[ALSA] emu10k1 - Fix missing declarations
[linux-2.6/linux-loongson.git] / drivers / cpufreq / cpufreq_ondemand.c
blob17741111246b9f21362710cdc1099c31cb69512d
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
32 * dbs is used in this file as a shortform for demandbased switching
33 * It helps to keep variable names smaller, simpler
36 #define DEF_FREQUENCY_UP_THRESHOLD (80)
37 #define MIN_FREQUENCY_UP_THRESHOLD (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 /*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47 * this governor will not work.
48 * All times here are in uS.
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
57 #define DEF_SAMPLING_DOWN_FACTOR (1)
58 #define MAX_SAMPLING_DOWN_FACTOR (10)
59 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
61 static void do_dbs_timer(void *data);
63 struct cpu_dbs_info_s {
64 struct cpufreq_policy *cur_policy;
65 unsigned int prev_cpu_idle_up;
66 unsigned int prev_cpu_idle_down;
67 unsigned int enable;
69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71 static unsigned int dbs_enable; /* number of CPUs using this policy */
73 static DECLARE_MUTEX (dbs_sem);
74 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
76 struct dbs_tuners {
77 unsigned int sampling_rate;
78 unsigned int sampling_down_factor;
79 unsigned int up_threshold;
80 unsigned int ignore_nice;
83 static struct dbs_tuners dbs_tuners_ins = {
84 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
85 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
88 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
90 return kstat_cpu(cpu).cpustat.idle +
91 kstat_cpu(cpu).cpustat.iowait +
92 ( !dbs_tuners_ins.ignore_nice ?
93 kstat_cpu(cpu).cpustat.nice :
94 0);
97 /************************** sysfs interface ************************/
98 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
100 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
103 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
105 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
108 #define define_one_ro(_name) \
109 static struct freq_attr _name = \
110 __ATTR(_name, 0444, show_##_name, NULL)
112 define_one_ro(sampling_rate_max);
113 define_one_ro(sampling_rate_min);
115 /* cpufreq_ondemand Governor Tunables */
116 #define show_one(file_name, object) \
117 static ssize_t show_##file_name \
118 (struct cpufreq_policy *unused, char *buf) \
120 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
122 show_one(sampling_rate, sampling_rate);
123 show_one(sampling_down_factor, sampling_down_factor);
124 show_one(up_threshold, up_threshold);
125 show_one(ignore_nice, ignore_nice);
127 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
128 const char *buf, size_t count)
130 unsigned int input;
131 int ret;
132 ret = sscanf (buf, "%u", &input);
133 if (ret != 1 )
134 return -EINVAL;
136 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
137 return -EINVAL;
139 down(&dbs_sem);
140 dbs_tuners_ins.sampling_down_factor = input;
141 up(&dbs_sem);
143 return count;
146 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
147 const char *buf, size_t count)
149 unsigned int input;
150 int ret;
151 ret = sscanf (buf, "%u", &input);
153 down(&dbs_sem);
154 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
155 up(&dbs_sem);
156 return -EINVAL;
159 dbs_tuners_ins.sampling_rate = input;
160 up(&dbs_sem);
162 return count;
165 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
166 const char *buf, size_t count)
168 unsigned int input;
169 int ret;
170 ret = sscanf (buf, "%u", &input);
172 down(&dbs_sem);
173 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
174 input < MIN_FREQUENCY_UP_THRESHOLD) {
175 up(&dbs_sem);
176 return -EINVAL;
179 dbs_tuners_ins.up_threshold = input;
180 up(&dbs_sem);
182 return count;
185 static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
186 const char *buf, size_t count)
188 unsigned int input;
189 int ret;
191 unsigned int j;
193 ret = sscanf (buf, "%u", &input);
194 if ( ret != 1 )
195 return -EINVAL;
197 if ( input > 1 )
198 input = 1;
200 down(&dbs_sem);
201 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
202 up(&dbs_sem);
203 return count;
205 dbs_tuners_ins.ignore_nice = input;
207 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
208 for_each_online_cpu(j) {
209 struct cpu_dbs_info_s *j_dbs_info;
210 j_dbs_info = &per_cpu(cpu_dbs_info, j);
211 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
212 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
214 up(&dbs_sem);
216 return count;
219 #define define_one_rw(_name) \
220 static struct freq_attr _name = \
221 __ATTR(_name, 0644, show_##_name, store_##_name)
223 define_one_rw(sampling_rate);
224 define_one_rw(sampling_down_factor);
225 define_one_rw(up_threshold);
226 define_one_rw(ignore_nice);
228 static struct attribute * dbs_attributes[] = {
229 &sampling_rate_max.attr,
230 &sampling_rate_min.attr,
231 &sampling_rate.attr,
232 &sampling_down_factor.attr,
233 &up_threshold.attr,
234 &ignore_nice.attr,
235 NULL
238 static struct attribute_group dbs_attr_group = {
239 .attrs = dbs_attributes,
240 .name = "ondemand",
243 /************************** sysfs end ************************/
245 static void dbs_check_cpu(int cpu)
247 unsigned int idle_ticks, up_idle_ticks, total_ticks;
248 unsigned int freq_next;
249 unsigned int freq_down_sampling_rate;
250 static int down_skip[NR_CPUS];
251 struct cpu_dbs_info_s *this_dbs_info;
253 struct cpufreq_policy *policy;
254 unsigned int j;
256 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
257 if (!this_dbs_info->enable)
258 return;
260 policy = this_dbs_info->cur_policy;
262 * Every sampling_rate, we check, if current idle time is less
263 * than 20% (default), then we try to increase frequency
264 * Every sampling_rate*sampling_down_factor, we look for a the lowest
265 * frequency which can sustain the load while keeping idle time over
266 * 30%. If such a frequency exist, we try to decrease to this frequency.
268 * Any frequency increase takes it to the maximum frequency.
269 * Frequency reduction happens at minimum steps of
270 * 5% (default) of current frequency
273 /* Check for frequency increase */
274 idle_ticks = UINT_MAX;
275 for_each_cpu_mask(j, policy->cpus) {
276 unsigned int tmp_idle_ticks, total_idle_ticks;
277 struct cpu_dbs_info_s *j_dbs_info;
279 j_dbs_info = &per_cpu(cpu_dbs_info, j);
280 total_idle_ticks = get_cpu_idle_time(j);
281 tmp_idle_ticks = total_idle_ticks -
282 j_dbs_info->prev_cpu_idle_up;
283 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
285 if (tmp_idle_ticks < idle_ticks)
286 idle_ticks = tmp_idle_ticks;
289 /* Scale idle ticks by 100 and compare with up and down ticks */
290 idle_ticks *= 100;
291 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
292 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
294 if (idle_ticks < up_idle_ticks) {
295 down_skip[cpu] = 0;
296 for_each_cpu_mask(j, policy->cpus) {
297 struct cpu_dbs_info_s *j_dbs_info;
299 j_dbs_info = &per_cpu(cpu_dbs_info, j);
300 j_dbs_info->prev_cpu_idle_down =
301 j_dbs_info->prev_cpu_idle_up;
303 /* if we are already at full speed then break out early */
304 if (policy->cur == policy->max)
305 return;
307 __cpufreq_driver_target(policy, policy->max,
308 CPUFREQ_RELATION_H);
309 return;
312 /* Check for frequency decrease */
313 down_skip[cpu]++;
314 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
315 return;
317 idle_ticks = UINT_MAX;
318 for_each_cpu_mask(j, policy->cpus) {
319 unsigned int tmp_idle_ticks, total_idle_ticks;
320 struct cpu_dbs_info_s *j_dbs_info;
322 j_dbs_info = &per_cpu(cpu_dbs_info, j);
323 /* Check for frequency decrease */
324 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
325 tmp_idle_ticks = total_idle_ticks -
326 j_dbs_info->prev_cpu_idle_down;
327 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
329 if (tmp_idle_ticks < idle_ticks)
330 idle_ticks = tmp_idle_ticks;
333 down_skip[cpu] = 0;
334 /* if we cannot reduce the frequency anymore, break out early */
335 if (policy->cur == policy->min)
336 return;
338 /* Compute how many ticks there are between two measurements */
339 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
340 dbs_tuners_ins.sampling_down_factor;
341 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
344 * The optimal frequency is the frequency that is the lowest that
345 * can support the current CPU usage without triggering the up
346 * policy. To be safe, we focus 10 points under the threshold.
348 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
349 freq_next = (freq_next * policy->cur) /
350 (dbs_tuners_ins.up_threshold - 10);
352 if (freq_next <= ((policy->cur * 95) / 100))
353 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
356 static void do_dbs_timer(void *data)
358 int i;
359 down(&dbs_sem);
360 for_each_online_cpu(i)
361 dbs_check_cpu(i);
362 schedule_delayed_work(&dbs_work,
363 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
364 up(&dbs_sem);
367 static inline void dbs_timer_init(void)
369 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
370 schedule_delayed_work(&dbs_work,
371 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
372 return;
375 static inline void dbs_timer_exit(void)
377 cancel_delayed_work(&dbs_work);
378 return;
381 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
382 unsigned int event)
384 unsigned int cpu = policy->cpu;
385 struct cpu_dbs_info_s *this_dbs_info;
386 unsigned int j;
388 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
390 switch (event) {
391 case CPUFREQ_GOV_START:
392 if ((!cpu_online(cpu)) ||
393 (!policy->cur))
394 return -EINVAL;
396 if (policy->cpuinfo.transition_latency >
397 (TRANSITION_LATENCY_LIMIT * 1000))
398 return -EINVAL;
399 if (this_dbs_info->enable) /* Already enabled */
400 break;
402 down(&dbs_sem);
403 for_each_cpu_mask(j, policy->cpus) {
404 struct cpu_dbs_info_s *j_dbs_info;
405 j_dbs_info = &per_cpu(cpu_dbs_info, j);
406 j_dbs_info->cur_policy = policy;
408 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
409 j_dbs_info->prev_cpu_idle_down
410 = j_dbs_info->prev_cpu_idle_up;
412 this_dbs_info->enable = 1;
413 sysfs_create_group(&policy->kobj, &dbs_attr_group);
414 dbs_enable++;
416 * Start the timerschedule work, when this governor
417 * is used for first time
419 if (dbs_enable == 1) {
420 unsigned int latency;
421 /* policy latency is in nS. Convert it to uS first */
422 latency = policy->cpuinfo.transition_latency / 1000;
423 if (latency == 0)
424 latency = 1;
426 def_sampling_rate = latency *
427 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
429 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
430 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
432 dbs_tuners_ins.sampling_rate = def_sampling_rate;
433 dbs_tuners_ins.ignore_nice = 0;
435 dbs_timer_init();
438 up(&dbs_sem);
439 break;
441 case CPUFREQ_GOV_STOP:
442 down(&dbs_sem);
443 this_dbs_info->enable = 0;
444 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
445 dbs_enable--;
447 * Stop the timerschedule work, when this governor
448 * is used for first time
450 if (dbs_enable == 0)
451 dbs_timer_exit();
453 up(&dbs_sem);
455 break;
457 case CPUFREQ_GOV_LIMITS:
458 down(&dbs_sem);
459 if (policy->max < this_dbs_info->cur_policy->cur)
460 __cpufreq_driver_target(
461 this_dbs_info->cur_policy,
462 policy->max, CPUFREQ_RELATION_H);
463 else if (policy->min > this_dbs_info->cur_policy->cur)
464 __cpufreq_driver_target(
465 this_dbs_info->cur_policy,
466 policy->min, CPUFREQ_RELATION_L);
467 up(&dbs_sem);
468 break;
470 return 0;
473 static struct cpufreq_governor cpufreq_gov_dbs = {
474 .name = "ondemand",
475 .governor = cpufreq_governor_dbs,
476 .owner = THIS_MODULE,
479 static int __init cpufreq_gov_dbs_init(void)
481 return cpufreq_register_governor(&cpufreq_gov_dbs);
484 static void __exit cpufreq_gov_dbs_exit(void)
486 /* Make sure that the scheduled work is indeed not running */
487 flush_scheduled_work();
489 cpufreq_unregister_governor(&cpufreq_gov_dbs);
493 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
494 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
495 "Low Latency Frequency Transition capable processors");
496 MODULE_LICENSE ("GPL");
498 module_init(cpufreq_gov_dbs_init);
499 module_exit(cpufreq_gov_dbs_exit);