[ARM] pxa: initial support for the Imote2 platform
[linux-2.6/linux-loongson.git] / drivers / net / e1000e / es2lan.c
blobda9c09c248ede89e2a9096d9919fff6bbe6a3860
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
39 #include "e1000.h"
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
44 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
47 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
48 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
50 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
51 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
52 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
54 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
55 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
57 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
58 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
60 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
61 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
62 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
63 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
64 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
65 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
67 /* PHY Specific Control Register 2 (Page 0, Register 26) */
68 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
69 /* 1=Reverse Auto-Negotiation */
71 /* MAC Specific Control Register (Page 2, Register 21) */
72 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
73 #define GG82563_MSCR_TX_CLK_MASK 0x0007
74 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
75 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
76 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
78 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
80 /* DSP Distance Register (Page 5, Register 26) */
81 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
82 1 = 50-80M
83 2 = 80-110M
84 3 = 110-140M
85 4 = >140M */
87 /* Kumeran Mode Control Register (Page 193, Register 16) */
88 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
90 /* Max number of times Kumeran read/write should be validated */
91 #define GG82563_MAX_KMRN_RETRY 0x5
93 /* Power Management Control Register (Page 193, Register 20) */
94 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
95 /* 1=Enable SERDES Electrical Idle */
97 /* In-Band Control Register (Page 194, Register 18) */
98 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
101 * A table for the GG82563 cable length where the range is defined
102 * with a lower bound at "index" and the upper bound at
103 * "index + 5".
105 static const u16 e1000_gg82563_cable_length_table[] =
106 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
117 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
118 * @hw: pointer to the HW structure
120 * This is a function pointer entry point called by the api module.
122 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
124 struct e1000_phy_info *phy = &hw->phy;
125 s32 ret_val;
127 if (hw->phy.media_type != e1000_media_type_copper) {
128 phy->type = e1000_phy_none;
129 return 0;
132 phy->addr = 1;
133 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
134 phy->reset_delay_us = 100;
135 phy->type = e1000_phy_gg82563;
137 /* This can only be done after all function pointers are setup. */
138 ret_val = e1000e_get_phy_id(hw);
140 /* Verify phy id */
141 if (phy->id != GG82563_E_PHY_ID)
142 return -E1000_ERR_PHY;
144 return ret_val;
148 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
149 * @hw: pointer to the HW structure
151 * This is a function pointer entry point called by the api module.
153 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
155 struct e1000_nvm_info *nvm = &hw->nvm;
156 u32 eecd = er32(EECD);
157 u16 size;
159 nvm->opcode_bits = 8;
160 nvm->delay_usec = 1;
161 switch (nvm->override) {
162 case e1000_nvm_override_spi_large:
163 nvm->page_size = 32;
164 nvm->address_bits = 16;
165 break;
166 case e1000_nvm_override_spi_small:
167 nvm->page_size = 8;
168 nvm->address_bits = 8;
169 break;
170 default:
171 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
172 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
173 break;
176 nvm->type = e1000_nvm_eeprom_spi;
178 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179 E1000_EECD_SIZE_EX_SHIFT);
182 * Added to a constant, "size" becomes the left-shift value
183 * for setting word_size.
185 size += NVM_WORD_SIZE_BASE_SHIFT;
187 /* EEPROM access above 16k is unsupported */
188 if (size > 14)
189 size = 14;
190 nvm->word_size = 1 << size;
192 return 0;
196 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
197 * @hw: pointer to the HW structure
199 * This is a function pointer entry point called by the api module.
201 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
203 struct e1000_hw *hw = &adapter->hw;
204 struct e1000_mac_info *mac = &hw->mac;
205 struct e1000_mac_operations *func = &mac->ops;
207 /* Set media type */
208 switch (adapter->pdev->device) {
209 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
210 hw->phy.media_type = e1000_media_type_internal_serdes;
211 break;
212 default:
213 hw->phy.media_type = e1000_media_type_copper;
214 break;
217 /* Set mta register count */
218 mac->mta_reg_count = 128;
219 /* Set rar entry count */
220 mac->rar_entry_count = E1000_RAR_ENTRIES;
221 /* Set if manageability features are enabled. */
222 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
224 /* check for link */
225 switch (hw->phy.media_type) {
226 case e1000_media_type_copper:
227 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
228 func->check_for_link = e1000e_check_for_copper_link;
229 break;
230 case e1000_media_type_fiber:
231 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
232 func->check_for_link = e1000e_check_for_fiber_link;
233 break;
234 case e1000_media_type_internal_serdes:
235 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
236 func->check_for_link = e1000e_check_for_serdes_link;
237 break;
238 default:
239 return -E1000_ERR_CONFIG;
240 break;
243 return 0;
246 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
248 struct e1000_hw *hw = &adapter->hw;
249 s32 rc;
251 rc = e1000_init_mac_params_80003es2lan(adapter);
252 if (rc)
253 return rc;
255 rc = e1000_init_nvm_params_80003es2lan(hw);
256 if (rc)
257 return rc;
259 rc = e1000_init_phy_params_80003es2lan(hw);
260 if (rc)
261 return rc;
263 return 0;
267 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
268 * @hw: pointer to the HW structure
270 * A wrapper to acquire access rights to the correct PHY. This is a
271 * function pointer entry point called by the api module.
273 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
275 u16 mask;
277 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
278 mask |= E1000_SWFW_CSR_SM;
280 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
284 * e1000_release_phy_80003es2lan - Release rights to access PHY
285 * @hw: pointer to the HW structure
287 * A wrapper to release access rights to the correct PHY. This is a
288 * function pointer entry point called by the api module.
290 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
292 u16 mask;
294 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
295 mask |= E1000_SWFW_CSR_SM;
297 e1000_release_swfw_sync_80003es2lan(hw, mask);
301 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
302 * @hw: pointer to the HW structure
304 * Acquire the semaphore to access the EEPROM. This is a function
305 * pointer entry point called by the api module.
307 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
309 s32 ret_val;
311 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
312 if (ret_val)
313 return ret_val;
315 ret_val = e1000e_acquire_nvm(hw);
317 if (ret_val)
318 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
320 return ret_val;
324 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
325 * @hw: pointer to the HW structure
327 * Release the semaphore used to access the EEPROM. This is a
328 * function pointer entry point called by the api module.
330 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
332 e1000e_release_nvm(hw);
333 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
337 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
338 * @hw: pointer to the HW structure
339 * @mask: specifies which semaphore to acquire
341 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
342 * will also specify which port we're acquiring the lock for.
344 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
346 u32 swfw_sync;
347 u32 swmask = mask;
348 u32 fwmask = mask << 16;
349 s32 i = 0;
350 s32 timeout = 200;
352 while (i < timeout) {
353 if (e1000e_get_hw_semaphore(hw))
354 return -E1000_ERR_SWFW_SYNC;
356 swfw_sync = er32(SW_FW_SYNC);
357 if (!(swfw_sync & (fwmask | swmask)))
358 break;
361 * Firmware currently using resource (fwmask)
362 * or other software thread using resource (swmask)
364 e1000e_put_hw_semaphore(hw);
365 mdelay(5);
366 i++;
369 if (i == timeout) {
370 hw_dbg(hw,
371 "Driver can't access resource, SW_FW_SYNC timeout.\n");
372 return -E1000_ERR_SWFW_SYNC;
375 swfw_sync |= swmask;
376 ew32(SW_FW_SYNC, swfw_sync);
378 e1000e_put_hw_semaphore(hw);
380 return 0;
384 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
385 * @hw: pointer to the HW structure
386 * @mask: specifies which semaphore to acquire
388 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
389 * will also specify which port we're releasing the lock for.
391 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
393 u32 swfw_sync;
395 while (e1000e_get_hw_semaphore(hw) != 0);
396 /* Empty */
398 swfw_sync = er32(SW_FW_SYNC);
399 swfw_sync &= ~mask;
400 ew32(SW_FW_SYNC, swfw_sync);
402 e1000e_put_hw_semaphore(hw);
406 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
407 * @hw: pointer to the HW structure
408 * @offset: offset of the register to read
409 * @data: pointer to the data returned from the operation
411 * Read the GG82563 PHY register. This is a function pointer entry
412 * point called by the api module.
414 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
415 u32 offset, u16 *data)
417 s32 ret_val;
418 u32 page_select;
419 u16 temp;
421 ret_val = e1000_acquire_phy_80003es2lan(hw);
422 if (ret_val)
423 return ret_val;
425 /* Select Configuration Page */
426 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
427 page_select = GG82563_PHY_PAGE_SELECT;
428 } else {
430 * Use Alternative Page Select register to access
431 * registers 30 and 31
433 page_select = GG82563_PHY_PAGE_SELECT_ALT;
436 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
437 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
438 if (ret_val) {
439 e1000_release_phy_80003es2lan(hw);
440 return ret_val;
444 * The "ready" bit in the MDIC register may be incorrectly set
445 * before the device has completed the "Page Select" MDI
446 * transaction. So we wait 200us after each MDI command...
448 udelay(200);
450 /* ...and verify the command was successful. */
451 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
453 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
454 ret_val = -E1000_ERR_PHY;
455 e1000_release_phy_80003es2lan(hw);
456 return ret_val;
459 udelay(200);
461 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
462 data);
464 udelay(200);
465 e1000_release_phy_80003es2lan(hw);
467 return ret_val;
471 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
472 * @hw: pointer to the HW structure
473 * @offset: offset of the register to read
474 * @data: value to write to the register
476 * Write to the GG82563 PHY register. This is a function pointer entry
477 * point called by the api module.
479 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
480 u32 offset, u16 data)
482 s32 ret_val;
483 u32 page_select;
484 u16 temp;
486 ret_val = e1000_acquire_phy_80003es2lan(hw);
487 if (ret_val)
488 return ret_val;
490 /* Select Configuration Page */
491 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
492 page_select = GG82563_PHY_PAGE_SELECT;
493 } else {
495 * Use Alternative Page Select register to access
496 * registers 30 and 31
498 page_select = GG82563_PHY_PAGE_SELECT_ALT;
501 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
502 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
503 if (ret_val) {
504 e1000_release_phy_80003es2lan(hw);
505 return ret_val;
510 * The "ready" bit in the MDIC register may be incorrectly set
511 * before the device has completed the "Page Select" MDI
512 * transaction. So we wait 200us after each MDI command...
514 udelay(200);
516 /* ...and verify the command was successful. */
517 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
519 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
520 e1000_release_phy_80003es2lan(hw);
521 return -E1000_ERR_PHY;
524 udelay(200);
526 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
527 data);
529 udelay(200);
530 e1000_release_phy_80003es2lan(hw);
532 return ret_val;
536 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
537 * @hw: pointer to the HW structure
538 * @offset: offset of the register to read
539 * @words: number of words to write
540 * @data: buffer of data to write to the NVM
542 * Write "words" of data to the ESB2 NVM. This is a function
543 * pointer entry point called by the api module.
545 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
546 u16 words, u16 *data)
548 return e1000e_write_nvm_spi(hw, offset, words, data);
552 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
553 * @hw: pointer to the HW structure
555 * Wait a specific amount of time for manageability processes to complete.
556 * This is a function pointer entry point called by the phy module.
558 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
560 s32 timeout = PHY_CFG_TIMEOUT;
561 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
563 if (hw->bus.func == 1)
564 mask = E1000_NVM_CFG_DONE_PORT_1;
566 while (timeout) {
567 if (er32(EEMNGCTL) & mask)
568 break;
569 msleep(1);
570 timeout--;
572 if (!timeout) {
573 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
574 return -E1000_ERR_RESET;
577 return 0;
581 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
582 * @hw: pointer to the HW structure
584 * Force the speed and duplex settings onto the PHY. This is a
585 * function pointer entry point called by the phy module.
587 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
589 s32 ret_val;
590 u16 phy_data;
591 bool link;
594 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
595 * forced whenever speed and duplex are forced.
597 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
598 if (ret_val)
599 return ret_val;
601 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
602 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
603 if (ret_val)
604 return ret_val;
606 hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
608 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
609 if (ret_val)
610 return ret_val;
612 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
614 /* Reset the phy to commit changes. */
615 phy_data |= MII_CR_RESET;
617 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
618 if (ret_val)
619 return ret_val;
621 udelay(1);
623 if (hw->phy.autoneg_wait_to_complete) {
624 hw_dbg(hw, "Waiting for forced speed/duplex link "
625 "on GG82563 phy.\n");
627 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
628 100000, &link);
629 if (ret_val)
630 return ret_val;
632 if (!link) {
634 * We didn't get link.
635 * Reset the DSP and cross our fingers.
637 ret_val = e1000e_phy_reset_dsp(hw);
638 if (ret_val)
639 return ret_val;
642 /* Try once more */
643 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
644 100000, &link);
645 if (ret_val)
646 return ret_val;
649 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
650 if (ret_val)
651 return ret_val;
654 * Resetting the phy means we need to verify the TX_CLK corresponds
655 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
657 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
658 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
659 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
660 else
661 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
664 * In addition, we must re-enable CRS on Tx for both half and full
665 * duplex.
667 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
668 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
670 return ret_val;
674 * e1000_get_cable_length_80003es2lan - Set approximate cable length
675 * @hw: pointer to the HW structure
677 * Find the approximate cable length as measured by the GG82563 PHY.
678 * This is a function pointer entry point called by the phy module.
680 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
682 struct e1000_phy_info *phy = &hw->phy;
683 s32 ret_val;
684 u16 phy_data;
685 u16 index;
687 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
688 if (ret_val)
689 return ret_val;
691 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
692 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
693 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
695 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
697 return 0;
701 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
702 * @hw: pointer to the HW structure
703 * @speed: pointer to speed buffer
704 * @duplex: pointer to duplex buffer
706 * Retrieve the current speed and duplex configuration.
707 * This is a function pointer entry point called by the api module.
709 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
710 u16 *duplex)
712 s32 ret_val;
714 if (hw->phy.media_type == e1000_media_type_copper) {
715 ret_val = e1000e_get_speed_and_duplex_copper(hw,
716 speed,
717 duplex);
718 if (ret_val)
719 return ret_val;
720 if (*speed == SPEED_1000)
721 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
722 else
723 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
724 *duplex);
725 } else {
726 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
727 speed,
728 duplex);
731 return ret_val;
735 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
736 * @hw: pointer to the HW structure
738 * Perform a global reset to the ESB2 controller.
739 * This is a function pointer entry point called by the api module.
741 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
743 u32 ctrl;
744 u32 icr;
745 s32 ret_val;
748 * Prevent the PCI-E bus from sticking if there is no TLP connection
749 * on the last TLP read/write transaction when MAC is reset.
751 ret_val = e1000e_disable_pcie_master(hw);
752 if (ret_val)
753 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
755 hw_dbg(hw, "Masking off all interrupts\n");
756 ew32(IMC, 0xffffffff);
758 ew32(RCTL, 0);
759 ew32(TCTL, E1000_TCTL_PSP);
760 e1e_flush();
762 msleep(10);
764 ctrl = er32(CTRL);
766 hw_dbg(hw, "Issuing a global reset to MAC\n");
767 ew32(CTRL, ctrl | E1000_CTRL_RST);
769 ret_val = e1000e_get_auto_rd_done(hw);
770 if (ret_val)
771 /* We don't want to continue accessing MAC registers. */
772 return ret_val;
774 /* Clear any pending interrupt events. */
775 ew32(IMC, 0xffffffff);
776 icr = er32(ICR);
778 return 0;
782 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
783 * @hw: pointer to the HW structure
785 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
786 * This is a function pointer entry point called by the api module.
788 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
790 struct e1000_mac_info *mac = &hw->mac;
791 u32 reg_data;
792 s32 ret_val;
793 u16 i;
795 e1000_initialize_hw_bits_80003es2lan(hw);
797 /* Initialize identification LED */
798 ret_val = e1000e_id_led_init(hw);
799 if (ret_val) {
800 hw_dbg(hw, "Error initializing identification LED\n");
801 return ret_val;
804 /* Disabling VLAN filtering */
805 hw_dbg(hw, "Initializing the IEEE VLAN\n");
806 e1000e_clear_vfta(hw);
808 /* Setup the receive address. */
809 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
811 /* Zero out the Multicast HASH table */
812 hw_dbg(hw, "Zeroing the MTA\n");
813 for (i = 0; i < mac->mta_reg_count; i++)
814 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
816 /* Setup link and flow control */
817 ret_val = e1000e_setup_link(hw);
819 /* Set the transmit descriptor write-back policy */
820 reg_data = er32(TXDCTL(0));
821 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
822 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
823 ew32(TXDCTL(0), reg_data);
825 /* ...for both queues. */
826 reg_data = er32(TXDCTL(1));
827 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
828 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
829 ew32(TXDCTL(1), reg_data);
831 /* Enable retransmit on late collisions */
832 reg_data = er32(TCTL);
833 reg_data |= E1000_TCTL_RTLC;
834 ew32(TCTL, reg_data);
836 /* Configure Gigabit Carry Extend Padding */
837 reg_data = er32(TCTL_EXT);
838 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
839 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
840 ew32(TCTL_EXT, reg_data);
842 /* Configure Transmit Inter-Packet Gap */
843 reg_data = er32(TIPG);
844 reg_data &= ~E1000_TIPG_IPGT_MASK;
845 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
846 ew32(TIPG, reg_data);
848 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
849 reg_data &= ~0x00100000;
850 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
853 * Clear all of the statistics registers (clear on read). It is
854 * important that we do this after we have tried to establish link
855 * because the symbol error count will increment wildly if there
856 * is no link.
858 e1000_clear_hw_cntrs_80003es2lan(hw);
860 return ret_val;
864 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
865 * @hw: pointer to the HW structure
867 * Initializes required hardware-dependent bits needed for normal operation.
869 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
871 u32 reg;
873 /* Transmit Descriptor Control 0 */
874 reg = er32(TXDCTL(0));
875 reg |= (1 << 22);
876 ew32(TXDCTL(0), reg);
878 /* Transmit Descriptor Control 1 */
879 reg = er32(TXDCTL(1));
880 reg |= (1 << 22);
881 ew32(TXDCTL(1), reg);
883 /* Transmit Arbitration Control 0 */
884 reg = er32(TARC(0));
885 reg &= ~(0xF << 27); /* 30:27 */
886 if (hw->phy.media_type != e1000_media_type_copper)
887 reg &= ~(1 << 20);
888 ew32(TARC(0), reg);
890 /* Transmit Arbitration Control 1 */
891 reg = er32(TARC(1));
892 if (er32(TCTL) & E1000_TCTL_MULR)
893 reg &= ~(1 << 28);
894 else
895 reg |= (1 << 28);
896 ew32(TARC(1), reg);
900 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
901 * @hw: pointer to the HW structure
903 * Setup some GG82563 PHY registers for obtaining link
905 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
907 struct e1000_phy_info *phy = &hw->phy;
908 s32 ret_val;
909 u32 ctrl_ext;
910 u32 i = 0;
911 u16 data, data2;
913 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
914 if (ret_val)
915 return ret_val;
917 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
918 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
919 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
921 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
922 if (ret_val)
923 return ret_val;
926 * Options:
927 * MDI/MDI-X = 0 (default)
928 * 0 - Auto for all speeds
929 * 1 - MDI mode
930 * 2 - MDI-X mode
931 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
933 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
934 if (ret_val)
935 return ret_val;
937 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
939 switch (phy->mdix) {
940 case 1:
941 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
942 break;
943 case 2:
944 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
945 break;
946 case 0:
947 default:
948 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
949 break;
953 * Options:
954 * disable_polarity_correction = 0 (default)
955 * Automatic Correction for Reversed Cable Polarity
956 * 0 - Disabled
957 * 1 - Enabled
959 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
960 if (phy->disable_polarity_correction)
961 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
963 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
964 if (ret_val)
965 return ret_val;
967 /* SW Reset the PHY so all changes take effect */
968 ret_val = e1000e_commit_phy(hw);
969 if (ret_val) {
970 hw_dbg(hw, "Error Resetting the PHY\n");
971 return ret_val;
974 /* Bypass Rx and Tx FIFO's */
975 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
976 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
977 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
978 if (ret_val)
979 return ret_val;
981 ret_val = e1000e_read_kmrn_reg(hw,
982 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
983 &data);
984 if (ret_val)
985 return ret_val;
986 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
987 ret_val = e1000e_write_kmrn_reg(hw,
988 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
989 data);
990 if (ret_val)
991 return ret_val;
993 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
994 if (ret_val)
995 return ret_val;
997 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
998 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
999 if (ret_val)
1000 return ret_val;
1002 ctrl_ext = er32(CTRL_EXT);
1003 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1004 ew32(CTRL_EXT, ctrl_ext);
1006 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1007 if (ret_val)
1008 return ret_val;
1011 * Do not init these registers when the HW is in IAMT mode, since the
1012 * firmware will have already initialized them. We only initialize
1013 * them if the HW is not in IAMT mode.
1015 if (!e1000e_check_mng_mode(hw)) {
1016 /* Enable Electrical Idle on the PHY */
1017 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1018 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1019 if (ret_val)
1020 return ret_val;
1022 do {
1023 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL,
1024 &data);
1025 if (ret_val)
1026 return ret_val;
1028 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL,
1029 &data2);
1030 if (ret_val)
1031 return ret_val;
1032 i++;
1033 } while ((data != data2) && (i < GG82563_MAX_KMRN_RETRY));
1035 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1036 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1037 if (ret_val)
1038 return ret_val;
1042 * Workaround: Disable padding in Kumeran interface in the MAC
1043 * and in the PHY to avoid CRC errors.
1045 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1046 if (ret_val)
1047 return ret_val;
1049 data |= GG82563_ICR_DIS_PADDING;
1050 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1051 if (ret_val)
1052 return ret_val;
1054 return 0;
1058 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1059 * @hw: pointer to the HW structure
1061 * Essentially a wrapper for setting up all things "copper" related.
1062 * This is a function pointer entry point called by the mac module.
1064 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1066 u32 ctrl;
1067 s32 ret_val;
1068 u16 reg_data;
1070 ctrl = er32(CTRL);
1071 ctrl |= E1000_CTRL_SLU;
1072 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1073 ew32(CTRL, ctrl);
1076 * Set the mac to wait the maximum time between each
1077 * iteration and increase the max iterations when
1078 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1080 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1081 if (ret_val)
1082 return ret_val;
1083 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1084 if (ret_val)
1085 return ret_val;
1086 reg_data |= 0x3F;
1087 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1088 if (ret_val)
1089 return ret_val;
1090 ret_val = e1000e_read_kmrn_reg(hw,
1091 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1092 &reg_data);
1093 if (ret_val)
1094 return ret_val;
1095 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1096 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1097 reg_data);
1098 if (ret_val)
1099 return ret_val;
1101 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1102 if (ret_val)
1103 return ret_val;
1105 ret_val = e1000e_setup_copper_link(hw);
1107 return 0;
1111 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1112 * @hw: pointer to the HW structure
1113 * @duplex: current duplex setting
1115 * Configure the KMRN interface by applying last minute quirks for
1116 * 10/100 operation.
1118 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1120 s32 ret_val;
1121 u32 tipg;
1122 u32 i = 0;
1123 u16 reg_data, reg_data2;
1125 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1126 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1127 reg_data);
1128 if (ret_val)
1129 return ret_val;
1131 /* Configure Transmit Inter-Packet Gap */
1132 tipg = er32(TIPG);
1133 tipg &= ~E1000_TIPG_IPGT_MASK;
1134 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1135 ew32(TIPG, tipg);
1137 do {
1138 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1139 if (ret_val)
1140 return ret_val;
1142 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1143 if (ret_val)
1144 return ret_val;
1145 i++;
1146 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1148 if (duplex == HALF_DUPLEX)
1149 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1150 else
1151 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1153 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1155 return 0;
1159 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1160 * @hw: pointer to the HW structure
1162 * Configure the KMRN interface by applying last minute quirks for
1163 * gigabit operation.
1165 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1167 s32 ret_val;
1168 u16 reg_data, reg_data2;
1169 u32 tipg;
1170 u32 i = 0;
1172 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1173 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1174 reg_data);
1175 if (ret_val)
1176 return ret_val;
1178 /* Configure Transmit Inter-Packet Gap */
1179 tipg = er32(TIPG);
1180 tipg &= ~E1000_TIPG_IPGT_MASK;
1181 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1182 ew32(TIPG, tipg);
1184 do {
1185 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1186 if (ret_val)
1187 return ret_val;
1189 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1190 if (ret_val)
1191 return ret_val;
1192 i++;
1193 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1195 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1196 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1198 return ret_val;
1202 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1203 * @hw: pointer to the HW structure
1205 * Clears the hardware counters by reading the counter registers.
1207 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1209 u32 temp;
1211 e1000e_clear_hw_cntrs_base(hw);
1213 temp = er32(PRC64);
1214 temp = er32(PRC127);
1215 temp = er32(PRC255);
1216 temp = er32(PRC511);
1217 temp = er32(PRC1023);
1218 temp = er32(PRC1522);
1219 temp = er32(PTC64);
1220 temp = er32(PTC127);
1221 temp = er32(PTC255);
1222 temp = er32(PTC511);
1223 temp = er32(PTC1023);
1224 temp = er32(PTC1522);
1226 temp = er32(ALGNERRC);
1227 temp = er32(RXERRC);
1228 temp = er32(TNCRS);
1229 temp = er32(CEXTERR);
1230 temp = er32(TSCTC);
1231 temp = er32(TSCTFC);
1233 temp = er32(MGTPRC);
1234 temp = er32(MGTPDC);
1235 temp = er32(MGTPTC);
1237 temp = er32(IAC);
1238 temp = er32(ICRXOC);
1240 temp = er32(ICRXPTC);
1241 temp = er32(ICRXATC);
1242 temp = er32(ICTXPTC);
1243 temp = er32(ICTXATC);
1244 temp = er32(ICTXQEC);
1245 temp = er32(ICTXQMTC);
1246 temp = er32(ICRXDMTC);
1249 static struct e1000_mac_operations es2_mac_ops = {
1250 .check_mng_mode = e1000e_check_mng_mode_generic,
1251 /* check_for_link dependent on media type */
1252 .cleanup_led = e1000e_cleanup_led_generic,
1253 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1254 .get_bus_info = e1000e_get_bus_info_pcie,
1255 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1256 .led_on = e1000e_led_on_generic,
1257 .led_off = e1000e_led_off_generic,
1258 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1259 .reset_hw = e1000_reset_hw_80003es2lan,
1260 .init_hw = e1000_init_hw_80003es2lan,
1261 .setup_link = e1000e_setup_link,
1262 /* setup_physical_interface dependent on media type */
1265 static struct e1000_phy_operations es2_phy_ops = {
1266 .acquire_phy = e1000_acquire_phy_80003es2lan,
1267 .check_reset_block = e1000e_check_reset_block_generic,
1268 .commit_phy = e1000e_phy_sw_reset,
1269 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1270 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1271 .get_cable_length = e1000_get_cable_length_80003es2lan,
1272 .get_phy_info = e1000e_get_phy_info_m88,
1273 .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1274 .release_phy = e1000_release_phy_80003es2lan,
1275 .reset_phy = e1000e_phy_hw_reset_generic,
1276 .set_d0_lplu_state = NULL,
1277 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1278 .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1281 static struct e1000_nvm_operations es2_nvm_ops = {
1282 .acquire_nvm = e1000_acquire_nvm_80003es2lan,
1283 .read_nvm = e1000e_read_nvm_eerd,
1284 .release_nvm = e1000_release_nvm_80003es2lan,
1285 .update_nvm = e1000e_update_nvm_checksum_generic,
1286 .valid_led_default = e1000e_valid_led_default,
1287 .validate_nvm = e1000e_validate_nvm_checksum_generic,
1288 .write_nvm = e1000_write_nvm_80003es2lan,
1291 struct e1000_info e1000_es2_info = {
1292 .mac = e1000_80003es2lan,
1293 .flags = FLAG_HAS_HW_VLAN_FILTER
1294 | FLAG_HAS_JUMBO_FRAMES
1295 | FLAG_HAS_WOL
1296 | FLAG_APME_IN_CTRL3
1297 | FLAG_RX_CSUM_ENABLED
1298 | FLAG_HAS_CTRLEXT_ON_LOAD
1299 | FLAG_RX_NEEDS_RESTART /* errata */
1300 | FLAG_TARC_SET_BIT_ZERO /* errata */
1301 | FLAG_APME_CHECK_PORT_B
1302 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1303 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1304 .pba = 38,
1305 .get_variants = e1000_get_variants_80003es2lan,
1306 .mac_ops = &es2_mac_ops,
1307 .phy_ops = &es2_phy_ops,
1308 .nvm_ops = &es2_nvm_ops,