sparse pointer use of zero as null
[linux-2.6/linux-loongson.git] / drivers / net / tulip / de4x5.c
blob41f34bb91cad9d12dd0fdb245398d2d60e72a487
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
4 Copyright 1994, 1995 Digital Equipment Corporation.
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
9 The author may be reached at davies@maniac.ultranet.com.
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
50 So far the driver is known to work with the following cards:
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
82 Upto 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
99 To utilise this ability, you have to do 8 things:
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
114 insmod de4x5
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
238 TO DO:
239 ------
241 Revision History
242 ----------------
244 Version Date Description
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/slab.h>
454 #include <linux/pci.h>
455 #include <linux/eisa.h>
456 #include <linux/delay.h>
457 #include <linux/init.h>
458 #include <linux/spinlock.h>
459 #include <linux/crc32.h>
460 #include <linux/netdevice.h>
461 #include <linux/etherdevice.h>
462 #include <linux/skbuff.h>
463 #include <linux/time.h>
464 #include <linux/types.h>
465 #include <linux/unistd.h>
466 #include <linux/ctype.h>
467 #include <linux/dma-mapping.h>
468 #include <linux/moduleparam.h>
469 #include <linux/bitops.h>
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <asm/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
480 #include "de4x5.h"
482 static char version[] __devinitdata = "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484 #define c_char const char
485 #define TWIDDLE(a) (u_short)le16_to_cpu(get_unaligned((__le16 *)(a)))
488 ** MII Information
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
520 #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
554 ** Define special SROM detection cases
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
561 #define SMC 1
562 #define ACCTON 2
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
599 struct parameters {
600 bool fdx;
601 int autosense;
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
609 ** Ethernet PROM defines
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
615 ** Ethernet Info
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
628 ** EISA bus defines
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
641 ** Ethernet PROM defines for DC21040
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
647 ** PCI Bus defines
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
679 ** DE4X5 IRQ ENABLE/DISABLE
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
704 ** DE4X5 START/STOP
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
719 ** DE4X5 SIA RESET
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
726 #define DE4X5_AUTOSENSE_MS 250
729 ** SROM Structure
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
743 #define SUB_VENDOR_ID 0x500a
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
767 ** The DE4X5 private structure
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff *skb; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
895 ** Public Functions
897 static int de4x5_open(struct net_device *dev);
898 static int de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev);
899 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
900 static int de4x5_close(struct net_device *dev);
901 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
902 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
903 static void set_multicast_list(struct net_device *dev);
904 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
907 ** Private functions
909 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
910 static int de4x5_init(struct net_device *dev);
911 static int de4x5_sw_reset(struct net_device *dev);
912 static int de4x5_rx(struct net_device *dev);
913 static int de4x5_tx(struct net_device *dev);
914 static int de4x5_ast(struct net_device *dev);
915 static int de4x5_txur(struct net_device *dev);
916 static int de4x5_rx_ovfc(struct net_device *dev);
918 static int autoconf_media(struct net_device *dev);
919 static void create_packet(struct net_device *dev, char *frame, int len);
920 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
921 static int dc21040_autoconf(struct net_device *dev);
922 static int dc21041_autoconf(struct net_device *dev);
923 static int dc21140m_autoconf(struct net_device *dev);
924 static int dc2114x_autoconf(struct net_device *dev);
925 static int srom_autoconf(struct net_device *dev);
926 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
927 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
928 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
929 static int test_for_100Mb(struct net_device *dev, int msec);
930 static int wait_for_link(struct net_device *dev);
931 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
932 static int is_spd_100(struct net_device *dev);
933 static int is_100_up(struct net_device *dev);
934 static int is_10_up(struct net_device *dev);
935 static int is_anc_capable(struct net_device *dev);
936 static int ping_media(struct net_device *dev, int msec);
937 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
938 static void de4x5_free_rx_buffs(struct net_device *dev);
939 static void de4x5_free_tx_buffs(struct net_device *dev);
940 static void de4x5_save_skbs(struct net_device *dev);
941 static void de4x5_rst_desc_ring(struct net_device *dev);
942 static void de4x5_cache_state(struct net_device *dev, int flag);
943 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
944 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
945 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
946 static void de4x5_setup_intr(struct net_device *dev);
947 static void de4x5_init_connection(struct net_device *dev);
948 static int de4x5_reset_phy(struct net_device *dev);
949 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
950 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
951 static int test_tp(struct net_device *dev, s32 msec);
952 static int EISA_signature(char *name, struct device *device);
953 static int PCI_signature(char *name, struct de4x5_private *lp);
954 static void DevicePresent(struct net_device *dev, u_long iobase);
955 static void enet_addr_rst(u_long aprom_addr);
956 static int de4x5_bad_srom(struct de4x5_private *lp);
957 static short srom_rd(u_long address, u_char offset);
958 static void srom_latch(u_int command, u_long address);
959 static void srom_command(u_int command, u_long address);
960 static void srom_address(u_int command, u_long address, u_char offset);
961 static short srom_data(u_int command, u_long address);
962 /*static void srom_busy(u_int command, u_long address);*/
963 static void sendto_srom(u_int command, u_long addr);
964 static int getfrom_srom(u_long addr);
965 static int srom_map_media(struct net_device *dev);
966 static int srom_infoleaf_info(struct net_device *dev);
967 static void srom_init(struct net_device *dev);
968 static void srom_exec(struct net_device *dev, u_char *p);
969 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
970 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static int mii_rdata(u_long ioaddr);
972 static void mii_wdata(int data, int len, u_long ioaddr);
973 static void mii_ta(u_long rw, u_long ioaddr);
974 static int mii_swap(int data, int len);
975 static void mii_address(u_char addr, u_long ioaddr);
976 static void sendto_mii(u32 command, int data, u_long ioaddr);
977 static int getfrom_mii(u32 command, u_long ioaddr);
978 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
979 static int mii_get_phy(struct net_device *dev);
980 static void SetMulticastFilter(struct net_device *dev);
981 static int get_hw_addr(struct net_device *dev);
982 static void srom_repair(struct net_device *dev, int card);
983 static int test_bad_enet(struct net_device *dev, int status);
984 static int an_exception(struct de4x5_private *lp);
985 static char *build_setup_frame(struct net_device *dev, int mode);
986 static void disable_ast(struct net_device *dev);
987 static void enable_ast(struct net_device *dev, u32 time_out);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void timeout(struct net_device *dev, void (*fn)(u_long data), u_long data, u_long msec);
992 static void yawn(struct net_device *dev, int state);
993 static void de4x5_parse_params(struct net_device *dev);
994 static void de4x5_dbg_open(struct net_device *dev);
995 static void de4x5_dbg_mii(struct net_device *dev, int k);
996 static void de4x5_dbg_media(struct net_device *dev);
997 static void de4x5_dbg_srom(struct de4x5_srom *p);
998 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
999 static int de4x5_strncmp(char *a, char *b, int n);
1000 static int dc21041_infoleaf(struct net_device *dev);
1001 static int dc21140_infoleaf(struct net_device *dev);
1002 static int dc21142_infoleaf(struct net_device *dev);
1003 static int dc21143_infoleaf(struct net_device *dev);
1004 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1009 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1010 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1013 ** Note now that module autoprobing is allowed under EISA and PCI. The
1014 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1015 ** to "do the right thing".
1018 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1020 module_param(io, int, 0);
1021 module_param(de4x5_debug, int, 0);
1022 module_param(dec_only, int, 0);
1023 module_param(args, charp, 0);
1025 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1026 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1027 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1028 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1029 MODULE_LICENSE("GPL");
1032 ** List the SROM infoleaf functions and chipsets
1034 struct InfoLeaf {
1035 int chipset;
1036 int (*fn)(struct net_device *);
1038 static struct InfoLeaf infoleaf_array[] = {
1039 {DC21041, dc21041_infoleaf},
1040 {DC21140, dc21140_infoleaf},
1041 {DC21142, dc21142_infoleaf},
1042 {DC21143, dc21143_infoleaf}
1044 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1047 ** List the SROM info block functions
1049 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1050 type0_infoblock,
1051 type1_infoblock,
1052 type2_infoblock,
1053 type3_infoblock,
1054 type4_infoblock,
1055 type5_infoblock,
1056 compact_infoblock
1059 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1062 ** Miscellaneous defines...
1064 #define RESET_DE4X5 {\
1065 int i;\
1066 i=inl(DE4X5_BMR);\
1067 mdelay(1);\
1068 outl(i | BMR_SWR, DE4X5_BMR);\
1069 mdelay(1);\
1070 outl(i, DE4X5_BMR);\
1071 mdelay(1);\
1072 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1073 mdelay(1);\
1076 #define PHY_HARD_RESET {\
1077 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1078 mdelay(1); /* Assert for 1ms */\
1079 outl(0x00, DE4X5_GEP);\
1080 mdelay(2); /* Wait for 2ms */\
1084 static int __devinit
1085 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1087 char name[DE4X5_NAME_LENGTH + 1];
1088 struct de4x5_private *lp = netdev_priv(dev);
1089 struct pci_dev *pdev = NULL;
1090 int i, status=0;
1091 DECLARE_MAC_BUF(mac);
1093 gendev->driver_data = dev;
1095 /* Ensure we're not sleeping */
1096 if (lp->bus == EISA) {
1097 outb(WAKEUP, PCI_CFPM);
1098 } else {
1099 pdev = to_pci_dev (gendev);
1100 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1102 mdelay(10);
1104 RESET_DE4X5;
1106 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1107 return -ENXIO; /* Hardware could not reset */
1111 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1113 lp->useSROM = false;
1114 if (lp->bus == PCI) {
1115 PCI_signature(name, lp);
1116 } else {
1117 EISA_signature(name, gendev);
1120 if (*name == '\0') { /* Not found a board signature */
1121 return -ENXIO;
1124 dev->base_addr = iobase;
1125 printk ("%s: %s at 0x%04lx", gendev->bus_id, name, iobase);
1127 status = get_hw_addr(dev);
1128 printk(", h/w address %s\n", print_mac(mac, dev->dev_addr));
1130 if (status != 0) {
1131 printk(" which has an Ethernet PROM CRC error.\n");
1132 return -ENXIO;
1133 } else {
1134 lp->cache.gepc = GEP_INIT;
1135 lp->asBit = GEP_SLNK;
1136 lp->asPolarity = GEP_SLNK;
1137 lp->asBitValid = ~0;
1138 lp->timeout = -1;
1139 lp->gendev = gendev;
1140 spin_lock_init(&lp->lock);
1141 init_timer(&lp->timer);
1142 de4x5_parse_params(dev);
1145 ** Choose correct autosensing in case someone messed up
1147 lp->autosense = lp->params.autosense;
1148 if (lp->chipset != DC21140) {
1149 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1150 lp->params.autosense = TP;
1152 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1153 lp->params.autosense = BNC;
1156 lp->fdx = lp->params.fdx;
1157 sprintf(lp->adapter_name,"%s (%s)", name, gendev->bus_id);
1159 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1160 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1161 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1162 #endif
1163 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1164 &lp->dma_rings, GFP_ATOMIC);
1165 if (lp->rx_ring == NULL) {
1166 return -ENOMEM;
1169 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1172 ** Set up the RX descriptor ring (Intels)
1173 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1175 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1176 for (i=0; i<NUM_RX_DESC; i++) {
1177 lp->rx_ring[i].status = 0;
1178 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1179 lp->rx_ring[i].buf = 0;
1180 lp->rx_ring[i].next = 0;
1181 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1184 #else
1186 dma_addr_t dma_rx_bufs;
1188 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1189 * sizeof(struct de4x5_desc);
1190 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1191 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1192 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1193 for (i=0; i<NUM_RX_DESC; i++) {
1194 lp->rx_ring[i].status = 0;
1195 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1196 lp->rx_ring[i].buf =
1197 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1198 lp->rx_ring[i].next = 0;
1199 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1203 #endif
1205 barrier();
1207 lp->rxRingSize = NUM_RX_DESC;
1208 lp->txRingSize = NUM_TX_DESC;
1210 /* Write the end of list marker to the descriptor lists */
1211 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1212 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1214 /* Tell the adapter where the TX/RX rings are located. */
1215 outl(lp->dma_rings, DE4X5_RRBA);
1216 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1217 DE4X5_TRBA);
1219 /* Initialise the IRQ mask and Enable/Disable */
1220 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1221 lp->irq_en = IMR_NIM | IMR_AIM;
1223 /* Create a loopback packet frame for later media probing */
1224 create_packet(dev, lp->frame, sizeof(lp->frame));
1226 /* Check if the RX overflow bug needs testing for */
1227 i = lp->cfrv & 0x000000fe;
1228 if ((lp->chipset == DC21140) && (i == 0x20)) {
1229 lp->rx_ovf = 1;
1232 /* Initialise the SROM pointers if possible */
1233 if (lp->useSROM) {
1234 lp->state = INITIALISED;
1235 if (srom_infoleaf_info(dev)) {
1236 dma_free_coherent (gendev, lp->dma_size,
1237 lp->rx_ring, lp->dma_rings);
1238 return -ENXIO;
1240 srom_init(dev);
1243 lp->state = CLOSED;
1246 ** Check for an MII interface
1248 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1249 mii_get_phy(dev);
1252 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1253 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1256 if (de4x5_debug & DEBUG_VERSION) {
1257 printk(version);
1260 /* The DE4X5-specific entries in the device structure. */
1261 SET_NETDEV_DEV(dev, gendev);
1262 dev->open = &de4x5_open;
1263 dev->hard_start_xmit = &de4x5_queue_pkt;
1264 dev->stop = &de4x5_close;
1265 dev->get_stats = &de4x5_get_stats;
1266 dev->set_multicast_list = &set_multicast_list;
1267 dev->do_ioctl = &de4x5_ioctl;
1269 dev->mem_start = 0;
1271 /* Fill in the generic fields of the device structure. */
1272 if ((status = register_netdev (dev))) {
1273 dma_free_coherent (gendev, lp->dma_size,
1274 lp->rx_ring, lp->dma_rings);
1275 return status;
1278 /* Let the adapter sleep to save power */
1279 yawn(dev, SLEEP);
1281 return status;
1285 static int
1286 de4x5_open(struct net_device *dev)
1288 struct de4x5_private *lp = netdev_priv(dev);
1289 u_long iobase = dev->base_addr;
1290 int i, status = 0;
1291 s32 omr;
1293 /* Allocate the RX buffers */
1294 for (i=0; i<lp->rxRingSize; i++) {
1295 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1296 de4x5_free_rx_buffs(dev);
1297 return -EAGAIN;
1302 ** Wake up the adapter
1304 yawn(dev, WAKEUP);
1307 ** Re-initialize the DE4X5...
1309 status = de4x5_init(dev);
1310 spin_lock_init(&lp->lock);
1311 lp->state = OPEN;
1312 de4x5_dbg_open(dev);
1314 if (request_irq(dev->irq, (void *)de4x5_interrupt, IRQF_SHARED,
1315 lp->adapter_name, dev)) {
1316 printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1317 if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1318 lp->adapter_name, dev)) {
1319 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1320 disable_ast(dev);
1321 de4x5_free_rx_buffs(dev);
1322 de4x5_free_tx_buffs(dev);
1323 yawn(dev, SLEEP);
1324 lp->state = CLOSED;
1325 return -EAGAIN;
1326 } else {
1327 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1328 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1332 lp->interrupt = UNMASK_INTERRUPTS;
1333 dev->trans_start = jiffies;
1335 START_DE4X5;
1337 de4x5_setup_intr(dev);
1339 if (de4x5_debug & DEBUG_OPEN) {
1340 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1341 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1342 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1343 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1344 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1345 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1346 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1347 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1350 return status;
1354 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1355 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1356 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1357 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1358 ** to be data corruption problems if it is larger (UDP errors seen from a
1359 ** ttcp source).
1361 static int
1362 de4x5_init(struct net_device *dev)
1364 /* Lock out other processes whilst setting up the hardware */
1365 netif_stop_queue(dev);
1367 de4x5_sw_reset(dev);
1369 /* Autoconfigure the connected port */
1370 autoconf_media(dev);
1372 return 0;
1375 static int
1376 de4x5_sw_reset(struct net_device *dev)
1378 struct de4x5_private *lp = netdev_priv(dev);
1379 u_long iobase = dev->base_addr;
1380 int i, j, status = 0;
1381 s32 bmr, omr;
1383 /* Select the MII or SRL port now and RESET the MAC */
1384 if (!lp->useSROM) {
1385 if (lp->phy[lp->active].id != 0) {
1386 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1387 } else {
1388 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1390 de4x5_switch_mac_port(dev);
1394 ** Set the programmable burst length to 8 longwords for all the DC21140
1395 ** Fasternet chips and 4 longwords for all others: DMA errors result
1396 ** without these values. Cache align 16 long.
1398 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1399 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1400 outl(bmr, DE4X5_BMR);
1402 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1403 if (lp->chipset == DC21140) {
1404 omr |= (OMR_SDP | OMR_SB);
1406 lp->setup_f = PERFECT;
1407 outl(lp->dma_rings, DE4X5_RRBA);
1408 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1409 DE4X5_TRBA);
1411 lp->rx_new = lp->rx_old = 0;
1412 lp->tx_new = lp->tx_old = 0;
1414 for (i = 0; i < lp->rxRingSize; i++) {
1415 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1418 for (i = 0; i < lp->txRingSize; i++) {
1419 lp->tx_ring[i].status = cpu_to_le32(0);
1422 barrier();
1424 /* Build the setup frame depending on filtering mode */
1425 SetMulticastFilter(dev);
1427 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1428 outl(omr|OMR_ST, DE4X5_OMR);
1430 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1432 for (j=0, i=0;(i<500) && (j==0);i++) { /* Upto 500ms delay */
1433 mdelay(1);
1434 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1436 outl(omr, DE4X5_OMR); /* Stop everything! */
1438 if (j == 0) {
1439 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1440 inl(DE4X5_STS));
1441 status = -EIO;
1444 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1445 lp->tx_old = lp->tx_new;
1447 return status;
1451 ** Writes a socket buffer address to the next available transmit descriptor.
1453 static int
1454 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1456 struct de4x5_private *lp = netdev_priv(dev);
1457 u_long iobase = dev->base_addr;
1458 int status = 0;
1459 u_long flags = 0;
1461 netif_stop_queue(dev);
1462 if (!lp->tx_enable) { /* Cannot send for now */
1463 return -1;
1467 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1468 ** interrupts are lost by delayed descriptor status updates relative to
1469 ** the irq assertion, especially with a busy PCI bus.
1471 spin_lock_irqsave(&lp->lock, flags);
1472 de4x5_tx(dev);
1473 spin_unlock_irqrestore(&lp->lock, flags);
1475 /* Test if cache is already locked - requeue skb if so */
1476 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1477 return -1;
1479 /* Transmit descriptor ring full or stale skb */
1480 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1481 if (lp->interrupt) {
1482 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1483 } else {
1484 de4x5_put_cache(dev, skb);
1486 if (de4x5_debug & DEBUG_TX) {
1487 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1489 } else if (skb->len > 0) {
1490 /* If we already have stuff queued locally, use that first */
1491 if (lp->cache.skb && !lp->interrupt) {
1492 de4x5_put_cache(dev, skb);
1493 skb = de4x5_get_cache(dev);
1496 while (skb && !netif_queue_stopped(dev) &&
1497 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1498 spin_lock_irqsave(&lp->lock, flags);
1499 netif_stop_queue(dev);
1500 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1501 lp->stats.tx_bytes += skb->len;
1502 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1504 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1505 dev->trans_start = jiffies;
1507 if (TX_BUFFS_AVAIL) {
1508 netif_start_queue(dev); /* Another pkt may be queued */
1510 skb = de4x5_get_cache(dev);
1511 spin_unlock_irqrestore(&lp->lock, flags);
1513 if (skb) de4x5_putb_cache(dev, skb);
1516 lp->cache.lock = 0;
1518 return status;
1522 ** The DE4X5 interrupt handler.
1524 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1525 ** so that the asserted interrupt always has some real data to work with -
1526 ** if these I/O accesses are ever changed to memory accesses, ensure the
1527 ** STS write is read immediately to complete the transaction if the adapter
1528 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1529 ** is high and descriptor status bits cannot be set before the associated
1530 ** interrupt is asserted and this routine entered.
1532 static irqreturn_t
1533 de4x5_interrupt(int irq, void *dev_id)
1535 struct net_device *dev = dev_id;
1536 struct de4x5_private *lp;
1537 s32 imr, omr, sts, limit;
1538 u_long iobase;
1539 unsigned int handled = 0;
1541 lp = netdev_priv(dev);
1542 spin_lock(&lp->lock);
1543 iobase = dev->base_addr;
1545 DISABLE_IRQs; /* Ensure non re-entrancy */
1547 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1548 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1550 synchronize_irq(dev->irq);
1552 for (limit=0; limit<8; limit++) {
1553 sts = inl(DE4X5_STS); /* Read IRQ status */
1554 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1556 if (!(sts & lp->irq_mask)) break;/* All done */
1557 handled = 1;
1559 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1560 de4x5_rx(dev);
1562 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1563 de4x5_tx(dev);
1565 if (sts & STS_LNF) { /* TP Link has failed */
1566 lp->irq_mask &= ~IMR_LFM;
1569 if (sts & STS_UNF) { /* Transmit underrun */
1570 de4x5_txur(dev);
1573 if (sts & STS_SE) { /* Bus Error */
1574 STOP_DE4X5;
1575 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1576 dev->name, sts);
1577 spin_unlock(&lp->lock);
1578 return IRQ_HANDLED;
1582 /* Load the TX ring with any locally stored packets */
1583 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1584 while (lp->cache.skb && !netif_queue_stopped(dev) && lp->tx_enable) {
1585 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1587 lp->cache.lock = 0;
1590 lp->interrupt = UNMASK_INTERRUPTS;
1591 ENABLE_IRQs;
1592 spin_unlock(&lp->lock);
1594 return IRQ_RETVAL(handled);
1597 static int
1598 de4x5_rx(struct net_device *dev)
1600 struct de4x5_private *lp = netdev_priv(dev);
1601 u_long iobase = dev->base_addr;
1602 int entry;
1603 s32 status;
1605 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1606 entry=lp->rx_new) {
1607 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1609 if (lp->rx_ovf) {
1610 if (inl(DE4X5_MFC) & MFC_FOCM) {
1611 de4x5_rx_ovfc(dev);
1612 break;
1616 if (status & RD_FS) { /* Remember the start of frame */
1617 lp->rx_old = entry;
1620 if (status & RD_LS) { /* Valid frame status */
1621 if (lp->tx_enable) lp->linkOK++;
1622 if (status & RD_ES) { /* There was an error. */
1623 lp->stats.rx_errors++; /* Update the error stats. */
1624 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1625 if (status & RD_CE) lp->stats.rx_crc_errors++;
1626 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1627 if (status & RD_TL) lp->stats.rx_length_errors++;
1628 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1629 if (status & RD_CS) lp->pktStats.rx_collision++;
1630 if (status & RD_DB) lp->pktStats.rx_dribble++;
1631 if (status & RD_OF) lp->pktStats.rx_overflow++;
1632 } else { /* A valid frame received */
1633 struct sk_buff *skb;
1634 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1635 >> 16) - 4;
1637 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1638 printk("%s: Insufficient memory; nuking packet.\n",
1639 dev->name);
1640 lp->stats.rx_dropped++;
1641 } else {
1642 de4x5_dbg_rx(skb, pkt_len);
1644 /* Push up the protocol stack */
1645 skb->protocol=eth_type_trans(skb,dev);
1646 de4x5_local_stats(dev, skb->data, pkt_len);
1647 netif_rx(skb);
1649 /* Update stats */
1650 dev->last_rx = jiffies;
1651 lp->stats.rx_packets++;
1652 lp->stats.rx_bytes += pkt_len;
1656 /* Change buffer ownership for this frame, back to the adapter */
1657 for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) {
1658 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1659 barrier();
1661 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1662 barrier();
1666 ** Update entry information
1668 lp->rx_new = (++lp->rx_new) % lp->rxRingSize;
1671 return 0;
1674 static inline void
1675 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1677 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1678 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1679 DMA_TO_DEVICE);
1680 if ((u_long) lp->tx_skb[entry] > 1)
1681 dev_kfree_skb_irq(lp->tx_skb[entry]);
1682 lp->tx_skb[entry] = NULL;
1686 ** Buffer sent - check for TX buffer errors.
1688 static int
1689 de4x5_tx(struct net_device *dev)
1691 struct de4x5_private *lp = netdev_priv(dev);
1692 u_long iobase = dev->base_addr;
1693 int entry;
1694 s32 status;
1696 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1697 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1698 if (status < 0) { /* Buffer not sent yet */
1699 break;
1700 } else if (status != 0x7fffffff) { /* Not setup frame */
1701 if (status & TD_ES) { /* An error happened */
1702 lp->stats.tx_errors++;
1703 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1704 if (status & TD_LC) lp->stats.tx_window_errors++;
1705 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1706 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1707 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1709 if (TX_PKT_PENDING) {
1710 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1712 } else { /* Packet sent */
1713 lp->stats.tx_packets++;
1714 if (lp->tx_enable) lp->linkOK++;
1716 /* Update the collision counter */
1717 lp->stats.collisions += ((status & TD_EC) ? 16 :
1718 ((status & TD_CC) >> 3));
1720 /* Free the buffer. */
1721 if (lp->tx_skb[entry] != NULL)
1722 de4x5_free_tx_buff(lp, entry);
1725 /* Update all the pointers */
1726 lp->tx_old = (++lp->tx_old) % lp->txRingSize;
1729 /* Any resources available? */
1730 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1731 if (lp->interrupt)
1732 netif_wake_queue(dev);
1733 else
1734 netif_start_queue(dev);
1737 return 0;
1740 static int
1741 de4x5_ast(struct net_device *dev)
1743 struct de4x5_private *lp = netdev_priv(dev);
1744 int next_tick = DE4X5_AUTOSENSE_MS;
1746 disable_ast(dev);
1748 if (lp->useSROM) {
1749 next_tick = srom_autoconf(dev);
1750 } else if (lp->chipset == DC21140) {
1751 next_tick = dc21140m_autoconf(dev);
1752 } else if (lp->chipset == DC21041) {
1753 next_tick = dc21041_autoconf(dev);
1754 } else if (lp->chipset == DC21040) {
1755 next_tick = dc21040_autoconf(dev);
1757 lp->linkOK = 0;
1758 enable_ast(dev, next_tick);
1760 return 0;
1763 static int
1764 de4x5_txur(struct net_device *dev)
1766 struct de4x5_private *lp = netdev_priv(dev);
1767 u_long iobase = dev->base_addr;
1768 int omr;
1770 omr = inl(DE4X5_OMR);
1771 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1772 omr &= ~(OMR_ST|OMR_SR);
1773 outl(omr, DE4X5_OMR);
1774 while (inl(DE4X5_STS) & STS_TS);
1775 if ((omr & OMR_TR) < OMR_TR) {
1776 omr += 0x4000;
1777 } else {
1778 omr |= OMR_SF;
1780 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1783 return 0;
1786 static int
1787 de4x5_rx_ovfc(struct net_device *dev)
1789 struct de4x5_private *lp = netdev_priv(dev);
1790 u_long iobase = dev->base_addr;
1791 int omr;
1793 omr = inl(DE4X5_OMR);
1794 outl(omr & ~OMR_SR, DE4X5_OMR);
1795 while (inl(DE4X5_STS) & STS_RS);
1797 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1798 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1799 lp->rx_new = (++lp->rx_new % lp->rxRingSize);
1802 outl(omr, DE4X5_OMR);
1804 return 0;
1807 static int
1808 de4x5_close(struct net_device *dev)
1810 struct de4x5_private *lp = netdev_priv(dev);
1811 u_long iobase = dev->base_addr;
1812 s32 imr, omr;
1814 disable_ast(dev);
1816 netif_stop_queue(dev);
1818 if (de4x5_debug & DEBUG_CLOSE) {
1819 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1820 dev->name, inl(DE4X5_STS));
1824 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1826 DISABLE_IRQs;
1827 STOP_DE4X5;
1829 /* Free the associated irq */
1830 free_irq(dev->irq, dev);
1831 lp->state = CLOSED;
1833 /* Free any socket buffers */
1834 de4x5_free_rx_buffs(dev);
1835 de4x5_free_tx_buffs(dev);
1837 /* Put the adapter to sleep to save power */
1838 yawn(dev, SLEEP);
1840 return 0;
1843 static struct net_device_stats *
1844 de4x5_get_stats(struct net_device *dev)
1846 struct de4x5_private *lp = netdev_priv(dev);
1847 u_long iobase = dev->base_addr;
1849 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1851 return &lp->stats;
1854 static void
1855 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1857 struct de4x5_private *lp = netdev_priv(dev);
1858 int i;
1860 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1861 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1862 lp->pktStats.bins[i]++;
1863 i = DE4X5_PKT_STAT_SZ;
1866 if (buf[0] & 0x01) { /* Multicast/Broadcast */
1867 if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) {
1868 lp->pktStats.broadcast++;
1869 } else {
1870 lp->pktStats.multicast++;
1872 } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) &&
1873 (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) {
1874 lp->pktStats.unicast++;
1877 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1878 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1879 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1882 return;
1886 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1887 ** If the flag is changed on a descriptor that is being read by the hardware,
1888 ** I assume PCI transaction ordering will mean you are either successful or
1889 ** just miss asserting the change to the hardware. Anyway you're messing with
1890 ** a descriptor you don't own, but this shouldn't kill the chip provided
1891 ** the descriptor register is read only to the hardware.
1893 static void
1894 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1896 struct de4x5_private *lp = netdev_priv(dev);
1897 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1898 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1900 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1901 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1902 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1903 lp->tx_skb[lp->tx_new] = skb;
1904 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1905 barrier();
1907 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1908 barrier();
1912 ** Set or clear the multicast filter for this adaptor.
1914 static void
1915 set_multicast_list(struct net_device *dev)
1917 struct de4x5_private *lp = netdev_priv(dev);
1918 u_long iobase = dev->base_addr;
1920 /* First, double check that the adapter is open */
1921 if (lp->state == OPEN) {
1922 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1923 u32 omr;
1924 omr = inl(DE4X5_OMR);
1925 omr |= OMR_PR;
1926 outl(omr, DE4X5_OMR);
1927 } else {
1928 SetMulticastFilter(dev);
1929 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1930 SETUP_FRAME_LEN, (struct sk_buff *)1);
1932 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
1933 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1934 dev->trans_start = jiffies;
1940 ** Calculate the hash code and update the logical address filter
1941 ** from a list of ethernet multicast addresses.
1942 ** Little endian crc one liner from Matt Thomas, DEC.
1944 static void
1945 SetMulticastFilter(struct net_device *dev)
1947 struct de4x5_private *lp = netdev_priv(dev);
1948 struct dev_mc_list *dmi=dev->mc_list;
1949 u_long iobase = dev->base_addr;
1950 int i, j, bit, byte;
1951 u16 hashcode;
1952 u32 omr, crc;
1953 char *pa;
1954 unsigned char *addrs;
1956 omr = inl(DE4X5_OMR);
1957 omr &= ~(OMR_PR | OMR_PM);
1958 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1960 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) {
1961 omr |= OMR_PM; /* Pass all multicasts */
1962 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1963 for (i=0;i<dev->mc_count;i++) { /* for each address in the list */
1964 addrs=dmi->dmi_addr;
1965 dmi=dmi->next;
1966 if ((*addrs & 0x01) == 1) { /* multicast address? */
1967 crc = ether_crc_le(ETH_ALEN, addrs);
1968 hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */
1970 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1971 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1973 byte <<= 1; /* calc offset into setup frame */
1974 if (byte & 0x02) {
1975 byte -= 1;
1977 lp->setup_frame[byte] |= bit;
1980 } else { /* Perfect filtering */
1981 for (j=0; j<dev->mc_count; j++) {
1982 addrs=dmi->dmi_addr;
1983 dmi=dmi->next;
1984 for (i=0; i<ETH_ALEN; i++) {
1985 *(pa + (i&1)) = *addrs++;
1986 if (i & 0x01) pa += 4;
1990 outl(omr, DE4X5_OMR);
1992 return;
1995 #ifdef CONFIG_EISA
1997 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1999 static int __init de4x5_eisa_probe (struct device *gendev)
2001 struct eisa_device *edev;
2002 u_long iobase;
2003 u_char irq, regval;
2004 u_short vendor;
2005 u32 cfid;
2006 int status, device;
2007 struct net_device *dev;
2008 struct de4x5_private *lp;
2010 edev = to_eisa_device (gendev);
2011 iobase = edev->base_addr;
2013 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2014 return -EBUSY;
2016 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2017 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2018 status = -EBUSY;
2019 goto release_reg_1;
2022 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2023 status = -ENOMEM;
2024 goto release_reg_2;
2026 lp = netdev_priv(dev);
2028 cfid = (u32) inl(PCI_CFID);
2029 lp->cfrv = (u_short) inl(PCI_CFRV);
2030 device = (cfid >> 8) & 0x00ffff00;
2031 vendor = (u_short) cfid;
2033 /* Read the EISA Configuration Registers */
2034 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2035 #ifdef CONFIG_ALPHA
2036 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2037 * care about the EISA configuration, and thus doesn't
2038 * configure the PLX bridge properly. Oh well... Simply mimic
2039 * the EISA config file to sort it out. */
2041 /* EISA REG1: Assert DecChip 21040 HW Reset */
2042 outb (ER1_IAM | 1, EISA_REG1);
2043 mdelay (1);
2045 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2046 outb (ER1_IAM, EISA_REG1);
2047 mdelay (1);
2049 /* EISA REG3: R/W Burst Transfer Enable */
2050 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2052 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2053 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2054 #endif
2055 irq = de4x5_irq[(regval >> 1) & 0x03];
2057 if (is_DC2114x) {
2058 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2060 lp->chipset = device;
2061 lp->bus = EISA;
2063 /* Write the PCI Configuration Registers */
2064 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2065 outl(0x00006000, PCI_CFLT);
2066 outl(iobase, PCI_CBIO);
2068 DevicePresent(dev, EISA_APROM);
2070 dev->irq = irq;
2072 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2073 return 0;
2076 free_netdev (dev);
2077 release_reg_2:
2078 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2079 release_reg_1:
2080 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2082 return status;
2085 static int __devexit de4x5_eisa_remove (struct device *device)
2087 struct net_device *dev;
2088 u_long iobase;
2090 dev = device->driver_data;
2091 iobase = dev->base_addr;
2093 unregister_netdev (dev);
2094 free_netdev (dev);
2095 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2096 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2098 return 0;
2101 static struct eisa_device_id de4x5_eisa_ids[] = {
2102 { "DEC4250", 0 }, /* 0 is the board name index... */
2103 { "" }
2105 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2107 static struct eisa_driver de4x5_eisa_driver = {
2108 .id_table = de4x5_eisa_ids,
2109 .driver = {
2110 .name = "de4x5",
2111 .probe = de4x5_eisa_probe,
2112 .remove = __devexit_p (de4x5_eisa_remove),
2115 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2116 #endif
2118 #ifdef CONFIG_PCI
2121 ** This function searches the current bus (which is >0) for a DECchip with an
2122 ** SROM, so that in multiport cards that have one SROM shared between multiple
2123 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2124 ** For single port cards this is a time waster...
2126 static void __devinit
2127 srom_search(struct net_device *dev, struct pci_dev *pdev)
2129 u_char pb;
2130 u_short vendor, status;
2131 u_int irq = 0, device;
2132 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2133 int i, j;
2134 struct de4x5_private *lp = netdev_priv(dev);
2135 struct list_head *walk;
2137 list_for_each(walk, &pdev->bus_list) {
2138 struct pci_dev *this_dev = pci_dev_b(walk);
2140 /* Skip the pci_bus list entry */
2141 if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2143 vendor = this_dev->vendor;
2144 device = this_dev->device << 8;
2145 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2147 /* Get the chip configuration revision register */
2148 pb = this_dev->bus->number;
2150 /* Set the device number information */
2151 lp->device = PCI_SLOT(this_dev->devfn);
2152 lp->bus_num = pb;
2154 /* Set the chipset information */
2155 if (is_DC2114x) {
2156 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2157 ? DC21142 : DC21143);
2159 lp->chipset = device;
2161 /* Get the board I/O address (64 bits on sparc64) */
2162 iobase = pci_resource_start(this_dev, 0);
2164 /* Fetch the IRQ to be used */
2165 irq = this_dev->irq;
2166 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2168 /* Check if I/O accesses are enabled */
2169 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2170 if (!(status & PCI_COMMAND_IO)) continue;
2172 /* Search for a valid SROM attached to this DECchip */
2173 DevicePresent(dev, DE4X5_APROM);
2174 for (j=0, i=0; i<ETH_ALEN; i++) {
2175 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2177 if ((j != 0) && (j != 0x5fa)) {
2178 last.chipset = device;
2179 last.bus = pb;
2180 last.irq = irq;
2181 for (i=0; i<ETH_ALEN; i++) {
2182 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2184 return;
2188 return;
2192 ** PCI bus I/O device probe
2193 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2194 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2195 ** enabled by the user first in the set up utility. Hence we just check for
2196 ** enabled features and silently ignore the card if they're not.
2198 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2199 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2200 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2201 ** PC doesn't conform to the PCI standard)!
2203 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2204 ** kernels use the V0.535[n] drivers.
2207 static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2208 const struct pci_device_id *ent)
2210 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2211 u_short vendor, status;
2212 u_int irq = 0, device;
2213 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2214 int error;
2215 struct net_device *dev;
2216 struct de4x5_private *lp;
2218 dev_num = PCI_SLOT(pdev->devfn);
2219 pb = pdev->bus->number;
2221 if (io) { /* probe a single PCI device */
2222 pbus = (u_short)(io >> 8);
2223 dnum = (u_short)(io & 0xff);
2224 if ((pbus != pb) || (dnum != dev_num))
2225 return -ENODEV;
2228 vendor = pdev->vendor;
2229 device = pdev->device << 8;
2230 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2231 return -ENODEV;
2233 /* Ok, the device seems to be for us. */
2234 if ((error = pci_enable_device (pdev)))
2235 return error;
2237 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2238 error = -ENOMEM;
2239 goto disable_dev;
2242 lp = netdev_priv(dev);
2243 lp->bus = PCI;
2244 lp->bus_num = 0;
2246 /* Search for an SROM on this bus */
2247 if (lp->bus_num != pb) {
2248 lp->bus_num = pb;
2249 srom_search(dev, pdev);
2252 /* Get the chip configuration revision register */
2253 lp->cfrv = pdev->revision;
2255 /* Set the device number information */
2256 lp->device = dev_num;
2257 lp->bus_num = pb;
2259 /* Set the chipset information */
2260 if (is_DC2114x) {
2261 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2263 lp->chipset = device;
2265 /* Get the board I/O address (64 bits on sparc64) */
2266 iobase = pci_resource_start(pdev, 0);
2268 /* Fetch the IRQ to be used */
2269 irq = pdev->irq;
2270 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2271 error = -ENODEV;
2272 goto free_dev;
2275 /* Check if I/O accesses and Bus Mastering are enabled */
2276 pci_read_config_word(pdev, PCI_COMMAND, &status);
2277 #ifdef __powerpc__
2278 if (!(status & PCI_COMMAND_IO)) {
2279 status |= PCI_COMMAND_IO;
2280 pci_write_config_word(pdev, PCI_COMMAND, status);
2281 pci_read_config_word(pdev, PCI_COMMAND, &status);
2283 #endif /* __powerpc__ */
2284 if (!(status & PCI_COMMAND_IO)) {
2285 error = -ENODEV;
2286 goto free_dev;
2289 if (!(status & PCI_COMMAND_MASTER)) {
2290 status |= PCI_COMMAND_MASTER;
2291 pci_write_config_word(pdev, PCI_COMMAND, status);
2292 pci_read_config_word(pdev, PCI_COMMAND, &status);
2294 if (!(status & PCI_COMMAND_MASTER)) {
2295 error = -ENODEV;
2296 goto free_dev;
2299 /* Check the latency timer for values >= 0x60 */
2300 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2301 if (timer < 0x60) {
2302 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2305 DevicePresent(dev, DE4X5_APROM);
2307 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2308 error = -EBUSY;
2309 goto free_dev;
2312 dev->irq = irq;
2314 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2315 goto release;
2318 return 0;
2320 release:
2321 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2322 free_dev:
2323 free_netdev (dev);
2324 disable_dev:
2325 pci_disable_device (pdev);
2326 return error;
2329 static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2331 struct net_device *dev;
2332 u_long iobase;
2334 dev = pdev->dev.driver_data;
2335 iobase = dev->base_addr;
2337 unregister_netdev (dev);
2338 free_netdev (dev);
2339 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2340 pci_disable_device (pdev);
2343 static struct pci_device_id de4x5_pci_tbl[] = {
2344 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2345 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2346 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2347 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2348 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2349 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2350 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2351 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2352 { },
2355 static struct pci_driver de4x5_pci_driver = {
2356 .name = "de4x5",
2357 .id_table = de4x5_pci_tbl,
2358 .probe = de4x5_pci_probe,
2359 .remove = __devexit_p (de4x5_pci_remove),
2362 #endif
2365 ** Auto configure the media here rather than setting the port at compile
2366 ** time. This routine is called by de4x5_init() and when a loss of media is
2367 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2368 ** [TP] or no recent receive activity) to check whether the user has been
2369 ** sneaky and changed the port on us.
2371 static int
2372 autoconf_media(struct net_device *dev)
2374 struct de4x5_private *lp = netdev_priv(dev);
2375 u_long iobase = dev->base_addr;
2376 int next_tick = DE4X5_AUTOSENSE_MS;
2378 lp->linkOK = 0;
2379 lp->c_media = AUTO; /* Bogus last media */
2380 disable_ast(dev);
2381 inl(DE4X5_MFC); /* Zero the lost frames counter */
2382 lp->media = INIT;
2383 lp->tcount = 0;
2385 if (lp->useSROM) {
2386 next_tick = srom_autoconf(dev);
2387 } else if (lp->chipset == DC21040) {
2388 next_tick = dc21040_autoconf(dev);
2389 } else if (lp->chipset == DC21041) {
2390 next_tick = dc21041_autoconf(dev);
2391 } else if (lp->chipset == DC21140) {
2392 next_tick = dc21140m_autoconf(dev);
2395 enable_ast(dev, next_tick);
2397 return (lp->media);
2401 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2402 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2403 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2404 ** The only way to test for that is to place a loopback packet onto the
2405 ** network and watch for errors. Since we're messing with the interrupt mask
2406 ** register, disable the board interrupts and do not allow any more packets to
2407 ** be queued to the hardware. Re-enable everything only when the media is
2408 ** found.
2409 ** I may have to "age out" locally queued packets so that the higher layer
2410 ** timeouts don't effectively duplicate packets on the network.
2412 static int
2413 dc21040_autoconf(struct net_device *dev)
2415 struct de4x5_private *lp = netdev_priv(dev);
2416 u_long iobase = dev->base_addr;
2417 int next_tick = DE4X5_AUTOSENSE_MS;
2418 s32 imr;
2420 switch (lp->media) {
2421 case INIT:
2422 DISABLE_IRQs;
2423 lp->tx_enable = false;
2424 lp->timeout = -1;
2425 de4x5_save_skbs(dev);
2426 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2427 lp->media = TP;
2428 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2429 lp->media = BNC_AUI;
2430 } else if (lp->autosense == EXT_SIA) {
2431 lp->media = EXT_SIA;
2432 } else {
2433 lp->media = NC;
2435 lp->local_state = 0;
2436 next_tick = dc21040_autoconf(dev);
2437 break;
2439 case TP:
2440 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2441 TP_SUSPECT, test_tp);
2442 break;
2444 case TP_SUSPECT:
2445 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2446 break;
2448 case BNC:
2449 case AUI:
2450 case BNC_AUI:
2451 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2452 BNC_AUI_SUSPECT, ping_media);
2453 break;
2455 case BNC_AUI_SUSPECT:
2456 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2457 break;
2459 case EXT_SIA:
2460 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2461 NC, EXT_SIA_SUSPECT, ping_media);
2462 break;
2464 case EXT_SIA_SUSPECT:
2465 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2466 break;
2468 case NC:
2469 /* default to TP for all */
2470 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2471 if (lp->media != lp->c_media) {
2472 de4x5_dbg_media(dev);
2473 lp->c_media = lp->media;
2475 lp->media = INIT;
2476 lp->tx_enable = false;
2477 break;
2480 return next_tick;
2483 static int
2484 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2485 int next_state, int suspect_state,
2486 int (*fn)(struct net_device *, int))
2488 struct de4x5_private *lp = netdev_priv(dev);
2489 int next_tick = DE4X5_AUTOSENSE_MS;
2490 int linkBad;
2492 switch (lp->local_state) {
2493 case 0:
2494 reset_init_sia(dev, csr13, csr14, csr15);
2495 lp->local_state++;
2496 next_tick = 500;
2497 break;
2499 case 1:
2500 if (!lp->tx_enable) {
2501 linkBad = fn(dev, timeout);
2502 if (linkBad < 0) {
2503 next_tick = linkBad & ~TIMER_CB;
2504 } else {
2505 if (linkBad && (lp->autosense == AUTO)) {
2506 lp->local_state = 0;
2507 lp->media = next_state;
2508 } else {
2509 de4x5_init_connection(dev);
2512 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2513 lp->media = suspect_state;
2514 next_tick = 3000;
2516 break;
2519 return next_tick;
2522 static int
2523 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2524 int (*fn)(struct net_device *, int),
2525 int (*asfn)(struct net_device *))
2527 struct de4x5_private *lp = netdev_priv(dev);
2528 int next_tick = DE4X5_AUTOSENSE_MS;
2529 int linkBad;
2531 switch (lp->local_state) {
2532 case 1:
2533 if (lp->linkOK) {
2534 lp->media = prev_state;
2535 } else {
2536 lp->local_state++;
2537 next_tick = asfn(dev);
2539 break;
2541 case 2:
2542 linkBad = fn(dev, timeout);
2543 if (linkBad < 0) {
2544 next_tick = linkBad & ~TIMER_CB;
2545 } else if (!linkBad) {
2546 lp->local_state--;
2547 lp->media = prev_state;
2548 } else {
2549 lp->media = INIT;
2550 lp->tcount++;
2554 return next_tick;
2558 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2559 ** before BNC, because the BNC port will indicate activity if it's not
2560 ** terminated correctly. The only way to test for that is to place a loopback
2561 ** packet onto the network and watch for errors. Since we're messing with
2562 ** the interrupt mask register, disable the board interrupts and do not allow
2563 ** any more packets to be queued to the hardware. Re-enable everything only
2564 ** when the media is found.
2566 static int
2567 dc21041_autoconf(struct net_device *dev)
2569 struct de4x5_private *lp = netdev_priv(dev);
2570 u_long iobase = dev->base_addr;
2571 s32 sts, irqs, irq_mask, imr, omr;
2572 int next_tick = DE4X5_AUTOSENSE_MS;
2574 switch (lp->media) {
2575 case INIT:
2576 DISABLE_IRQs;
2577 lp->tx_enable = false;
2578 lp->timeout = -1;
2579 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2580 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2581 lp->media = TP; /* On chip auto negotiation is broken */
2582 } else if (lp->autosense == TP) {
2583 lp->media = TP;
2584 } else if (lp->autosense == BNC) {
2585 lp->media = BNC;
2586 } else if (lp->autosense == AUI) {
2587 lp->media = AUI;
2588 } else {
2589 lp->media = NC;
2591 lp->local_state = 0;
2592 next_tick = dc21041_autoconf(dev);
2593 break;
2595 case TP_NW:
2596 if (lp->timeout < 0) {
2597 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2598 outl(omr | OMR_FDX, DE4X5_OMR);
2600 irqs = STS_LNF | STS_LNP;
2601 irq_mask = IMR_LFM | IMR_LPM;
2602 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2603 if (sts < 0) {
2604 next_tick = sts & ~TIMER_CB;
2605 } else {
2606 if (sts & STS_LNP) {
2607 lp->media = ANS;
2608 } else {
2609 lp->media = AUI;
2611 next_tick = dc21041_autoconf(dev);
2613 break;
2615 case ANS:
2616 if (!lp->tx_enable) {
2617 irqs = STS_LNP;
2618 irq_mask = IMR_LPM;
2619 sts = test_ans(dev, irqs, irq_mask, 3000);
2620 if (sts < 0) {
2621 next_tick = sts & ~TIMER_CB;
2622 } else {
2623 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2624 lp->media = TP;
2625 next_tick = dc21041_autoconf(dev);
2626 } else {
2627 lp->local_state = 1;
2628 de4x5_init_connection(dev);
2631 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2632 lp->media = ANS_SUSPECT;
2633 next_tick = 3000;
2635 break;
2637 case ANS_SUSPECT:
2638 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2639 break;
2641 case TP:
2642 if (!lp->tx_enable) {
2643 if (lp->timeout < 0) {
2644 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2645 outl(omr & ~OMR_FDX, DE4X5_OMR);
2647 irqs = STS_LNF | STS_LNP;
2648 irq_mask = IMR_LFM | IMR_LPM;
2649 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2650 if (sts < 0) {
2651 next_tick = sts & ~TIMER_CB;
2652 } else {
2653 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2654 if (inl(DE4X5_SISR) & SISR_NRA) {
2655 lp->media = AUI; /* Non selected port activity */
2656 } else {
2657 lp->media = BNC;
2659 next_tick = dc21041_autoconf(dev);
2660 } else {
2661 lp->local_state = 1;
2662 de4x5_init_connection(dev);
2665 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2666 lp->media = TP_SUSPECT;
2667 next_tick = 3000;
2669 break;
2671 case TP_SUSPECT:
2672 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2673 break;
2675 case AUI:
2676 if (!lp->tx_enable) {
2677 if (lp->timeout < 0) {
2678 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2679 outl(omr & ~OMR_FDX, DE4X5_OMR);
2681 irqs = 0;
2682 irq_mask = 0;
2683 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2684 if (sts < 0) {
2685 next_tick = sts & ~TIMER_CB;
2686 } else {
2687 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2688 lp->media = BNC;
2689 next_tick = dc21041_autoconf(dev);
2690 } else {
2691 lp->local_state = 1;
2692 de4x5_init_connection(dev);
2695 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2696 lp->media = AUI_SUSPECT;
2697 next_tick = 3000;
2699 break;
2701 case AUI_SUSPECT:
2702 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2703 break;
2705 case BNC:
2706 switch (lp->local_state) {
2707 case 0:
2708 if (lp->timeout < 0) {
2709 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2710 outl(omr & ~OMR_FDX, DE4X5_OMR);
2712 irqs = 0;
2713 irq_mask = 0;
2714 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2715 if (sts < 0) {
2716 next_tick = sts & ~TIMER_CB;
2717 } else {
2718 lp->local_state++; /* Ensure media connected */
2719 next_tick = dc21041_autoconf(dev);
2721 break;
2723 case 1:
2724 if (!lp->tx_enable) {
2725 if ((sts = ping_media(dev, 3000)) < 0) {
2726 next_tick = sts & ~TIMER_CB;
2727 } else {
2728 if (sts) {
2729 lp->local_state = 0;
2730 lp->media = NC;
2731 } else {
2732 de4x5_init_connection(dev);
2735 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2736 lp->media = BNC_SUSPECT;
2737 next_tick = 3000;
2739 break;
2741 break;
2743 case BNC_SUSPECT:
2744 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2745 break;
2747 case NC:
2748 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2749 outl(omr | OMR_FDX, DE4X5_OMR);
2750 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2751 if (lp->media != lp->c_media) {
2752 de4x5_dbg_media(dev);
2753 lp->c_media = lp->media;
2755 lp->media = INIT;
2756 lp->tx_enable = false;
2757 break;
2760 return next_tick;
2764 ** Some autonegotiation chips are broken in that they do not return the
2765 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2766 ** register, except at the first power up negotiation.
2768 static int
2769 dc21140m_autoconf(struct net_device *dev)
2771 struct de4x5_private *lp = netdev_priv(dev);
2772 int ana, anlpa, cap, cr, slnk, sr;
2773 int next_tick = DE4X5_AUTOSENSE_MS;
2774 u_long imr, omr, iobase = dev->base_addr;
2776 switch(lp->media) {
2777 case INIT:
2778 if (lp->timeout < 0) {
2779 DISABLE_IRQs;
2780 lp->tx_enable = false;
2781 lp->linkOK = 0;
2782 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2784 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2785 next_tick &= ~TIMER_CB;
2786 } else {
2787 if (lp->useSROM) {
2788 if (srom_map_media(dev) < 0) {
2789 lp->tcount++;
2790 return next_tick;
2792 srom_exec(dev, lp->phy[lp->active].gep);
2793 if (lp->infoblock_media == ANS) {
2794 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2795 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2797 } else {
2798 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2799 SET_10Mb;
2800 if (lp->autosense == _100Mb) {
2801 lp->media = _100Mb;
2802 } else if (lp->autosense == _10Mb) {
2803 lp->media = _10Mb;
2804 } else if ((lp->autosense == AUTO) &&
2805 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2806 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2807 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2808 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2809 lp->media = ANS;
2810 } else if (lp->autosense == AUTO) {
2811 lp->media = SPD_DET;
2812 } else if (is_spd_100(dev) && is_100_up(dev)) {
2813 lp->media = _100Mb;
2814 } else {
2815 lp->media = NC;
2818 lp->local_state = 0;
2819 next_tick = dc21140m_autoconf(dev);
2821 break;
2823 case ANS:
2824 switch (lp->local_state) {
2825 case 0:
2826 if (lp->timeout < 0) {
2827 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2829 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2830 if (cr < 0) {
2831 next_tick = cr & ~TIMER_CB;
2832 } else {
2833 if (cr) {
2834 lp->local_state = 0;
2835 lp->media = SPD_DET;
2836 } else {
2837 lp->local_state++;
2839 next_tick = dc21140m_autoconf(dev);
2841 break;
2843 case 1:
2844 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2845 next_tick = sr & ~TIMER_CB;
2846 } else {
2847 lp->media = SPD_DET;
2848 lp->local_state = 0;
2849 if (sr) { /* Success! */
2850 lp->tmp = MII_SR_ASSC;
2851 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2852 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2853 if (!(anlpa & MII_ANLPA_RF) &&
2854 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2855 if (cap & MII_ANA_100M) {
2856 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2857 lp->media = _100Mb;
2858 } else if (cap & MII_ANA_10M) {
2859 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2861 lp->media = _10Mb;
2864 } /* Auto Negotiation failed to finish */
2865 next_tick = dc21140m_autoconf(dev);
2866 } /* Auto Negotiation failed to start */
2867 break;
2869 break;
2871 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2872 if (lp->timeout < 0) {
2873 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2874 (~gep_rd(dev) & GEP_LNP));
2875 SET_100Mb_PDET;
2877 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2878 next_tick = slnk & ~TIMER_CB;
2879 } else {
2880 if (is_spd_100(dev) && is_100_up(dev)) {
2881 lp->media = _100Mb;
2882 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2883 lp->media = _10Mb;
2884 } else {
2885 lp->media = NC;
2887 next_tick = dc21140m_autoconf(dev);
2889 break;
2891 case _100Mb: /* Set 100Mb/s */
2892 next_tick = 3000;
2893 if (!lp->tx_enable) {
2894 SET_100Mb;
2895 de4x5_init_connection(dev);
2896 } else {
2897 if (!lp->linkOK && (lp->autosense == AUTO)) {
2898 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2899 lp->media = INIT;
2900 lp->tcount++;
2901 next_tick = DE4X5_AUTOSENSE_MS;
2905 break;
2907 case BNC:
2908 case AUI:
2909 case _10Mb: /* Set 10Mb/s */
2910 next_tick = 3000;
2911 if (!lp->tx_enable) {
2912 SET_10Mb;
2913 de4x5_init_connection(dev);
2914 } else {
2915 if (!lp->linkOK && (lp->autosense == AUTO)) {
2916 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2917 lp->media = INIT;
2918 lp->tcount++;
2919 next_tick = DE4X5_AUTOSENSE_MS;
2923 break;
2925 case NC:
2926 if (lp->media != lp->c_media) {
2927 de4x5_dbg_media(dev);
2928 lp->c_media = lp->media;
2930 lp->media = INIT;
2931 lp->tx_enable = false;
2932 break;
2935 return next_tick;
2939 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2940 ** changing how I figure out the media - but trying to keep it backwards
2941 ** compatible with the de500-xa and de500-aa.
2942 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2943 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2944 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2945 ** active.
2946 ** When autonegotiation is working, the ANS part searches the SROM for
2947 ** the highest common speed (TP) link that both can run and if that can
2948 ** be full duplex. That infoblock is executed and then the link speed set.
2950 ** Only _10Mb and _100Mb are tested here.
2952 static int
2953 dc2114x_autoconf(struct net_device *dev)
2955 struct de4x5_private *lp = netdev_priv(dev);
2956 u_long iobase = dev->base_addr;
2957 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2958 int next_tick = DE4X5_AUTOSENSE_MS;
2960 switch (lp->media) {
2961 case INIT:
2962 if (lp->timeout < 0) {
2963 DISABLE_IRQs;
2964 lp->tx_enable = false;
2965 lp->linkOK = 0;
2966 lp->timeout = -1;
2967 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2968 if (lp->params.autosense & ~AUTO) {
2969 srom_map_media(dev); /* Fixed media requested */
2970 if (lp->media != lp->params.autosense) {
2971 lp->tcount++;
2972 lp->media = INIT;
2973 return next_tick;
2975 lp->media = INIT;
2978 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2979 next_tick &= ~TIMER_CB;
2980 } else {
2981 if (lp->autosense == _100Mb) {
2982 lp->media = _100Mb;
2983 } else if (lp->autosense == _10Mb) {
2984 lp->media = _10Mb;
2985 } else if (lp->autosense == TP) {
2986 lp->media = TP;
2987 } else if (lp->autosense == BNC) {
2988 lp->media = BNC;
2989 } else if (lp->autosense == AUI) {
2990 lp->media = AUI;
2991 } else {
2992 lp->media = SPD_DET;
2993 if ((lp->infoblock_media == ANS) &&
2994 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2995 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2996 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2997 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2998 lp->media = ANS;
3001 lp->local_state = 0;
3002 next_tick = dc2114x_autoconf(dev);
3004 break;
3006 case ANS:
3007 switch (lp->local_state) {
3008 case 0:
3009 if (lp->timeout < 0) {
3010 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3012 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
3013 if (cr < 0) {
3014 next_tick = cr & ~TIMER_CB;
3015 } else {
3016 if (cr) {
3017 lp->local_state = 0;
3018 lp->media = SPD_DET;
3019 } else {
3020 lp->local_state++;
3022 next_tick = dc2114x_autoconf(dev);
3024 break;
3026 case 1:
3027 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3028 if (sr < 0) {
3029 next_tick = sr & ~TIMER_CB;
3030 } else {
3031 lp->media = SPD_DET;
3032 lp->local_state = 0;
3033 if (sr) { /* Success! */
3034 lp->tmp = MII_SR_ASSC;
3035 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3036 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3037 if (!(anlpa & MII_ANLPA_RF) &&
3038 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3039 if (cap & MII_ANA_100M) {
3040 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3041 lp->media = _100Mb;
3042 } else if (cap & MII_ANA_10M) {
3043 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3044 lp->media = _10Mb;
3047 } /* Auto Negotiation failed to finish */
3048 next_tick = dc2114x_autoconf(dev);
3049 } /* Auto Negotiation failed to start */
3050 break;
3052 break;
3054 case AUI:
3055 if (!lp->tx_enable) {
3056 if (lp->timeout < 0) {
3057 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3058 outl(omr & ~OMR_FDX, DE4X5_OMR);
3060 irqs = 0;
3061 irq_mask = 0;
3062 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3063 if (sts < 0) {
3064 next_tick = sts & ~TIMER_CB;
3065 } else {
3066 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3067 lp->media = BNC;
3068 next_tick = dc2114x_autoconf(dev);
3069 } else {
3070 lp->local_state = 1;
3071 de4x5_init_connection(dev);
3074 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3075 lp->media = AUI_SUSPECT;
3076 next_tick = 3000;
3078 break;
3080 case AUI_SUSPECT:
3081 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3082 break;
3084 case BNC:
3085 switch (lp->local_state) {
3086 case 0:
3087 if (lp->timeout < 0) {
3088 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3089 outl(omr & ~OMR_FDX, DE4X5_OMR);
3091 irqs = 0;
3092 irq_mask = 0;
3093 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3094 if (sts < 0) {
3095 next_tick = sts & ~TIMER_CB;
3096 } else {
3097 lp->local_state++; /* Ensure media connected */
3098 next_tick = dc2114x_autoconf(dev);
3100 break;
3102 case 1:
3103 if (!lp->tx_enable) {
3104 if ((sts = ping_media(dev, 3000)) < 0) {
3105 next_tick = sts & ~TIMER_CB;
3106 } else {
3107 if (sts) {
3108 lp->local_state = 0;
3109 lp->tcount++;
3110 lp->media = INIT;
3111 } else {
3112 de4x5_init_connection(dev);
3115 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3116 lp->media = BNC_SUSPECT;
3117 next_tick = 3000;
3119 break;
3121 break;
3123 case BNC_SUSPECT:
3124 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3125 break;
3127 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3128 if (srom_map_media(dev) < 0) {
3129 lp->tcount++;
3130 lp->media = INIT;
3131 return next_tick;
3133 if (lp->media == _100Mb) {
3134 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3135 lp->media = SPD_DET;
3136 return (slnk & ~TIMER_CB);
3138 } else {
3139 if (wait_for_link(dev) < 0) {
3140 lp->media = SPD_DET;
3141 return PDET_LINK_WAIT;
3144 if (lp->media == ANS) { /* Do MII parallel detection */
3145 if (is_spd_100(dev)) {
3146 lp->media = _100Mb;
3147 } else {
3148 lp->media = _10Mb;
3150 next_tick = dc2114x_autoconf(dev);
3151 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3152 (((lp->media == _10Mb) || (lp->media == TP) ||
3153 (lp->media == BNC) || (lp->media == AUI)) &&
3154 is_10_up(dev))) {
3155 next_tick = dc2114x_autoconf(dev);
3156 } else {
3157 lp->tcount++;
3158 lp->media = INIT;
3160 break;
3162 case _10Mb:
3163 next_tick = 3000;
3164 if (!lp->tx_enable) {
3165 SET_10Mb;
3166 de4x5_init_connection(dev);
3167 } else {
3168 if (!lp->linkOK && (lp->autosense == AUTO)) {
3169 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3170 lp->media = INIT;
3171 lp->tcount++;
3172 next_tick = DE4X5_AUTOSENSE_MS;
3176 break;
3178 case _100Mb:
3179 next_tick = 3000;
3180 if (!lp->tx_enable) {
3181 SET_100Mb;
3182 de4x5_init_connection(dev);
3183 } else {
3184 if (!lp->linkOK && (lp->autosense == AUTO)) {
3185 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3186 lp->media = INIT;
3187 lp->tcount++;
3188 next_tick = DE4X5_AUTOSENSE_MS;
3192 break;
3194 default:
3195 lp->tcount++;
3196 printk("Huh?: media:%02x\n", lp->media);
3197 lp->media = INIT;
3198 break;
3201 return next_tick;
3204 static int
3205 srom_autoconf(struct net_device *dev)
3207 struct de4x5_private *lp = netdev_priv(dev);
3209 return lp->infoleaf_fn(dev);
3213 ** This mapping keeps the original media codes and FDX flag unchanged.
3214 ** While it isn't strictly necessary, it helps me for the moment...
3215 ** The early return avoids a media state / SROM media space clash.
3217 static int
3218 srom_map_media(struct net_device *dev)
3220 struct de4x5_private *lp = netdev_priv(dev);
3222 lp->fdx = false;
3223 if (lp->infoblock_media == lp->media)
3224 return 0;
3226 switch(lp->infoblock_media) {
3227 case SROM_10BASETF:
3228 if (!lp->params.fdx) return -1;
3229 lp->fdx = true;
3230 case SROM_10BASET:
3231 if (lp->params.fdx && !lp->fdx) return -1;
3232 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3233 lp->media = _10Mb;
3234 } else {
3235 lp->media = TP;
3237 break;
3239 case SROM_10BASE2:
3240 lp->media = BNC;
3241 break;
3243 case SROM_10BASE5:
3244 lp->media = AUI;
3245 break;
3247 case SROM_100BASETF:
3248 if (!lp->params.fdx) return -1;
3249 lp->fdx = true;
3250 case SROM_100BASET:
3251 if (lp->params.fdx && !lp->fdx) return -1;
3252 lp->media = _100Mb;
3253 break;
3255 case SROM_100BASET4:
3256 lp->media = _100Mb;
3257 break;
3259 case SROM_100BASEFF:
3260 if (!lp->params.fdx) return -1;
3261 lp->fdx = true;
3262 case SROM_100BASEF:
3263 if (lp->params.fdx && !lp->fdx) return -1;
3264 lp->media = _100Mb;
3265 break;
3267 case ANS:
3268 lp->media = ANS;
3269 lp->fdx = lp->params.fdx;
3270 break;
3272 default:
3273 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3274 lp->infoblock_media);
3275 return -1;
3276 break;
3279 return 0;
3282 static void
3283 de4x5_init_connection(struct net_device *dev)
3285 struct de4x5_private *lp = netdev_priv(dev);
3286 u_long iobase = dev->base_addr;
3287 u_long flags = 0;
3289 if (lp->media != lp->c_media) {
3290 de4x5_dbg_media(dev);
3291 lp->c_media = lp->media; /* Stop scrolling media messages */
3294 spin_lock_irqsave(&lp->lock, flags);
3295 de4x5_rst_desc_ring(dev);
3296 de4x5_setup_intr(dev);
3297 lp->tx_enable = true;
3298 spin_unlock_irqrestore(&lp->lock, flags);
3299 outl(POLL_DEMAND, DE4X5_TPD);
3301 netif_wake_queue(dev);
3303 return;
3307 ** General PHY reset function. Some MII devices don't reset correctly
3308 ** since their MII address pins can float at voltages that are dependent
3309 ** on the signal pin use. Do a double reset to ensure a reset.
3311 static int
3312 de4x5_reset_phy(struct net_device *dev)
3314 struct de4x5_private *lp = netdev_priv(dev);
3315 u_long iobase = dev->base_addr;
3316 int next_tick = 0;
3318 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3319 if (lp->timeout < 0) {
3320 if (lp->useSROM) {
3321 if (lp->phy[lp->active].rst) {
3322 srom_exec(dev, lp->phy[lp->active].rst);
3323 srom_exec(dev, lp->phy[lp->active].rst);
3324 } else if (lp->rst) { /* Type 5 infoblock reset */
3325 srom_exec(dev, lp->rst);
3326 srom_exec(dev, lp->rst);
3328 } else {
3329 PHY_HARD_RESET;
3331 if (lp->useMII) {
3332 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3335 if (lp->useMII) {
3336 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3338 } else if (lp->chipset == DC21140) {
3339 PHY_HARD_RESET;
3342 return next_tick;
3345 static int
3346 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3348 struct de4x5_private *lp = netdev_priv(dev);
3349 u_long iobase = dev->base_addr;
3350 s32 sts, csr12;
3352 if (lp->timeout < 0) {
3353 lp->timeout = msec/100;
3354 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3355 reset_init_sia(dev, csr13, csr14, csr15);
3358 /* set up the interrupt mask */
3359 outl(irq_mask, DE4X5_IMR);
3361 /* clear all pending interrupts */
3362 sts = inl(DE4X5_STS);
3363 outl(sts, DE4X5_STS);
3365 /* clear csr12 NRA and SRA bits */
3366 if ((lp->chipset == DC21041) || lp->useSROM) {
3367 csr12 = inl(DE4X5_SISR);
3368 outl(csr12, DE4X5_SISR);
3372 sts = inl(DE4X5_STS) & ~TIMER_CB;
3374 if (!(sts & irqs) && --lp->timeout) {
3375 sts = 100 | TIMER_CB;
3376 } else {
3377 lp->timeout = -1;
3380 return sts;
3383 static int
3384 test_tp(struct net_device *dev, s32 msec)
3386 struct de4x5_private *lp = netdev_priv(dev);
3387 u_long iobase = dev->base_addr;
3388 int sisr;
3390 if (lp->timeout < 0) {
3391 lp->timeout = msec/100;
3394 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3396 if (sisr && --lp->timeout) {
3397 sisr = 100 | TIMER_CB;
3398 } else {
3399 lp->timeout = -1;
3402 return sisr;
3406 ** Samples the 100Mb Link State Signal. The sample interval is important
3407 ** because too fast a rate can give erroneous results and confuse the
3408 ** speed sense algorithm.
3410 #define SAMPLE_INTERVAL 500 /* ms */
3411 #define SAMPLE_DELAY 2000 /* ms */
3412 static int
3413 test_for_100Mb(struct net_device *dev, int msec)
3415 struct de4x5_private *lp = netdev_priv(dev);
3416 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3418 if (lp->timeout < 0) {
3419 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3420 if (msec > SAMPLE_DELAY) {
3421 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3422 gep = SAMPLE_DELAY | TIMER_CB;
3423 return gep;
3424 } else {
3425 lp->timeout = msec/SAMPLE_INTERVAL;
3429 if (lp->phy[lp->active].id || lp->useSROM) {
3430 gep = is_100_up(dev) | is_spd_100(dev);
3431 } else {
3432 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3434 if (!(gep & ret) && --lp->timeout) {
3435 gep = SAMPLE_INTERVAL | TIMER_CB;
3436 } else {
3437 lp->timeout = -1;
3440 return gep;
3443 static int
3444 wait_for_link(struct net_device *dev)
3446 struct de4x5_private *lp = netdev_priv(dev);
3448 if (lp->timeout < 0) {
3449 lp->timeout = 1;
3452 if (lp->timeout--) {
3453 return TIMER_CB;
3454 } else {
3455 lp->timeout = -1;
3458 return 0;
3465 static int
3466 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3468 struct de4x5_private *lp = netdev_priv(dev);
3469 int test;
3470 u_long iobase = dev->base_addr;
3472 if (lp->timeout < 0) {
3473 lp->timeout = msec/100;
3476 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3477 test = (reg ^ (pol ? ~0 : 0)) & mask;
3479 if (test && --lp->timeout) {
3480 reg = 100 | TIMER_CB;
3481 } else {
3482 lp->timeout = -1;
3485 return reg;
3488 static int
3489 is_spd_100(struct net_device *dev)
3491 struct de4x5_private *lp = netdev_priv(dev);
3492 u_long iobase = dev->base_addr;
3493 int spd;
3495 if (lp->useMII) {
3496 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3497 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3498 spd &= lp->phy[lp->active].spd.mask;
3499 } else if (!lp->useSROM) { /* de500-xa */
3500 spd = ((~gep_rd(dev)) & GEP_SLNK);
3501 } else {
3502 if ((lp->ibn == 2) || !lp->asBitValid)
3503 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3505 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3506 (lp->linkOK & ~lp->asBitValid);
3509 return spd;
3512 static int
3513 is_100_up(struct net_device *dev)
3515 struct de4x5_private *lp = netdev_priv(dev);
3516 u_long iobase = dev->base_addr;
3518 if (lp->useMII) {
3519 /* Double read for sticky bits & temporary drops */
3520 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3521 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3522 } else if (!lp->useSROM) { /* de500-xa */
3523 return ((~gep_rd(dev)) & GEP_SLNK);
3524 } else {
3525 if ((lp->ibn == 2) || !lp->asBitValid)
3526 return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0);
3528 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3529 (lp->linkOK & ~lp->asBitValid));
3533 static int
3534 is_10_up(struct net_device *dev)
3536 struct de4x5_private *lp = netdev_priv(dev);
3537 u_long iobase = dev->base_addr;
3539 if (lp->useMII) {
3540 /* Double read for sticky bits & temporary drops */
3541 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3542 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS);
3543 } else if (!lp->useSROM) { /* de500-xa */
3544 return ((~gep_rd(dev)) & GEP_LNP);
3545 } else {
3546 if ((lp->ibn == 2) || !lp->asBitValid)
3547 return (((lp->chipset & ~0x00ff) == DC2114x) ?
3548 (~inl(DE4X5_SISR)&SISR_LS10):
3551 return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3552 (lp->linkOK & ~lp->asBitValid));
3556 static int
3557 is_anc_capable(struct net_device *dev)
3559 struct de4x5_private *lp = netdev_priv(dev);
3560 u_long iobase = dev->base_addr;
3562 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3563 return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII));
3564 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3565 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3566 } else {
3567 return 0;
3572 ** Send a packet onto the media and watch for send errors that indicate the
3573 ** media is bad or unconnected.
3575 static int
3576 ping_media(struct net_device *dev, int msec)
3578 struct de4x5_private *lp = netdev_priv(dev);
3579 u_long iobase = dev->base_addr;
3580 int sisr;
3582 if (lp->timeout < 0) {
3583 lp->timeout = msec/100;
3585 lp->tmp = lp->tx_new; /* Remember the ring position */
3586 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3587 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
3588 outl(POLL_DEMAND, DE4X5_TPD);
3591 sisr = inl(DE4X5_SISR);
3593 if ((!(sisr & SISR_NCR)) &&
3594 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3595 (--lp->timeout)) {
3596 sisr = 100 | TIMER_CB;
3597 } else {
3598 if ((!(sisr & SISR_NCR)) &&
3599 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3600 lp->timeout) {
3601 sisr = 0;
3602 } else {
3603 sisr = 1;
3605 lp->timeout = -1;
3608 return sisr;
3612 ** This function does 2 things: on Intels it kmalloc's another buffer to
3613 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3614 ** into which the packet is copied.
3616 static struct sk_buff *
3617 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3619 struct de4x5_private *lp = netdev_priv(dev);
3620 struct sk_buff *p;
3622 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3623 struct sk_buff *ret;
3624 u_long i=0, tmp;
3626 p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3627 if (!p) return NULL;
3629 tmp = virt_to_bus(p->data);
3630 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3631 skb_reserve(p, i);
3632 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3634 ret = lp->rx_skb[index];
3635 lp->rx_skb[index] = p;
3637 if ((u_long) ret > 1) {
3638 skb_put(ret, len);
3641 return ret;
3643 #else
3644 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3646 p = dev_alloc_skb(len + 2);
3647 if (!p) return NULL;
3649 skb_reserve(p, 2); /* Align */
3650 if (index < lp->rx_old) { /* Wrapped buffer */
3651 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3652 memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3653 memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3654 } else { /* Linear buffer */
3655 memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3658 return p;
3659 #endif
3662 static void
3663 de4x5_free_rx_buffs(struct net_device *dev)
3665 struct de4x5_private *lp = netdev_priv(dev);
3666 int i;
3668 for (i=0; i<lp->rxRingSize; i++) {
3669 if ((u_long) lp->rx_skb[i] > 1) {
3670 dev_kfree_skb(lp->rx_skb[i]);
3672 lp->rx_ring[i].status = 0;
3673 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3676 return;
3679 static void
3680 de4x5_free_tx_buffs(struct net_device *dev)
3682 struct de4x5_private *lp = netdev_priv(dev);
3683 int i;
3685 for (i=0; i<lp->txRingSize; i++) {
3686 if (lp->tx_skb[i])
3687 de4x5_free_tx_buff(lp, i);
3688 lp->tx_ring[i].status = 0;
3691 /* Unload the locally queued packets */
3692 while (lp->cache.skb) {
3693 dev_kfree_skb(de4x5_get_cache(dev));
3696 return;
3700 ** When a user pulls a connection, the DECchip can end up in a
3701 ** 'running - waiting for end of transmission' state. This means that we
3702 ** have to perform a chip soft reset to ensure that we can synchronize
3703 ** the hardware and software and make any media probes using a loopback
3704 ** packet meaningful.
3706 static void
3707 de4x5_save_skbs(struct net_device *dev)
3709 struct de4x5_private *lp = netdev_priv(dev);
3710 u_long iobase = dev->base_addr;
3711 s32 omr;
3713 if (!lp->cache.save_cnt) {
3714 STOP_DE4X5;
3715 de4x5_tx(dev); /* Flush any sent skb's */
3716 de4x5_free_tx_buffs(dev);
3717 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3718 de4x5_sw_reset(dev);
3719 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3720 lp->cache.save_cnt++;
3721 START_DE4X5;
3724 return;
3727 static void
3728 de4x5_rst_desc_ring(struct net_device *dev)
3730 struct de4x5_private *lp = netdev_priv(dev);
3731 u_long iobase = dev->base_addr;
3732 int i;
3733 s32 omr;
3735 if (lp->cache.save_cnt) {
3736 STOP_DE4X5;
3737 outl(lp->dma_rings, DE4X5_RRBA);
3738 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3739 DE4X5_TRBA);
3741 lp->rx_new = lp->rx_old = 0;
3742 lp->tx_new = lp->tx_old = 0;
3744 for (i = 0; i < lp->rxRingSize; i++) {
3745 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3748 for (i = 0; i < lp->txRingSize; i++) {
3749 lp->tx_ring[i].status = cpu_to_le32(0);
3752 barrier();
3753 lp->cache.save_cnt--;
3754 START_DE4X5;
3757 return;
3760 static void
3761 de4x5_cache_state(struct net_device *dev, int flag)
3763 struct de4x5_private *lp = netdev_priv(dev);
3764 u_long iobase = dev->base_addr;
3766 switch(flag) {
3767 case DE4X5_SAVE_STATE:
3768 lp->cache.csr0 = inl(DE4X5_BMR);
3769 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3770 lp->cache.csr7 = inl(DE4X5_IMR);
3771 break;
3773 case DE4X5_RESTORE_STATE:
3774 outl(lp->cache.csr0, DE4X5_BMR);
3775 outl(lp->cache.csr6, DE4X5_OMR);
3776 outl(lp->cache.csr7, DE4X5_IMR);
3777 if (lp->chipset == DC21140) {
3778 gep_wr(lp->cache.gepc, dev);
3779 gep_wr(lp->cache.gep, dev);
3780 } else {
3781 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3782 lp->cache.csr15);
3784 break;
3787 return;
3790 static void
3791 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3793 struct de4x5_private *lp = netdev_priv(dev);
3794 struct sk_buff *p;
3796 if (lp->cache.skb) {
3797 for (p=lp->cache.skb; p->next; p=p->next);
3798 p->next = skb;
3799 } else {
3800 lp->cache.skb = skb;
3802 skb->next = NULL;
3804 return;
3807 static void
3808 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3810 struct de4x5_private *lp = netdev_priv(dev);
3811 struct sk_buff *p = lp->cache.skb;
3813 lp->cache.skb = skb;
3814 skb->next = p;
3816 return;
3819 static struct sk_buff *
3820 de4x5_get_cache(struct net_device *dev)
3822 struct de4x5_private *lp = netdev_priv(dev);
3823 struct sk_buff *p = lp->cache.skb;
3825 if (p) {
3826 lp->cache.skb = p->next;
3827 p->next = NULL;
3830 return p;
3834 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3835 ** is received and the auto-negotiation status is NWAY OK.
3837 static int
3838 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3840 struct de4x5_private *lp = netdev_priv(dev);
3841 u_long iobase = dev->base_addr;
3842 s32 sts, ans;
3844 if (lp->timeout < 0) {
3845 lp->timeout = msec/100;
3846 outl(irq_mask, DE4X5_IMR);
3848 /* clear all pending interrupts */
3849 sts = inl(DE4X5_STS);
3850 outl(sts, DE4X5_STS);
3853 ans = inl(DE4X5_SISR) & SISR_ANS;
3854 sts = inl(DE4X5_STS) & ~TIMER_CB;
3856 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3857 sts = 100 | TIMER_CB;
3858 } else {
3859 lp->timeout = -1;
3862 return sts;
3865 static void
3866 de4x5_setup_intr(struct net_device *dev)
3868 struct de4x5_private *lp = netdev_priv(dev);
3869 u_long iobase = dev->base_addr;
3870 s32 imr, sts;
3872 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3873 imr = 0;
3874 UNMASK_IRQs;
3875 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3876 outl(sts, DE4X5_STS);
3877 ENABLE_IRQs;
3880 return;
3886 static void
3887 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3889 struct de4x5_private *lp = netdev_priv(dev);
3890 u_long iobase = dev->base_addr;
3892 RESET_SIA;
3893 if (lp->useSROM) {
3894 if (lp->ibn == 3) {
3895 srom_exec(dev, lp->phy[lp->active].rst);
3896 srom_exec(dev, lp->phy[lp->active].gep);
3897 outl(1, DE4X5_SICR);
3898 return;
3899 } else {
3900 csr15 = lp->cache.csr15;
3901 csr14 = lp->cache.csr14;
3902 csr13 = lp->cache.csr13;
3903 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3904 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3906 } else {
3907 outl(csr15, DE4X5_SIGR);
3909 outl(csr14, DE4X5_STRR);
3910 outl(csr13, DE4X5_SICR);
3912 mdelay(10);
3914 return;
3918 ** Create a loopback ethernet packet
3920 static void
3921 create_packet(struct net_device *dev, char *frame, int len)
3923 int i;
3924 char *buf = frame;
3926 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3927 *buf++ = dev->dev_addr[i];
3929 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3930 *buf++ = dev->dev_addr[i];
3933 *buf++ = 0; /* Packet length (2 bytes) */
3934 *buf++ = 1;
3936 return;
3940 ** Look for a particular board name in the EISA configuration space
3942 static int
3943 EISA_signature(char *name, struct device *device)
3945 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3946 struct eisa_device *edev;
3948 *name = '\0';
3949 edev = to_eisa_device (device);
3950 i = edev->id.driver_data;
3952 if (i >= 0 && i < siglen) {
3953 strcpy (name, de4x5_signatures[i]);
3954 status = 1;
3957 return status; /* return the device name string */
3961 ** Look for a particular board name in the PCI configuration space
3963 static int
3964 PCI_signature(char *name, struct de4x5_private *lp)
3966 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3968 if (lp->chipset == DC21040) {
3969 strcpy(name, "DE434/5");
3970 return status;
3971 } else { /* Search for a DEC name in the SROM */
3972 int i = *((char *)&lp->srom + 19) * 3;
3973 strncpy(name, (char *)&lp->srom + 26 + i, 8);
3975 name[8] = '\0';
3976 for (i=0; i<siglen; i++) {
3977 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3979 if (i == siglen) {
3980 if (dec_only) {
3981 *name = '\0';
3982 } else { /* Use chip name to avoid confusion */
3983 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3984 ((lp->chipset == DC21041) ? "DC21041" :
3985 ((lp->chipset == DC21140) ? "DC21140" :
3986 ((lp->chipset == DC21142) ? "DC21142" :
3987 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3988 )))))));
3990 if (lp->chipset != DC21041) {
3991 lp->useSROM = true; /* card is not recognisably DEC */
3993 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3994 lp->useSROM = true;
3997 return status;
4001 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
4002 ** the DC21040, else read the SROM for the other chips.
4003 ** The SROM may not be present in a multi-MAC card, so first read the
4004 ** MAC address and check for a bad address. If there is a bad one then exit
4005 ** immediately with the prior srom contents intact (the h/w address will
4006 ** be fixed up later).
4008 static void
4009 DevicePresent(struct net_device *dev, u_long aprom_addr)
4011 int i, j=0;
4012 struct de4x5_private *lp = netdev_priv(dev);
4014 if (lp->chipset == DC21040) {
4015 if (lp->bus == EISA) {
4016 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
4017 } else {
4018 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
4020 } else { /* Read new srom */
4021 u_short tmp, *p = (short *)((char *)&lp->srom + SROM_HWADD);
4022 for (i=0; i<(ETH_ALEN>>1); i++) {
4023 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
4024 *p = le16_to_cpu(tmp);
4025 j += *p++;
4027 if ((j == 0) || (j == 0x2fffd)) {
4028 return;
4031 p=(short *)&lp->srom;
4032 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
4033 tmp = srom_rd(aprom_addr, i);
4034 *p++ = le16_to_cpu(tmp);
4036 de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
4039 return;
4043 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
4044 ** pointer correctly (at least on my DE425 EISA card), this routine should do
4045 ** it...from depca.c.
4047 static void
4048 enet_addr_rst(u_long aprom_addr)
4050 union {
4051 struct {
4052 u32 a;
4053 u32 b;
4054 } llsig;
4055 char Sig[sizeof(u32) << 1];
4056 } dev;
4057 short sigLength=0;
4058 s8 data;
4059 int i, j;
4061 dev.llsig.a = ETH_PROM_SIG;
4062 dev.llsig.b = ETH_PROM_SIG;
4063 sigLength = sizeof(u32) << 1;
4065 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4066 data = inb(aprom_addr);
4067 if (dev.Sig[j] == data) { /* track signature */
4068 j++;
4069 } else { /* lost signature; begin search again */
4070 if (data == dev.Sig[0]) { /* rare case.... */
4071 j=1;
4072 } else {
4073 j=0;
4078 return;
4082 ** For the bad status case and no SROM, then add one to the previous
4083 ** address. However, need to add one backwards in case we have 0xff
4084 ** as one or more of the bytes. Only the last 3 bytes should be checked
4085 ** as the first three are invariant - assigned to an organisation.
4087 static int
4088 get_hw_addr(struct net_device *dev)
4090 u_long iobase = dev->base_addr;
4091 int broken, i, k, tmp, status = 0;
4092 u_short j,chksum;
4093 struct de4x5_private *lp = netdev_priv(dev);
4095 broken = de4x5_bad_srom(lp);
4097 for (i=0,k=0,j=0;j<3;j++) {
4098 k <<= 1;
4099 if (k > 0xffff) k-=0xffff;
4101 if (lp->bus == PCI) {
4102 if (lp->chipset == DC21040) {
4103 while ((tmp = inl(DE4X5_APROM)) < 0);
4104 k += (u_char) tmp;
4105 dev->dev_addr[i++] = (u_char) tmp;
4106 while ((tmp = inl(DE4X5_APROM)) < 0);
4107 k += (u_short) (tmp << 8);
4108 dev->dev_addr[i++] = (u_char) tmp;
4109 } else if (!broken) {
4110 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4111 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4112 } else if ((broken == SMC) || (broken == ACCTON)) {
4113 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4114 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4116 } else {
4117 k += (u_char) (tmp = inb(EISA_APROM));
4118 dev->dev_addr[i++] = (u_char) tmp;
4119 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4120 dev->dev_addr[i++] = (u_char) tmp;
4123 if (k > 0xffff) k-=0xffff;
4125 if (k == 0xffff) k=0;
4127 if (lp->bus == PCI) {
4128 if (lp->chipset == DC21040) {
4129 while ((tmp = inl(DE4X5_APROM)) < 0);
4130 chksum = (u_char) tmp;
4131 while ((tmp = inl(DE4X5_APROM)) < 0);
4132 chksum |= (u_short) (tmp << 8);
4133 if ((k != chksum) && (dec_only)) status = -1;
4135 } else {
4136 chksum = (u_char) inb(EISA_APROM);
4137 chksum |= (u_short) (inb(EISA_APROM) << 8);
4138 if ((k != chksum) && (dec_only)) status = -1;
4141 /* If possible, try to fix a broken card - SMC only so far */
4142 srom_repair(dev, broken);
4144 #ifdef CONFIG_PPC_PMAC
4146 ** If the address starts with 00 a0, we have to bit-reverse
4147 ** each byte of the address.
4149 if ( machine_is(powermac) &&
4150 (dev->dev_addr[0] == 0) &&
4151 (dev->dev_addr[1] == 0xa0) )
4153 for (i = 0; i < ETH_ALEN; ++i)
4155 int x = dev->dev_addr[i];
4156 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4157 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4158 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4161 #endif /* CONFIG_PPC_PMAC */
4163 /* Test for a bad enet address */
4164 status = test_bad_enet(dev, status);
4166 return status;
4170 ** Test for enet addresses in the first 32 bytes. The built-in strncmp
4171 ** didn't seem to work here...?
4173 static int
4174 de4x5_bad_srom(struct de4x5_private *lp)
4176 int i, status = 0;
4178 for (i=0; i<sizeof(enet_det)/ETH_ALEN; i++) {
4179 if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4180 !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4181 if (i == 0) {
4182 status = SMC;
4183 } else if (i == 1) {
4184 status = ACCTON;
4186 break;
4190 return status;
4193 static int
4194 de4x5_strncmp(char *a, char *b, int n)
4196 int ret=0;
4198 for (;n && !ret;n--) {
4199 ret = *a++ - *b++;
4202 return ret;
4205 static void
4206 srom_repair(struct net_device *dev, int card)
4208 struct de4x5_private *lp = netdev_priv(dev);
4210 switch(card) {
4211 case SMC:
4212 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4213 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4214 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4215 lp->useSROM = true;
4216 break;
4219 return;
4223 ** Assume that the irq's do not follow the PCI spec - this is seems
4224 ** to be true so far (2 for 2).
4226 static int
4227 test_bad_enet(struct net_device *dev, int status)
4229 struct de4x5_private *lp = netdev_priv(dev);
4230 int i, tmp;
4232 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4233 if ((tmp == 0) || (tmp == 0x5fa)) {
4234 if ((lp->chipset == last.chipset) &&
4235 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4236 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4237 for (i=ETH_ALEN-1; i>2; --i) {
4238 dev->dev_addr[i] += 1;
4239 if (dev->dev_addr[i] != 0) break;
4241 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4242 if (!an_exception(lp)) {
4243 dev->irq = last.irq;
4246 status = 0;
4248 } else if (!status) {
4249 last.chipset = lp->chipset;
4250 last.bus = lp->bus_num;
4251 last.irq = dev->irq;
4252 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4255 return status;
4259 ** List of board exceptions with correctly wired IRQs
4261 static int
4262 an_exception(struct de4x5_private *lp)
4264 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4265 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4266 return -1;
4269 return 0;
4273 ** SROM Read
4275 static short
4276 srom_rd(u_long addr, u_char offset)
4278 sendto_srom(SROM_RD | SROM_SR, addr);
4280 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4281 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4282 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4284 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4287 static void
4288 srom_latch(u_int command, u_long addr)
4290 sendto_srom(command, addr);
4291 sendto_srom(command | DT_CLK, addr);
4292 sendto_srom(command, addr);
4294 return;
4297 static void
4298 srom_command(u_int command, u_long addr)
4300 srom_latch(command, addr);
4301 srom_latch(command, addr);
4302 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4304 return;
4307 static void
4308 srom_address(u_int command, u_long addr, u_char offset)
4310 int i, a;
4312 a = offset << 2;
4313 for (i=0; i<6; i++, a <<= 1) {
4314 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4316 udelay(1);
4318 i = (getfrom_srom(addr) >> 3) & 0x01;
4320 return;
4323 static short
4324 srom_data(u_int command, u_long addr)
4326 int i;
4327 short word = 0;
4328 s32 tmp;
4330 for (i=0; i<16; i++) {
4331 sendto_srom(command | DT_CLK, addr);
4332 tmp = getfrom_srom(addr);
4333 sendto_srom(command, addr);
4335 word = (word << 1) | ((tmp >> 3) & 0x01);
4338 sendto_srom(command & 0x0000ff00, addr);
4340 return word;
4344 static void
4345 srom_busy(u_int command, u_long addr)
4347 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4349 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4350 mdelay(1);
4353 sendto_srom(command & 0x0000ff00, addr);
4355 return;
4359 static void
4360 sendto_srom(u_int command, u_long addr)
4362 outl(command, addr);
4363 udelay(1);
4365 return;
4368 static int
4369 getfrom_srom(u_long addr)
4371 s32 tmp;
4373 tmp = inl(addr);
4374 udelay(1);
4376 return tmp;
4379 static int
4380 srom_infoleaf_info(struct net_device *dev)
4382 struct de4x5_private *lp = netdev_priv(dev);
4383 int i, count;
4384 u_char *p;
4386 /* Find the infoleaf decoder function that matches this chipset */
4387 for (i=0; i<INFOLEAF_SIZE; i++) {
4388 if (lp->chipset == infoleaf_array[i].chipset) break;
4390 if (i == INFOLEAF_SIZE) {
4391 lp->useSROM = false;
4392 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4393 dev->name);
4394 return -ENXIO;
4397 lp->infoleaf_fn = infoleaf_array[i].fn;
4399 /* Find the information offset that this function should use */
4400 count = *((u_char *)&lp->srom + 19);
4401 p = (u_char *)&lp->srom + 26;
4403 if (count > 1) {
4404 for (i=count; i; --i, p+=3) {
4405 if (lp->device == *p) break;
4407 if (i == 0) {
4408 lp->useSROM = false;
4409 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4410 dev->name, lp->device);
4411 return -ENXIO;
4415 lp->infoleaf_offset = TWIDDLE(p+1);
4417 return 0;
4421 ** This routine loads any type 1 or 3 MII info into the mii device
4422 ** struct and executes any type 5 code to reset PHY devices for this
4423 ** controller.
4424 ** The info for the MII devices will be valid since the index used
4425 ** will follow the discovery process from MII address 1-31 then 0.
4427 static void
4428 srom_init(struct net_device *dev)
4430 struct de4x5_private *lp = netdev_priv(dev);
4431 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4432 u_char count;
4434 p+=2;
4435 if (lp->chipset == DC21140) {
4436 lp->cache.gepc = (*p++ | GEP_CTRL);
4437 gep_wr(lp->cache.gepc, dev);
4440 /* Block count */
4441 count = *p++;
4443 /* Jump the infoblocks to find types */
4444 for (;count; --count) {
4445 if (*p < 128) {
4446 p += COMPACT_LEN;
4447 } else if (*(p+1) == 5) {
4448 type5_infoblock(dev, 1, p);
4449 p += ((*p & BLOCK_LEN) + 1);
4450 } else if (*(p+1) == 4) {
4451 p += ((*p & BLOCK_LEN) + 1);
4452 } else if (*(p+1) == 3) {
4453 type3_infoblock(dev, 1, p);
4454 p += ((*p & BLOCK_LEN) + 1);
4455 } else if (*(p+1) == 2) {
4456 p += ((*p & BLOCK_LEN) + 1);
4457 } else if (*(p+1) == 1) {
4458 type1_infoblock(dev, 1, p);
4459 p += ((*p & BLOCK_LEN) + 1);
4460 } else {
4461 p += ((*p & BLOCK_LEN) + 1);
4465 return;
4469 ** A generic routine that writes GEP control, data and reset information
4470 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4472 static void
4473 srom_exec(struct net_device *dev, u_char *p)
4475 struct de4x5_private *lp = netdev_priv(dev);
4476 u_long iobase = dev->base_addr;
4477 u_char count = (p ? *p++ : 0);
4478 u_short *w = (u_short *)p;
4480 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4482 if (lp->chipset != DC21140) RESET_SIA;
4484 while (count--) {
4485 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4486 *p++ : TWIDDLE(w++)), dev);
4487 mdelay(2); /* 2ms per action */
4490 if (lp->chipset != DC21140) {
4491 outl(lp->cache.csr14, DE4X5_STRR);
4492 outl(lp->cache.csr13, DE4X5_SICR);
4495 return;
4499 ** Basically this function is a NOP since it will never be called,
4500 ** unless I implement the DC21041 SROM functions. There's no need
4501 ** since the existing code will be satisfactory for all boards.
4503 static int
4504 dc21041_infoleaf(struct net_device *dev)
4506 return DE4X5_AUTOSENSE_MS;
4509 static int
4510 dc21140_infoleaf(struct net_device *dev)
4512 struct de4x5_private *lp = netdev_priv(dev);
4513 u_char count = 0;
4514 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4515 int next_tick = DE4X5_AUTOSENSE_MS;
4517 /* Read the connection type */
4518 p+=2;
4520 /* GEP control */
4521 lp->cache.gepc = (*p++ | GEP_CTRL);
4523 /* Block count */
4524 count = *p++;
4526 /* Recursively figure out the info blocks */
4527 if (*p < 128) {
4528 next_tick = dc_infoblock[COMPACT](dev, count, p);
4529 } else {
4530 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4533 if (lp->tcount == count) {
4534 lp->media = NC;
4535 if (lp->media != lp->c_media) {
4536 de4x5_dbg_media(dev);
4537 lp->c_media = lp->media;
4539 lp->media = INIT;
4540 lp->tcount = 0;
4541 lp->tx_enable = false;
4544 return next_tick & ~TIMER_CB;
4547 static int
4548 dc21142_infoleaf(struct net_device *dev)
4550 struct de4x5_private *lp = netdev_priv(dev);
4551 u_char count = 0;
4552 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4553 int next_tick = DE4X5_AUTOSENSE_MS;
4555 /* Read the connection type */
4556 p+=2;
4558 /* Block count */
4559 count = *p++;
4561 /* Recursively figure out the info blocks */
4562 if (*p < 128) {
4563 next_tick = dc_infoblock[COMPACT](dev, count, p);
4564 } else {
4565 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4568 if (lp->tcount == count) {
4569 lp->media = NC;
4570 if (lp->media != lp->c_media) {
4571 de4x5_dbg_media(dev);
4572 lp->c_media = lp->media;
4574 lp->media = INIT;
4575 lp->tcount = 0;
4576 lp->tx_enable = false;
4579 return next_tick & ~TIMER_CB;
4582 static int
4583 dc21143_infoleaf(struct net_device *dev)
4585 struct de4x5_private *lp = netdev_priv(dev);
4586 u_char count = 0;
4587 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4588 int next_tick = DE4X5_AUTOSENSE_MS;
4590 /* Read the connection type */
4591 p+=2;
4593 /* Block count */
4594 count = *p++;
4596 /* Recursively figure out the info blocks */
4597 if (*p < 128) {
4598 next_tick = dc_infoblock[COMPACT](dev, count, p);
4599 } else {
4600 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4602 if (lp->tcount == count) {
4603 lp->media = NC;
4604 if (lp->media != lp->c_media) {
4605 de4x5_dbg_media(dev);
4606 lp->c_media = lp->media;
4608 lp->media = INIT;
4609 lp->tcount = 0;
4610 lp->tx_enable = false;
4613 return next_tick & ~TIMER_CB;
4617 ** The compact infoblock is only designed for DC21140[A] chips, so
4618 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4620 static int
4621 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4623 struct de4x5_private *lp = netdev_priv(dev);
4624 u_char flags, csr6;
4626 /* Recursively figure out the info blocks */
4627 if (--count > lp->tcount) {
4628 if (*(p+COMPACT_LEN) < 128) {
4629 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4630 } else {
4631 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4635 if ((lp->media == INIT) && (lp->timeout < 0)) {
4636 lp->ibn = COMPACT;
4637 lp->active = 0;
4638 gep_wr(lp->cache.gepc, dev);
4639 lp->infoblock_media = (*p++) & COMPACT_MC;
4640 lp->cache.gep = *p++;
4641 csr6 = *p++;
4642 flags = *p++;
4644 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4645 lp->defMedium = (flags & 0x40) ? -1 : 0;
4646 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4647 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4648 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4649 lp->useMII = false;
4651 de4x5_switch_mac_port(dev);
4654 return dc21140m_autoconf(dev);
4658 ** This block describes non MII media for the DC21140[A] only.
4660 static int
4661 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4663 struct de4x5_private *lp = netdev_priv(dev);
4664 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4666 /* Recursively figure out the info blocks */
4667 if (--count > lp->tcount) {
4668 if (*(p+len) < 128) {
4669 return dc_infoblock[COMPACT](dev, count, p+len);
4670 } else {
4671 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4675 if ((lp->media == INIT) && (lp->timeout < 0)) {
4676 lp->ibn = 0;
4677 lp->active = 0;
4678 gep_wr(lp->cache.gepc, dev);
4679 p+=2;
4680 lp->infoblock_media = (*p++) & BLOCK0_MC;
4681 lp->cache.gep = *p++;
4682 csr6 = *p++;
4683 flags = *p++;
4685 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4686 lp->defMedium = (flags & 0x40) ? -1 : 0;
4687 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4688 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4689 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4690 lp->useMII = false;
4692 de4x5_switch_mac_port(dev);
4695 return dc21140m_autoconf(dev);
4698 /* These functions are under construction! */
4700 static int
4701 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4703 struct de4x5_private *lp = netdev_priv(dev);
4704 u_char len = (*p & BLOCK_LEN)+1;
4706 /* Recursively figure out the info blocks */
4707 if (--count > lp->tcount) {
4708 if (*(p+len) < 128) {
4709 return dc_infoblock[COMPACT](dev, count, p+len);
4710 } else {
4711 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4715 p += 2;
4716 if (lp->state == INITIALISED) {
4717 lp->ibn = 1;
4718 lp->active = *p++;
4719 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4720 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4721 lp->phy[lp->active].mc = TWIDDLE(p); p += 2;
4722 lp->phy[lp->active].ana = TWIDDLE(p); p += 2;
4723 lp->phy[lp->active].fdx = TWIDDLE(p); p += 2;
4724 lp->phy[lp->active].ttm = TWIDDLE(p);
4725 return 0;
4726 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4727 lp->ibn = 1;
4728 lp->active = *p;
4729 lp->infoblock_csr6 = OMR_MII_100;
4730 lp->useMII = true;
4731 lp->infoblock_media = ANS;
4733 de4x5_switch_mac_port(dev);
4736 return dc21140m_autoconf(dev);
4739 static int
4740 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4742 struct de4x5_private *lp = netdev_priv(dev);
4743 u_char len = (*p & BLOCK_LEN)+1;
4745 /* Recursively figure out the info blocks */
4746 if (--count > lp->tcount) {
4747 if (*(p+len) < 128) {
4748 return dc_infoblock[COMPACT](dev, count, p+len);
4749 } else {
4750 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4754 if ((lp->media == INIT) && (lp->timeout < 0)) {
4755 lp->ibn = 2;
4756 lp->active = 0;
4757 p += 2;
4758 lp->infoblock_media = (*p) & MEDIA_CODE;
4760 if ((*p++) & EXT_FIELD) {
4761 lp->cache.csr13 = TWIDDLE(p); p += 2;
4762 lp->cache.csr14 = TWIDDLE(p); p += 2;
4763 lp->cache.csr15 = TWIDDLE(p); p += 2;
4764 } else {
4765 lp->cache.csr13 = CSR13;
4766 lp->cache.csr14 = CSR14;
4767 lp->cache.csr15 = CSR15;
4769 lp->cache.gepc = ((s32)(TWIDDLE(p)) << 16); p += 2;
4770 lp->cache.gep = ((s32)(TWIDDLE(p)) << 16);
4771 lp->infoblock_csr6 = OMR_SIA;
4772 lp->useMII = false;
4774 de4x5_switch_mac_port(dev);
4777 return dc2114x_autoconf(dev);
4780 static int
4781 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4783 struct de4x5_private *lp = netdev_priv(dev);
4784 u_char len = (*p & BLOCK_LEN)+1;
4786 /* Recursively figure out the info blocks */
4787 if (--count > lp->tcount) {
4788 if (*(p+len) < 128) {
4789 return dc_infoblock[COMPACT](dev, count, p+len);
4790 } else {
4791 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4795 p += 2;
4796 if (lp->state == INITIALISED) {
4797 lp->ibn = 3;
4798 lp->active = *p++;
4799 if (MOTO_SROM_BUG) lp->active = 0;
4800 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4801 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4802 lp->phy[lp->active].mc = TWIDDLE(p); p += 2;
4803 lp->phy[lp->active].ana = TWIDDLE(p); p += 2;
4804 lp->phy[lp->active].fdx = TWIDDLE(p); p += 2;
4805 lp->phy[lp->active].ttm = TWIDDLE(p); p += 2;
4806 lp->phy[lp->active].mci = *p;
4807 return 0;
4808 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4809 lp->ibn = 3;
4810 lp->active = *p;
4811 if (MOTO_SROM_BUG) lp->active = 0;
4812 lp->infoblock_csr6 = OMR_MII_100;
4813 lp->useMII = true;
4814 lp->infoblock_media = ANS;
4816 de4x5_switch_mac_port(dev);
4819 return dc2114x_autoconf(dev);
4822 static int
4823 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4825 struct de4x5_private *lp = netdev_priv(dev);
4826 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4828 /* Recursively figure out the info blocks */
4829 if (--count > lp->tcount) {
4830 if (*(p+len) < 128) {
4831 return dc_infoblock[COMPACT](dev, count, p+len);
4832 } else {
4833 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4837 if ((lp->media == INIT) && (lp->timeout < 0)) {
4838 lp->ibn = 4;
4839 lp->active = 0;
4840 p+=2;
4841 lp->infoblock_media = (*p++) & MEDIA_CODE;
4842 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4843 lp->cache.csr14 = CSR14;
4844 lp->cache.csr15 = CSR15;
4845 lp->cache.gepc = ((s32)(TWIDDLE(p)) << 16); p += 2;
4846 lp->cache.gep = ((s32)(TWIDDLE(p)) << 16); p += 2;
4847 csr6 = *p++;
4848 flags = *p++;
4850 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4851 lp->defMedium = (flags & 0x40) ? -1 : 0;
4852 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4853 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4854 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4855 lp->useMII = false;
4857 de4x5_switch_mac_port(dev);
4860 return dc2114x_autoconf(dev);
4864 ** This block type provides information for resetting external devices
4865 ** (chips) through the General Purpose Register.
4867 static int
4868 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4870 struct de4x5_private *lp = netdev_priv(dev);
4871 u_char len = (*p & BLOCK_LEN)+1;
4873 /* Recursively figure out the info blocks */
4874 if (--count > lp->tcount) {
4875 if (*(p+len) < 128) {
4876 return dc_infoblock[COMPACT](dev, count, p+len);
4877 } else {
4878 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4882 /* Must be initializing to run this code */
4883 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4884 p+=2;
4885 lp->rst = p;
4886 srom_exec(dev, lp->rst);
4889 return DE4X5_AUTOSENSE_MS;
4893 ** MII Read/Write
4896 static int
4897 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4899 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4900 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4901 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4902 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4903 mii_address(phyreg, ioaddr); /* PHY Register to read */
4904 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4906 return mii_rdata(ioaddr); /* Read data */
4909 static void
4910 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4912 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4913 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4914 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4915 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4916 mii_address(phyreg, ioaddr); /* PHY Register to write */
4917 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4918 data = mii_swap(data, 16); /* Swap data bit ordering */
4919 mii_wdata(data, 16, ioaddr); /* Write data */
4921 return;
4924 static int
4925 mii_rdata(u_long ioaddr)
4927 int i;
4928 s32 tmp = 0;
4930 for (i=0; i<16; i++) {
4931 tmp <<= 1;
4932 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4935 return tmp;
4938 static void
4939 mii_wdata(int data, int len, u_long ioaddr)
4941 int i;
4943 for (i=0; i<len; i++) {
4944 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4945 data >>= 1;
4948 return;
4951 static void
4952 mii_address(u_char addr, u_long ioaddr)
4954 int i;
4956 addr = mii_swap(addr, 5);
4957 for (i=0; i<5; i++) {
4958 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4959 addr >>= 1;
4962 return;
4965 static void
4966 mii_ta(u_long rw, u_long ioaddr)
4968 if (rw == MII_STWR) {
4969 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4970 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4971 } else {
4972 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4975 return;
4978 static int
4979 mii_swap(int data, int len)
4981 int i, tmp = 0;
4983 for (i=0; i<len; i++) {
4984 tmp <<= 1;
4985 tmp |= (data & 1);
4986 data >>= 1;
4989 return tmp;
4992 static void
4993 sendto_mii(u32 command, int data, u_long ioaddr)
4995 u32 j;
4997 j = (data & 1) << 17;
4998 outl(command | j, ioaddr);
4999 udelay(1);
5000 outl(command | MII_MDC | j, ioaddr);
5001 udelay(1);
5003 return;
5006 static int
5007 getfrom_mii(u32 command, u_long ioaddr)
5009 outl(command, ioaddr);
5010 udelay(1);
5011 outl(command | MII_MDC, ioaddr);
5012 udelay(1);
5014 return ((inl(ioaddr) >> 19) & 1);
5018 ** Here's 3 ways to calculate the OUI from the ID registers.
5020 static int
5021 mii_get_oui(u_char phyaddr, u_long ioaddr)
5024 union {
5025 u_short reg;
5026 u_char breg[2];
5027 } a;
5028 int i, r2, r3, ret=0;*/
5029 int r2, r3;
5031 /* Read r2 and r3 */
5032 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
5033 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
5034 /* SEEQ and Cypress way * /
5035 / * Shuffle r2 and r3 * /
5036 a.reg=0;
5037 r3 = ((r3>>10)|(r2<<6))&0x0ff;
5038 r2 = ((r2>>2)&0x3fff);
5040 / * Bit reverse r3 * /
5041 for (i=0;i<8;i++) {
5042 ret<<=1;
5043 ret |= (r3&1);
5044 r3>>=1;
5047 / * Bit reverse r2 * /
5048 for (i=0;i<16;i++) {
5049 a.reg<<=1;
5050 a.reg |= (r2&1);
5051 r2>>=1;
5054 / * Swap r2 bytes * /
5055 i=a.breg[0];
5056 a.breg[0]=a.breg[1];
5057 a.breg[1]=i;
5059 return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */
5060 /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */
5061 return r2; /* (I did it) My way */
5065 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
5067 static int
5068 mii_get_phy(struct net_device *dev)
5070 struct de4x5_private *lp = netdev_priv(dev);
5071 u_long iobase = dev->base_addr;
5072 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
5073 int id;
5075 lp->active = 0;
5076 lp->useMII = true;
5078 /* Search the MII address space for possible PHY devices */
5079 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
5080 lp->phy[lp->active].addr = i;
5081 if (i==0) n++; /* Count cycles */
5082 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
5083 id = mii_get_oui(i, DE4X5_MII);
5084 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
5085 for (j=0; j<limit; j++) { /* Search PHY table */
5086 if (id != phy_info[j].id) continue; /* ID match? */
5087 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5088 if (k < DE4X5_MAX_PHY) {
5089 memcpy((char *)&lp->phy[k],
5090 (char *)&phy_info[j], sizeof(struct phy_table));
5091 lp->phy[k].addr = i;
5092 lp->mii_cnt++;
5093 lp->active++;
5094 } else {
5095 goto purgatory; /* Stop the search */
5097 break;
5099 if ((j == limit) && (i < DE4X5_MAX_MII)) {
5100 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++);
5101 lp->phy[k].addr = i;
5102 lp->phy[k].id = id;
5103 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
5104 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5105 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5106 lp->mii_cnt++;
5107 lp->active++;
5108 printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev->name);
5109 j = de4x5_debug;
5110 de4x5_debug |= DEBUG_MII;
5111 de4x5_dbg_mii(dev, k);
5112 de4x5_debug = j;
5113 printk("\n");
5116 purgatory:
5117 lp->active = 0;
5118 if (lp->phy[0].id) { /* Reset the PHY devices */
5119 for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/
5120 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5121 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5123 de4x5_dbg_mii(dev, k);
5126 if (!lp->mii_cnt) lp->useMII = false;
5128 return lp->mii_cnt;
5131 static char *
5132 build_setup_frame(struct net_device *dev, int mode)
5134 struct de4x5_private *lp = netdev_priv(dev);
5135 int i;
5136 char *pa = lp->setup_frame;
5138 /* Initialise the setup frame */
5139 if (mode == ALL) {
5140 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5143 if (lp->setup_f == HASH_PERF) {
5144 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5145 *(pa + i) = dev->dev_addr[i]; /* Host address */
5146 if (i & 0x01) pa += 2;
5148 *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5149 } else {
5150 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5151 *(pa + (i&1)) = dev->dev_addr[i];
5152 if (i & 0x01) pa += 4;
5154 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5155 *(pa + (i&1)) = (char) 0xff;
5156 if (i & 0x01) pa += 4;
5160 return pa; /* Points to the next entry */
5163 static void
5164 enable_ast(struct net_device *dev, u32 time_out)
5166 timeout(dev, (void *)&de4x5_ast, (u_long)dev, time_out);
5168 return;
5171 static void
5172 disable_ast(struct net_device *dev)
5174 struct de4x5_private *lp = netdev_priv(dev);
5176 del_timer(&lp->timer);
5178 return;
5181 static long
5182 de4x5_switch_mac_port(struct net_device *dev)
5184 struct de4x5_private *lp = netdev_priv(dev);
5185 u_long iobase = dev->base_addr;
5186 s32 omr;
5188 STOP_DE4X5;
5190 /* Assert the OMR_PS bit in CSR6 */
5191 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5192 OMR_FDX));
5193 omr |= lp->infoblock_csr6;
5194 if (omr & OMR_PS) omr |= OMR_HBD;
5195 outl(omr, DE4X5_OMR);
5197 /* Soft Reset */
5198 RESET_DE4X5;
5200 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5201 if (lp->chipset == DC21140) {
5202 gep_wr(lp->cache.gepc, dev);
5203 gep_wr(lp->cache.gep, dev);
5204 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5205 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5208 /* Restore CSR6 */
5209 outl(omr, DE4X5_OMR);
5211 /* Reset CSR8 */
5212 inl(DE4X5_MFC);
5214 return omr;
5217 static void
5218 gep_wr(s32 data, struct net_device *dev)
5220 struct de4x5_private *lp = netdev_priv(dev);
5221 u_long iobase = dev->base_addr;
5223 if (lp->chipset == DC21140) {
5224 outl(data, DE4X5_GEP);
5225 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5226 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5229 return;
5232 static int
5233 gep_rd(struct net_device *dev)
5235 struct de4x5_private *lp = netdev_priv(dev);
5236 u_long iobase = dev->base_addr;
5238 if (lp->chipset == DC21140) {
5239 return inl(DE4X5_GEP);
5240 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5241 return (inl(DE4X5_SIGR) & 0x000fffff);
5244 return 0;
5247 static void
5248 timeout(struct net_device *dev, void (*fn)(u_long data), u_long data, u_long msec)
5250 struct de4x5_private *lp = netdev_priv(dev);
5251 int dt;
5253 /* First, cancel any pending timer events */
5254 del_timer(&lp->timer);
5256 /* Convert msec to ticks */
5257 dt = (msec * HZ) / 1000;
5258 if (dt==0) dt=1;
5260 /* Set up timer */
5261 init_timer(&lp->timer);
5262 lp->timer.expires = jiffies + dt;
5263 lp->timer.function = fn;
5264 lp->timer.data = data;
5265 add_timer(&lp->timer);
5267 return;
5270 static void
5271 yawn(struct net_device *dev, int state)
5273 struct de4x5_private *lp = netdev_priv(dev);
5274 u_long iobase = dev->base_addr;
5276 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5278 if(lp->bus == EISA) {
5279 switch(state) {
5280 case WAKEUP:
5281 outb(WAKEUP, PCI_CFPM);
5282 mdelay(10);
5283 break;
5285 case SNOOZE:
5286 outb(SNOOZE, PCI_CFPM);
5287 break;
5289 case SLEEP:
5290 outl(0, DE4X5_SICR);
5291 outb(SLEEP, PCI_CFPM);
5292 break;
5294 } else {
5295 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5296 switch(state) {
5297 case WAKEUP:
5298 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5299 mdelay(10);
5300 break;
5302 case SNOOZE:
5303 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5304 break;
5306 case SLEEP:
5307 outl(0, DE4X5_SICR);
5308 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5309 break;
5313 return;
5316 static void
5317 de4x5_parse_params(struct net_device *dev)
5319 struct de4x5_private *lp = netdev_priv(dev);
5320 char *p, *q, t;
5322 lp->params.fdx = 0;
5323 lp->params.autosense = AUTO;
5325 if (args == NULL) return;
5327 if ((p = strstr(args, dev->name))) {
5328 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5329 t = *q;
5330 *q = '\0';
5332 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5334 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5335 if (strstr(p, "TP")) {
5336 lp->params.autosense = TP;
5337 } else if (strstr(p, "TP_NW")) {
5338 lp->params.autosense = TP_NW;
5339 } else if (strstr(p, "BNC")) {
5340 lp->params.autosense = BNC;
5341 } else if (strstr(p, "AUI")) {
5342 lp->params.autosense = AUI;
5343 } else if (strstr(p, "BNC_AUI")) {
5344 lp->params.autosense = BNC;
5345 } else if (strstr(p, "10Mb")) {
5346 lp->params.autosense = _10Mb;
5347 } else if (strstr(p, "100Mb")) {
5348 lp->params.autosense = _100Mb;
5349 } else if (strstr(p, "AUTO")) {
5350 lp->params.autosense = AUTO;
5353 *q = t;
5356 return;
5359 static void
5360 de4x5_dbg_open(struct net_device *dev)
5362 struct de4x5_private *lp = netdev_priv(dev);
5363 int i;
5365 if (de4x5_debug & DEBUG_OPEN) {
5366 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5367 printk("\tphysical address: ");
5368 for (i=0;i<6;i++) {
5369 printk("%2.2x:",(short)dev->dev_addr[i]);
5371 printk("\n");
5372 printk("Descriptor head addresses:\n");
5373 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5374 printk("Descriptor addresses:\nRX: ");
5375 for (i=0;i<lp->rxRingSize-1;i++){
5376 if (i < 3) {
5377 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5380 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5381 printk("TX: ");
5382 for (i=0;i<lp->txRingSize-1;i++){
5383 if (i < 3) {
5384 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5387 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5388 printk("Descriptor buffers:\nRX: ");
5389 for (i=0;i<lp->rxRingSize-1;i++){
5390 if (i < 3) {
5391 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5394 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5395 printk("TX: ");
5396 for (i=0;i<lp->txRingSize-1;i++){
5397 if (i < 3) {
5398 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5401 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5402 printk("Ring size: \nRX: %d\nTX: %d\n",
5403 (short)lp->rxRingSize,
5404 (short)lp->txRingSize);
5407 return;
5410 static void
5411 de4x5_dbg_mii(struct net_device *dev, int k)
5413 struct de4x5_private *lp = netdev_priv(dev);
5414 u_long iobase = dev->base_addr;
5416 if (de4x5_debug & DEBUG_MII) {
5417 printk("\nMII device address: %d\n", lp->phy[k].addr);
5418 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5419 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5420 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5421 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5422 if (lp->phy[k].id != BROADCOM_T4) {
5423 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5424 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5426 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5427 if (lp->phy[k].id != BROADCOM_T4) {
5428 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5429 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5430 } else {
5431 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5435 return;
5438 static void
5439 de4x5_dbg_media(struct net_device *dev)
5441 struct de4x5_private *lp = netdev_priv(dev);
5443 if (lp->media != lp->c_media) {
5444 if (de4x5_debug & DEBUG_MEDIA) {
5445 printk("%s: media is %s%s\n", dev->name,
5446 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5447 (lp->media == TP ? "TP" :
5448 (lp->media == ANS ? "TP/Nway" :
5449 (lp->media == BNC ? "BNC" :
5450 (lp->media == AUI ? "AUI" :
5451 (lp->media == BNC_AUI ? "BNC/AUI" :
5452 (lp->media == EXT_SIA ? "EXT SIA" :
5453 (lp->media == _100Mb ? "100Mb/s" :
5454 (lp->media == _10Mb ? "10Mb/s" :
5455 "???"
5456 ))))))))), (lp->fdx?" full duplex.":"."));
5458 lp->c_media = lp->media;
5461 return;
5464 static void
5465 de4x5_dbg_srom(struct de4x5_srom *p)
5467 int i;
5468 DECLARE_MAC_BUF(mac);
5470 if (de4x5_debug & DEBUG_SROM) {
5471 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5472 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5473 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5474 printk("SROM version: %02x\n", (u_char)(p->version));
5475 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5477 printk("Hardware Address: %s\n", print_mac(mac, p->ieee_addr));
5478 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5479 for (i=0; i<64; i++) {
5480 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5484 return;
5487 static void
5488 de4x5_dbg_rx(struct sk_buff *skb, int len)
5490 int i, j;
5491 DECLARE_MAC_BUF(mac);
5492 DECLARE_MAC_BUF(mac2);
5494 if (de4x5_debug & DEBUG_RX) {
5495 printk("R: %s <- %s len/SAP:%02x%02x [%d]\n",
5496 print_mac(mac, skb->data), print_mac(mac2, &skb->data[6]),
5497 (u_char)skb->data[12],
5498 (u_char)skb->data[13],
5499 len);
5500 for (j=0; len>0;j+=16, len-=16) {
5501 printk(" %03x: ",j);
5502 for (i=0; i<16 && i<len; i++) {
5503 printk("%02x ",(u_char)skb->data[i+j]);
5505 printk("\n");
5509 return;
5513 ** Perform IOCTL call functions here. Some are privileged operations and the
5514 ** effective uid is checked in those cases. In the normal course of events
5515 ** this function is only used for my testing.
5517 static int
5518 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5520 struct de4x5_private *lp = netdev_priv(dev);
5521 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5522 u_long iobase = dev->base_addr;
5523 int i, j, status = 0;
5524 s32 omr;
5525 union {
5526 u8 addr[144];
5527 u16 sval[72];
5528 u32 lval[36];
5529 } tmp;
5530 u_long flags = 0;
5532 switch(ioc->cmd) {
5533 case DE4X5_GET_HWADDR: /* Get the hardware address */
5534 ioc->len = ETH_ALEN;
5535 for (i=0; i<ETH_ALEN; i++) {
5536 tmp.addr[i] = dev->dev_addr[i];
5538 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5539 break;
5541 case DE4X5_SET_HWADDR: /* Set the hardware address */
5542 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5543 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5544 if (netif_queue_stopped(dev))
5545 return -EBUSY;
5546 netif_stop_queue(dev);
5547 for (i=0; i<ETH_ALEN; i++) {
5548 dev->dev_addr[i] = tmp.addr[i];
5550 build_setup_frame(dev, PHYS_ADDR_ONLY);
5551 /* Set up the descriptor and give ownership to the card */
5552 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5553 SETUP_FRAME_LEN, (struct sk_buff *)1);
5554 lp->tx_new = (++lp->tx_new) % lp->txRingSize;
5555 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5556 netif_wake_queue(dev); /* Unlock the TX ring */
5557 break;
5559 case DE4X5_SET_PROM: /* Set Promiscuous Mode */
5560 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5561 omr = inl(DE4X5_OMR);
5562 omr |= OMR_PR;
5563 outl(omr, DE4X5_OMR);
5564 dev->flags |= IFF_PROMISC;
5565 break;
5567 case DE4X5_CLR_PROM: /* Clear Promiscuous Mode */
5568 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5569 omr = inl(DE4X5_OMR);
5570 omr &= ~OMR_PR;
5571 outl(omr, DE4X5_OMR);
5572 dev->flags &= ~IFF_PROMISC;
5573 break;
5575 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5576 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5577 printk("%s: Boo!\n", dev->name);
5578 break;
5580 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5581 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5582 omr = inl(DE4X5_OMR);
5583 omr |= OMR_PM;
5584 outl(omr, DE4X5_OMR);
5585 break;
5587 case DE4X5_GET_STATS: /* Get the driver statistics */
5589 struct pkt_stats statbuf;
5590 ioc->len = sizeof(statbuf);
5591 spin_lock_irqsave(&lp->lock, flags);
5592 memcpy(&statbuf, &lp->pktStats, ioc->len);
5593 spin_unlock_irqrestore(&lp->lock, flags);
5594 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5595 return -EFAULT;
5596 break;
5598 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5599 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5600 spin_lock_irqsave(&lp->lock, flags);
5601 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5602 spin_unlock_irqrestore(&lp->lock, flags);
5603 break;
5605 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5606 tmp.addr[0] = inl(DE4X5_OMR);
5607 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5608 break;
5610 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5611 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5612 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5613 outl(tmp.addr[0], DE4X5_OMR);
5614 break;
5616 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5617 j = 0;
5618 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5619 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5620 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5621 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5622 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5623 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5624 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5625 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5626 ioc->len = j;
5627 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5628 break;
5630 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5632 case DE4X5_DUMP:
5633 j = 0;
5634 tmp.addr[j++] = dev->irq;
5635 for (i=0; i<ETH_ALEN; i++) {
5636 tmp.addr[j++] = dev->dev_addr[i];
5638 tmp.addr[j++] = lp->rxRingSize;
5639 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5640 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5642 for (i=0;i<lp->rxRingSize-1;i++){
5643 if (i < 3) {
5644 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5647 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5648 for (i=0;i<lp->txRingSize-1;i++){
5649 if (i < 3) {
5650 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5653 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5655 for (i=0;i<lp->rxRingSize-1;i++){
5656 if (i < 3) {
5657 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5660 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5661 for (i=0;i<lp->txRingSize-1;i++){
5662 if (i < 3) {
5663 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5666 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5668 for (i=0;i<lp->rxRingSize;i++){
5669 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5671 for (i=0;i<lp->txRingSize;i++){
5672 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5675 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5676 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5677 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5678 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5679 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5680 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5681 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5682 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5683 tmp.lval[j>>2] = lp->chipset; j+=4;
5684 if (lp->chipset == DC21140) {
5685 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5686 } else {
5687 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5688 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5689 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5690 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5692 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5693 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5694 tmp.lval[j>>2] = lp->active; j+=4;
5695 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5696 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5697 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5698 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5699 if (lp->phy[lp->active].id != BROADCOM_T4) {
5700 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5701 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5703 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5704 if (lp->phy[lp->active].id != BROADCOM_T4) {
5705 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5706 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5707 } else {
5708 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5712 tmp.addr[j++] = lp->txRingSize;
5713 tmp.addr[j++] = netif_queue_stopped(dev);
5715 ioc->len = j;
5716 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5717 break;
5720 default:
5721 return -EOPNOTSUPP;
5724 return status;
5727 static int __init de4x5_module_init (void)
5729 int err = 0;
5731 #ifdef CONFIG_PCI
5732 err = pci_register_driver(&de4x5_pci_driver);
5733 #endif
5734 #ifdef CONFIG_EISA
5735 err |= eisa_driver_register (&de4x5_eisa_driver);
5736 #endif
5738 return err;
5741 static void __exit de4x5_module_exit (void)
5743 #ifdef CONFIG_PCI
5744 pci_unregister_driver (&de4x5_pci_driver);
5745 #endif
5746 #ifdef CONFIG_EISA
5747 eisa_driver_unregister (&de4x5_eisa_driver);
5748 #endif
5751 module_init (de4x5_module_init);
5752 module_exit (de4x5_module_exit);