[PATCH] sysctl: x25: remove unnecessary insert_at_head from register_sysctl_table
[linux-2.6/linux-loongson.git] / drivers / acpi / processor_idle.c
blob6c6751b1405be5d7547a0e7f9010bc7dbaa82593
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
46 #include <acpi/acpi_bus.h>
47 #include <acpi/processor.h>
49 #define ACPI_PROCESSOR_COMPONENT 0x01000000
50 #define ACPI_PROCESSOR_CLASS "processor"
51 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
52 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
53 ACPI_MODULE_NAME("acpi_processor")
54 #define ACPI_PROCESSOR_FILE_POWER "power"
55 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
56 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
58 static void (*pm_idle_save) (void) __read_mostly;
59 module_param(max_cstate, uint, 0644);
61 static unsigned int nocst __read_mostly;
62 module_param(nocst, uint, 0000);
65 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
66 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
67 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
68 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
69 * reduce history for more aggressive entry into C3
71 static unsigned int bm_history __read_mostly =
72 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
73 module_param(bm_history, uint, 0644);
74 /* --------------------------------------------------------------------------
75 Power Management
76 -------------------------------------------------------------------------- */
79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80 * For now disable this. Probably a bug somewhere else.
82 * To skip this limit, boot/load with a large max_cstate limit.
84 static int set_max_cstate(struct dmi_system_id *id)
86 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 return 0;
89 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
90 " Override with \"processor.max_cstate=%d\"\n", id->ident,
91 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
93 max_cstate = (long)id->driver_data;
95 return 0;
98 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
99 callers to only run once -AK */
100 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
101 { set_max_cstate, "IBM ThinkPad R40e", {
102 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
103 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
104 { set_max_cstate, "IBM ThinkPad R40e", {
105 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
106 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
107 { set_max_cstate, "IBM ThinkPad R40e", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
109 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
110 { set_max_cstate, "IBM ThinkPad R40e", {
111 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
112 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
113 { set_max_cstate, "IBM ThinkPad R40e", {
114 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
115 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
116 { set_max_cstate, "IBM ThinkPad R40e", {
117 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
118 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
119 { set_max_cstate, "IBM ThinkPad R40e", {
120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
143 { set_max_cstate, "IBM ThinkPad R40e", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
146 { set_max_cstate, "IBM ThinkPad R40e", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
149 { set_max_cstate, "Medion 41700", {
150 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
151 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
152 { set_max_cstate, "Clevo 5600D", {
153 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
154 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
155 (void *)2},
159 static inline u32 ticks_elapsed(u32 t1, u32 t2)
161 if (t2 >= t1)
162 return (t2 - t1);
163 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
164 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
165 else
166 return ((0xFFFFFFFF - t1) + t2);
169 static void
170 acpi_processor_power_activate(struct acpi_processor *pr,
171 struct acpi_processor_cx *new)
173 struct acpi_processor_cx *old;
175 if (!pr || !new)
176 return;
178 old = pr->power.state;
180 if (old)
181 old->promotion.count = 0;
182 new->demotion.count = 0;
184 /* Cleanup from old state. */
185 if (old) {
186 switch (old->type) {
187 case ACPI_STATE_C3:
188 /* Disable bus master reload */
189 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
190 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
191 break;
195 /* Prepare to use new state. */
196 switch (new->type) {
197 case ACPI_STATE_C3:
198 /* Enable bus master reload */
199 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
200 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
201 break;
204 pr->power.state = new;
206 return;
209 static void acpi_safe_halt(void)
211 current_thread_info()->status &= ~TS_POLLING;
213 * TS_POLLING-cleared state must be visible before we
214 * test NEED_RESCHED:
216 smp_mb();
217 if (!need_resched())
218 safe_halt();
219 current_thread_info()->status |= TS_POLLING;
222 static atomic_t c3_cpu_count;
224 /* Common C-state entry for C2, C3, .. */
225 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
227 if (cstate->space_id == ACPI_CSTATE_FFH) {
228 /* Call into architectural FFH based C-state */
229 acpi_processor_ffh_cstate_enter(cstate);
230 } else {
231 int unused;
232 /* IO port based C-state */
233 inb(cstate->address);
234 /* Dummy wait op - must do something useless after P_LVL2 read
235 because chipsets cannot guarantee that STPCLK# signal
236 gets asserted in time to freeze execution properly. */
237 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
241 static void acpi_processor_idle(void)
243 struct acpi_processor *pr = NULL;
244 struct acpi_processor_cx *cx = NULL;
245 struct acpi_processor_cx *next_state = NULL;
246 int sleep_ticks = 0;
247 u32 t1, t2 = 0;
249 pr = processors[smp_processor_id()];
250 if (!pr)
251 return;
254 * Interrupts must be disabled during bus mastering calculations and
255 * for C2/C3 transitions.
257 local_irq_disable();
260 * Check whether we truly need to go idle, or should
261 * reschedule:
263 if (unlikely(need_resched())) {
264 local_irq_enable();
265 return;
268 cx = pr->power.state;
269 if (!cx) {
270 if (pm_idle_save)
271 pm_idle_save();
272 else
273 acpi_safe_halt();
274 return;
278 * Check BM Activity
279 * -----------------
280 * Check for bus mastering activity (if required), record, and check
281 * for demotion.
283 if (pr->flags.bm_check) {
284 u32 bm_status = 0;
285 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
287 if (diff > 31)
288 diff = 31;
290 pr->power.bm_activity <<= diff;
292 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
293 if (bm_status) {
294 pr->power.bm_activity |= 0x1;
295 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
298 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
299 * the true state of bus mastering activity; forcing us to
300 * manually check the BMIDEA bit of each IDE channel.
302 else if (errata.piix4.bmisx) {
303 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
304 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
305 pr->power.bm_activity |= 0x1;
308 pr->power.bm_check_timestamp = jiffies;
311 * If bus mastering is or was active this jiffy, demote
312 * to avoid a faulty transition. Note that the processor
313 * won't enter a low-power state during this call (to this
314 * function) but should upon the next.
316 * TBD: A better policy might be to fallback to the demotion
317 * state (use it for this quantum only) istead of
318 * demoting -- and rely on duration as our sole demotion
319 * qualification. This may, however, introduce DMA
320 * issues (e.g. floppy DMA transfer overrun/underrun).
322 if ((pr->power.bm_activity & 0x1) &&
323 cx->demotion.threshold.bm) {
324 local_irq_enable();
325 next_state = cx->demotion.state;
326 goto end;
330 #ifdef CONFIG_HOTPLUG_CPU
332 * Check for P_LVL2_UP flag before entering C2 and above on
333 * an SMP system. We do it here instead of doing it at _CST/P_LVL
334 * detection phase, to work cleanly with logical CPU hotplug.
336 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
337 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
338 cx = &pr->power.states[ACPI_STATE_C1];
339 #endif
342 * Sleep:
343 * ------
344 * Invoke the current Cx state to put the processor to sleep.
346 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
347 current_thread_info()->status &= ~TS_POLLING;
349 * TS_POLLING-cleared state must be visible before we
350 * test NEED_RESCHED:
352 smp_mb();
353 if (need_resched()) {
354 current_thread_info()->status |= TS_POLLING;
355 local_irq_enable();
356 return;
360 switch (cx->type) {
362 case ACPI_STATE_C1:
364 * Invoke C1.
365 * Use the appropriate idle routine, the one that would
366 * be used without acpi C-states.
368 if (pm_idle_save)
369 pm_idle_save();
370 else
371 acpi_safe_halt();
374 * TBD: Can't get time duration while in C1, as resumes
375 * go to an ISR rather than here. Need to instrument
376 * base interrupt handler.
378 sleep_ticks = 0xFFFFFFFF;
379 break;
381 case ACPI_STATE_C2:
382 /* Get start time (ticks) */
383 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
384 /* Invoke C2 */
385 acpi_cstate_enter(cx);
386 /* Get end time (ticks) */
387 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
389 #ifdef CONFIG_GENERIC_TIME
390 /* TSC halts in C2, so notify users */
391 mark_tsc_unstable();
392 #endif
393 /* Re-enable interrupts */
394 local_irq_enable();
395 current_thread_info()->status |= TS_POLLING;
396 /* Compute time (ticks) that we were actually asleep */
397 sleep_ticks =
398 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
399 break;
401 case ACPI_STATE_C3:
403 if (pr->flags.bm_check) {
404 if (atomic_inc_return(&c3_cpu_count) ==
405 num_online_cpus()) {
407 * All CPUs are trying to go to C3
408 * Disable bus master arbitration
410 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
412 } else {
413 /* SMP with no shared cache... Invalidate cache */
414 ACPI_FLUSH_CPU_CACHE();
417 /* Get start time (ticks) */
418 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
419 /* Invoke C3 */
420 acpi_cstate_enter(cx);
421 /* Get end time (ticks) */
422 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
423 if (pr->flags.bm_check) {
424 /* Enable bus master arbitration */
425 atomic_dec(&c3_cpu_count);
426 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
429 #ifdef CONFIG_GENERIC_TIME
430 /* TSC halts in C3, so notify users */
431 mark_tsc_unstable();
432 #endif
433 /* Re-enable interrupts */
434 local_irq_enable();
435 current_thread_info()->status |= TS_POLLING;
436 /* Compute time (ticks) that we were actually asleep */
437 sleep_ticks =
438 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
439 break;
441 default:
442 local_irq_enable();
443 return;
445 cx->usage++;
446 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
447 cx->time += sleep_ticks;
449 next_state = pr->power.state;
451 #ifdef CONFIG_HOTPLUG_CPU
452 /* Don't do promotion/demotion */
453 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
454 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
455 next_state = cx;
456 goto end;
458 #endif
461 * Promotion?
462 * ----------
463 * Track the number of longs (time asleep is greater than threshold)
464 * and promote when the count threshold is reached. Note that bus
465 * mastering activity may prevent promotions.
466 * Do not promote above max_cstate.
468 if (cx->promotion.state &&
469 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
470 if (sleep_ticks > cx->promotion.threshold.ticks &&
471 cx->promotion.state->latency <= system_latency_constraint()) {
472 cx->promotion.count++;
473 cx->demotion.count = 0;
474 if (cx->promotion.count >=
475 cx->promotion.threshold.count) {
476 if (pr->flags.bm_check) {
477 if (!
478 (pr->power.bm_activity & cx->
479 promotion.threshold.bm)) {
480 next_state =
481 cx->promotion.state;
482 goto end;
484 } else {
485 next_state = cx->promotion.state;
486 goto end;
493 * Demotion?
494 * ---------
495 * Track the number of shorts (time asleep is less than time threshold)
496 * and demote when the usage threshold is reached.
498 if (cx->demotion.state) {
499 if (sleep_ticks < cx->demotion.threshold.ticks) {
500 cx->demotion.count++;
501 cx->promotion.count = 0;
502 if (cx->demotion.count >= cx->demotion.threshold.count) {
503 next_state = cx->demotion.state;
504 goto end;
509 end:
511 * Demote if current state exceeds max_cstate
512 * or if the latency of the current state is unacceptable
514 if ((pr->power.state - pr->power.states) > max_cstate ||
515 pr->power.state->latency > system_latency_constraint()) {
516 if (cx->demotion.state)
517 next_state = cx->demotion.state;
521 * New Cx State?
522 * -------------
523 * If we're going to start using a new Cx state we must clean up
524 * from the previous and prepare to use the new.
526 if (next_state != pr->power.state)
527 acpi_processor_power_activate(pr, next_state);
530 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
532 unsigned int i;
533 unsigned int state_is_set = 0;
534 struct acpi_processor_cx *lower = NULL;
535 struct acpi_processor_cx *higher = NULL;
536 struct acpi_processor_cx *cx;
539 if (!pr)
540 return -EINVAL;
543 * This function sets the default Cx state policy (OS idle handler).
544 * Our scheme is to promote quickly to C2 but more conservatively
545 * to C3. We're favoring C2 for its characteristics of low latency
546 * (quick response), good power savings, and ability to allow bus
547 * mastering activity. Note that the Cx state policy is completely
548 * customizable and can be altered dynamically.
551 /* startup state */
552 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
553 cx = &pr->power.states[i];
554 if (!cx->valid)
555 continue;
557 if (!state_is_set)
558 pr->power.state = cx;
559 state_is_set++;
560 break;
563 if (!state_is_set)
564 return -ENODEV;
566 /* demotion */
567 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
568 cx = &pr->power.states[i];
569 if (!cx->valid)
570 continue;
572 if (lower) {
573 cx->demotion.state = lower;
574 cx->demotion.threshold.ticks = cx->latency_ticks;
575 cx->demotion.threshold.count = 1;
576 if (cx->type == ACPI_STATE_C3)
577 cx->demotion.threshold.bm = bm_history;
580 lower = cx;
583 /* promotion */
584 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
585 cx = &pr->power.states[i];
586 if (!cx->valid)
587 continue;
589 if (higher) {
590 cx->promotion.state = higher;
591 cx->promotion.threshold.ticks = cx->latency_ticks;
592 if (cx->type >= ACPI_STATE_C2)
593 cx->promotion.threshold.count = 4;
594 else
595 cx->promotion.threshold.count = 10;
596 if (higher->type == ACPI_STATE_C3)
597 cx->promotion.threshold.bm = bm_history;
600 higher = cx;
603 return 0;
606 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
609 if (!pr)
610 return -EINVAL;
612 if (!pr->pblk)
613 return -ENODEV;
615 /* if info is obtained from pblk/fadt, type equals state */
616 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
617 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
619 #ifndef CONFIG_HOTPLUG_CPU
621 * Check for P_LVL2_UP flag before entering C2 and above on
622 * an SMP system.
624 if ((num_online_cpus() > 1) &&
625 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
626 return -ENODEV;
627 #endif
629 /* determine C2 and C3 address from pblk */
630 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
631 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
633 /* determine latencies from FADT */
634 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
635 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
637 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
638 "lvl2[0x%08x] lvl3[0x%08x]\n",
639 pr->power.states[ACPI_STATE_C2].address,
640 pr->power.states[ACPI_STATE_C3].address));
642 return 0;
645 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
647 if (!pr->power.states[ACPI_STATE_C1].valid) {
648 /* set the first C-State to C1 */
649 /* all processors need to support C1 */
650 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
651 pr->power.states[ACPI_STATE_C1].valid = 1;
653 /* the C0 state only exists as a filler in our array */
654 pr->power.states[ACPI_STATE_C0].valid = 1;
655 return 0;
658 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
660 acpi_status status = 0;
661 acpi_integer count;
662 int current_count;
663 int i;
664 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
665 union acpi_object *cst;
668 if (nocst)
669 return -ENODEV;
671 current_count = 0;
673 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
674 if (ACPI_FAILURE(status)) {
675 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
676 return -ENODEV;
679 cst = buffer.pointer;
681 /* There must be at least 2 elements */
682 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
683 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
684 status = -EFAULT;
685 goto end;
688 count = cst->package.elements[0].integer.value;
690 /* Validate number of power states. */
691 if (count < 1 || count != cst->package.count - 1) {
692 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
693 status = -EFAULT;
694 goto end;
697 /* Tell driver that at least _CST is supported. */
698 pr->flags.has_cst = 1;
700 for (i = 1; i <= count; i++) {
701 union acpi_object *element;
702 union acpi_object *obj;
703 struct acpi_power_register *reg;
704 struct acpi_processor_cx cx;
706 memset(&cx, 0, sizeof(cx));
708 element = &(cst->package.elements[i]);
709 if (element->type != ACPI_TYPE_PACKAGE)
710 continue;
712 if (element->package.count != 4)
713 continue;
715 obj = &(element->package.elements[0]);
717 if (obj->type != ACPI_TYPE_BUFFER)
718 continue;
720 reg = (struct acpi_power_register *)obj->buffer.pointer;
722 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
723 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
724 continue;
726 /* There should be an easy way to extract an integer... */
727 obj = &(element->package.elements[1]);
728 if (obj->type != ACPI_TYPE_INTEGER)
729 continue;
731 cx.type = obj->integer.value;
733 * Some buggy BIOSes won't list C1 in _CST -
734 * Let acpi_processor_get_power_info_default() handle them later
736 if (i == 1 && cx.type != ACPI_STATE_C1)
737 current_count++;
739 cx.address = reg->address;
740 cx.index = current_count + 1;
742 cx.space_id = ACPI_CSTATE_SYSTEMIO;
743 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
744 if (acpi_processor_ffh_cstate_probe
745 (pr->id, &cx, reg) == 0) {
746 cx.space_id = ACPI_CSTATE_FFH;
747 } else if (cx.type != ACPI_STATE_C1) {
749 * C1 is a special case where FIXED_HARDWARE
750 * can be handled in non-MWAIT way as well.
751 * In that case, save this _CST entry info.
752 * That is, we retain space_id of SYSTEM_IO for
753 * halt based C1.
754 * Otherwise, ignore this info and continue.
756 continue;
760 obj = &(element->package.elements[2]);
761 if (obj->type != ACPI_TYPE_INTEGER)
762 continue;
764 cx.latency = obj->integer.value;
766 obj = &(element->package.elements[3]);
767 if (obj->type != ACPI_TYPE_INTEGER)
768 continue;
770 cx.power = obj->integer.value;
772 current_count++;
773 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
776 * We support total ACPI_PROCESSOR_MAX_POWER - 1
777 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
779 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
780 printk(KERN_WARNING
781 "Limiting number of power states to max (%d)\n",
782 ACPI_PROCESSOR_MAX_POWER);
783 printk(KERN_WARNING
784 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
785 break;
789 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
790 current_count));
792 /* Validate number of power states discovered */
793 if (current_count < 2)
794 status = -EFAULT;
796 end:
797 kfree(buffer.pointer);
799 return status;
802 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
805 if (!cx->address)
806 return;
809 * C2 latency must be less than or equal to 100
810 * microseconds.
812 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
813 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
814 "latency too large [%d]\n", cx->latency));
815 return;
819 * Otherwise we've met all of our C2 requirements.
820 * Normalize the C2 latency to expidite policy
822 cx->valid = 1;
823 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
825 return;
828 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
829 struct acpi_processor_cx *cx)
831 static int bm_check_flag;
834 if (!cx->address)
835 return;
838 * C3 latency must be less than or equal to 1000
839 * microseconds.
841 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
842 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
843 "latency too large [%d]\n", cx->latency));
844 return;
848 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
849 * DMA transfers are used by any ISA device to avoid livelock.
850 * Note that we could disable Type-F DMA (as recommended by
851 * the erratum), but this is known to disrupt certain ISA
852 * devices thus we take the conservative approach.
854 else if (errata.piix4.fdma) {
855 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
856 "C3 not supported on PIIX4 with Type-F DMA\n"));
857 return;
860 /* All the logic here assumes flags.bm_check is same across all CPUs */
861 if (!bm_check_flag) {
862 /* Determine whether bm_check is needed based on CPU */
863 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
864 bm_check_flag = pr->flags.bm_check;
865 } else {
866 pr->flags.bm_check = bm_check_flag;
869 if (pr->flags.bm_check) {
870 /* bus mastering control is necessary */
871 if (!pr->flags.bm_control) {
872 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
873 "C3 support requires bus mastering control\n"));
874 return;
876 } else {
878 * WBINVD should be set in fadt, for C3 state to be
879 * supported on when bm_check is not required.
881 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
882 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
883 "Cache invalidation should work properly"
884 " for C3 to be enabled on SMP systems\n"));
885 return;
887 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
891 * Otherwise we've met all of our C3 requirements.
892 * Normalize the C3 latency to expidite policy. Enable
893 * checking of bus mastering status (bm_check) so we can
894 * use this in our C3 policy
896 cx->valid = 1;
897 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
899 return;
902 static int acpi_processor_power_verify(struct acpi_processor *pr)
904 unsigned int i;
905 unsigned int working = 0;
907 #ifdef ARCH_APICTIMER_STOPS_ON_C3
908 int timer_broadcast = 0;
909 cpumask_t mask = cpumask_of_cpu(pr->id);
910 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
911 #endif
913 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
914 struct acpi_processor_cx *cx = &pr->power.states[i];
916 switch (cx->type) {
917 case ACPI_STATE_C1:
918 cx->valid = 1;
919 break;
921 case ACPI_STATE_C2:
922 acpi_processor_power_verify_c2(cx);
923 #ifdef ARCH_APICTIMER_STOPS_ON_C3
924 /* Some AMD systems fake C3 as C2, but still
925 have timer troubles */
926 if (cx->valid &&
927 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
928 timer_broadcast++;
929 #endif
930 break;
932 case ACPI_STATE_C3:
933 acpi_processor_power_verify_c3(pr, cx);
934 #ifdef ARCH_APICTIMER_STOPS_ON_C3
935 if (cx->valid)
936 timer_broadcast++;
937 #endif
938 break;
941 if (cx->valid)
942 working++;
945 #ifdef ARCH_APICTIMER_STOPS_ON_C3
946 if (timer_broadcast)
947 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
948 #endif
950 return (working);
953 static int acpi_processor_get_power_info(struct acpi_processor *pr)
955 unsigned int i;
956 int result;
959 /* NOTE: the idle thread may not be running while calling
960 * this function */
962 /* Zero initialize all the C-states info. */
963 memset(pr->power.states, 0, sizeof(pr->power.states));
965 result = acpi_processor_get_power_info_cst(pr);
966 if (result == -ENODEV)
967 result = acpi_processor_get_power_info_fadt(pr);
969 if (result)
970 return result;
972 acpi_processor_get_power_info_default(pr);
974 pr->power.count = acpi_processor_power_verify(pr);
977 * Set Default Policy
978 * ------------------
979 * Now that we know which states are supported, set the default
980 * policy. Note that this policy can be changed dynamically
981 * (e.g. encourage deeper sleeps to conserve battery life when
982 * not on AC).
984 result = acpi_processor_set_power_policy(pr);
985 if (result)
986 return result;
989 * if one state of type C2 or C3 is available, mark this
990 * CPU as being "idle manageable"
992 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
993 if (pr->power.states[i].valid) {
994 pr->power.count = i;
995 if (pr->power.states[i].type >= ACPI_STATE_C2)
996 pr->flags.power = 1;
1000 return 0;
1003 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1005 int result = 0;
1008 if (!pr)
1009 return -EINVAL;
1011 if (nocst) {
1012 return -ENODEV;
1015 if (!pr->flags.power_setup_done)
1016 return -ENODEV;
1018 /* Fall back to the default idle loop */
1019 pm_idle = pm_idle_save;
1020 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1022 pr->flags.power = 0;
1023 result = acpi_processor_get_power_info(pr);
1024 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1025 pm_idle = acpi_processor_idle;
1027 return result;
1030 /* proc interface */
1032 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1034 struct acpi_processor *pr = seq->private;
1035 unsigned int i;
1038 if (!pr)
1039 goto end;
1041 seq_printf(seq, "active state: C%zd\n"
1042 "max_cstate: C%d\n"
1043 "bus master activity: %08x\n"
1044 "maximum allowed latency: %d usec\n",
1045 pr->power.state ? pr->power.state - pr->power.states : 0,
1046 max_cstate, (unsigned)pr->power.bm_activity,
1047 system_latency_constraint());
1049 seq_puts(seq, "states:\n");
1051 for (i = 1; i <= pr->power.count; i++) {
1052 seq_printf(seq, " %cC%d: ",
1053 (&pr->power.states[i] ==
1054 pr->power.state ? '*' : ' '), i);
1056 if (!pr->power.states[i].valid) {
1057 seq_puts(seq, "<not supported>\n");
1058 continue;
1061 switch (pr->power.states[i].type) {
1062 case ACPI_STATE_C1:
1063 seq_printf(seq, "type[C1] ");
1064 break;
1065 case ACPI_STATE_C2:
1066 seq_printf(seq, "type[C2] ");
1067 break;
1068 case ACPI_STATE_C3:
1069 seq_printf(seq, "type[C3] ");
1070 break;
1071 default:
1072 seq_printf(seq, "type[--] ");
1073 break;
1076 if (pr->power.states[i].promotion.state)
1077 seq_printf(seq, "promotion[C%zd] ",
1078 (pr->power.states[i].promotion.state -
1079 pr->power.states));
1080 else
1081 seq_puts(seq, "promotion[--] ");
1083 if (pr->power.states[i].demotion.state)
1084 seq_printf(seq, "demotion[C%zd] ",
1085 (pr->power.states[i].demotion.state -
1086 pr->power.states));
1087 else
1088 seq_puts(seq, "demotion[--] ");
1090 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1091 pr->power.states[i].latency,
1092 pr->power.states[i].usage,
1093 (unsigned long long)pr->power.states[i].time);
1096 end:
1097 return 0;
1100 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1102 return single_open(file, acpi_processor_power_seq_show,
1103 PDE(inode)->data);
1106 static const struct file_operations acpi_processor_power_fops = {
1107 .open = acpi_processor_power_open_fs,
1108 .read = seq_read,
1109 .llseek = seq_lseek,
1110 .release = single_release,
1113 #ifdef CONFIG_SMP
1114 static void smp_callback(void *v)
1116 /* we already woke the CPU up, nothing more to do */
1120 * This function gets called when a part of the kernel has a new latency
1121 * requirement. This means we need to get all processors out of their C-state,
1122 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1123 * wakes them all right up.
1125 static int acpi_processor_latency_notify(struct notifier_block *b,
1126 unsigned long l, void *v)
1128 smp_call_function(smp_callback, NULL, 0, 1);
1129 return NOTIFY_OK;
1132 static struct notifier_block acpi_processor_latency_notifier = {
1133 .notifier_call = acpi_processor_latency_notify,
1135 #endif
1137 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1138 struct acpi_device *device)
1140 acpi_status status = 0;
1141 static int first_run;
1142 struct proc_dir_entry *entry = NULL;
1143 unsigned int i;
1146 if (!first_run) {
1147 dmi_check_system(processor_power_dmi_table);
1148 if (max_cstate < ACPI_C_STATES_MAX)
1149 printk(KERN_NOTICE
1150 "ACPI: processor limited to max C-state %d\n",
1151 max_cstate);
1152 first_run++;
1153 #ifdef CONFIG_SMP
1154 register_latency_notifier(&acpi_processor_latency_notifier);
1155 #endif
1158 if (!pr)
1159 return -EINVAL;
1161 if (acpi_gbl_FADT.cst_control && !nocst) {
1162 status =
1163 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1164 if (ACPI_FAILURE(status)) {
1165 ACPI_EXCEPTION((AE_INFO, status,
1166 "Notifying BIOS of _CST ability failed"));
1170 acpi_processor_get_power_info(pr);
1173 * Install the idle handler if processor power management is supported.
1174 * Note that we use previously set idle handler will be used on
1175 * platforms that only support C1.
1177 if ((pr->flags.power) && (!boot_option_idle_override)) {
1178 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1179 for (i = 1; i <= pr->power.count; i++)
1180 if (pr->power.states[i].valid)
1181 printk(" C%d[C%d]", i,
1182 pr->power.states[i].type);
1183 printk(")\n");
1185 if (pr->id == 0) {
1186 pm_idle_save = pm_idle;
1187 pm_idle = acpi_processor_idle;
1191 /* 'power' [R] */
1192 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1193 S_IRUGO, acpi_device_dir(device));
1194 if (!entry)
1195 return -EIO;
1196 else {
1197 entry->proc_fops = &acpi_processor_power_fops;
1198 entry->data = acpi_driver_data(device);
1199 entry->owner = THIS_MODULE;
1202 pr->flags.power_setup_done = 1;
1204 return 0;
1207 int acpi_processor_power_exit(struct acpi_processor *pr,
1208 struct acpi_device *device)
1211 pr->flags.power_setup_done = 0;
1213 if (acpi_device_dir(device))
1214 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1215 acpi_device_dir(device));
1217 /* Unregister the idle handler when processor #0 is removed. */
1218 if (pr->id == 0) {
1219 pm_idle = pm_idle_save;
1222 * We are about to unload the current idle thread pm callback
1223 * (pm_idle), Wait for all processors to update cached/local
1224 * copies of pm_idle before proceeding.
1226 cpu_idle_wait();
1227 #ifdef CONFIG_SMP
1228 unregister_latency_notifier(&acpi_processor_latency_notifier);
1229 #endif
1232 return 0;