Pull fluff into release branch
[linux-2.6/linux-loongson.git] / drivers / acpi / processor_idle.c
blob60773005b8afacbe24024a9ea33e96cc578ac59d
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
55 * Include the apic definitions for x86 to have the APIC timer related defines
56 * available also for UP (on SMP it gets magically included via linux/smp.h).
58 #ifdef CONFIG_X86
59 #include <asm/apic.h>
60 #endif
62 #include <asm/io.h>
63 #include <asm/uaccess.h>
65 #include <acpi/acpi_bus.h>
66 #include <acpi/processor.h>
68 #define ACPI_PROCESSOR_COMPONENT 0x01000000
69 #define ACPI_PROCESSOR_CLASS "processor"
70 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
71 ACPI_MODULE_NAME("processor_idle");
72 #define ACPI_PROCESSOR_FILE_POWER "power"
73 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
74 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
75 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
76 static void (*pm_idle_save) (void) __read_mostly;
77 module_param(max_cstate, uint, 0644);
79 static unsigned int nocst __read_mostly;
80 module_param(nocst, uint, 0000);
83 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
84 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
85 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
86 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
87 * reduce history for more aggressive entry into C3
89 static unsigned int bm_history __read_mostly =
90 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
91 module_param(bm_history, uint, 0644);
92 /* --------------------------------------------------------------------------
93 Power Management
94 -------------------------------------------------------------------------- */
97 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
98 * For now disable this. Probably a bug somewhere else.
100 * To skip this limit, boot/load with a large max_cstate limit.
102 static int set_max_cstate(struct dmi_system_id *id)
104 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
105 return 0;
107 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
108 " Override with \"processor.max_cstate=%d\"\n", id->ident,
109 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
111 max_cstate = (long)id->driver_data;
113 return 0;
116 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
117 callers to only run once -AK */
118 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
119 { set_max_cstate, "IBM ThinkPad R40e", {
120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
149 { set_max_cstate, "IBM ThinkPad R40e", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
152 { set_max_cstate, "IBM ThinkPad R40e", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
155 { set_max_cstate, "IBM ThinkPad R40e", {
156 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
158 { set_max_cstate, "IBM ThinkPad R40e", {
159 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
161 { set_max_cstate, "IBM ThinkPad R40e", {
162 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
164 { set_max_cstate, "IBM ThinkPad R40e", {
165 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
167 { set_max_cstate, "Medion 41700", {
168 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
169 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
170 { set_max_cstate, "Clevo 5600D", {
171 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
172 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
173 (void *)2},
177 static inline u32 ticks_elapsed(u32 t1, u32 t2)
179 if (t2 >= t1)
180 return (t2 - t1);
181 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
182 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
183 else
184 return ((0xFFFFFFFF - t1) + t2);
187 static void
188 acpi_processor_power_activate(struct acpi_processor *pr,
189 struct acpi_processor_cx *new)
191 struct acpi_processor_cx *old;
193 if (!pr || !new)
194 return;
196 old = pr->power.state;
198 if (old)
199 old->promotion.count = 0;
200 new->demotion.count = 0;
202 /* Cleanup from old state. */
203 if (old) {
204 switch (old->type) {
205 case ACPI_STATE_C3:
206 /* Disable bus master reload */
207 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
208 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
209 break;
213 /* Prepare to use new state. */
214 switch (new->type) {
215 case ACPI_STATE_C3:
216 /* Enable bus master reload */
217 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
218 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
219 break;
222 pr->power.state = new;
224 return;
227 static void acpi_safe_halt(void)
229 current_thread_info()->status &= ~TS_POLLING;
231 * TS_POLLING-cleared state must be visible before we
232 * test NEED_RESCHED:
234 smp_mb();
235 if (!need_resched())
236 safe_halt();
237 current_thread_info()->status |= TS_POLLING;
240 static atomic_t c3_cpu_count;
242 /* Common C-state entry for C2, C3, .. */
243 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
245 if (cstate->space_id == ACPI_CSTATE_FFH) {
246 /* Call into architectural FFH based C-state */
247 acpi_processor_ffh_cstate_enter(cstate);
248 } else {
249 int unused;
250 /* IO port based C-state */
251 inb(cstate->address);
252 /* Dummy wait op - must do something useless after P_LVL2 read
253 because chipsets cannot guarantee that STPCLK# signal
254 gets asserted in time to freeze execution properly. */
255 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
259 #ifdef ARCH_APICTIMER_STOPS_ON_C3
262 * Some BIOS implementations switch to C3 in the published C2 state.
263 * This seems to be a common problem on AMD boxen, but other vendors
264 * are affected too. We pick the most conservative approach: we assume
265 * that the local APIC stops in both C2 and C3.
267 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
268 struct acpi_processor_cx *cx)
270 struct acpi_processor_power *pwr = &pr->power;
273 * Check, if one of the previous states already marked the lapic
274 * unstable
276 if (pwr->timer_broadcast_on_state < state)
277 return;
279 if (cx->type >= ACPI_STATE_C2)
280 pr->power.timer_broadcast_on_state = state;
283 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
285 #ifdef CONFIG_GENERIC_CLOCKEVENTS
286 unsigned long reason;
288 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
289 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
291 clockevents_notify(reason, &pr->id);
292 #else
293 cpumask_t mask = cpumask_of_cpu(pr->id);
295 if (pr->power.timer_broadcast_on_state < INT_MAX)
296 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
297 else
298 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
299 #endif
302 /* Power(C) State timer broadcast control */
303 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
304 struct acpi_processor_cx *cx,
305 int broadcast)
307 #ifdef CONFIG_GENERIC_CLOCKEVENTS
309 int state = cx - pr->power.states;
311 if (state >= pr->power.timer_broadcast_on_state) {
312 unsigned long reason;
314 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
315 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
316 clockevents_notify(reason, &pr->id);
318 #endif
321 #else
323 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
324 struct acpi_processor_cx *cstate) { }
325 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
326 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
327 struct acpi_processor_cx *cx,
328 int broadcast)
332 #endif
334 static void acpi_processor_idle(void)
336 struct acpi_processor *pr = NULL;
337 struct acpi_processor_cx *cx = NULL;
338 struct acpi_processor_cx *next_state = NULL;
339 int sleep_ticks = 0;
340 u32 t1, t2 = 0;
342 pr = processors[smp_processor_id()];
343 if (!pr)
344 return;
347 * Interrupts must be disabled during bus mastering calculations and
348 * for C2/C3 transitions.
350 local_irq_disable();
353 * Check whether we truly need to go idle, or should
354 * reschedule:
356 if (unlikely(need_resched())) {
357 local_irq_enable();
358 return;
361 cx = pr->power.state;
362 if (!cx) {
363 if (pm_idle_save)
364 pm_idle_save();
365 else
366 acpi_safe_halt();
367 return;
371 * Check BM Activity
372 * -----------------
373 * Check for bus mastering activity (if required), record, and check
374 * for demotion.
376 if (pr->flags.bm_check) {
377 u32 bm_status = 0;
378 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
380 if (diff > 31)
381 diff = 31;
383 pr->power.bm_activity <<= diff;
385 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
386 if (bm_status) {
387 pr->power.bm_activity |= 0x1;
388 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
391 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
392 * the true state of bus mastering activity; forcing us to
393 * manually check the BMIDEA bit of each IDE channel.
395 else if (errata.piix4.bmisx) {
396 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
397 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
398 pr->power.bm_activity |= 0x1;
401 pr->power.bm_check_timestamp = jiffies;
404 * If bus mastering is or was active this jiffy, demote
405 * to avoid a faulty transition. Note that the processor
406 * won't enter a low-power state during this call (to this
407 * function) but should upon the next.
409 * TBD: A better policy might be to fallback to the demotion
410 * state (use it for this quantum only) istead of
411 * demoting -- and rely on duration as our sole demotion
412 * qualification. This may, however, introduce DMA
413 * issues (e.g. floppy DMA transfer overrun/underrun).
415 if ((pr->power.bm_activity & 0x1) &&
416 cx->demotion.threshold.bm) {
417 local_irq_enable();
418 next_state = cx->demotion.state;
419 goto end;
423 #ifdef CONFIG_HOTPLUG_CPU
425 * Check for P_LVL2_UP flag before entering C2 and above on
426 * an SMP system. We do it here instead of doing it at _CST/P_LVL
427 * detection phase, to work cleanly with logical CPU hotplug.
429 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
430 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
431 cx = &pr->power.states[ACPI_STATE_C1];
432 #endif
435 * Sleep:
436 * ------
437 * Invoke the current Cx state to put the processor to sleep.
439 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
440 current_thread_info()->status &= ~TS_POLLING;
442 * TS_POLLING-cleared state must be visible before we
443 * test NEED_RESCHED:
445 smp_mb();
446 if (need_resched()) {
447 current_thread_info()->status |= TS_POLLING;
448 local_irq_enable();
449 return;
453 switch (cx->type) {
455 case ACPI_STATE_C1:
457 * Invoke C1.
458 * Use the appropriate idle routine, the one that would
459 * be used without acpi C-states.
461 if (pm_idle_save)
462 pm_idle_save();
463 else
464 acpi_safe_halt();
467 * TBD: Can't get time duration while in C1, as resumes
468 * go to an ISR rather than here. Need to instrument
469 * base interrupt handler.
471 sleep_ticks = 0xFFFFFFFF;
472 break;
474 case ACPI_STATE_C2:
475 /* Get start time (ticks) */
476 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
477 /* Invoke C2 */
478 acpi_state_timer_broadcast(pr, cx, 1);
479 acpi_cstate_enter(cx);
480 /* Get end time (ticks) */
481 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
483 #ifdef CONFIG_GENERIC_TIME
484 /* TSC halts in C2, so notify users */
485 mark_tsc_unstable();
486 #endif
487 /* Re-enable interrupts */
488 local_irq_enable();
489 current_thread_info()->status |= TS_POLLING;
490 /* Compute time (ticks) that we were actually asleep */
491 sleep_ticks =
492 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
493 acpi_state_timer_broadcast(pr, cx, 0);
494 break;
496 case ACPI_STATE_C3:
498 if (pr->flags.bm_check) {
499 if (atomic_inc_return(&c3_cpu_count) ==
500 num_online_cpus()) {
502 * All CPUs are trying to go to C3
503 * Disable bus master arbitration
505 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
507 } else {
508 /* SMP with no shared cache... Invalidate cache */
509 ACPI_FLUSH_CPU_CACHE();
512 /* Get start time (ticks) */
513 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
514 /* Invoke C3 */
515 acpi_state_timer_broadcast(pr, cx, 1);
516 acpi_cstate_enter(cx);
517 /* Get end time (ticks) */
518 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
519 if (pr->flags.bm_check) {
520 /* Enable bus master arbitration */
521 atomic_dec(&c3_cpu_count);
522 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
525 #ifdef CONFIG_GENERIC_TIME
526 /* TSC halts in C3, so notify users */
527 mark_tsc_unstable();
528 #endif
529 /* Re-enable interrupts */
530 local_irq_enable();
531 current_thread_info()->status |= TS_POLLING;
532 /* Compute time (ticks) that we were actually asleep */
533 sleep_ticks =
534 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
535 acpi_state_timer_broadcast(pr, cx, 0);
536 break;
538 default:
539 local_irq_enable();
540 return;
542 cx->usage++;
543 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
544 cx->time += sleep_ticks;
546 next_state = pr->power.state;
548 #ifdef CONFIG_HOTPLUG_CPU
549 /* Don't do promotion/demotion */
550 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
551 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
552 next_state = cx;
553 goto end;
555 #endif
558 * Promotion?
559 * ----------
560 * Track the number of longs (time asleep is greater than threshold)
561 * and promote when the count threshold is reached. Note that bus
562 * mastering activity may prevent promotions.
563 * Do not promote above max_cstate.
565 if (cx->promotion.state &&
566 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
567 if (sleep_ticks > cx->promotion.threshold.ticks &&
568 cx->promotion.state->latency <= system_latency_constraint()) {
569 cx->promotion.count++;
570 cx->demotion.count = 0;
571 if (cx->promotion.count >=
572 cx->promotion.threshold.count) {
573 if (pr->flags.bm_check) {
574 if (!
575 (pr->power.bm_activity & cx->
576 promotion.threshold.bm)) {
577 next_state =
578 cx->promotion.state;
579 goto end;
581 } else {
582 next_state = cx->promotion.state;
583 goto end;
590 * Demotion?
591 * ---------
592 * Track the number of shorts (time asleep is less than time threshold)
593 * and demote when the usage threshold is reached.
595 if (cx->demotion.state) {
596 if (sleep_ticks < cx->demotion.threshold.ticks) {
597 cx->demotion.count++;
598 cx->promotion.count = 0;
599 if (cx->demotion.count >= cx->demotion.threshold.count) {
600 next_state = cx->demotion.state;
601 goto end;
606 end:
608 * Demote if current state exceeds max_cstate
609 * or if the latency of the current state is unacceptable
611 if ((pr->power.state - pr->power.states) > max_cstate ||
612 pr->power.state->latency > system_latency_constraint()) {
613 if (cx->demotion.state)
614 next_state = cx->demotion.state;
618 * New Cx State?
619 * -------------
620 * If we're going to start using a new Cx state we must clean up
621 * from the previous and prepare to use the new.
623 if (next_state != pr->power.state)
624 acpi_processor_power_activate(pr, next_state);
627 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
629 unsigned int i;
630 unsigned int state_is_set = 0;
631 struct acpi_processor_cx *lower = NULL;
632 struct acpi_processor_cx *higher = NULL;
633 struct acpi_processor_cx *cx;
636 if (!pr)
637 return -EINVAL;
640 * This function sets the default Cx state policy (OS idle handler).
641 * Our scheme is to promote quickly to C2 but more conservatively
642 * to C3. We're favoring C2 for its characteristics of low latency
643 * (quick response), good power savings, and ability to allow bus
644 * mastering activity. Note that the Cx state policy is completely
645 * customizable and can be altered dynamically.
648 /* startup state */
649 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
650 cx = &pr->power.states[i];
651 if (!cx->valid)
652 continue;
654 if (!state_is_set)
655 pr->power.state = cx;
656 state_is_set++;
657 break;
660 if (!state_is_set)
661 return -ENODEV;
663 /* demotion */
664 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
665 cx = &pr->power.states[i];
666 if (!cx->valid)
667 continue;
669 if (lower) {
670 cx->demotion.state = lower;
671 cx->demotion.threshold.ticks = cx->latency_ticks;
672 cx->demotion.threshold.count = 1;
673 if (cx->type == ACPI_STATE_C3)
674 cx->demotion.threshold.bm = bm_history;
677 lower = cx;
680 /* promotion */
681 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
682 cx = &pr->power.states[i];
683 if (!cx->valid)
684 continue;
686 if (higher) {
687 cx->promotion.state = higher;
688 cx->promotion.threshold.ticks = cx->latency_ticks;
689 if (cx->type >= ACPI_STATE_C2)
690 cx->promotion.threshold.count = 4;
691 else
692 cx->promotion.threshold.count = 10;
693 if (higher->type == ACPI_STATE_C3)
694 cx->promotion.threshold.bm = bm_history;
697 higher = cx;
700 return 0;
703 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
706 if (!pr)
707 return -EINVAL;
709 if (!pr->pblk)
710 return -ENODEV;
712 /* if info is obtained from pblk/fadt, type equals state */
713 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
714 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
716 #ifndef CONFIG_HOTPLUG_CPU
718 * Check for P_LVL2_UP flag before entering C2 and above on
719 * an SMP system.
721 if ((num_online_cpus() > 1) &&
722 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
723 return -ENODEV;
724 #endif
726 /* determine C2 and C3 address from pblk */
727 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
728 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
730 /* determine latencies from FADT */
731 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
732 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
734 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
735 "lvl2[0x%08x] lvl3[0x%08x]\n",
736 pr->power.states[ACPI_STATE_C2].address,
737 pr->power.states[ACPI_STATE_C3].address));
739 return 0;
742 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
744 if (!pr->power.states[ACPI_STATE_C1].valid) {
745 /* set the first C-State to C1 */
746 /* all processors need to support C1 */
747 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
748 pr->power.states[ACPI_STATE_C1].valid = 1;
750 /* the C0 state only exists as a filler in our array */
751 pr->power.states[ACPI_STATE_C0].valid = 1;
752 return 0;
755 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
757 acpi_status status = 0;
758 acpi_integer count;
759 int current_count;
760 int i;
761 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
762 union acpi_object *cst;
765 if (nocst)
766 return -ENODEV;
768 current_count = 0;
770 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
771 if (ACPI_FAILURE(status)) {
772 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
773 return -ENODEV;
776 cst = buffer.pointer;
778 /* There must be at least 2 elements */
779 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
780 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
781 status = -EFAULT;
782 goto end;
785 count = cst->package.elements[0].integer.value;
787 /* Validate number of power states. */
788 if (count < 1 || count != cst->package.count - 1) {
789 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
790 status = -EFAULT;
791 goto end;
794 /* Tell driver that at least _CST is supported. */
795 pr->flags.has_cst = 1;
797 for (i = 1; i <= count; i++) {
798 union acpi_object *element;
799 union acpi_object *obj;
800 struct acpi_power_register *reg;
801 struct acpi_processor_cx cx;
803 memset(&cx, 0, sizeof(cx));
805 element = &(cst->package.elements[i]);
806 if (element->type != ACPI_TYPE_PACKAGE)
807 continue;
809 if (element->package.count != 4)
810 continue;
812 obj = &(element->package.elements[0]);
814 if (obj->type != ACPI_TYPE_BUFFER)
815 continue;
817 reg = (struct acpi_power_register *)obj->buffer.pointer;
819 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
820 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
821 continue;
823 /* There should be an easy way to extract an integer... */
824 obj = &(element->package.elements[1]);
825 if (obj->type != ACPI_TYPE_INTEGER)
826 continue;
828 cx.type = obj->integer.value;
830 * Some buggy BIOSes won't list C1 in _CST -
831 * Let acpi_processor_get_power_info_default() handle them later
833 if (i == 1 && cx.type != ACPI_STATE_C1)
834 current_count++;
836 cx.address = reg->address;
837 cx.index = current_count + 1;
839 cx.space_id = ACPI_CSTATE_SYSTEMIO;
840 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
841 if (acpi_processor_ffh_cstate_probe
842 (pr->id, &cx, reg) == 0) {
843 cx.space_id = ACPI_CSTATE_FFH;
844 } else if (cx.type != ACPI_STATE_C1) {
846 * C1 is a special case where FIXED_HARDWARE
847 * can be handled in non-MWAIT way as well.
848 * In that case, save this _CST entry info.
849 * That is, we retain space_id of SYSTEM_IO for
850 * halt based C1.
851 * Otherwise, ignore this info and continue.
853 continue;
857 obj = &(element->package.elements[2]);
858 if (obj->type != ACPI_TYPE_INTEGER)
859 continue;
861 cx.latency = obj->integer.value;
863 obj = &(element->package.elements[3]);
864 if (obj->type != ACPI_TYPE_INTEGER)
865 continue;
867 cx.power = obj->integer.value;
869 current_count++;
870 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
873 * We support total ACPI_PROCESSOR_MAX_POWER - 1
874 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
876 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
877 printk(KERN_WARNING
878 "Limiting number of power states to max (%d)\n",
879 ACPI_PROCESSOR_MAX_POWER);
880 printk(KERN_WARNING
881 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
882 break;
886 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
887 current_count));
889 /* Validate number of power states discovered */
890 if (current_count < 2)
891 status = -EFAULT;
893 end:
894 kfree(buffer.pointer);
896 return status;
899 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
902 if (!cx->address)
903 return;
906 * C2 latency must be less than or equal to 100
907 * microseconds.
909 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
910 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
911 "latency too large [%d]\n", cx->latency));
912 return;
916 * Otherwise we've met all of our C2 requirements.
917 * Normalize the C2 latency to expidite policy
919 cx->valid = 1;
920 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
922 return;
925 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
926 struct acpi_processor_cx *cx)
928 static int bm_check_flag;
931 if (!cx->address)
932 return;
935 * C3 latency must be less than or equal to 1000
936 * microseconds.
938 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
939 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
940 "latency too large [%d]\n", cx->latency));
941 return;
945 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
946 * DMA transfers are used by any ISA device to avoid livelock.
947 * Note that we could disable Type-F DMA (as recommended by
948 * the erratum), but this is known to disrupt certain ISA
949 * devices thus we take the conservative approach.
951 else if (errata.piix4.fdma) {
952 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
953 "C3 not supported on PIIX4 with Type-F DMA\n"));
954 return;
957 /* All the logic here assumes flags.bm_check is same across all CPUs */
958 if (!bm_check_flag) {
959 /* Determine whether bm_check is needed based on CPU */
960 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
961 bm_check_flag = pr->flags.bm_check;
962 } else {
963 pr->flags.bm_check = bm_check_flag;
966 if (pr->flags.bm_check) {
967 /* bus mastering control is necessary */
968 if (!pr->flags.bm_control) {
969 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
970 "C3 support requires bus mastering control\n"));
971 return;
973 } else {
975 * WBINVD should be set in fadt, for C3 state to be
976 * supported on when bm_check is not required.
978 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
979 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
980 "Cache invalidation should work properly"
981 " for C3 to be enabled on SMP systems\n"));
982 return;
984 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
988 * Otherwise we've met all of our C3 requirements.
989 * Normalize the C3 latency to expidite policy. Enable
990 * checking of bus mastering status (bm_check) so we can
991 * use this in our C3 policy
993 cx->valid = 1;
994 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
996 return;
999 static int acpi_processor_power_verify(struct acpi_processor *pr)
1001 unsigned int i;
1002 unsigned int working = 0;
1004 pr->power.timer_broadcast_on_state = INT_MAX;
1006 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1007 struct acpi_processor_cx *cx = &pr->power.states[i];
1009 switch (cx->type) {
1010 case ACPI_STATE_C1:
1011 cx->valid = 1;
1012 break;
1014 case ACPI_STATE_C2:
1015 acpi_processor_power_verify_c2(cx);
1016 if (cx->valid)
1017 acpi_timer_check_state(i, pr, cx);
1018 break;
1020 case ACPI_STATE_C3:
1021 acpi_processor_power_verify_c3(pr, cx);
1022 if (cx->valid)
1023 acpi_timer_check_state(i, pr, cx);
1024 break;
1027 if (cx->valid)
1028 working++;
1031 acpi_propagate_timer_broadcast(pr);
1033 return (working);
1036 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1038 unsigned int i;
1039 int result;
1042 /* NOTE: the idle thread may not be running while calling
1043 * this function */
1045 /* Zero initialize all the C-states info. */
1046 memset(pr->power.states, 0, sizeof(pr->power.states));
1048 result = acpi_processor_get_power_info_cst(pr);
1049 if (result == -ENODEV)
1050 result = acpi_processor_get_power_info_fadt(pr);
1052 if (result)
1053 return result;
1055 acpi_processor_get_power_info_default(pr);
1057 pr->power.count = acpi_processor_power_verify(pr);
1060 * Set Default Policy
1061 * ------------------
1062 * Now that we know which states are supported, set the default
1063 * policy. Note that this policy can be changed dynamically
1064 * (e.g. encourage deeper sleeps to conserve battery life when
1065 * not on AC).
1067 result = acpi_processor_set_power_policy(pr);
1068 if (result)
1069 return result;
1072 * if one state of type C2 or C3 is available, mark this
1073 * CPU as being "idle manageable"
1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1076 if (pr->power.states[i].valid) {
1077 pr->power.count = i;
1078 if (pr->power.states[i].type >= ACPI_STATE_C2)
1079 pr->flags.power = 1;
1083 return 0;
1086 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1088 int result = 0;
1091 if (!pr)
1092 return -EINVAL;
1094 if (nocst) {
1095 return -ENODEV;
1098 if (!pr->flags.power_setup_done)
1099 return -ENODEV;
1101 /* Fall back to the default idle loop */
1102 pm_idle = pm_idle_save;
1103 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1105 pr->flags.power = 0;
1106 result = acpi_processor_get_power_info(pr);
1107 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1108 pm_idle = acpi_processor_idle;
1110 return result;
1113 /* proc interface */
1115 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1117 struct acpi_processor *pr = seq->private;
1118 unsigned int i;
1121 if (!pr)
1122 goto end;
1124 seq_printf(seq, "active state: C%zd\n"
1125 "max_cstate: C%d\n"
1126 "bus master activity: %08x\n"
1127 "maximum allowed latency: %d usec\n",
1128 pr->power.state ? pr->power.state - pr->power.states : 0,
1129 max_cstate, (unsigned)pr->power.bm_activity,
1130 system_latency_constraint());
1132 seq_puts(seq, "states:\n");
1134 for (i = 1; i <= pr->power.count; i++) {
1135 seq_printf(seq, " %cC%d: ",
1136 (&pr->power.states[i] ==
1137 pr->power.state ? '*' : ' '), i);
1139 if (!pr->power.states[i].valid) {
1140 seq_puts(seq, "<not supported>\n");
1141 continue;
1144 switch (pr->power.states[i].type) {
1145 case ACPI_STATE_C1:
1146 seq_printf(seq, "type[C1] ");
1147 break;
1148 case ACPI_STATE_C2:
1149 seq_printf(seq, "type[C2] ");
1150 break;
1151 case ACPI_STATE_C3:
1152 seq_printf(seq, "type[C3] ");
1153 break;
1154 default:
1155 seq_printf(seq, "type[--] ");
1156 break;
1159 if (pr->power.states[i].promotion.state)
1160 seq_printf(seq, "promotion[C%zd] ",
1161 (pr->power.states[i].promotion.state -
1162 pr->power.states));
1163 else
1164 seq_puts(seq, "promotion[--] ");
1166 if (pr->power.states[i].demotion.state)
1167 seq_printf(seq, "demotion[C%zd] ",
1168 (pr->power.states[i].demotion.state -
1169 pr->power.states));
1170 else
1171 seq_puts(seq, "demotion[--] ");
1173 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1174 pr->power.states[i].latency,
1175 pr->power.states[i].usage,
1176 (unsigned long long)pr->power.states[i].time);
1179 end:
1180 return 0;
1183 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1185 return single_open(file, acpi_processor_power_seq_show,
1186 PDE(inode)->data);
1189 static const struct file_operations acpi_processor_power_fops = {
1190 .open = acpi_processor_power_open_fs,
1191 .read = seq_read,
1192 .llseek = seq_lseek,
1193 .release = single_release,
1196 #ifdef CONFIG_SMP
1197 static void smp_callback(void *v)
1199 /* we already woke the CPU up, nothing more to do */
1203 * This function gets called when a part of the kernel has a new latency
1204 * requirement. This means we need to get all processors out of their C-state,
1205 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1206 * wakes them all right up.
1208 static int acpi_processor_latency_notify(struct notifier_block *b,
1209 unsigned long l, void *v)
1211 smp_call_function(smp_callback, NULL, 0, 1);
1212 return NOTIFY_OK;
1215 static struct notifier_block acpi_processor_latency_notifier = {
1216 .notifier_call = acpi_processor_latency_notify,
1218 #endif
1220 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1221 struct acpi_device *device)
1223 acpi_status status = 0;
1224 static int first_run;
1225 struct proc_dir_entry *entry = NULL;
1226 unsigned int i;
1229 if (!first_run) {
1230 dmi_check_system(processor_power_dmi_table);
1231 if (max_cstate < ACPI_C_STATES_MAX)
1232 printk(KERN_NOTICE
1233 "ACPI: processor limited to max C-state %d\n",
1234 max_cstate);
1235 first_run++;
1236 #ifdef CONFIG_SMP
1237 register_latency_notifier(&acpi_processor_latency_notifier);
1238 #endif
1241 if (!pr)
1242 return -EINVAL;
1244 if (acpi_gbl_FADT.cst_control && !nocst) {
1245 status =
1246 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1247 if (ACPI_FAILURE(status)) {
1248 ACPI_EXCEPTION((AE_INFO, status,
1249 "Notifying BIOS of _CST ability failed"));
1253 acpi_processor_get_power_info(pr);
1256 * Install the idle handler if processor power management is supported.
1257 * Note that we use previously set idle handler will be used on
1258 * platforms that only support C1.
1260 if ((pr->flags.power) && (!boot_option_idle_override)) {
1261 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1262 for (i = 1; i <= pr->power.count; i++)
1263 if (pr->power.states[i].valid)
1264 printk(" C%d[C%d]", i,
1265 pr->power.states[i].type);
1266 printk(")\n");
1268 if (pr->id == 0) {
1269 pm_idle_save = pm_idle;
1270 pm_idle = acpi_processor_idle;
1274 /* 'power' [R] */
1275 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1276 S_IRUGO, acpi_device_dir(device));
1277 if (!entry)
1278 return -EIO;
1279 else {
1280 entry->proc_fops = &acpi_processor_power_fops;
1281 entry->data = acpi_driver_data(device);
1282 entry->owner = THIS_MODULE;
1285 pr->flags.power_setup_done = 1;
1287 return 0;
1290 int acpi_processor_power_exit(struct acpi_processor *pr,
1291 struct acpi_device *device)
1294 pr->flags.power_setup_done = 0;
1296 if (acpi_device_dir(device))
1297 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1298 acpi_device_dir(device));
1300 /* Unregister the idle handler when processor #0 is removed. */
1301 if (pr->id == 0) {
1302 pm_idle = pm_idle_save;
1305 * We are about to unload the current idle thread pm callback
1306 * (pm_idle), Wait for all processors to update cached/local
1307 * copies of pm_idle before proceeding.
1309 cpu_idle_wait();
1310 #ifdef CONFIG_SMP
1311 unregister_latency_notifier(&acpi_processor_latency_notifier);
1312 #endif
1315 return 0;