees a dtr
756 * @channel: Channel handle
759 * Returns the dtr to free array
762 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel
*channel
, void *dtrh
)
764 channel
->free_arr
[--channel
->free_ptr
] = dtrh
;
768 * vxge_hw_channel_dtr_count
769 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
771 * Retreive number of DTRs available. This function can not be called
772 * from data path. ring_initial_replenishi() is the only user.
774 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel
*channel
)
776 return (channel
->reserve_ptr
- channel
->reserve_top
) +
777 (channel
->length
- channel
->free_ptr
);
781 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
782 * @ring: Handle to the ring object used for receive
783 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
784 * with a valid handle.
786 * Reserve Rx descriptor for the subsequent filling-in driver
787 * and posting on the corresponding channel (@channelh)
788 * via vxge_hw_ring_rxd_post().
790 * Returns: VXGE_HW_OK - success.
791 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
794 enum vxge_hw_status
vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring
*ring
,
797 enum vxge_hw_status status
;
798 struct __vxge_hw_channel
*channel
;
800 channel
= &ring
->channel
;
802 status
= vxge_hw_channel_dtr_alloc(channel
, rxdh
);
804 if (status
== VXGE_HW_OK
) {
805 struct vxge_hw_ring_rxd_1
*rxdp
=
806 (struct vxge_hw_ring_rxd_1
*)*rxdh
;
808 rxdp
->control_0
= rxdp
->control_1
= 0;
815 * vxge_hw_ring_rxd_free - Free descriptor.
816 * @ring: Handle to the ring object used for receive
817 * @rxdh: Descriptor handle.
819 * Free the reserved descriptor. This operation is "symmetrical" to
820 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
823 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
826 * - reserved (vxge_hw_ring_rxd_reserve);
828 * - posted (vxge_hw_ring_rxd_post);
830 * - completed (vxge_hw_ring_rxd_next_completed);
832 * - and recycled again (vxge_hw_ring_rxd_free).
834 * For alternative state transitions and more details please refer to
838 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring
*ring
, void *rxdh
)
840 struct __vxge_hw_channel
*channel
;
842 channel
= &ring
->channel
;
844 vxge_hw_channel_dtr_free(channel
, rxdh
);
849 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
850 * @ring: Handle to the ring object used for receive
851 * @rxdh: Descriptor handle.
853 * This routine prepares a rxd and posts
855 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
857 struct __vxge_hw_channel
*channel
;
859 channel
= &ring
->channel
;
861 vxge_hw_channel_dtr_post(channel
, rxdh
);
865 * vxge_hw_ring_rxd_post_post - Process rxd after post.
866 * @ring: Handle to the ring object used for receive
867 * @rxdh: Descriptor handle.
869 * Processes rxd after post
871 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
873 struct vxge_hw_ring_rxd_1
*rxdp
= (struct vxge_hw_ring_rxd_1
*)rxdh
;
874 struct __vxge_hw_channel
*channel
;
876 channel
= &ring
->channel
;
878 rxdp
->control_0
|= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
880 if (ring
->stats
->common_stats
.usage_cnt
> 0)
881 ring
->stats
->common_stats
.usage_cnt
--;
885 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
886 * @ring: Handle to the ring object used for receive
887 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
889 * Post descriptor on the ring.
890 * Prior to posting the descriptor should be filled in accordance with
891 * Host/Titan interface specification for a given service (LL, etc.).
894 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring
*ring
, void *rxdh
)
896 struct vxge_hw_ring_rxd_1
*rxdp
= (struct vxge_hw_ring_rxd_1
*)rxdh
;
897 struct __vxge_hw_channel
*channel
;
899 channel
= &ring
->channel
;
902 rxdp
->control_0
|= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
;
904 vxge_hw_channel_dtr_post(channel
, rxdh
);
906 if (ring
->stats
->common_stats
.usage_cnt
> 0)
907 ring
->stats
->common_stats
.usage_cnt
--;
911 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
912 * @ring: Handle to the ring object used for receive
913 * @rxdh: Descriptor handle.
915 * Processes rxd after post with memory barrier.
917 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring
*ring
, void *rxdh
)
919 struct __vxge_hw_channel
*channel
;
921 channel
= &ring
->channel
;
924 vxge_hw_ring_rxd_post_post(ring
, rxdh
);
928 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
929 * @ring: Handle to the ring object used for receive
930 * @rxdh: Descriptor handle. Returned by HW.
931 * @t_code: Transfer code, as per Titan User Guide,
932 * Receive Descriptor Format. Returned by HW.
934 * Retrieve the _next_ completed descriptor.
935 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
936 * driver of new completed descriptors. After that
937 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
938 * completions (the very first completion is passed by HW via
939 * vxge_hw_ring_callback_f).
941 * Implementation-wise, the driver is free to call
942 * vxge_hw_ring_rxd_next_completed either immediately from inside the
943 * ring callback, or in a deferred fashion and separate (from HW)
946 * Non-zero @t_code means failure to fill-in receive buffer(s)
948 * For instance, parity error detected during the data transfer.
949 * In this case Titan will complete the descriptor and indicate
950 * for the host that the received data is not to be used.
951 * For details please refer to Titan User Guide.
953 * Returns: VXGE_HW_OK - success.
954 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
955 * are currently available for processing.
957 * See also: vxge_hw_ring_callback_f{},
958 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
960 enum vxge_hw_status
vxge_hw_ring_rxd_next_completed(
961 struct __vxge_hw_ring
*ring
, void **rxdh
, u8
*t_code
)
963 struct __vxge_hw_channel
*channel
;
964 struct vxge_hw_ring_rxd_1
*rxdp
;
965 enum vxge_hw_status status
= VXGE_HW_OK
;
967 channel
= &ring
->channel
;
969 vxge_hw_channel_dtr_try_complete(channel
, rxdh
);
971 rxdp
= (struct vxge_hw_ring_rxd_1
*)*rxdh
;
973 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
977 /* check whether it is not the end */
978 if (!(rxdp
->control_0
& VXGE_HW_RING_RXD_LIST_OWN_ADAPTER
)) {
980 vxge_assert(((struct vxge_hw_ring_rxd_1
*)rxdp
)->host_control
!=
984 vxge_hw_channel_dtr_complete(channel
);
986 *t_code
= (u8
)VXGE_HW_RING_RXD_T_CODE_GET(rxdp
->control_0
);
988 vxge_assert(*t_code
!= VXGE_HW_RING_RXD_T_CODE_UNUSED
);
990 ring
->stats
->common_stats
.usage_cnt
++;
991 if (ring
->stats
->common_stats
.usage_max
<
992 ring
->stats
->common_stats
.usage_cnt
)
993 ring
->stats
->common_stats
.usage_max
=
994 ring
->stats
->common_stats
.usage_cnt
;
1000 /* reset it. since we don't want to return
1001 * garbage to the driver */
1003 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1009 * vxge_hw_ring_handle_tcode - Handle transfer code.
1010 * @ring: Handle to the ring object used for receive
1011 * @rxdh: Descriptor handle.
1012 * @t_code: One of the enumerated (and documented in the Titan user guide)
1015 * Handle descriptor's transfer code. The latter comes with each completed
1018 * Returns: one of the enum vxge_hw_status{} enumerated types.
1019 * VXGE_HW_OK - for success.
1020 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1022 enum vxge_hw_status
vxge_hw_ring_handle_tcode(
1023 struct __vxge_hw_ring
*ring
, void *rxdh
, u8 t_code
)
1025 struct __vxge_hw_channel
*channel
;
1026 enum vxge_hw_status status
= VXGE_HW_OK
;
1028 channel
= &ring
->channel
;
1030 /* If the t_code is not supported and if the
1031 * t_code is other than 0x5 (unparseable packet
1032 * such as unknown UPV6 header), Drop it !!!
1035 if (t_code
== 0 || t_code
== 5) {
1036 status
= VXGE_HW_OK
;
1041 status
= VXGE_HW_ERR_INVALID_TCODE
;
1045 ring
->stats
->rxd_t_code_err_cnt
[t_code
]++;
1051 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1054 * @txdl_ptr: The starting location of the TxDL in host memory
1055 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1056 * @no_snoop: No snoop flags
1058 * This function posts a non-offload doorbell to doorbell FIFO
1061 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo
*fifo
,
1062 u64 txdl_ptr
, u32 num_txds
, u32 no_snoop
)
1064 struct __vxge_hw_channel
*channel
;
1066 channel
= &fifo
->channel
;
1068 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW
) |
1069 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds
) |
1070 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop
),
1071 &fifo
->nofl_db
->control_0
);
1075 writeq(txdl_ptr
, &fifo
->nofl_db
->txdl_ptr
);
1081 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1083 * @fifoh: Handle to the fifo object used for non offload send
1085 u32
vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo
*fifoh
)
1087 return vxge_hw_channel_dtr_count(&fifoh
->channel
);
1091 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1092 * @fifoh: Handle to the fifo object used for non offload send
1093 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1094 * with a valid handle.
1095 * @txdl_priv: Buffer to return the pointer to per txdl space
1097 * Reserve a single TxDL (that is, fifo descriptor)
1098 * for the subsequent filling-in by driver)
1099 * and posting on the corresponding channel (@channelh)
1100 * via vxge_hw_fifo_txdl_post().
1102 * Note: it is the responsibility of driver to reserve multiple descriptors
1103 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1104 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1106 * Returns: VXGE_HW_OK - success;
1107 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1110 enum vxge_hw_status
vxge_hw_fifo_txdl_reserve(
1111 struct __vxge_hw_fifo
*fifo
,
1112 void **txdlh
, void **txdl_priv
)
1114 struct __vxge_hw_channel
*channel
;
1115 enum vxge_hw_status status
;
1118 channel
= &fifo
->channel
;
1120 status
= vxge_hw_channel_dtr_alloc(channel
, txdlh
);
1122 if (status
== VXGE_HW_OK
) {
1123 struct vxge_hw_fifo_txd
*txdp
=
1124 (struct vxge_hw_fifo_txd
*)*txdlh
;
1125 struct __vxge_hw_fifo_txdl_priv
*priv
;
1127 priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
1129 /* reset the TxDL's private */
1130 priv
->align_dma_offset
= 0;
1131 priv
->align_vaddr_start
= priv
->align_vaddr
;
1132 priv
->align_used_frags
= 0;
1134 priv
->alloc_frags
= fifo
->config
->max_frags
;
1135 priv
->next_txdl_priv
= NULL
;
1137 *txdl_priv
= (void *)(size_t)txdp
->host_control
;
1139 for (i
= 0; i
< fifo
->config
->max_frags
; i
++) {
1140 txdp
= ((struct vxge_hw_fifo_txd
*)*txdlh
) + i
;
1141 txdp
->control_0
= txdp
->control_1
= 0;
1149 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1151 * @fifo: Handle to the fifo object used for non offload send
1152 * @txdlh: Descriptor handle.
1153 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1155 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1156 * @size: Size of the data buffer (in bytes).
1158 * This API is part of the preparation of the transmit descriptor for posting
1159 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1160 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1161 * All three APIs fill in the fields of the fifo descriptor,
1162 * in accordance with the Titan specification.
1165 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo
*fifo
,
1166 void *txdlh
, u32 frag_idx
,
1167 dma_addr_t dma_pointer
, u32 size
)
1169 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1170 struct vxge_hw_fifo_txd
*txdp
, *txdp_last
;
1171 struct __vxge_hw_channel
*channel
;
1173 channel
= &fifo
->channel
;
1175 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdlh
);
1176 txdp
= (struct vxge_hw_fifo_txd
*)txdlh
+ txdl_priv
->frags
;
1179 txdp
->control_0
= txdp
->control_1
= 0;
1181 txdp
->control_0
|= VXGE_HW_FIFO_TXD_GATHER_CODE(
1182 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST
);
1183 txdp
->control_1
|= fifo
->interrupt_type
;
1184 txdp
->control_1
|= VXGE_HW_FIFO_TXD_INT_NUMBER(
1186 if (txdl_priv
->frags
) {
1187 txdp_last
= (struct vxge_hw_fifo_txd
*)txdlh
+
1188 (txdl_priv
->frags
- 1);
1189 txdp_last
->control_0
|= VXGE_HW_FIFO_TXD_GATHER_CODE(
1190 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST
);
1194 vxge_assert(frag_idx
< txdl_priv
->alloc_frags
);
1196 txdp
->buffer_pointer
= (u64
)dma_pointer
;
1197 txdp
->control_0
|= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size
);
1198 fifo
->stats
->total_buffers
++;
1203 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1204 * @fifo: Handle to the fifo object used for non offload send
1205 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1206 * @frags: Number of contiguous buffers that are part of a single
1207 * transmit operation.
1209 * Post descriptor on the 'fifo' type channel for transmission.
1210 * Prior to posting the descriptor should be filled in accordance with
1211 * Host/Titan interface specification for a given service (LL, etc.).
1214 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo
*fifo
, void *txdlh
)
1216 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1217 struct vxge_hw_fifo_txd
*txdp_last
;
1218 struct vxge_hw_fifo_txd
*txdp_first
;
1219 struct __vxge_hw_channel
*channel
;
1221 channel
= &fifo
->channel
;
1223 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdlh
);
1224 txdp_first
= (struct vxge_hw_fifo_txd
*)txdlh
;
1226 txdp_last
= (struct vxge_hw_fifo_txd
*)txdlh
+ (txdl_priv
->frags
- 1);
1227 txdp_last
->control_0
|=
1228 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST
);
1229 txdp_first
->control_0
|= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER
;
1231 vxge_hw_channel_dtr_post(&fifo
->channel
, txdlh
);
1233 __vxge_hw_non_offload_db_post(fifo
,
1234 (u64
)(size_t)txdl_priv
->dma_addr
,
1235 txdl_priv
->frags
- 1,
1236 fifo
->no_snoop_bits
);
1238 fifo
->stats
->total_posts
++;
1239 fifo
->stats
->common_stats
.usage_cnt
++;
1240 if (fifo
->stats
->common_stats
.usage_max
<
1241 fifo
->stats
->common_stats
.usage_cnt
)
1242 fifo
->stats
->common_stats
.usage_max
=
1243 fifo
->stats
->common_stats
.usage_cnt
;
1247 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1248 * @fifo: Handle to the fifo object used for non offload send
1249 * @txdlh: Descriptor handle. Returned by HW.
1250 * @t_code: Transfer code, as per Titan User Guide,
1251 * Transmit Descriptor Format.
1254 * Retrieve the _next_ completed descriptor.
1255 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1256 * driver of new completed descriptors. After that
1257 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1258 * completions (the very first completion is passed by HW via
1259 * vxge_hw_channel_callback_f).
1261 * Implementation-wise, the driver is free to call
1262 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1263 * channel callback, or in a deferred fashion and separate (from HW)
1266 * Non-zero @t_code means failure to process the descriptor.
1267 * The failure could happen, for instance, when the link is
1268 * down, in which case Titan completes the descriptor because it
1269 * is not able to send the data out.
1271 * For details please refer to Titan User Guide.
1273 * Returns: VXGE_HW_OK - success.
1274 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1275 * are currently available for processing.
1278 enum vxge_hw_status
vxge_hw_fifo_txdl_next_completed(
1279 struct __vxge_hw_fifo
*fifo
, void **txdlh
,
1280 enum vxge_hw_fifo_tcode
*t_code
)
1282 struct __vxge_hw_channel
*channel
;
1283 struct vxge_hw_fifo_txd
*txdp
;
1284 enum vxge_hw_status status
= VXGE_HW_OK
;
1286 channel
= &fifo
->channel
;
1288 vxge_hw_channel_dtr_try_complete(channel
, txdlh
);
1290 txdp
= (struct vxge_hw_fifo_txd
*)*txdlh
;
1292 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1296 /* check whether host owns it */
1297 if (!(txdp
->control_0
& VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER
)) {
1299 vxge_assert(txdp
->host_control
!= 0);
1301 vxge_hw_channel_dtr_complete(channel
);
1303 *t_code
= (u8
)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp
->control_0
);
1305 if (fifo
->stats
->common_stats
.usage_cnt
> 0)
1306 fifo
->stats
->common_stats
.usage_cnt
--;
1308 status
= VXGE_HW_OK
;
1312 /* no more completions */
1314 status
= VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS
;
1320 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1321 * @fifo: Handle to the fifo object used for non offload send
1322 * @txdlh: Descriptor handle.
1323 * @t_code: One of the enumerated (and documented in the Titan user guide)
1326 * Handle descriptor's transfer code. The latter comes with each completed
1329 * Returns: one of the enum vxge_hw_status{} enumerated types.
1330 * VXGE_HW_OK - for success.
1331 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1333 enum vxge_hw_status
vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo
*fifo
,
1335 enum vxge_hw_fifo_tcode t_code
)
1337 struct __vxge_hw_channel
*channel
;
1339 enum vxge_hw_status status
= VXGE_HW_OK
;
1340 channel
= &fifo
->channel
;
1342 if (((t_code
& 0x7) < 0) || ((t_code
& 0x7) > 0x4)) {
1343 status
= VXGE_HW_ERR_INVALID_TCODE
;
1347 fifo
->stats
->txd_t_code_err_cnt
[t_code
]++;
1353 * vxge_hw_fifo_txdl_free - Free descriptor.
1354 * @fifo: Handle to the fifo object used for non offload send
1355 * @txdlh: Descriptor handle.
1357 * Free the reserved descriptor. This operation is "symmetrical" to
1358 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1361 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1364 * - reserved (vxge_hw_fifo_txdl_reserve);
1366 * - posted (vxge_hw_fifo_txdl_post);
1368 * - completed (vxge_hw_fifo_txdl_next_completed);
1370 * - and recycled again (vxge_hw_fifo_txdl_free).
1372 * For alternative state transitions and more details please refer to
1376 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo
*fifo
, void *txdlh
)
1378 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
1380 struct __vxge_hw_channel
*channel
;
1382 channel
= &fifo
->channel
;
1384 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
,
1385 (struct vxge_hw_fifo_txd
*)txdlh
);
1387 max_frags
= fifo
->config
->max_frags
;
1389 vxge_hw_channel_dtr_free(channel
, txdlh
);
1393 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1394 * to MAC address table.
1395 * @vp: Vpath handle.
1396 * @macaddr: MAC address to be added for this vpath into the list
1397 * @macaddr_mask: MAC address mask for macaddr
1398 * @duplicate_mode: Duplicate MAC address add mode. Please see
1399 * enum vxge_hw_vpath_mac_addr_add_mode{}
1401 * Adds the given mac address and mac address mask into the list for this
1403 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1404 * vxge_hw_vpath_mac_addr_get_next
1408 vxge_hw_vpath_mac_addr_add(
1409 struct __vxge_hw_vpath_handle
*vp
,
1410 u8 (macaddr
)[ETH_ALEN
],
1411 u8 (macaddr_mask
)[ETH_ALEN
],
1412 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode
)
1417 enum vxge_hw_status status
= VXGE_HW_OK
;
1420 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1424 for (i
= 0; i
< ETH_ALEN
; i
++) {
1426 data1
|= (u8
)macaddr
[i
];
1429 data2
|= (u8
)macaddr_mask
[i
];
1432 switch (duplicate_mode
) {
1433 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE
:
1436 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE
:
1439 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE
:
1447 status
= __vxge_hw_vpath_rts_table_set(vp
,
1448 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY
,
1449 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1451 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1
),
1452 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2
)|
1453 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i
));
1459 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1460 * from MAC address table.
1461 * @vp: Vpath handle.
1462 * @macaddr: First MAC address entry for this vpath in the list
1463 * @macaddr_mask: MAC address mask for macaddr
1465 * Returns the first mac address and mac address mask in the list for this
1467 * see also: vxge_hw_vpath_mac_addr_get_next
1471 vxge_hw_vpath_mac_addr_get(
1472 struct __vxge_hw_vpath_handle
*vp
,
1473 u8 (macaddr
)[ETH_ALEN
],
1474 u8 (macaddr_mask
)[ETH_ALEN
])
1479 enum vxge_hw_status status
= VXGE_HW_OK
;
1482 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1486 status
= __vxge_hw_vpath_rts_table_get(vp
,
1487 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
1488 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1491 if (status
!= VXGE_HW_OK
)
1494 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1
);
1496 data2
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2
);
1498 for (i
= ETH_ALEN
; i
> 0; i
--) {
1499 macaddr
[i
-1] = (u8
)(data1
& 0xFF);
1502 macaddr_mask
[i
-1] = (u8
)(data2
& 0xFF);
1510 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1512 * from MAC address table.
1513 * @vp: Vpath handle.
1514 * @macaddr: Next MAC address entry for this vpath in the list
1515 * @macaddr_mask: MAC address mask for macaddr
1517 * Returns the next mac address and mac address mask in the list for this
1519 * see also: vxge_hw_vpath_mac_addr_get
1523 vxge_hw_vpath_mac_addr_get_next(
1524 struct __vxge_hw_vpath_handle
*vp
,
1525 u8 (macaddr
)[ETH_ALEN
],
1526 u8 (macaddr_mask
)[ETH_ALEN
])
1531 enum vxge_hw_status status
= VXGE_HW_OK
;
1534 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1538 status
= __vxge_hw_vpath_rts_table_get(vp
,
1539 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
,
1540 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1543 if (status
!= VXGE_HW_OK
)
1546 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1
);
1548 data2
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2
);
1550 for (i
= ETH_ALEN
; i
> 0; i
--) {
1551 macaddr
[i
-1] = (u8
)(data1
& 0xFF);
1554 macaddr_mask
[i
-1] = (u8
)(data2
& 0xFF);
1563 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1564 * to MAC address table.
1565 * @vp: Vpath handle.
1566 * @macaddr: MAC address to be added for this vpath into the list
1567 * @macaddr_mask: MAC address mask for macaddr
1569 * Delete the given mac address and mac address mask into the list for this
1571 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1572 * vxge_hw_vpath_mac_addr_get_next
1576 vxge_hw_vpath_mac_addr_delete(
1577 struct __vxge_hw_vpath_handle
*vp
,
1578 u8 (macaddr
)[ETH_ALEN
],
1579 u8 (macaddr_mask
)[ETH_ALEN
])
1584 enum vxge_hw_status status
= VXGE_HW_OK
;
1587 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1591 for (i
= 0; i
< ETH_ALEN
; i
++) {
1593 data1
|= (u8
)macaddr
[i
];
1596 data2
|= (u8
)macaddr_mask
[i
];
1599 status
= __vxge_hw_vpath_rts_table_set(vp
,
1600 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY
,
1601 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
1603 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1
),
1604 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2
));
1610 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1612 * @vp: Vpath handle.
1613 * @vid: vlan id to be added for this vpath into the list
1615 * Adds the given vlan id into the list for this vpath.
1616 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1617 * vxge_hw_vpath_vid_get_next
1621 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle
*vp
, u64 vid
)
1623 enum vxge_hw_status status
= VXGE_HW_OK
;
1626 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1630 status
= __vxge_hw_vpath_rts_table_set(vp
,
1631 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY
,
1632 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1633 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid
), 0);
1639 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1640 * from vlan id table.
1641 * @vp: Vpath handle.
1642 * @vid: Buffer to return vlan id
1644 * Returns the first vlan id in the list for this vpath.
1645 * see also: vxge_hw_vpath_vid_get_next
1649 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle
*vp
, u64
*vid
)
1652 enum vxge_hw_status status
= VXGE_HW_OK
;
1655 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1659 status
= __vxge_hw_vpath_rts_table_get(vp
,
1660 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
1661 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1664 *vid
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid
);
1670 * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1671 * from vlan id table.
1672 * @vp: Vpath handle.
1673 * @vid: Buffer to return vlan id
1675 * Returns the next vlan id in the list for this vpath.
1676 * see also: vxge_hw_vpath_vid_get
1680 vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle
*vp
, u64
*vid
)
1683 enum vxge_hw_status status
= VXGE_HW_OK
;
1686 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1690 status
= __vxge_hw_vpath_rts_table_get(vp
,
1691 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
,
1692 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1695 *vid
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid
);
1701 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1703 * @vp: Vpath handle.
1704 * @vid: vlan id to be added for this vpath into the list
1706 * Adds the given vlan id into the list for this vpath.
1707 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1708 * vxge_hw_vpath_vid_get_next
1712 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle
*vp
, u64 vid
)
1714 enum vxge_hw_status status
= VXGE_HW_OK
;
1717 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1721 status
= __vxge_hw_vpath_rts_table_set(vp
,
1722 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY
,
1723 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID
,
1724 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid
), 0);
1730 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1731 * @vp: Vpath handle.
1733 * Enable promiscuous mode of Titan-e operation.
1735 * See also: vxge_hw_vpath_promisc_disable().
1737 enum vxge_hw_status
vxge_hw_vpath_promisc_enable(
1738 struct __vxge_hw_vpath_handle
*vp
)
1741 struct __vxge_hw_virtualpath
*vpath
;
1742 enum vxge_hw_status status
= VXGE_HW_OK
;
1744 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1745 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1751 /* Enable promiscous mode for function 0 only */
1752 if (!(vpath
->hldev
->access_rights
&
1753 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
))
1756 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1758 if (!(val64
& VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
)) {
1760 val64
|= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
|
1761 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
|
1762 VXGE_HW_RXMAC_VCFG0_BCAST_EN
|
1763 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN
;
1765 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1772 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1773 * @vp: Vpath handle.
1775 * Disable promiscuous mode of Titan-e operation.
1777 * See also: vxge_hw_vpath_promisc_enable().
1779 enum vxge_hw_status
vxge_hw_vpath_promisc_disable(
1780 struct __vxge_hw_vpath_handle
*vp
)
1783 struct __vxge_hw_virtualpath
*vpath
;
1784 enum vxge_hw_status status
= VXGE_HW_OK
;
1786 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1787 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1793 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1795 if (val64
& VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
) {
1797 val64
&= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN
|
1798 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
|
1799 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN
);
1801 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1808 * vxge_hw_vpath_bcast_enable - Enable broadcast
1809 * @vp: Vpath handle.
1811 * Enable receiving broadcasts.
1813 enum vxge_hw_status
vxge_hw_vpath_bcast_enable(
1814 struct __vxge_hw_vpath_handle
*vp
)
1817 struct __vxge_hw_virtualpath
*vpath
;
1818 enum vxge_hw_status status
= VXGE_HW_OK
;
1820 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1821 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1827 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1829 if (!(val64
& VXGE_HW_RXMAC_VCFG0_BCAST_EN
)) {
1830 val64
|= VXGE_HW_RXMAC_VCFG0_BCAST_EN
;
1831 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1838 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1839 * @vp: Vpath handle.
1841 * Enable Titan-e multicast addresses.
1842 * Returns: VXGE_HW_OK on success.
1845 enum vxge_hw_status
vxge_hw_vpath_mcast_enable(
1846 struct __vxge_hw_vpath_handle
*vp
)
1849 struct __vxge_hw_virtualpath
*vpath
;
1850 enum vxge_hw_status status
= VXGE_HW_OK
;
1852 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1853 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1859 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1861 if (!(val64
& VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
)) {
1862 val64
|= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
;
1863 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1870 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
1871 * @vp: Vpath handle.
1873 * Disable Titan-e multicast addresses.
1874 * Returns: VXGE_HW_OK - success.
1875 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1879 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle
*vp
)
1882 struct __vxge_hw_virtualpath
*vpath
;
1883 enum vxge_hw_status status
= VXGE_HW_OK
;
1885 if ((vp
== NULL
) || (vp
->vpath
->ringh
== NULL
)) {
1886 status
= VXGE_HW_ERR_INVALID_HANDLE
;
1892 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
1894 if (val64
& VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
) {
1895 val64
&= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN
;
1896 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
1903 * __vxge_hw_vpath_alarm_process - Process Alarms.
1904 * @vpath: Virtual Path.
1905 * @skip_alarms: Do not clear the alarms
1907 * Process vpath alarms.
1910 enum vxge_hw_status
__vxge_hw_vpath_alarm_process(
1911 struct __vxge_hw_virtualpath
*vpath
,
1917 struct __vxge_hw_device
*hldev
= NULL
;
1918 enum vxge_hw_event alarm_event
= VXGE_HW_EVENT_UNKNOWN
;
1920 struct vxge_hw_vpath_stats_sw_info
*sw_stats
;
1921 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1923 if (vpath
== NULL
) {
1924 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN
,
1929 hldev
= vpath
->hldev
;
1930 vp_reg
= vpath
->vp_reg
;
1931 alarm_status
= readq(&vp_reg
->vpath_general_int_status
);
1933 if (alarm_status
== VXGE_HW_ALL_FOXES
) {
1934 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE
,
1939 sw_stats
= vpath
->sw_stats
;
1941 if (alarm_status
& ~(
1942 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT
|
1943 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT
|
1944 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT
|
1945 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT
)) {
1946 sw_stats
->error_stats
.unknown_alarms
++;
1948 alarm_event
= VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN
,
1953 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT
) {
1955 val64
= readq(&vp_reg
->xgmac_vp_int_status
);
1958 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT
) {
1960 val64
= readq(&vp_reg
->asic_ntwk_vp_err_reg
);
1963 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
) &&
1965 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
))) ||
1967 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR
)
1969 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR
)
1971 sw_stats
->error_stats
.network_sustained_fault
++;
1974 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
,
1975 &vp_reg
->asic_ntwk_vp_err_mask
);
1977 __vxge_hw_device_handle_link_down_ind(hldev
);
1978 alarm_event
= VXGE_HW_SET_LEVEL(
1979 VXGE_HW_EVENT_LINK_DOWN
, alarm_event
);
1983 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
) &&
1985 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT
))) ||
1987 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR
)
1989 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR
)
1992 sw_stats
->error_stats
.network_sustained_ok
++;
1995 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK
,
1996 &vp_reg
->asic_ntwk_vp_err_mask
);
1998 __vxge_hw_device_handle_link_up_ind(hldev
);
1999 alarm_event
= VXGE_HW_SET_LEVEL(
2000 VXGE_HW_EVENT_LINK_UP
, alarm_event
);
2003 writeq(VXGE_HW_INTR_MASK_ALL
,
2004 &vp_reg
->asic_ntwk_vp_err_reg
);
2006 alarm_event
= VXGE_HW_SET_LEVEL(
2007 VXGE_HW_EVENT_ALARM_CLEARED
, alarm_event
);
2014 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT
) {
2016 pic_status
= readq(&vp_reg
->vpath_ppif_int_status
);
2019 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT
) {
2021 val64
= readq(&vp_reg
->general_errors_reg
);
2022 mask64
= readq(&vp_reg
->general_errors_mask
);
2025 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET
) &
2027 sw_stats
->error_stats
.ini_serr_det
++;
2029 alarm_event
= VXGE_HW_SET_LEVEL(
2030 VXGE_HW_EVENT_SERR
, alarm_event
);
2034 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW
) &
2036 sw_stats
->error_stats
.dblgen_fifo0_overflow
++;
2038 alarm_event
= VXGE_HW_SET_LEVEL(
2039 VXGE_HW_EVENT_FIFO_ERR
, alarm_event
);
2043 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR
) &
2045 sw_stats
->error_stats
.statsb_pif_chain_error
++;
2048 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ
) &
2050 sw_stats
->error_stats
.statsb_drop_timeout
++;
2053 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS
) &
2055 sw_stats
->error_stats
.target_illegal_access
++;
2058 writeq(VXGE_HW_INTR_MASK_ALL
,
2059 &vp_reg
->general_errors_reg
);
2060 alarm_event
= VXGE_HW_SET_LEVEL(
2061 VXGE_HW_EVENT_ALARM_CLEARED
,
2067 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT
) {
2069 val64
= readq(&vp_reg
->kdfcctl_errors_reg
);
2070 mask64
= readq(&vp_reg
->kdfcctl_errors_mask
);
2073 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR
) &
2075 sw_stats
->error_stats
.kdfcctl_fifo0_overwrite
++;
2077 alarm_event
= VXGE_HW_SET_LEVEL(
2078 VXGE_HW_EVENT_FIFO_ERR
,
2083 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON
) &
2085 sw_stats
->error_stats
.kdfcctl_fifo0_poison
++;
2087 alarm_event
= VXGE_HW_SET_LEVEL(
2088 VXGE_HW_EVENT_FIFO_ERR
,
2093 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR
) &
2095 sw_stats
->error_stats
.kdfcctl_fifo0_dma_error
++;
2097 alarm_event
= VXGE_HW_SET_LEVEL(
2098 VXGE_HW_EVENT_FIFO_ERR
,
2103 writeq(VXGE_HW_INTR_MASK_ALL
,
2104 &vp_reg
->kdfcctl_errors_reg
);
2105 alarm_event
= VXGE_HW_SET_LEVEL(
2106 VXGE_HW_EVENT_ALARM_CLEARED
,
2113 if (alarm_status
& VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT
) {
2115 val64
= readq(&vp_reg
->wrdma_alarm_status
);
2117 if (val64
& VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT
) {
2119 val64
= readq(&vp_reg
->prc_alarm_reg
);
2120 mask64
= readq(&vp_reg
->prc_alarm_mask
);
2122 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP
)&
2124 sw_stats
->error_stats
.prc_ring_bumps
++;
2126 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR
) &
2128 sw_stats
->error_stats
.prc_rxdcm_sc_err
++;
2130 alarm_event
= VXGE_HW_SET_LEVEL(
2131 VXGE_HW_EVENT_VPATH_ERR
,
2135 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT
)
2137 sw_stats
->error_stats
.prc_rxdcm_sc_abort
++;
2139 alarm_event
= VXGE_HW_SET_LEVEL(
2140 VXGE_HW_EVENT_VPATH_ERR
,
2144 if ((val64
& VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR
)
2146 sw_stats
->error_stats
.prc_quanta_size_err
++;
2148 alarm_event
= VXGE_HW_SET_LEVEL(
2149 VXGE_HW_EVENT_VPATH_ERR
,
2154 writeq(VXGE_HW_INTR_MASK_ALL
,
2155 &vp_reg
->prc_alarm_reg
);
2156 alarm_event
= VXGE_HW_SET_LEVEL(
2157 VXGE_HW_EVENT_ALARM_CLEARED
,
2163 hldev
->stats
.sw_dev_err_stats
.vpath_alarms
++;
2165 if ((alarm_event
== VXGE_HW_EVENT_ALARM_CLEARED
) ||
2166 (alarm_event
== VXGE_HW_EVENT_UNKNOWN
))
2169 __vxge_hw_device_handle_error(hldev
, vpath
->vp_id
, alarm_event
);
2171 if (alarm_event
== VXGE_HW_EVENT_SERR
)
2172 return VXGE_HW_ERR_CRITICAL
;
2174 return (alarm_event
== VXGE_HW_EVENT_SLOT_FREEZE
) ?
2175 VXGE_HW_ERR_SLOT_FREEZE
:
2176 (alarm_event
== VXGE_HW_EVENT_FIFO_ERR
) ? VXGE_HW_ERR_FIFO
:
2181 * vxge_hw_vpath_alarm_process - Process Alarms.
2182 * @vpath: Virtual Path.
2183 * @skip_alarms: Do not clear the alarms
2185 * Process vpath alarms.
2188 enum vxge_hw_status
vxge_hw_vpath_alarm_process(
2189 struct __vxge_hw_vpath_handle
*vp
,
2192 enum vxge_hw_status status
= VXGE_HW_OK
;
2195 status
= VXGE_HW_ERR_INVALID_HANDLE
;
2199 status
= __vxge_hw_vpath_alarm_process(vp
->vpath
, skip_alarms
);
2205 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2207 * @vp: Virtual Path handle.
2208 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2209 * interrupts(Can be repeated). If fifo or ring are not enabled
2210 * the MSIX vector for that should be set to 0
2211 * @alarm_msix_id: MSIX vector for alarm.
2213 * This API will associate a given MSIX vector numbers with the four TIM
2214 * interrupts and alarm interrupt.
2217 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle
*vp
, int *tim_msix_id
,
2221 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
2222 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
2223 u32 first_vp_id
= vpath
->hldev
->first_vp_id
;
2225 val64
= VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2226 (first_vp_id
* 4) + tim_msix_id
[0]) |
2227 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2228 (first_vp_id
* 4) + tim_msix_id
[1]) |
2229 VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
2230 (first_vp_id
* 4) + tim_msix_id
[2]);
2232 val64
|= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
2233 (first_vp_id
* 4) + tim_msix_id
[3]);
2235 writeq(val64
, &vp_reg
->interrupt_cfg0
);
2237 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2238 (first_vp_id
* 4) + alarm_msix_id
),
2239 &vp_reg
->interrupt_cfg2
);
2241 if (vpath
->hldev
->config
.intr_mode
==
2242 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2243 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2244 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN
,
2245 0, 32), &vp_reg
->one_shot_vect1_en
);
2248 if (vpath
->hldev
->config
.intr_mode
==
2249 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2250 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2251 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN
,
2252 0, 32), &vp_reg
->one_shot_vect2_en
);
2254 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(
2255 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN
,
2256 0, 32), &vp_reg
->one_shot_vect3_en
);
2263 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2264 * @vp: Virtual Path handle.
2267 * The function masks the msix interrupt for the given msix_id
2270 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2275 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2277 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2278 __vxge_hw_pio_mem_write32_upper(
2279 (u32
) vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2280 (msix_id
/ 4)), 0, 32),
2281 &hldev
->common_reg
->set_msix_mask_vect
[msix_id
% 4]);
2287 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2288 * @vp: Virtual Path handle.
2291 * The function clears the msix interrupt for the given msix_id
2294 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2299 vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2301 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2302 if (hldev
->config
.intr_mode
==
2303 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) {
2304 __vxge_hw_pio_mem_write32_upper(
2305 (u32
)vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2306 (msix_id
/4)), 0, 32),
2307 &hldev
->common_reg
->
2308 clr_msix_one_shot_vec
[msix_id
%4]);
2310 __vxge_hw_pio_mem_write32_upper(
2311 (u32
)vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2312 (msix_id
/4)), 0, 32),
2313 &hldev
->common_reg
->
2314 clear_msix_mask_vect
[msix_id
%4]);
2321 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2322 * @vp: Virtual Path handle.
2325 * The function unmasks the msix interrupt for the given msix_id
2328 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2333 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle
*vp
, int msix_id
)
2335 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2336 __vxge_hw_pio_mem_write32_upper(
2337 (u32
)vxge_bVALn(vxge_mBIT(hldev
->first_vp_id
+
2338 (msix_id
/4)), 0, 32),
2339 &hldev
->common_reg
->clear_msix_mask_vect
[msix_id
%4]);
2345 * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2346 * @vp: Virtual Path handle.
2348 * The function masks all msix interrupt for the given vpath
2352 vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle
*vp
)
2355 __vxge_hw_pio_mem_write32_upper(
2356 (u32
)vxge_bVALn(vxge_mBIT(vp
->vpath
->vp_id
), 0, 32),
2357 &vp
->vpath
->hldev
->common_reg
->set_msix_mask_all_vect
);
2363 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2364 * @vp: Virtual Path handle.
2366 * Mask Tx and Rx vpath interrupts.
2368 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2370 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle
*vp
)
2372 u64 tim_int_mask0
[4] = {[0 ...3] = 0};
2373 u32 tim_int_mask1
[4] = {[0 ...3] = 0};
2375 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2377 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0
,
2378 tim_int_mask1
, vp
->vpath
->vp_id
);
2380 val64
= readq(&hldev
->common_reg
->tim_int_mask0
);
2382 if ((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2383 (tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2384 writeq((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
2385 tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] | val64
),
2386 &hldev
->common_reg
->tim_int_mask0
);
2389 val64
= readl(&hldev
->common_reg
->tim_int_mask1
);
2391 if ((tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2392 (tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2393 __vxge_hw_pio_mem_write32_upper(
2394 (tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
2395 tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] | val64
),
2396 &hldev
->common_reg
->tim_int_mask1
);
2403 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2404 * @vp: Virtual Path handle.
2406 * Unmask Tx and Rx vpath interrupts.
2408 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2410 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle
*vp
)
2412 u64 tim_int_mask0
[4] = {[0 ...3] = 0};
2413 u32 tim_int_mask1
[4] = {[0 ...3] = 0};
2415 struct __vxge_hw_device
*hldev
= vp
->vpath
->hldev
;
2417 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0
,
2418 tim_int_mask1
, vp
->vpath
->vp_id
);
2420 val64
= readq(&hldev
->common_reg
->tim_int_mask0
);
2422 if ((tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2423 (tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2424 writeq((~(tim_int_mask0
[VXGE_HW_VPATH_INTR_TX
] |
2425 tim_int_mask0
[VXGE_HW_VPATH_INTR_RX
])) & val64
,
2426 &hldev
->common_reg
->tim_int_mask0
);
2429 if ((tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] != 0) ||
2430 (tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
] != 0)) {
2431 __vxge_hw_pio_mem_write32_upper(
2432 (~(tim_int_mask1
[VXGE_HW_VPATH_INTR_TX
] |
2433 tim_int_mask1
[VXGE_HW_VPATH_INTR_RX
])) & val64
,
2434 &hldev
->common_reg
->tim_int_mask1
);
2441 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2442 * descriptors and process the same.
2443 * @ring: Handle to the ring object used for receive
2445 * The function polls the Rx for the completed descriptors and calls
2446 * the driver via supplied completion callback.
2448 * Returns: VXGE_HW_OK, if the polling is completed successful.
2449 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2450 * descriptors available which are yet to be processed.
2452 * See also: vxge_hw_vpath_poll_rx()
2454 enum vxge_hw_status
vxge_hw_vpath_poll_rx(struct __vxge_hw_ring
*ring
)
2457 enum vxge_hw_status status
= VXGE_HW_OK
;
2464 status
= vxge_hw_ring_rxd_next_completed(ring
, &first_rxdh
, &t_code
);
2465 if (status
== VXGE_HW_OK
)
2466 ring
->callback(ring
, first_rxdh
,
2467 t_code
, ring
->channel
.userdata
);
2469 if (ring
->cmpl_cnt
!= 0) {
2470 ring
->doorbell_cnt
+= ring
->cmpl_cnt
;
2471 if (ring
->doorbell_cnt
>= ring
->rxds_limit
) {
2473 * Each RxD is of 4 qwords, update the number of
2474 * qwords replenished
2476 new_count
= (ring
->doorbell_cnt
* 4);
2478 /* For each block add 4 more qwords */
2479 ring
->total_db_cnt
+= ring
->doorbell_cnt
;
2480 if (ring
->total_db_cnt
>= ring
->rxds_per_block
) {
2482 /* Reset total count */
2483 ring
->total_db_cnt
%= ring
->rxds_per_block
;
2485 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count
),
2486 &ring
->vp_reg
->prc_rxd_doorbell
);
2488 readl(&ring
->common_reg
->titan_general_int_status
);
2489 ring
->doorbell_cnt
= 0;
2497 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2499 * @fifo: Handle to the fifo object used for non offload send
2501 * The function polls the Tx for the completed descriptors and calls
2502 * the driver via supplied completion callback.
2504 * Returns: VXGE_HW_OK, if the polling is completed successful.
2505 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2506 * descriptors available which are yet to be processed.
2508 * See also: vxge_hw_vpath_poll_tx().
2510 enum vxge_hw_status
vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo
*fifo
,
2513 enum vxge_hw_fifo_tcode t_code
;
2515 enum vxge_hw_status status
= VXGE_HW_OK
;
2516 struct __vxge_hw_channel
*channel
;
2518 channel
= &fifo
->channel
;
2520 status
= vxge_hw_fifo_txdl_next_completed(fifo
,
2521 &first_txdlh
, &t_code
);
2522 if (status
== VXGE_HW_OK
)
2523 if (fifo
->callback(fifo
, first_txdlh
,
2524 t_code
, channel
->userdata
, skb_ptr
) != VXGE_HW_OK
)
2525 status
= VXGE_HW_COMPLETIONS_REMAIN
;