x86: page.h: make pte_t a union to always include
[linux-2.6/linux-loongson.git] / arch / x86 / xen / mmu.c
blob52f392893008aae5d801cff8f98878c14b0b755d
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
53 #include <xen/page.h>
54 #include <xen/interface/xen.h>
56 #include "multicalls.h"
57 #include "mmu.h"
59 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
61 pte_t *pte = lookup_address(address);
62 unsigned offset = address & PAGE_MASK;
64 BUG_ON(pte == NULL);
66 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
69 void make_lowmem_page_readonly(void *vaddr)
71 pte_t *pte, ptev;
72 unsigned long address = (unsigned long)vaddr;
74 pte = lookup_address(address);
75 BUG_ON(pte == NULL);
77 ptev = pte_wrprotect(*pte);
79 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
80 BUG();
83 void make_lowmem_page_readwrite(void *vaddr)
85 pte_t *pte, ptev;
86 unsigned long address = (unsigned long)vaddr;
88 pte = lookup_address(address);
89 BUG_ON(pte == NULL);
91 ptev = pte_mkwrite(*pte);
93 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
94 BUG();
98 void xen_set_pmd(pmd_t *ptr, pmd_t val)
100 struct multicall_space mcs;
101 struct mmu_update *u;
103 preempt_disable();
105 mcs = xen_mc_entry(sizeof(*u));
106 u = mcs.args;
107 u->ptr = virt_to_machine(ptr).maddr;
108 u->val = pmd_val_ma(val);
109 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
111 xen_mc_issue(PARAVIRT_LAZY_MMU);
113 preempt_enable();
117 * Associate a virtual page frame with a given physical page frame
118 * and protection flags for that frame.
120 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
122 pgd_t *pgd;
123 pud_t *pud;
124 pmd_t *pmd;
125 pte_t *pte;
127 pgd = swapper_pg_dir + pgd_index(vaddr);
128 if (pgd_none(*pgd)) {
129 BUG();
130 return;
132 pud = pud_offset(pgd, vaddr);
133 if (pud_none(*pud)) {
134 BUG();
135 return;
137 pmd = pmd_offset(pud, vaddr);
138 if (pmd_none(*pmd)) {
139 BUG();
140 return;
142 pte = pte_offset_kernel(pmd, vaddr);
143 /* <mfn,flags> stored as-is, to permit clearing entries */
144 xen_set_pte(pte, mfn_pte(mfn, flags));
147 * It's enough to flush this one mapping.
148 * (PGE mappings get flushed as well)
150 __flush_tlb_one(vaddr);
153 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
154 pte_t *ptep, pte_t pteval)
156 if (mm == current->mm || mm == &init_mm) {
157 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
158 struct multicall_space mcs;
159 mcs = xen_mc_entry(0);
161 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
162 xen_mc_issue(PARAVIRT_LAZY_MMU);
163 return;
164 } else
165 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
166 return;
168 xen_set_pte(ptep, pteval);
171 #ifdef CONFIG_X86_PAE
172 void xen_set_pud(pud_t *ptr, pud_t val)
174 struct multicall_space mcs;
175 struct mmu_update *u;
177 preempt_disable();
179 mcs = xen_mc_entry(sizeof(*u));
180 u = mcs.args;
181 u->ptr = virt_to_machine(ptr).maddr;
182 u->val = pud_val_ma(val);
183 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
185 xen_mc_issue(PARAVIRT_LAZY_MMU);
187 preempt_enable();
190 void xen_set_pte(pte_t *ptep, pte_t pte)
192 ptep->pte_high = pte.pte_high;
193 smp_wmb();
194 ptep->pte_low = pte.pte_low;
197 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
199 set_64bit((u64 *)ptep, pte_val_ma(pte));
202 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
204 ptep->pte_low = 0;
205 smp_wmb(); /* make sure low gets written first */
206 ptep->pte_high = 0;
209 void xen_pmd_clear(pmd_t *pmdp)
211 xen_set_pmd(pmdp, __pmd(0));
214 unsigned long long xen_pte_val(pte_t pte)
216 unsigned long long ret = 0;
218 if (pte.pte_low) {
219 ret = ((unsigned long long)pte.pte_high << 32) | pte.pte_low;
220 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
223 return ret;
226 unsigned long long xen_pmd_val(pmd_t pmd)
228 unsigned long long ret = pmd.pmd;
229 if (ret)
230 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
231 return ret;
234 unsigned long long xen_pgd_val(pgd_t pgd)
236 unsigned long long ret = pgd.pgd;
237 if (ret)
238 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
239 return ret;
242 pte_t xen_make_pte(unsigned long long pte)
244 if (pte & 1)
245 pte = phys_to_machine(XPADDR(pte)).maddr;
247 return (pte_t){ .pte = pte };
250 pmd_t xen_make_pmd(unsigned long long pmd)
252 if (pmd & 1)
253 pmd = phys_to_machine(XPADDR(pmd)).maddr;
255 return (pmd_t){ pmd };
258 pgd_t xen_make_pgd(unsigned long long pgd)
260 if (pgd & _PAGE_PRESENT)
261 pgd = phys_to_machine(XPADDR(pgd)).maddr;
263 return (pgd_t){ pgd };
265 #else /* !PAE */
266 void xen_set_pte(pte_t *ptep, pte_t pte)
268 *ptep = pte;
271 unsigned long xen_pte_val(pte_t pte)
273 unsigned long ret = pte.pte_low;
275 if (ret & _PAGE_PRESENT)
276 ret = machine_to_phys(XMADDR(ret)).paddr;
278 return ret;
281 unsigned long xen_pgd_val(pgd_t pgd)
283 unsigned long ret = pgd.pgd;
284 if (ret)
285 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
286 return ret;
289 pte_t xen_make_pte(unsigned long pte)
291 if (pte & _PAGE_PRESENT)
292 pte = phys_to_machine(XPADDR(pte)).maddr;
294 pte &= ~_PAGE_PCD;
296 return (pte_t){ pte };
299 pgd_t xen_make_pgd(unsigned long pgd)
301 if (pgd & _PAGE_PRESENT)
302 pgd = phys_to_machine(XPADDR(pgd)).maddr;
304 return (pgd_t){ pgd };
306 #endif /* CONFIG_X86_PAE */
308 enum pt_level {
309 PT_PGD,
310 PT_PUD,
311 PT_PMD,
312 PT_PTE
316 (Yet another) pagetable walker. This one is intended for pinning a
317 pagetable. This means that it walks a pagetable and calls the
318 callback function on each page it finds making up the page table,
319 at every level. It walks the entire pagetable, but it only bothers
320 pinning pte pages which are below pte_limit. In the normal case
321 this will be TASK_SIZE, but at boot we need to pin up to
322 FIXADDR_TOP. But the important bit is that we don't pin beyond
323 there, because then we start getting into Xen's ptes.
325 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
326 unsigned long limit)
328 pgd_t *pgd = pgd_base;
329 int flush = 0;
330 unsigned long addr = 0;
331 unsigned long pgd_next;
333 BUG_ON(limit > FIXADDR_TOP);
335 if (xen_feature(XENFEAT_auto_translated_physmap))
336 return 0;
338 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
339 pud_t *pud;
340 unsigned long pud_limit, pud_next;
342 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
344 if (!pgd_val(*pgd))
345 continue;
347 pud = pud_offset(pgd, 0);
349 if (PTRS_PER_PUD > 1) /* not folded */
350 flush |= (*func)(virt_to_page(pud), PT_PUD);
352 for (; addr != pud_limit; pud++, addr = pud_next) {
353 pmd_t *pmd;
354 unsigned long pmd_limit;
356 pud_next = pud_addr_end(addr, pud_limit);
358 if (pud_next < limit)
359 pmd_limit = pud_next;
360 else
361 pmd_limit = limit;
363 if (pud_none(*pud))
364 continue;
366 pmd = pmd_offset(pud, 0);
368 if (PTRS_PER_PMD > 1) /* not folded */
369 flush |= (*func)(virt_to_page(pmd), PT_PMD);
371 for (; addr != pmd_limit; pmd++) {
372 addr += (PAGE_SIZE * PTRS_PER_PTE);
373 if ((pmd_limit-1) < (addr-1)) {
374 addr = pmd_limit;
375 break;
378 if (pmd_none(*pmd))
379 continue;
381 flush |= (*func)(pmd_page(*pmd), PT_PTE);
386 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
388 return flush;
391 static spinlock_t *lock_pte(struct page *page)
393 spinlock_t *ptl = NULL;
395 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
396 ptl = __pte_lockptr(page);
397 spin_lock(ptl);
398 #endif
400 return ptl;
403 static void do_unlock(void *v)
405 spinlock_t *ptl = v;
406 spin_unlock(ptl);
409 static void xen_do_pin(unsigned level, unsigned long pfn)
411 struct mmuext_op *op;
412 struct multicall_space mcs;
414 mcs = __xen_mc_entry(sizeof(*op));
415 op = mcs.args;
416 op->cmd = level;
417 op->arg1.mfn = pfn_to_mfn(pfn);
418 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
421 static int pin_page(struct page *page, enum pt_level level)
423 unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags);
424 int flush;
426 if (pgfl)
427 flush = 0; /* already pinned */
428 else if (PageHighMem(page))
429 /* kmaps need flushing if we found an unpinned
430 highpage */
431 flush = 1;
432 else {
433 void *pt = lowmem_page_address(page);
434 unsigned long pfn = page_to_pfn(page);
435 struct multicall_space mcs = __xen_mc_entry(0);
436 spinlock_t *ptl;
438 flush = 0;
440 ptl = NULL;
441 if (level == PT_PTE)
442 ptl = lock_pte(page);
444 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
445 pfn_pte(pfn, PAGE_KERNEL_RO),
446 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
448 if (level == PT_PTE)
449 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
451 if (ptl) {
452 /* Queue a deferred unlock for when this batch
453 is completed. */
454 xen_mc_callback(do_unlock, ptl);
458 return flush;
461 /* This is called just after a mm has been created, but it has not
462 been used yet. We need to make sure that its pagetable is all
463 read-only, and can be pinned. */
464 void xen_pgd_pin(pgd_t *pgd)
466 unsigned level;
468 xen_mc_batch();
470 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
471 /* re-enable interrupts for kmap_flush_unused */
472 xen_mc_issue(0);
473 kmap_flush_unused();
474 xen_mc_batch();
477 #ifdef CONFIG_X86_PAE
478 level = MMUEXT_PIN_L3_TABLE;
479 #else
480 level = MMUEXT_PIN_L2_TABLE;
481 #endif
483 xen_do_pin(level, PFN_DOWN(__pa(pgd)));
485 xen_mc_issue(0);
488 /* The init_mm pagetable is really pinned as soon as its created, but
489 that's before we have page structures to store the bits. So do all
490 the book-keeping now. */
491 static __init int mark_pinned(struct page *page, enum pt_level level)
493 SetPagePinned(page);
494 return 0;
497 void __init xen_mark_init_mm_pinned(void)
499 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
502 static int unpin_page(struct page *page, enum pt_level level)
504 unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags);
506 if (pgfl && !PageHighMem(page)) {
507 void *pt = lowmem_page_address(page);
508 unsigned long pfn = page_to_pfn(page);
509 spinlock_t *ptl = NULL;
510 struct multicall_space mcs;
512 if (level == PT_PTE) {
513 ptl = lock_pte(page);
515 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
518 mcs = __xen_mc_entry(0);
520 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
521 pfn_pte(pfn, PAGE_KERNEL),
522 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
524 if (ptl) {
525 /* unlock when batch completed */
526 xen_mc_callback(do_unlock, ptl);
530 return 0; /* never need to flush on unpin */
533 /* Release a pagetables pages back as normal RW */
534 static void xen_pgd_unpin(pgd_t *pgd)
536 xen_mc_batch();
538 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
540 pgd_walk(pgd, unpin_page, TASK_SIZE);
542 xen_mc_issue(0);
545 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
547 spin_lock(&next->page_table_lock);
548 xen_pgd_pin(next->pgd);
549 spin_unlock(&next->page_table_lock);
552 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
554 spin_lock(&mm->page_table_lock);
555 xen_pgd_pin(mm->pgd);
556 spin_unlock(&mm->page_table_lock);
560 #ifdef CONFIG_SMP
561 /* Another cpu may still have their %cr3 pointing at the pagetable, so
562 we need to repoint it somewhere else before we can unpin it. */
563 static void drop_other_mm_ref(void *info)
565 struct mm_struct *mm = info;
567 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
568 leave_mm(smp_processor_id());
570 /* If this cpu still has a stale cr3 reference, then make sure
571 it has been flushed. */
572 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
573 load_cr3(swapper_pg_dir);
574 arch_flush_lazy_cpu_mode();
578 static void drop_mm_ref(struct mm_struct *mm)
580 cpumask_t mask;
581 unsigned cpu;
583 if (current->active_mm == mm) {
584 if (current->mm == mm)
585 load_cr3(swapper_pg_dir);
586 else
587 leave_mm(smp_processor_id());
588 arch_flush_lazy_cpu_mode();
591 /* Get the "official" set of cpus referring to our pagetable. */
592 mask = mm->cpu_vm_mask;
594 /* It's possible that a vcpu may have a stale reference to our
595 cr3, because its in lazy mode, and it hasn't yet flushed
596 its set of pending hypercalls yet. In this case, we can
597 look at its actual current cr3 value, and force it to flush
598 if needed. */
599 for_each_online_cpu(cpu) {
600 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
601 cpu_set(cpu, mask);
604 if (!cpus_empty(mask))
605 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
607 #else
608 static void drop_mm_ref(struct mm_struct *mm)
610 if (current->active_mm == mm)
611 load_cr3(swapper_pg_dir);
613 #endif
616 * While a process runs, Xen pins its pagetables, which means that the
617 * hypervisor forces it to be read-only, and it controls all updates
618 * to it. This means that all pagetable updates have to go via the
619 * hypervisor, which is moderately expensive.
621 * Since we're pulling the pagetable down, we switch to use init_mm,
622 * unpin old process pagetable and mark it all read-write, which
623 * allows further operations on it to be simple memory accesses.
625 * The only subtle point is that another CPU may be still using the
626 * pagetable because of lazy tlb flushing. This means we need need to
627 * switch all CPUs off this pagetable before we can unpin it.
629 void xen_exit_mmap(struct mm_struct *mm)
631 get_cpu(); /* make sure we don't move around */
632 drop_mm_ref(mm);
633 put_cpu();
635 spin_lock(&mm->page_table_lock);
637 /* pgd may not be pinned in the error exit path of execve */
638 if (PagePinned(virt_to_page(mm->pgd)))
639 xen_pgd_unpin(mm->pgd);
641 spin_unlock(&mm->page_table_lock);