2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed sucessfully. If not, the process of mounting
27 * incorparates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
33 #include <linux/crc32.h>
37 * is_empty - determine whether a buffer is empty (contains all 0xff).
38 * @buf: buffer to clean
39 * @len: length of buffer
41 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
44 static int is_empty(void *buf
, int len
)
49 for (i
= 0; i
< len
; i
++)
56 * get_master_node - get the last valid master node allowing for corruption.
57 * @c: UBIFS file-system description object
59 * @pbuf: buffer containing the LEB read, is returned here
60 * @mst: master node, if found, is returned here
61 * @cor: corruption, if found, is returned here
63 * This function allocates a buffer, reads the LEB into it, and finds and
64 * returns the last valid master node allowing for one area of corruption.
65 * The corrupt area, if there is one, must be consistent with the assumption
66 * that it is the result of an unclean unmount while the master node was being
67 * written. Under those circumstances, it is valid to use the previously written
70 * This function returns %0 on success and a negative error code on failure.
72 static int get_master_node(const struct ubifs_info
*c
, int lnum
, void **pbuf
,
73 struct ubifs_mst_node
**mst
, void **cor
)
75 const int sz
= c
->mst_node_alsz
;
79 sbuf
= vmalloc(c
->leb_size
);
83 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, c
->leb_size
);
84 if (err
&& err
!= -EBADMSG
)
87 /* Find the first position that is definitely not a node */
91 while (offs
+ UBIFS_MST_NODE_SZ
<= c
->leb_size
) {
92 struct ubifs_ch
*ch
= buf
;
94 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
100 /* See if there was a valid master node before that */
107 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
108 if (ret
!= SCANNED_A_NODE
&& offs
) {
109 /* Could have been corruption so check one place back */
113 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
114 if (ret
!= SCANNED_A_NODE
)
116 * We accept only one area of corruption because
117 * we are assuming that it was caused while
118 * trying to write a master node.
122 if (ret
== SCANNED_A_NODE
) {
123 struct ubifs_ch
*ch
= buf
;
125 if (ch
->node_type
!= UBIFS_MST_NODE
)
127 dbg_rcvry("found a master node at %d:%d", lnum
, offs
);
134 /* Check for corruption */
135 if (offs
< c
->leb_size
) {
136 if (!is_empty(buf
, min_t(int, len
, sz
))) {
138 dbg_rcvry("found corruption at %d:%d", lnum
, offs
);
144 /* Check remaining empty space */
145 if (offs
< c
->leb_size
)
146 if (!is_empty(buf
, len
))
161 * write_rcvrd_mst_node - write recovered master node.
162 * @c: UBIFS file-system description object
165 * This function returns %0 on success and a negative error code on failure.
167 static int write_rcvrd_mst_node(struct ubifs_info
*c
,
168 struct ubifs_mst_node
*mst
)
170 int err
= 0, lnum
= UBIFS_MST_LNUM
, sz
= c
->mst_node_alsz
;
173 dbg_rcvry("recovery");
175 save_flags
= mst
->flags
;
176 mst
->flags
|= cpu_to_le32(UBIFS_MST_RCVRY
);
178 ubifs_prepare_node(c
, mst
, UBIFS_MST_NODE_SZ
, 1);
179 err
= ubi_leb_change(c
->ubi
, lnum
, mst
, sz
, UBI_SHORTTERM
);
182 err
= ubi_leb_change(c
->ubi
, lnum
+ 1, mst
, sz
, UBI_SHORTTERM
);
186 mst
->flags
= save_flags
;
191 * ubifs_recover_master_node - recover the master node.
192 * @c: UBIFS file-system description object
194 * This function recovers the master node from corruption that may occur due to
195 * an unclean unmount.
197 * This function returns %0 on success and a negative error code on failure.
199 int ubifs_recover_master_node(struct ubifs_info
*c
)
201 void *buf1
= NULL
, *buf2
= NULL
, *cor1
= NULL
, *cor2
= NULL
;
202 struct ubifs_mst_node
*mst1
= NULL
, *mst2
= NULL
, *mst
;
203 const int sz
= c
->mst_node_alsz
;
204 int err
, offs1
, offs2
;
206 dbg_rcvry("recovery");
208 err
= get_master_node(c
, UBIFS_MST_LNUM
, &buf1
, &mst1
, &cor1
);
212 err
= get_master_node(c
, UBIFS_MST_LNUM
+ 1, &buf2
, &mst2
, &cor2
);
217 offs1
= (void *)mst1
- buf1
;
218 if ((le32_to_cpu(mst1
->flags
) & UBIFS_MST_RCVRY
) &&
219 (offs1
== 0 && !cor1
)) {
221 * mst1 was written by recovery at offset 0 with no
224 dbg_rcvry("recovery recovery");
227 offs2
= (void *)mst2
- buf2
;
228 if (offs1
== offs2
) {
229 /* Same offset, so must be the same */
230 if (memcmp((void *)mst1
+ UBIFS_CH_SZ
,
231 (void *)mst2
+ UBIFS_CH_SZ
,
232 UBIFS_MST_NODE_SZ
- UBIFS_CH_SZ
))
235 } else if (offs2
+ sz
== offs1
) {
236 /* 1st LEB was written, 2nd was not */
240 } else if (offs1
== 0 && offs2
+ sz
>= c
->leb_size
) {
241 /* 1st LEB was unmapped and written, 2nd not */
249 * 2nd LEB was unmapped and about to be written, so
250 * there must be only one master node in the first LEB
253 if (offs1
!= 0 || cor1
)
261 * 1st LEB was unmapped and about to be written, so there must
262 * be no room left in 2nd LEB.
264 offs2
= (void *)mst2
- buf2
;
265 if (offs2
+ sz
+ sz
<= c
->leb_size
)
270 dbg_rcvry("recovered master node from LEB %d",
271 (mst
== mst1
? UBIFS_MST_LNUM
: UBIFS_MST_LNUM
+ 1));
273 memcpy(c
->mst_node
, mst
, UBIFS_MST_NODE_SZ
);
275 if ((c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
276 /* Read-only mode. Keep a copy for switching to rw mode */
277 c
->rcvrd_mst_node
= kmalloc(sz
, GFP_KERNEL
);
278 if (!c
->rcvrd_mst_node
) {
282 memcpy(c
->rcvrd_mst_node
, c
->mst_node
, UBIFS_MST_NODE_SZ
);
284 /* Write the recovered master node */
285 c
->max_sqnum
= le64_to_cpu(mst
->ch
.sqnum
) - 1;
286 err
= write_rcvrd_mst_node(c
, c
->mst_node
);
299 ubifs_err("failed to recover master node");
301 dbg_err("dumping first master node");
302 dbg_dump_node(c
, mst1
);
305 dbg_err("dumping second master node");
306 dbg_dump_node(c
, mst2
);
314 * ubifs_write_rcvrd_mst_node - write the recovered master node.
315 * @c: UBIFS file-system description object
317 * This function writes the master node that was recovered during mounting in
318 * read-only mode and must now be written because we are remounting rw.
320 * This function returns %0 on success and a negative error code on failure.
322 int ubifs_write_rcvrd_mst_node(struct ubifs_info
*c
)
326 if (!c
->rcvrd_mst_node
)
328 c
->rcvrd_mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
329 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
330 err
= write_rcvrd_mst_node(c
, c
->rcvrd_mst_node
);
333 kfree(c
->rcvrd_mst_node
);
334 c
->rcvrd_mst_node
= NULL
;
339 * is_last_write - determine if an offset was in the last write to a LEB.
340 * @c: UBIFS file-system description object
341 * @buf: buffer to check
342 * @offs: offset to check
344 * This function returns %1 if @offs was in the last write to the LEB whose data
345 * is in @buf, otherwise %0 is returned. The determination is made by checking
346 * for subsequent empty space starting from the next min_io_size boundary (or a
347 * bit less than the common header size if min_io_size is one).
349 static int is_last_write(const struct ubifs_info
*c
, void *buf
, int offs
)
355 if (c
->min_io_size
== 1) {
356 check_len
= c
->leb_size
- offs
;
358 for (; check_len
> 0; check_len
--)
362 * 'check_len' is the size of the corruption which cannot be
363 * more than the size of 1 node if it was caused by an unclean
366 if (check_len
> UBIFS_MAX_NODE_SZ
)
372 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
373 * last wbuf written. After that should be empty space.
375 empty_offs
= ALIGN(offs
+ 1, c
->min_io_size
);
376 check_len
= c
->leb_size
- empty_offs
;
377 p
= buf
+ empty_offs
- offs
;
379 for (; check_len
> 0; check_len
--)
386 * clean_buf - clean the data from an LEB sitting in a buffer.
387 * @c: UBIFS file-system description object
388 * @buf: buffer to clean
389 * @lnum: LEB number to clean
390 * @offs: offset from which to clean
391 * @len: length of buffer
393 * This function pads up to the next min_io_size boundary (if there is one) and
394 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
395 * min_io_size boundary (if there is one).
397 static void clean_buf(const struct ubifs_info
*c
, void **buf
, int lnum
,
400 int empty_offs
, pad_len
;
403 dbg_rcvry("cleaning corruption at %d:%d", lnum
, *offs
);
405 if (c
->min_io_size
== 1) {
406 memset(*buf
, 0xff, c
->leb_size
- *offs
);
410 ubifs_assert(!(*offs
& 7));
411 empty_offs
= ALIGN(*offs
, c
->min_io_size
);
412 pad_len
= empty_offs
- *offs
;
413 ubifs_pad(c
, *buf
, pad_len
);
417 memset(*buf
, 0xff, c
->leb_size
- empty_offs
);
421 * no_more_nodes - determine if there are no more nodes in a buffer.
422 * @c: UBIFS file-system description object
423 * @buf: buffer to check
424 * @len: length of buffer
425 * @lnum: LEB number of the LEB from which @buf was read
426 * @offs: offset from which @buf was read
428 * This function ensures that the corrupted node at @offs is the last thing
429 * written to a LEB. This function returns %1 if more data is not found and
430 * %0 if more data is found.
432 static int no_more_nodes(const struct ubifs_info
*c
, void *buf
, int len
,
435 struct ubifs_ch
*ch
= buf
;
436 int skip
, dlen
= le32_to_cpu(ch
->len
);
438 /* Check for empty space after the corrupt node's common header */
439 skip
= ALIGN(offs
+ UBIFS_CH_SZ
, c
->min_io_size
) - offs
;
440 if (is_empty(buf
+ skip
, len
- skip
))
443 * The area after the common header size is not empty, so the common
444 * header must be intact. Check it.
446 if (ubifs_check_node(c
, buf
, lnum
, offs
, 1, 0) != -EUCLEAN
) {
447 dbg_rcvry("unexpected bad common header at %d:%d", lnum
, offs
);
450 /* Now we know the corrupt node's length we can skip over it */
451 skip
= ALIGN(offs
+ dlen
, c
->min_io_size
) - offs
;
452 /* After which there should be empty space */
453 if (is_empty(buf
+ skip
, len
- skip
))
455 dbg_rcvry("unexpected data at %d:%d", lnum
, offs
+ skip
);
460 * fix_unclean_leb - fix an unclean LEB.
461 * @c: UBIFS file-system description object
462 * @sleb: scanned LEB information
463 * @start: offset where scan started
465 static int fix_unclean_leb(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
468 int lnum
= sleb
->lnum
, endpt
= start
;
470 /* Get the end offset of the last node we are keeping */
471 if (!list_empty(&sleb
->nodes
)) {
472 struct ubifs_scan_node
*snod
;
474 snod
= list_entry(sleb
->nodes
.prev
,
475 struct ubifs_scan_node
, list
);
476 endpt
= snod
->offs
+ snod
->len
;
479 if ((c
->vfs_sb
->s_flags
& MS_RDONLY
) && !c
->remounting_rw
) {
480 /* Add to recovery list */
481 struct ubifs_unclean_leb
*ucleb
;
483 dbg_rcvry("need to fix LEB %d start %d endpt %d",
484 lnum
, start
, sleb
->endpt
);
485 ucleb
= kzalloc(sizeof(struct ubifs_unclean_leb
), GFP_NOFS
);
489 ucleb
->endpt
= endpt
;
490 list_add_tail(&ucleb
->list
, &c
->unclean_leb_list
);
492 /* Write the fixed LEB back to flash */
495 dbg_rcvry("fixing LEB %d start %d endpt %d",
496 lnum
, start
, sleb
->endpt
);
498 err
= ubifs_leb_unmap(c
, lnum
);
502 int len
= ALIGN(endpt
, c
->min_io_size
);
505 err
= ubi_read(c
->ubi
, lnum
, sleb
->buf
, 0,
510 /* Pad to min_io_size */
512 int pad_len
= len
- ALIGN(endpt
, 8);
515 void *buf
= sleb
->buf
+ len
- pad_len
;
517 ubifs_pad(c
, buf
, pad_len
);
520 err
= ubi_leb_change(c
->ubi
, lnum
, sleb
->buf
, len
,
530 * drop_incomplete_group - drop nodes from an incomplete group.
531 * @sleb: scanned LEB information
532 * @offs: offset of dropped nodes is returned here
534 * This function returns %1 if nodes are dropped and %0 otherwise.
536 static int drop_incomplete_group(struct ubifs_scan_leb
*sleb
, int *offs
)
540 while (!list_empty(&sleb
->nodes
)) {
541 struct ubifs_scan_node
*snod
;
544 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
547 if (ch
->group_type
!= UBIFS_IN_NODE_GROUP
)
549 dbg_rcvry("dropping node at %d:%d", sleb
->lnum
, snod
->offs
);
551 list_del(&snod
->list
);
553 sleb
->nodes_cnt
-= 1;
560 * ubifs_recover_leb - scan and recover a LEB.
561 * @c: UBIFS file-system description object
564 * @sbuf: LEB-sized buffer to use
565 * @grouped: nodes may be grouped for recovery
567 * This function does a scan of a LEB, but caters for errors that might have
568 * been caused by the unclean unmount from which we are attempting to recover.
570 * This function returns %0 on success and a negative error code on failure.
572 struct ubifs_scan_leb
*ubifs_recover_leb(struct ubifs_info
*c
, int lnum
,
573 int offs
, void *sbuf
, int grouped
)
575 int err
, len
= c
->leb_size
- offs
, need_clean
= 0, quiet
= 1;
576 int empty_chkd
= 0, start
= offs
;
577 struct ubifs_scan_leb
*sleb
;
578 void *buf
= sbuf
+ offs
;
580 dbg_rcvry("%d:%d", lnum
, offs
);
582 sleb
= ubifs_start_scan(c
, lnum
, offs
, sbuf
);
592 dbg_scan("look at LEB %d:%d (%d bytes left)",
598 * Scan quietly until there is an error from which we cannot
601 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
603 if (ret
== SCANNED_A_NODE
) {
604 /* A valid node, and not a padding node */
605 struct ubifs_ch
*ch
= buf
;
608 err
= ubifs_add_snod(c
, sleb
, buf
, offs
);
611 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
619 /* Padding bytes or a valid padding node */
626 if (ret
== SCANNED_EMPTY_SPACE
) {
627 if (!is_empty(buf
, len
)) {
628 if (!is_last_write(c
, buf
, offs
))
630 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
637 if (ret
== SCANNED_GARBAGE
|| ret
== SCANNED_A_BAD_PAD_NODE
)
638 if (is_last_write(c
, buf
, offs
)) {
639 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
645 if (ret
== SCANNED_A_CORRUPT_NODE
)
646 if (no_more_nodes(c
, buf
, len
, lnum
, offs
)) {
647 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
654 /* Redo the last scan but noisily */
660 case SCANNED_GARBAGE
:
663 case SCANNED_A_CORRUPT_NODE
:
664 case SCANNED_A_BAD_PAD_NODE
:
673 if (!empty_chkd
&& !is_empty(buf
, len
)) {
674 if (is_last_write(c
, buf
, offs
)) {
675 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
678 ubifs_err("corrupt empty space at LEB %d:%d",
684 /* Drop nodes from incomplete group */
685 if (grouped
&& drop_incomplete_group(sleb
, &offs
)) {
687 len
= c
->leb_size
- offs
;
688 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
692 if (offs
% c
->min_io_size
) {
693 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
697 ubifs_end_scan(c
, sleb
, lnum
, offs
);
700 err
= fix_unclean_leb(c
, sleb
, start
);
708 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
711 ubifs_err("LEB %d scanning failed", lnum
);
712 ubifs_scan_destroy(sleb
);
717 * get_cs_sqnum - get commit start sequence number.
718 * @c: UBIFS file-system description object
719 * @lnum: LEB number of commit start node
720 * @offs: offset of commit start node
721 * @cs_sqnum: commit start sequence number is returned here
723 * This function returns %0 on success and a negative error code on failure.
725 static int get_cs_sqnum(struct ubifs_info
*c
, int lnum
, int offs
,
726 unsigned long long *cs_sqnum
)
728 struct ubifs_cs_node
*cs_node
= NULL
;
731 dbg_rcvry("at %d:%d", lnum
, offs
);
732 cs_node
= kmalloc(UBIFS_CS_NODE_SZ
, GFP_KERNEL
);
735 if (c
->leb_size
- offs
< UBIFS_CS_NODE_SZ
)
737 err
= ubi_read(c
->ubi
, lnum
, (void *)cs_node
, offs
, UBIFS_CS_NODE_SZ
);
738 if (err
&& err
!= -EBADMSG
)
740 ret
= ubifs_scan_a_node(c
, cs_node
, UBIFS_CS_NODE_SZ
, lnum
, offs
, 0);
741 if (ret
!= SCANNED_A_NODE
) {
742 dbg_err("Not a valid node");
745 if (cs_node
->ch
.node_type
!= UBIFS_CS_NODE
) {
746 dbg_err("Node a CS node, type is %d", cs_node
->ch
.node_type
);
749 if (le64_to_cpu(cs_node
->cmt_no
) != c
->cmt_no
) {
750 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
751 (unsigned long long)le64_to_cpu(cs_node
->cmt_no
),
755 *cs_sqnum
= le64_to_cpu(cs_node
->ch
.sqnum
);
756 dbg_rcvry("commit start sqnum %llu", *cs_sqnum
);
763 ubifs_err("failed to get CS sqnum");
769 * ubifs_recover_log_leb - scan and recover a log LEB.
770 * @c: UBIFS file-system description object
773 * @sbuf: LEB-sized buffer to use
775 * This function does a scan of a LEB, but caters for errors that might have
776 * been caused by the unclean unmount from which we are attempting to recover.
778 * This function returns %0 on success and a negative error code on failure.
780 struct ubifs_scan_leb
*ubifs_recover_log_leb(struct ubifs_info
*c
, int lnum
,
781 int offs
, void *sbuf
)
783 struct ubifs_scan_leb
*sleb
;
786 dbg_rcvry("LEB %d", lnum
);
787 next_lnum
= lnum
+ 1;
788 if (next_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
789 next_lnum
= UBIFS_LOG_LNUM
;
790 if (next_lnum
!= c
->ltail_lnum
) {
792 * We can only recover at the end of the log, so check that the
793 * next log LEB is empty or out of date.
795 sleb
= ubifs_scan(c
, next_lnum
, 0, sbuf
);
798 if (sleb
->nodes_cnt
) {
799 struct ubifs_scan_node
*snod
;
800 unsigned long long cs_sqnum
= c
->cs_sqnum
;
802 snod
= list_entry(sleb
->nodes
.next
,
803 struct ubifs_scan_node
, list
);
807 err
= get_cs_sqnum(c
, lnum
, offs
, &cs_sqnum
);
809 ubifs_scan_destroy(sleb
);
813 if (snod
->sqnum
> cs_sqnum
) {
814 ubifs_err("unrecoverable log corruption "
816 ubifs_scan_destroy(sleb
);
817 return ERR_PTR(-EUCLEAN
);
820 ubifs_scan_destroy(sleb
);
822 return ubifs_recover_leb(c
, lnum
, offs
, sbuf
, 0);
826 * recover_head - recover a head.
827 * @c: UBIFS file-system description object
828 * @lnum: LEB number of head to recover
829 * @offs: offset of head to recover
830 * @sbuf: LEB-sized buffer to use
832 * This function ensures that there is no data on the flash at a head location.
834 * This function returns %0 on success and a negative error code on failure.
836 static int recover_head(const struct ubifs_info
*c
, int lnum
, int offs
,
839 int len
, err
, need_clean
= 0;
841 if (c
->min_io_size
> 1)
842 len
= c
->min_io_size
;
845 if (offs
+ len
> c
->leb_size
)
846 len
= c
->leb_size
- offs
;
851 /* Read at the head location and check it is empty flash */
852 err
= ubi_read(c
->ubi
, lnum
, sbuf
, offs
, len
);
866 dbg_rcvry("cleaning head at %d:%d", lnum
, offs
);
868 return ubifs_leb_unmap(c
, lnum
);
869 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, offs
);
872 return ubi_leb_change(c
->ubi
, lnum
, sbuf
, offs
, UBI_UNKNOWN
);
879 * ubifs_recover_inl_heads - recover index and LPT heads.
880 * @c: UBIFS file-system description object
881 * @sbuf: LEB-sized buffer to use
883 * This function ensures that there is no data on the flash at the index and
884 * LPT head locations.
886 * This deals with the recovery of a half-completed journal commit. UBIFS is
887 * careful never to overwrite the last version of the index or the LPT. Because
888 * the index and LPT are wandering trees, data from a half-completed commit will
889 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
890 * assumed to be empty and will be unmapped anyway before use, or in the index
893 * This function returns %0 on success and a negative error code on failure.
895 int ubifs_recover_inl_heads(const struct ubifs_info
*c
, void *sbuf
)
899 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
) || c
->remounting_rw
);
901 dbg_rcvry("checking index head at %d:%d", c
->ihead_lnum
, c
->ihead_offs
);
902 err
= recover_head(c
, c
->ihead_lnum
, c
->ihead_offs
, sbuf
);
906 dbg_rcvry("checking LPT head at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
907 err
= recover_head(c
, c
->nhead_lnum
, c
->nhead_offs
, sbuf
);
915 * clean_an_unclean_leb - read and write a LEB to remove corruption.
916 * @c: UBIFS file-system description object
917 * @ucleb: unclean LEB information
918 * @sbuf: LEB-sized buffer to use
920 * This function reads a LEB up to a point pre-determined by the mount recovery,
921 * checks the nodes, and writes the result back to the flash, thereby cleaning
922 * off any following corruption, or non-fatal ECC errors.
924 * This function returns %0 on success and a negative error code on failure.
926 static int clean_an_unclean_leb(const struct ubifs_info
*c
,
927 struct ubifs_unclean_leb
*ucleb
, void *sbuf
)
929 int err
, lnum
= ucleb
->lnum
, offs
= 0, len
= ucleb
->endpt
, quiet
= 1;
932 dbg_rcvry("LEB %d len %d", lnum
, len
);
935 /* Nothing to read, just unmap it */
936 err
= ubifs_leb_unmap(c
, lnum
);
942 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
943 if (err
&& err
!= -EBADMSG
)
951 /* Scan quietly until there is an error */
952 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
954 if (ret
== SCANNED_A_NODE
) {
955 /* A valid node, and not a padding node */
956 struct ubifs_ch
*ch
= buf
;
959 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
967 /* Padding bytes or a valid padding node */
974 if (ret
== SCANNED_EMPTY_SPACE
) {
975 ubifs_err("unexpected empty space at %d:%d",
981 /* Redo the last scan but noisily */
986 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
990 /* Pad to min_io_size */
991 len
= ALIGN(ucleb
->endpt
, c
->min_io_size
);
992 if (len
> ucleb
->endpt
) {
993 int pad_len
= len
- ALIGN(ucleb
->endpt
, 8);
996 buf
= c
->sbuf
+ len
- pad_len
;
997 ubifs_pad(c
, buf
, pad_len
);
1001 /* Write back the LEB atomically */
1002 err
= ubi_leb_change(c
->ubi
, lnum
, sbuf
, len
, UBI_UNKNOWN
);
1006 dbg_rcvry("cleaned LEB %d", lnum
);
1012 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1013 * @c: UBIFS file-system description object
1014 * @sbuf: LEB-sized buffer to use
1016 * This function cleans a LEB identified during recovery that needs to be
1017 * written but was not because UBIFS was mounted read-only. This happens when
1018 * remounting to read-write mode.
1020 * This function returns %0 on success and a negative error code on failure.
1022 int ubifs_clean_lebs(const struct ubifs_info
*c
, void *sbuf
)
1024 dbg_rcvry("recovery");
1025 while (!list_empty(&c
->unclean_leb_list
)) {
1026 struct ubifs_unclean_leb
*ucleb
;
1029 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1030 struct ubifs_unclean_leb
, list
);
1031 err
= clean_an_unclean_leb(c
, ucleb
, sbuf
);
1034 list_del(&ucleb
->list
);
1041 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1042 * @c: UBIFS file-system description object
1044 * Out-of-place garbage collection requires always one empty LEB with which to
1045 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1046 * written to the master node on unmounting. In the case of an unclean unmount
1047 * the value of gc_lnum recorded in the master node is out of date and cannot
1048 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1049 * However, there may not be enough empty space, in which case it must be
1050 * possible to GC the dirtiest LEB into the GC head LEB.
1052 * This function also runs the commit which causes the TNC updates from
1053 * size-recovery and orphans to be written to the flash. That is important to
1054 * ensure correct replay order for subsequent mounts.
1056 * This function returns %0 on success and a negative error code on failure.
1058 int ubifs_rcvry_gc_commit(struct ubifs_info
*c
)
1060 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
1061 struct ubifs_lprops lp
;
1065 if (wbuf
->lnum
== -1) {
1066 dbg_rcvry("no GC head LEB");
1070 * See whether the used space in the dirtiest LEB fits in the GC head
1073 if (wbuf
->offs
== c
->leb_size
) {
1074 dbg_rcvry("no room in GC head LEB");
1077 err
= ubifs_find_dirty_leb(c
, &lp
, wbuf
->offs
, 2);
1080 dbg_err("could not find a dirty LEB");
1083 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
1085 if (lp
.free
+ lp
.dirty
== c
->leb_size
) {
1086 /* An empty LEB was returned */
1087 if (lp
.free
!= c
->leb_size
) {
1088 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
,
1093 err
= ubifs_leb_unmap(c
, lnum
);
1097 dbg_rcvry("allocated LEB %d for GC", lnum
);
1098 /* Run the commit */
1099 dbg_rcvry("committing");
1100 return ubifs_run_commit(c
);
1103 * There was no empty LEB so the used space in the dirtiest LEB must fit
1104 * in the GC head LEB.
1106 if (lp
.free
+ lp
.dirty
< wbuf
->offs
) {
1107 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1108 lnum
, wbuf
->lnum
, wbuf
->offs
);
1109 err
= ubifs_return_leb(c
, lnum
);
1115 * We run the commit before garbage collection otherwise subsequent
1116 * mounts will see the GC and orphan deletion in a different order.
1118 dbg_rcvry("committing");
1119 err
= ubifs_run_commit(c
);
1123 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1124 * - use locking to keep 'ubifs_assert()' happy.
1126 dbg_rcvry("GC'ing LEB %d", lnum
);
1127 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1128 err
= ubifs_garbage_collect_leb(c
, &lp
);
1130 int err2
= ubifs_wbuf_sync_nolock(wbuf
);
1135 mutex_unlock(&wbuf
->io_mutex
);
1137 dbg_err("GC failed, error %d", err
);
1142 if (err
!= LEB_RETAINED
) {
1143 dbg_err("GC returned %d", err
);
1146 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1149 dbg_rcvry("allocated LEB %d for GC", lnum
);
1154 * There is no GC head LEB or the free space in the GC head LEB is too
1155 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1158 lnum
= ubifs_find_free_leb_for_idx(c
);
1160 dbg_err("could not find an empty LEB");
1163 /* And reset the index flag */
1164 err
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
1169 dbg_rcvry("allocated LEB %d for GC", lnum
);
1170 /* Run the commit */
1171 dbg_rcvry("committing");
1172 return ubifs_run_commit(c
);
1176 * struct size_entry - inode size information for recovery.
1177 * @rb: link in the RB-tree of sizes
1178 * @inum: inode number
1179 * @i_size: size on inode
1180 * @d_size: maximum size based on data nodes
1181 * @exists: indicates whether the inode exists
1182 * @inode: inode if pinned in memory awaiting rw mode to fix it
1190 struct inode
*inode
;
1194 * add_ino - add an entry to the size tree.
1195 * @c: UBIFS file-system description object
1196 * @inum: inode number
1197 * @i_size: size on inode
1198 * @d_size: maximum size based on data nodes
1199 * @exists: indicates whether the inode exists
1201 static int add_ino(struct ubifs_info
*c
, ino_t inum
, loff_t i_size
,
1202 loff_t d_size
, int exists
)
1204 struct rb_node
**p
= &c
->size_tree
.rb_node
, *parent
= NULL
;
1205 struct size_entry
*e
;
1209 e
= rb_entry(parent
, struct size_entry
, rb
);
1213 p
= &(*p
)->rb_right
;
1216 e
= kzalloc(sizeof(struct size_entry
), GFP_KERNEL
);
1225 rb_link_node(&e
->rb
, parent
, p
);
1226 rb_insert_color(&e
->rb
, &c
->size_tree
);
1232 * find_ino - find an entry on the size tree.
1233 * @c: UBIFS file-system description object
1234 * @inum: inode number
1236 static struct size_entry
*find_ino(struct ubifs_info
*c
, ino_t inum
)
1238 struct rb_node
*p
= c
->size_tree
.rb_node
;
1239 struct size_entry
*e
;
1242 e
= rb_entry(p
, struct size_entry
, rb
);
1245 else if (inum
> e
->inum
)
1254 * remove_ino - remove an entry from the size tree.
1255 * @c: UBIFS file-system description object
1256 * @inum: inode number
1258 static void remove_ino(struct ubifs_info
*c
, ino_t inum
)
1260 struct size_entry
*e
= find_ino(c
, inum
);
1264 rb_erase(&e
->rb
, &c
->size_tree
);
1269 * ubifs_destroy_size_tree - free resources related to the size tree.
1270 * @c: UBIFS file-system description object
1272 void ubifs_destroy_size_tree(struct ubifs_info
*c
)
1274 struct rb_node
*this = c
->size_tree
.rb_node
;
1275 struct size_entry
*e
;
1278 if (this->rb_left
) {
1279 this = this->rb_left
;
1281 } else if (this->rb_right
) {
1282 this = this->rb_right
;
1285 e
= rb_entry(this, struct size_entry
, rb
);
1288 this = rb_parent(this);
1290 if (this->rb_left
== &e
->rb
)
1291 this->rb_left
= NULL
;
1293 this->rb_right
= NULL
;
1297 c
->size_tree
= RB_ROOT
;
1301 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1302 * @c: UBIFS file-system description object
1304 * @deletion: node is for a deletion
1305 * @new_size: inode size
1307 * This function has two purposes:
1308 * 1) to ensure there are no data nodes that fall outside the inode size
1309 * 2) to ensure there are no data nodes for inodes that do not exist
1310 * To accomplish those purposes, a rb-tree is constructed containing an entry
1311 * for each inode number in the journal that has not been deleted, and recording
1312 * the size from the inode node, the maximum size of any data node (also altered
1313 * by truncations) and a flag indicating a inode number for which no inode node
1314 * was present in the journal.
1316 * Note that there is still the possibility that there are data nodes that have
1317 * been committed that are beyond the inode size, however the only way to find
1318 * them would be to scan the entire index. Alternatively, some provision could
1319 * be made to record the size of inodes at the start of commit, which would seem
1320 * very cumbersome for a scenario that is quite unlikely and the only negative
1321 * consequence of which is wasted space.
1323 * This functions returns %0 on success and a negative error code on failure.
1325 int ubifs_recover_size_accum(struct ubifs_info
*c
, union ubifs_key
*key
,
1326 int deletion
, loff_t new_size
)
1328 ino_t inum
= key_inum(c
, key
);
1329 struct size_entry
*e
;
1332 switch (key_type(c
, key
)) {
1335 remove_ino(c
, inum
);
1337 e
= find_ino(c
, inum
);
1339 e
->i_size
= new_size
;
1342 err
= add_ino(c
, inum
, new_size
, 0, 1);
1348 case UBIFS_DATA_KEY
:
1349 e
= find_ino(c
, inum
);
1351 if (new_size
> e
->d_size
)
1352 e
->d_size
= new_size
;
1354 err
= add_ino(c
, inum
, 0, new_size
, 0);
1359 case UBIFS_TRUN_KEY
:
1360 e
= find_ino(c
, inum
);
1362 e
->d_size
= new_size
;
1369 * fix_size_in_place - fix inode size in place on flash.
1370 * @c: UBIFS file-system description object
1371 * @e: inode size information for recovery
1373 static int fix_size_in_place(struct ubifs_info
*c
, struct size_entry
*e
)
1375 struct ubifs_ino_node
*ino
= c
->sbuf
;
1377 union ubifs_key key
;
1378 int err
, lnum
, offs
, len
;
1382 /* Locate the inode node LEB number and offset */
1383 ino_key_init(c
, &key
, e
->inum
);
1384 err
= ubifs_tnc_locate(c
, &key
, ino
, &lnum
, &offs
);
1388 * If the size recorded on the inode node is greater than the size that
1389 * was calculated from nodes in the journal then don't change the inode.
1391 i_size
= le64_to_cpu(ino
->size
);
1392 if (i_size
>= e
->d_size
)
1395 err
= ubi_read(c
->ubi
, lnum
, c
->sbuf
, 0, c
->leb_size
);
1398 /* Change the size field and recalculate the CRC */
1399 ino
= c
->sbuf
+ offs
;
1400 ino
->size
= cpu_to_le64(e
->d_size
);
1401 len
= le32_to_cpu(ino
->ch
.len
);
1402 crc
= crc32(UBIFS_CRC32_INIT
, (void *)ino
+ 8, len
- 8);
1403 ino
->ch
.crc
= cpu_to_le32(crc
);
1404 /* Work out where data in the LEB ends and free space begins */
1406 len
= c
->leb_size
- 1;
1407 while (p
[len
] == 0xff)
1409 len
= ALIGN(len
+ 1, c
->min_io_size
);
1410 /* Atomically write the fixed LEB back again */
1411 err
= ubi_leb_change(c
->ubi
, lnum
, c
->sbuf
, len
, UBI_UNKNOWN
);
1414 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1415 (unsigned long)e
->inum
, lnum
, offs
, i_size
, e
->d_size
);
1419 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1420 (unsigned long)e
->inum
, e
->i_size
, e
->d_size
, err
);
1425 * ubifs_recover_size - recover inode size.
1426 * @c: UBIFS file-system description object
1428 * This function attempts to fix inode size discrepancies identified by the
1429 * 'ubifs_recover_size_accum()' function.
1431 * This functions returns %0 on success and a negative error code on failure.
1433 int ubifs_recover_size(struct ubifs_info
*c
)
1435 struct rb_node
*this = rb_first(&c
->size_tree
);
1438 struct size_entry
*e
;
1441 e
= rb_entry(this, struct size_entry
, rb
);
1443 union ubifs_key key
;
1445 ino_key_init(c
, &key
, e
->inum
);
1446 err
= ubifs_tnc_lookup(c
, &key
, c
->sbuf
);
1447 if (err
&& err
!= -ENOENT
)
1449 if (err
== -ENOENT
) {
1450 /* Remove data nodes that have no inode */
1451 dbg_rcvry("removing ino %lu",
1452 (unsigned long)e
->inum
);
1453 err
= ubifs_tnc_remove_ino(c
, e
->inum
);
1457 struct ubifs_ino_node
*ino
= c
->sbuf
;
1460 e
->i_size
= le64_to_cpu(ino
->size
);
1463 if (e
->exists
&& e
->i_size
< e
->d_size
) {
1464 if (!e
->inode
&& (c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1465 /* Fix the inode size and pin it in memory */
1466 struct inode
*inode
;
1468 inode
= ubifs_iget(c
->vfs_sb
, e
->inum
);
1470 return PTR_ERR(inode
);
1471 if (inode
->i_size
< e
->d_size
) {
1472 dbg_rcvry("ino %lu size %lld -> %lld",
1473 (unsigned long)e
->inum
,
1474 e
->d_size
, inode
->i_size
);
1475 inode
->i_size
= e
->d_size
;
1476 ubifs_inode(inode
)->ui_size
= e
->d_size
;
1478 this = rb_next(this);
1483 /* Fix the size in place */
1484 err
= fix_size_in_place(c
, e
);
1491 this = rb_next(this);
1492 rb_erase(&e
->rb
, &c
->size_tree
);