[TCP]: Limit processing lost_retrans loop to work-to-do cases
[linux-2.6/linux-loongson.git] / net / ipv4 / tcp_input.c
blob0a42e934034678bfd57cd2936e7700e4ea1ebd1c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
130 icsk->icsk_ack.last_seg_size = 0;
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
142 * "len" is invariant segment length, including TCP header.
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 static void tcp_incr_quickack(struct sock *sk)
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
181 void tcp_enter_quickack_mode(struct sock *sk)
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
248 /* Buffer size and advertised window tuning.
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
253 static void tcp_fixup_sndbuf(struct sock *sk)
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299 truesize >>= 1;
300 window >>= 1;
302 return 0;
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
308 struct tcp_sock *tp = tcp_sk(sk);
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
331 /* 3. Tuning rcvbuf, when connection enters established state. */
333 static void tcp_fixup_rcvbuf(struct sock *sk)
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
351 static void tcp_init_buffer_space(struct sock *sk)
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
361 tp->rcvq_space.space = tp->rcv_wnd;
363 maxwin = tcp_full_space(sk);
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
390 icsk->icsk_ack.quick = 0;
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
411 void tcp_initialize_rcv_mss(struct sock *sk)
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
423 /* Receiver "autotuning" code.
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
439 if (m == 0)
440 m = 1;
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
495 void tcp_rcv_space_adjust(struct sock *sk)
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
511 space = max(tp->rcvq_space.space, space);
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
516 tp->rcvq_space.space = space;
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
565 inet_csk_schedule_ack(sk);
567 tcp_measure_rcv_mss(sk, skb);
569 tcp_rcv_rtt_measure(tp);
571 now = tcp_time_stamp;
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
597 icsk->icsk_ack.lrcvtime = now;
599 TCP_ECN_check_ce(tp, skb);
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
605 static u32 tcp_rto_min(struct sock *sk)
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
690 static inline void tcp_set_rto(struct sock *sk)
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
715 static inline void tcp_bound_rto(struct sock *sk)
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
725 void tcp_update_metrics(struct sock *sk)
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
730 if (sysctl_tcp_nometrics_save)
731 return;
733 dst_confirm(dst);
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
815 /* Numbers are taken from RFC3390.
817 * John Heffner states:
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
856 tcp_set_ca_state(sk, TCP_CA_CWR);
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
864 static void tcp_disable_fack(struct tcp_sock *tp)
866 tp->rx_opt.sack_ok &= ~2;
869 /* Take a notice that peer is sending DSACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
872 tp->rx_opt.sack_ok |= 4;
875 /* Initialize metrics on socket. */
877 static void tcp_init_metrics(struct sock *sk)
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
882 if (dst == NULL)
883 goto reset;
885 dst_confirm(dst);
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
976 /* This procedure tags the retransmission queue when SACKs arrive.
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1024 * SACK block validation.
1025 * ----------------------
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1106 return !before(start_seq, end_seq - tp->max_window);
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110 * Event "C". Later note: FACK people cheated me again 8), we have to account
1111 * for reordering! Ugly, but should help.
1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114 * less than what is now known to be received by the other end (derived from
1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116 * remaining retransmitted skbs to avoid some costly processing per ACKs.
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1120 struct tcp_sock *tp = tcp_sk(sk);
1121 struct sk_buff *skb;
1122 int flag = 0;
1123 int cnt = 0;
1124 u32 new_low_seq = 0;
1126 tcp_for_write_queue(skb, sk) {
1127 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1129 if (skb == tcp_send_head(sk))
1130 break;
1131 if (cnt == tp->retrans_out)
1132 break;
1133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 continue;
1136 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 continue;
1139 if (after(received_upto, ack_seq) &&
1140 (tcp_is_fack(tp) ||
1141 !before(received_upto,
1142 ack_seq + tp->reordering * tp->mss_cache))) {
1143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 tp->retrans_out -= tcp_skb_pcount(skb);
1146 /* clear lost hint */
1147 tp->retransmit_skb_hint = NULL;
1149 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 tp->lost_out += tcp_skb_pcount(skb);
1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 flag |= FLAG_DATA_SACKED;
1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1155 } else {
1156 if (!new_low_seq || before(ack_seq, new_low_seq))
1157 new_low_seq = ack_seq;
1158 cnt += tcp_skb_pcount(skb);
1162 if (tp->retrans_out)
1163 tp->lost_retrans_low = new_low_seq;
1165 return flag;
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 struct tcp_sack_block_wire *sp, int num_sacks,
1170 u32 prior_snd_una)
1172 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 int dup_sack = 0;
1176 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 dup_sack = 1;
1178 tcp_dsack_seen(tp);
1179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 } else if (num_sacks > 1) {
1181 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1184 if (!after(end_seq_0, end_seq_1) &&
1185 !before(start_seq_0, start_seq_1)) {
1186 dup_sack = 1;
1187 tcp_dsack_seen(tp);
1188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192 /* D-SACK for already forgotten data... Do dumb counting. */
1193 if (dup_sack &&
1194 !after(end_seq_0, prior_snd_una) &&
1195 after(end_seq_0, tp->undo_marker))
1196 tp->undo_retrans--;
1198 return dup_sack;
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202 * the incoming SACK may not exactly match but we can find smaller MSS
1203 * aligned portion of it that matches. Therefore we might need to fragment
1204 * which may fail and creates some hassle (caller must handle error case
1205 * returns).
1207 int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 u32 start_seq, u32 end_seq)
1210 int in_sack, err;
1211 unsigned int pkt_len;
1213 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1216 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1221 if (!in_sack)
1222 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 else
1224 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 if (err < 0)
1227 return err;
1230 return in_sack;
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1236 const struct inet_connection_sock *icsk = inet_csk(sk);
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 TCP_SKB_CB(ack_skb)->sacked);
1240 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 struct sk_buff *cached_skb;
1242 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 int reord = tp->packets_out;
1244 int prior_fackets;
1245 u32 highest_sack_end_seq = 0;
1246 int flag = 0;
1247 int found_dup_sack = 0;
1248 int cached_fack_count;
1249 int i;
1250 int first_sack_index;
1252 if (!tp->sacked_out) {
1253 if (WARN_ON(tp->fackets_out))
1254 tp->fackets_out = 0;
1255 tp->highest_sack = tp->snd_una;
1257 prior_fackets = tp->fackets_out;
1259 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1260 num_sacks, prior_snd_una);
1261 if (found_dup_sack)
1262 flag |= FLAG_DSACKING_ACK;
1264 /* Eliminate too old ACKs, but take into
1265 * account more or less fresh ones, they can
1266 * contain valid SACK info.
1268 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1269 return 0;
1271 /* SACK fastpath:
1272 * if the only SACK change is the increase of the end_seq of
1273 * the first block then only apply that SACK block
1274 * and use retrans queue hinting otherwise slowpath */
1275 flag = 1;
1276 for (i = 0; i < num_sacks; i++) {
1277 __be32 start_seq = sp[i].start_seq;
1278 __be32 end_seq = sp[i].end_seq;
1280 if (i == 0) {
1281 if (tp->recv_sack_cache[i].start_seq != start_seq)
1282 flag = 0;
1283 } else {
1284 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1285 (tp->recv_sack_cache[i].end_seq != end_seq))
1286 flag = 0;
1288 tp->recv_sack_cache[i].start_seq = start_seq;
1289 tp->recv_sack_cache[i].end_seq = end_seq;
1291 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1292 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1293 tp->recv_sack_cache[i].start_seq = 0;
1294 tp->recv_sack_cache[i].end_seq = 0;
1297 first_sack_index = 0;
1298 if (flag)
1299 num_sacks = 1;
1300 else {
1301 int j;
1302 tp->fastpath_skb_hint = NULL;
1304 /* order SACK blocks to allow in order walk of the retrans queue */
1305 for (i = num_sacks-1; i > 0; i--) {
1306 for (j = 0; j < i; j++){
1307 if (after(ntohl(sp[j].start_seq),
1308 ntohl(sp[j+1].start_seq))){
1309 struct tcp_sack_block_wire tmp;
1311 tmp = sp[j];
1312 sp[j] = sp[j+1];
1313 sp[j+1] = tmp;
1315 /* Track where the first SACK block goes to */
1316 if (j == first_sack_index)
1317 first_sack_index = j+1;
1324 /* clear flag as used for different purpose in following code */
1325 flag = 0;
1327 /* Use SACK fastpath hint if valid */
1328 cached_skb = tp->fastpath_skb_hint;
1329 cached_fack_count = tp->fastpath_cnt_hint;
1330 if (!cached_skb) {
1331 cached_skb = tcp_write_queue_head(sk);
1332 cached_fack_count = 0;
1335 for (i=0; i<num_sacks; i++, sp++) {
1336 struct sk_buff *skb;
1337 __u32 start_seq = ntohl(sp->start_seq);
1338 __u32 end_seq = ntohl(sp->end_seq);
1339 int fack_count;
1340 int dup_sack = (found_dup_sack && (i == first_sack_index));
1342 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1343 if (dup_sack) {
1344 if (!tp->undo_marker)
1345 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1346 else
1347 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1348 } else {
1349 /* Don't count olds caused by ACK reordering */
1350 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1351 !after(end_seq, tp->snd_una))
1352 continue;
1353 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1355 continue;
1358 skb = cached_skb;
1359 fack_count = cached_fack_count;
1361 /* Event "B" in the comment above. */
1362 if (after(end_seq, tp->high_seq))
1363 flag |= FLAG_DATA_LOST;
1365 tcp_for_write_queue_from(skb, sk) {
1366 int in_sack;
1367 u8 sacked;
1369 if (skb == tcp_send_head(sk))
1370 break;
1372 cached_skb = skb;
1373 cached_fack_count = fack_count;
1374 if (i == first_sack_index) {
1375 tp->fastpath_skb_hint = skb;
1376 tp->fastpath_cnt_hint = fack_count;
1379 /* The retransmission queue is always in order, so
1380 * we can short-circuit the walk early.
1382 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1383 break;
1385 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1386 if (in_sack < 0)
1387 break;
1389 fack_count += tcp_skb_pcount(skb);
1391 sacked = TCP_SKB_CB(skb)->sacked;
1393 /* Account D-SACK for retransmitted packet. */
1394 if ((dup_sack && in_sack) &&
1395 (sacked & TCPCB_RETRANS) &&
1396 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1397 tp->undo_retrans--;
1399 /* The frame is ACKed. */
1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1401 if (sacked&TCPCB_RETRANS) {
1402 if ((dup_sack && in_sack) &&
1403 (sacked&TCPCB_SACKED_ACKED))
1404 reord = min(fack_count, reord);
1405 } else {
1406 /* If it was in a hole, we detected reordering. */
1407 if (fack_count < prior_fackets &&
1408 !(sacked&TCPCB_SACKED_ACKED))
1409 reord = min(fack_count, reord);
1412 /* Nothing to do; acked frame is about to be dropped. */
1413 continue;
1416 if (!in_sack)
1417 continue;
1419 if (!(sacked&TCPCB_SACKED_ACKED)) {
1420 if (sacked & TCPCB_SACKED_RETRANS) {
1421 /* If the segment is not tagged as lost,
1422 * we do not clear RETRANS, believing
1423 * that retransmission is still in flight.
1425 if (sacked & TCPCB_LOST) {
1426 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1427 tp->lost_out -= tcp_skb_pcount(skb);
1428 tp->retrans_out -= tcp_skb_pcount(skb);
1430 /* clear lost hint */
1431 tp->retransmit_skb_hint = NULL;
1433 } else {
1434 /* New sack for not retransmitted frame,
1435 * which was in hole. It is reordering.
1437 if (!(sacked & TCPCB_RETRANS) &&
1438 fack_count < prior_fackets)
1439 reord = min(fack_count, reord);
1441 if (sacked & TCPCB_LOST) {
1442 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1443 tp->lost_out -= tcp_skb_pcount(skb);
1445 /* clear lost hint */
1446 tp->retransmit_skb_hint = NULL;
1448 /* SACK enhanced F-RTO detection.
1449 * Set flag if and only if non-rexmitted
1450 * segments below frto_highmark are
1451 * SACKed (RFC4138; Appendix B).
1452 * Clearing correct due to in-order walk
1454 if (after(end_seq, tp->frto_highmark)) {
1455 flag &= ~FLAG_ONLY_ORIG_SACKED;
1456 } else {
1457 if (!(sacked & TCPCB_RETRANS))
1458 flag |= FLAG_ONLY_ORIG_SACKED;
1462 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1463 flag |= FLAG_DATA_SACKED;
1464 tp->sacked_out += tcp_skb_pcount(skb);
1466 if (fack_count > tp->fackets_out)
1467 tp->fackets_out = fack_count;
1469 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1470 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1471 highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1473 } else {
1474 if (dup_sack && (sacked&TCPCB_RETRANS))
1475 reord = min(fack_count, reord);
1478 /* D-SACK. We can detect redundant retransmission
1479 * in S|R and plain R frames and clear it.
1480 * undo_retrans is decreased above, L|R frames
1481 * are accounted above as well.
1483 if (dup_sack &&
1484 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1485 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1486 tp->retrans_out -= tcp_skb_pcount(skb);
1487 tp->retransmit_skb_hint = NULL;
1492 if (tp->retrans_out &&
1493 after(highest_sack_end_seq, tp->lost_retrans_low) &&
1494 icsk->icsk_ca_state == TCP_CA_Recovery)
1495 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1497 tcp_verify_left_out(tp);
1499 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1500 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1501 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1503 #if FASTRETRANS_DEBUG > 0
1504 BUG_TRAP((int)tp->sacked_out >= 0);
1505 BUG_TRAP((int)tp->lost_out >= 0);
1506 BUG_TRAP((int)tp->retrans_out >= 0);
1507 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1508 #endif
1509 return flag;
1512 /* If we receive more dupacks than we expected counting segments
1513 * in assumption of absent reordering, interpret this as reordering.
1514 * The only another reason could be bug in receiver TCP.
1516 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1518 struct tcp_sock *tp = tcp_sk(sk);
1519 u32 holes;
1521 holes = max(tp->lost_out, 1U);
1522 holes = min(holes, tp->packets_out);
1524 if ((tp->sacked_out + holes) > tp->packets_out) {
1525 tp->sacked_out = tp->packets_out - holes;
1526 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1530 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1532 static void tcp_add_reno_sack(struct sock *sk)
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 tp->sacked_out++;
1536 tcp_check_reno_reordering(sk, 0);
1537 tcp_verify_left_out(tp);
1540 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1542 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1544 struct tcp_sock *tp = tcp_sk(sk);
1546 if (acked > 0) {
1547 /* One ACK acked hole. The rest eat duplicate ACKs. */
1548 if (acked-1 >= tp->sacked_out)
1549 tp->sacked_out = 0;
1550 else
1551 tp->sacked_out -= acked-1;
1553 tcp_check_reno_reordering(sk, acked);
1554 tcp_verify_left_out(tp);
1557 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1559 tp->sacked_out = 0;
1562 /* F-RTO can only be used if TCP has never retransmitted anything other than
1563 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1565 int tcp_use_frto(struct sock *sk)
1567 const struct tcp_sock *tp = tcp_sk(sk);
1568 struct sk_buff *skb;
1570 if (!sysctl_tcp_frto)
1571 return 0;
1573 if (IsSackFrto())
1574 return 1;
1576 /* Avoid expensive walking of rexmit queue if possible */
1577 if (tp->retrans_out > 1)
1578 return 0;
1580 skb = tcp_write_queue_head(sk);
1581 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1582 tcp_for_write_queue_from(skb, sk) {
1583 if (skb == tcp_send_head(sk))
1584 break;
1585 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1586 return 0;
1587 /* Short-circuit when first non-SACKed skb has been checked */
1588 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1589 break;
1591 return 1;
1594 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1595 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1596 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1597 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1598 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1599 * bits are handled if the Loss state is really to be entered (in
1600 * tcp_enter_frto_loss).
1602 * Do like tcp_enter_loss() would; when RTO expires the second time it
1603 * does:
1604 * "Reduce ssthresh if it has not yet been made inside this window."
1606 void tcp_enter_frto(struct sock *sk)
1608 const struct inet_connection_sock *icsk = inet_csk(sk);
1609 struct tcp_sock *tp = tcp_sk(sk);
1610 struct sk_buff *skb;
1612 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1613 tp->snd_una == tp->high_seq ||
1614 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1615 !icsk->icsk_retransmits)) {
1616 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1617 /* Our state is too optimistic in ssthresh() call because cwnd
1618 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1619 * recovery has not yet completed. Pattern would be this: RTO,
1620 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1621 * up here twice).
1622 * RFC4138 should be more specific on what to do, even though
1623 * RTO is quite unlikely to occur after the first Cumulative ACK
1624 * due to back-off and complexity of triggering events ...
1626 if (tp->frto_counter) {
1627 u32 stored_cwnd;
1628 stored_cwnd = tp->snd_cwnd;
1629 tp->snd_cwnd = 2;
1630 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1631 tp->snd_cwnd = stored_cwnd;
1632 } else {
1633 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1635 /* ... in theory, cong.control module could do "any tricks" in
1636 * ssthresh(), which means that ca_state, lost bits and lost_out
1637 * counter would have to be faked before the call occurs. We
1638 * consider that too expensive, unlikely and hacky, so modules
1639 * using these in ssthresh() must deal these incompatibility
1640 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1642 tcp_ca_event(sk, CA_EVENT_FRTO);
1645 tp->undo_marker = tp->snd_una;
1646 tp->undo_retrans = 0;
1648 skb = tcp_write_queue_head(sk);
1649 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1650 tp->undo_marker = 0;
1651 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1652 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1653 tp->retrans_out -= tcp_skb_pcount(skb);
1655 tcp_verify_left_out(tp);
1657 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1658 * The last condition is necessary at least in tp->frto_counter case.
1660 if (IsSackFrto() && (tp->frto_counter ||
1661 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1662 after(tp->high_seq, tp->snd_una)) {
1663 tp->frto_highmark = tp->high_seq;
1664 } else {
1665 tp->frto_highmark = tp->snd_nxt;
1667 tcp_set_ca_state(sk, TCP_CA_Disorder);
1668 tp->high_seq = tp->snd_nxt;
1669 tp->frto_counter = 1;
1672 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1673 * which indicates that we should follow the traditional RTO recovery,
1674 * i.e. mark everything lost and do go-back-N retransmission.
1676 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1678 struct tcp_sock *tp = tcp_sk(sk);
1679 struct sk_buff *skb;
1681 tp->lost_out = 0;
1682 tp->retrans_out = 0;
1683 if (tcp_is_reno(tp))
1684 tcp_reset_reno_sack(tp);
1686 tcp_for_write_queue(skb, sk) {
1687 if (skb == tcp_send_head(sk))
1688 break;
1690 * Count the retransmission made on RTO correctly (only when
1691 * waiting for the first ACK and did not get it)...
1693 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1694 /* For some reason this R-bit might get cleared? */
1695 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1696 tp->retrans_out += tcp_skb_pcount(skb);
1697 /* ...enter this if branch just for the first segment */
1698 flag |= FLAG_DATA_ACKED;
1699 } else {
1700 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1701 tp->undo_marker = 0;
1702 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1705 /* Don't lost mark skbs that were fwd transmitted after RTO */
1706 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1707 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1708 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1709 tp->lost_out += tcp_skb_pcount(skb);
1712 tcp_verify_left_out(tp);
1714 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1715 tp->snd_cwnd_cnt = 0;
1716 tp->snd_cwnd_stamp = tcp_time_stamp;
1717 tp->frto_counter = 0;
1718 tp->bytes_acked = 0;
1720 tp->reordering = min_t(unsigned int, tp->reordering,
1721 sysctl_tcp_reordering);
1722 tcp_set_ca_state(sk, TCP_CA_Loss);
1723 tp->high_seq = tp->frto_highmark;
1724 TCP_ECN_queue_cwr(tp);
1726 tcp_clear_retrans_hints_partial(tp);
1729 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1731 tp->retrans_out = 0;
1732 tp->lost_out = 0;
1734 tp->undo_marker = 0;
1735 tp->undo_retrans = 0;
1738 void tcp_clear_retrans(struct tcp_sock *tp)
1740 tcp_clear_retrans_partial(tp);
1742 tp->fackets_out = 0;
1743 tp->sacked_out = 0;
1746 /* Enter Loss state. If "how" is not zero, forget all SACK information
1747 * and reset tags completely, otherwise preserve SACKs. If receiver
1748 * dropped its ofo queue, we will know this due to reneging detection.
1750 void tcp_enter_loss(struct sock *sk, int how)
1752 const struct inet_connection_sock *icsk = inet_csk(sk);
1753 struct tcp_sock *tp = tcp_sk(sk);
1754 struct sk_buff *skb;
1756 /* Reduce ssthresh if it has not yet been made inside this window. */
1757 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1758 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1759 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1760 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1761 tcp_ca_event(sk, CA_EVENT_LOSS);
1763 tp->snd_cwnd = 1;
1764 tp->snd_cwnd_cnt = 0;
1765 tp->snd_cwnd_stamp = tcp_time_stamp;
1767 tp->bytes_acked = 0;
1768 tcp_clear_retrans_partial(tp);
1770 if (tcp_is_reno(tp))
1771 tcp_reset_reno_sack(tp);
1773 if (!how) {
1774 /* Push undo marker, if it was plain RTO and nothing
1775 * was retransmitted. */
1776 tp->undo_marker = tp->snd_una;
1777 tcp_clear_retrans_hints_partial(tp);
1778 } else {
1779 tp->sacked_out = 0;
1780 tp->fackets_out = 0;
1781 tcp_clear_all_retrans_hints(tp);
1784 tcp_for_write_queue(skb, sk) {
1785 if (skb == tcp_send_head(sk))
1786 break;
1788 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1789 tp->undo_marker = 0;
1790 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1791 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1792 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1793 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1794 tp->lost_out += tcp_skb_pcount(skb);
1797 tcp_verify_left_out(tp);
1799 tp->reordering = min_t(unsigned int, tp->reordering,
1800 sysctl_tcp_reordering);
1801 tcp_set_ca_state(sk, TCP_CA_Loss);
1802 tp->high_seq = tp->snd_nxt;
1803 TCP_ECN_queue_cwr(tp);
1804 /* Abort FRTO algorithm if one is in progress */
1805 tp->frto_counter = 0;
1808 static int tcp_check_sack_reneging(struct sock *sk)
1810 struct sk_buff *skb;
1812 /* If ACK arrived pointing to a remembered SACK,
1813 * it means that our remembered SACKs do not reflect
1814 * real state of receiver i.e.
1815 * receiver _host_ is heavily congested (or buggy).
1816 * Do processing similar to RTO timeout.
1818 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1819 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1820 struct inet_connection_sock *icsk = inet_csk(sk);
1821 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1823 tcp_enter_loss(sk, 1);
1824 icsk->icsk_retransmits++;
1825 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1826 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1827 icsk->icsk_rto, TCP_RTO_MAX);
1828 return 1;
1830 return 0;
1833 static inline int tcp_fackets_out(struct tcp_sock *tp)
1835 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1838 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1840 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1843 static inline int tcp_head_timedout(struct sock *sk)
1845 struct tcp_sock *tp = tcp_sk(sk);
1847 return tp->packets_out &&
1848 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1851 /* Linux NewReno/SACK/FACK/ECN state machine.
1852 * --------------------------------------
1854 * "Open" Normal state, no dubious events, fast path.
1855 * "Disorder" In all the respects it is "Open",
1856 * but requires a bit more attention. It is entered when
1857 * we see some SACKs or dupacks. It is split of "Open"
1858 * mainly to move some processing from fast path to slow one.
1859 * "CWR" CWND was reduced due to some Congestion Notification event.
1860 * It can be ECN, ICMP source quench, local device congestion.
1861 * "Recovery" CWND was reduced, we are fast-retransmitting.
1862 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1864 * tcp_fastretrans_alert() is entered:
1865 * - each incoming ACK, if state is not "Open"
1866 * - when arrived ACK is unusual, namely:
1867 * * SACK
1868 * * Duplicate ACK.
1869 * * ECN ECE.
1871 * Counting packets in flight is pretty simple.
1873 * in_flight = packets_out - left_out + retrans_out
1875 * packets_out is SND.NXT-SND.UNA counted in packets.
1877 * retrans_out is number of retransmitted segments.
1879 * left_out is number of segments left network, but not ACKed yet.
1881 * left_out = sacked_out + lost_out
1883 * sacked_out: Packets, which arrived to receiver out of order
1884 * and hence not ACKed. With SACKs this number is simply
1885 * amount of SACKed data. Even without SACKs
1886 * it is easy to give pretty reliable estimate of this number,
1887 * counting duplicate ACKs.
1889 * lost_out: Packets lost by network. TCP has no explicit
1890 * "loss notification" feedback from network (for now).
1891 * It means that this number can be only _guessed_.
1892 * Actually, it is the heuristics to predict lossage that
1893 * distinguishes different algorithms.
1895 * F.e. after RTO, when all the queue is considered as lost,
1896 * lost_out = packets_out and in_flight = retrans_out.
1898 * Essentially, we have now two algorithms counting
1899 * lost packets.
1901 * FACK: It is the simplest heuristics. As soon as we decided
1902 * that something is lost, we decide that _all_ not SACKed
1903 * packets until the most forward SACK are lost. I.e.
1904 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1905 * It is absolutely correct estimate, if network does not reorder
1906 * packets. And it loses any connection to reality when reordering
1907 * takes place. We use FACK by default until reordering
1908 * is suspected on the path to this destination.
1910 * NewReno: when Recovery is entered, we assume that one segment
1911 * is lost (classic Reno). While we are in Recovery and
1912 * a partial ACK arrives, we assume that one more packet
1913 * is lost (NewReno). This heuristics are the same in NewReno
1914 * and SACK.
1916 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1917 * deflation etc. CWND is real congestion window, never inflated, changes
1918 * only according to classic VJ rules.
1920 * Really tricky (and requiring careful tuning) part of algorithm
1921 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1922 * The first determines the moment _when_ we should reduce CWND and,
1923 * hence, slow down forward transmission. In fact, it determines the moment
1924 * when we decide that hole is caused by loss, rather than by a reorder.
1926 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1927 * holes, caused by lost packets.
1929 * And the most logically complicated part of algorithm is undo
1930 * heuristics. We detect false retransmits due to both too early
1931 * fast retransmit (reordering) and underestimated RTO, analyzing
1932 * timestamps and D-SACKs. When we detect that some segments were
1933 * retransmitted by mistake and CWND reduction was wrong, we undo
1934 * window reduction and abort recovery phase. This logic is hidden
1935 * inside several functions named tcp_try_undo_<something>.
1938 /* This function decides, when we should leave Disordered state
1939 * and enter Recovery phase, reducing congestion window.
1941 * Main question: may we further continue forward transmission
1942 * with the same cwnd?
1944 static int tcp_time_to_recover(struct sock *sk)
1946 struct tcp_sock *tp = tcp_sk(sk);
1947 __u32 packets_out;
1949 /* Do not perform any recovery during FRTO algorithm */
1950 if (tp->frto_counter)
1951 return 0;
1953 /* Trick#1: The loss is proven. */
1954 if (tp->lost_out)
1955 return 1;
1957 /* Not-A-Trick#2 : Classic rule... */
1958 if (tcp_fackets_out(tp) > tp->reordering)
1959 return 1;
1961 /* Trick#3 : when we use RFC2988 timer restart, fast
1962 * retransmit can be triggered by timeout of queue head.
1964 if (tcp_head_timedout(sk))
1965 return 1;
1967 /* Trick#4: It is still not OK... But will it be useful to delay
1968 * recovery more?
1970 packets_out = tp->packets_out;
1971 if (packets_out <= tp->reordering &&
1972 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1973 !tcp_may_send_now(sk)) {
1974 /* We have nothing to send. This connection is limited
1975 * either by receiver window or by application.
1977 return 1;
1980 return 0;
1983 /* RFC: This is from the original, I doubt that this is necessary at all:
1984 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1985 * retransmitted past LOST markings in the first place? I'm not fully sure
1986 * about undo and end of connection cases, which can cause R without L?
1988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1989 struct sk_buff *skb)
1991 if ((tp->retransmit_skb_hint != NULL) &&
1992 before(TCP_SKB_CB(skb)->seq,
1993 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1994 tp->retransmit_skb_hint = NULL;
1997 /* Mark head of queue up as lost. */
1998 static void tcp_mark_head_lost(struct sock *sk,
1999 int packets, u32 high_seq)
2001 struct tcp_sock *tp = tcp_sk(sk);
2002 struct sk_buff *skb;
2003 int cnt;
2005 BUG_TRAP(packets <= tp->packets_out);
2006 if (tp->lost_skb_hint) {
2007 skb = tp->lost_skb_hint;
2008 cnt = tp->lost_cnt_hint;
2009 } else {
2010 skb = tcp_write_queue_head(sk);
2011 cnt = 0;
2014 tcp_for_write_queue_from(skb, sk) {
2015 if (skb == tcp_send_head(sk))
2016 break;
2017 /* TODO: do this better */
2018 /* this is not the most efficient way to do this... */
2019 tp->lost_skb_hint = skb;
2020 tp->lost_cnt_hint = cnt;
2021 cnt += tcp_skb_pcount(skb);
2022 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
2023 break;
2024 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2025 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2026 tp->lost_out += tcp_skb_pcount(skb);
2027 tcp_verify_retransmit_hint(tp, skb);
2030 tcp_verify_left_out(tp);
2033 /* Account newly detected lost packet(s) */
2035 static void tcp_update_scoreboard(struct sock *sk)
2037 struct tcp_sock *tp = tcp_sk(sk);
2039 if (tcp_is_fack(tp)) {
2040 int lost = tp->fackets_out - tp->reordering;
2041 if (lost <= 0)
2042 lost = 1;
2043 tcp_mark_head_lost(sk, lost, tp->high_seq);
2044 } else {
2045 tcp_mark_head_lost(sk, 1, tp->high_seq);
2048 /* New heuristics: it is possible only after we switched
2049 * to restart timer each time when something is ACKed.
2050 * Hence, we can detect timed out packets during fast
2051 * retransmit without falling to slow start.
2053 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2054 struct sk_buff *skb;
2056 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2057 : tcp_write_queue_head(sk);
2059 tcp_for_write_queue_from(skb, sk) {
2060 if (skb == tcp_send_head(sk))
2061 break;
2062 if (!tcp_skb_timedout(sk, skb))
2063 break;
2065 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
2066 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2067 tp->lost_out += tcp_skb_pcount(skb);
2068 tcp_verify_retransmit_hint(tp, skb);
2072 tp->scoreboard_skb_hint = skb;
2074 tcp_verify_left_out(tp);
2078 /* CWND moderation, preventing bursts due to too big ACKs
2079 * in dubious situations.
2081 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2083 tp->snd_cwnd = min(tp->snd_cwnd,
2084 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2085 tp->snd_cwnd_stamp = tcp_time_stamp;
2088 /* Lower bound on congestion window is slow start threshold
2089 * unless congestion avoidance choice decides to overide it.
2091 static inline u32 tcp_cwnd_min(const struct sock *sk)
2093 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2095 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2098 /* Decrease cwnd each second ack. */
2099 static void tcp_cwnd_down(struct sock *sk, int flag)
2101 struct tcp_sock *tp = tcp_sk(sk);
2102 int decr = tp->snd_cwnd_cnt + 1;
2104 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2105 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2106 tp->snd_cwnd_cnt = decr&1;
2107 decr >>= 1;
2109 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2110 tp->snd_cwnd -= decr;
2112 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2113 tp->snd_cwnd_stamp = tcp_time_stamp;
2117 /* Nothing was retransmitted or returned timestamp is less
2118 * than timestamp of the first retransmission.
2120 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2122 return !tp->retrans_stamp ||
2123 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2124 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2127 /* Undo procedures. */
2129 #if FASTRETRANS_DEBUG > 1
2130 static void DBGUNDO(struct sock *sk, const char *msg)
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct inet_sock *inet = inet_sk(sk);
2135 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2136 msg,
2137 NIPQUAD(inet->daddr), ntohs(inet->dport),
2138 tp->snd_cwnd, tcp_left_out(tp),
2139 tp->snd_ssthresh, tp->prior_ssthresh,
2140 tp->packets_out);
2142 #else
2143 #define DBGUNDO(x...) do { } while (0)
2144 #endif
2146 static void tcp_undo_cwr(struct sock *sk, const int undo)
2148 struct tcp_sock *tp = tcp_sk(sk);
2150 if (tp->prior_ssthresh) {
2151 const struct inet_connection_sock *icsk = inet_csk(sk);
2153 if (icsk->icsk_ca_ops->undo_cwnd)
2154 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2155 else
2156 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2158 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2159 tp->snd_ssthresh = tp->prior_ssthresh;
2160 TCP_ECN_withdraw_cwr(tp);
2162 } else {
2163 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2165 tcp_moderate_cwnd(tp);
2166 tp->snd_cwnd_stamp = tcp_time_stamp;
2168 /* There is something screwy going on with the retrans hints after
2169 an undo */
2170 tcp_clear_all_retrans_hints(tp);
2173 static inline int tcp_may_undo(struct tcp_sock *tp)
2175 return tp->undo_marker &&
2176 (!tp->undo_retrans || tcp_packet_delayed(tp));
2179 /* People celebrate: "We love our President!" */
2180 static int tcp_try_undo_recovery(struct sock *sk)
2182 struct tcp_sock *tp = tcp_sk(sk);
2184 if (tcp_may_undo(tp)) {
2185 /* Happy end! We did not retransmit anything
2186 * or our original transmission succeeded.
2188 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2189 tcp_undo_cwr(sk, 1);
2190 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2191 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2192 else
2193 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2194 tp->undo_marker = 0;
2196 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2197 /* Hold old state until something *above* high_seq
2198 * is ACKed. For Reno it is MUST to prevent false
2199 * fast retransmits (RFC2582). SACK TCP is safe. */
2200 tcp_moderate_cwnd(tp);
2201 return 1;
2203 tcp_set_ca_state(sk, TCP_CA_Open);
2204 return 0;
2207 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2208 static void tcp_try_undo_dsack(struct sock *sk)
2210 struct tcp_sock *tp = tcp_sk(sk);
2212 if (tp->undo_marker && !tp->undo_retrans) {
2213 DBGUNDO(sk, "D-SACK");
2214 tcp_undo_cwr(sk, 1);
2215 tp->undo_marker = 0;
2216 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2220 /* Undo during fast recovery after partial ACK. */
2222 static int tcp_try_undo_partial(struct sock *sk, int acked)
2224 struct tcp_sock *tp = tcp_sk(sk);
2225 /* Partial ACK arrived. Force Hoe's retransmit. */
2226 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2228 if (tcp_may_undo(tp)) {
2229 /* Plain luck! Hole if filled with delayed
2230 * packet, rather than with a retransmit.
2232 if (tp->retrans_out == 0)
2233 tp->retrans_stamp = 0;
2235 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2237 DBGUNDO(sk, "Hoe");
2238 tcp_undo_cwr(sk, 0);
2239 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2241 /* So... Do not make Hoe's retransmit yet.
2242 * If the first packet was delayed, the rest
2243 * ones are most probably delayed as well.
2245 failed = 0;
2247 return failed;
2250 /* Undo during loss recovery after partial ACK. */
2251 static int tcp_try_undo_loss(struct sock *sk)
2253 struct tcp_sock *tp = tcp_sk(sk);
2255 if (tcp_may_undo(tp)) {
2256 struct sk_buff *skb;
2257 tcp_for_write_queue(skb, sk) {
2258 if (skb == tcp_send_head(sk))
2259 break;
2260 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2263 tcp_clear_all_retrans_hints(tp);
2265 DBGUNDO(sk, "partial loss");
2266 tp->lost_out = 0;
2267 tcp_undo_cwr(sk, 1);
2268 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2269 inet_csk(sk)->icsk_retransmits = 0;
2270 tp->undo_marker = 0;
2271 if (tcp_is_sack(tp))
2272 tcp_set_ca_state(sk, TCP_CA_Open);
2273 return 1;
2275 return 0;
2278 static inline void tcp_complete_cwr(struct sock *sk)
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2282 tp->snd_cwnd_stamp = tcp_time_stamp;
2283 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2286 static void tcp_try_to_open(struct sock *sk, int flag)
2288 struct tcp_sock *tp = tcp_sk(sk);
2290 tcp_verify_left_out(tp);
2292 if (tp->retrans_out == 0)
2293 tp->retrans_stamp = 0;
2295 if (flag&FLAG_ECE)
2296 tcp_enter_cwr(sk, 1);
2298 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2299 int state = TCP_CA_Open;
2301 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2302 state = TCP_CA_Disorder;
2304 if (inet_csk(sk)->icsk_ca_state != state) {
2305 tcp_set_ca_state(sk, state);
2306 tp->high_seq = tp->snd_nxt;
2308 tcp_moderate_cwnd(tp);
2309 } else {
2310 tcp_cwnd_down(sk, flag);
2314 static void tcp_mtup_probe_failed(struct sock *sk)
2316 struct inet_connection_sock *icsk = inet_csk(sk);
2318 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2319 icsk->icsk_mtup.probe_size = 0;
2322 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2324 struct tcp_sock *tp = tcp_sk(sk);
2325 struct inet_connection_sock *icsk = inet_csk(sk);
2327 /* FIXME: breaks with very large cwnd */
2328 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2329 tp->snd_cwnd = tp->snd_cwnd *
2330 tcp_mss_to_mtu(sk, tp->mss_cache) /
2331 icsk->icsk_mtup.probe_size;
2332 tp->snd_cwnd_cnt = 0;
2333 tp->snd_cwnd_stamp = tcp_time_stamp;
2334 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2336 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2337 icsk->icsk_mtup.probe_size = 0;
2338 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2342 /* Process an event, which can update packets-in-flight not trivially.
2343 * Main goal of this function is to calculate new estimate for left_out,
2344 * taking into account both packets sitting in receiver's buffer and
2345 * packets lost by network.
2347 * Besides that it does CWND reduction, when packet loss is detected
2348 * and changes state of machine.
2350 * It does _not_ decide what to send, it is made in function
2351 * tcp_xmit_retransmit_queue().
2353 static void
2354 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2356 struct inet_connection_sock *icsk = inet_csk(sk);
2357 struct tcp_sock *tp = tcp_sk(sk);
2358 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2359 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2360 (tp->fackets_out > tp->reordering));
2362 /* Some technical things:
2363 * 1. Reno does not count dupacks (sacked_out) automatically. */
2364 if (!tp->packets_out)
2365 tp->sacked_out = 0;
2367 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2368 tp->fackets_out = 0;
2370 /* Now state machine starts.
2371 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2372 if (flag&FLAG_ECE)
2373 tp->prior_ssthresh = 0;
2375 /* B. In all the states check for reneging SACKs. */
2376 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2377 return;
2379 /* C. Process data loss notification, provided it is valid. */
2380 if ((flag&FLAG_DATA_LOST) &&
2381 before(tp->snd_una, tp->high_seq) &&
2382 icsk->icsk_ca_state != TCP_CA_Open &&
2383 tp->fackets_out > tp->reordering) {
2384 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2385 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2388 /* D. Check consistency of the current state. */
2389 tcp_verify_left_out(tp);
2391 /* E. Check state exit conditions. State can be terminated
2392 * when high_seq is ACKed. */
2393 if (icsk->icsk_ca_state == TCP_CA_Open) {
2394 BUG_TRAP(tp->retrans_out == 0);
2395 tp->retrans_stamp = 0;
2396 } else if (!before(tp->snd_una, tp->high_seq)) {
2397 switch (icsk->icsk_ca_state) {
2398 case TCP_CA_Loss:
2399 icsk->icsk_retransmits = 0;
2400 if (tcp_try_undo_recovery(sk))
2401 return;
2402 break;
2404 case TCP_CA_CWR:
2405 /* CWR is to be held something *above* high_seq
2406 * is ACKed for CWR bit to reach receiver. */
2407 if (tp->snd_una != tp->high_seq) {
2408 tcp_complete_cwr(sk);
2409 tcp_set_ca_state(sk, TCP_CA_Open);
2411 break;
2413 case TCP_CA_Disorder:
2414 tcp_try_undo_dsack(sk);
2415 if (!tp->undo_marker ||
2416 /* For SACK case do not Open to allow to undo
2417 * catching for all duplicate ACKs. */
2418 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2419 tp->undo_marker = 0;
2420 tcp_set_ca_state(sk, TCP_CA_Open);
2422 break;
2424 case TCP_CA_Recovery:
2425 if (tcp_is_reno(tp))
2426 tcp_reset_reno_sack(tp);
2427 if (tcp_try_undo_recovery(sk))
2428 return;
2429 tcp_complete_cwr(sk);
2430 break;
2434 /* F. Process state. */
2435 switch (icsk->icsk_ca_state) {
2436 case TCP_CA_Recovery:
2437 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2438 if (tcp_is_reno(tp) && is_dupack)
2439 tcp_add_reno_sack(sk);
2440 } else
2441 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2442 break;
2443 case TCP_CA_Loss:
2444 if (flag&FLAG_DATA_ACKED)
2445 icsk->icsk_retransmits = 0;
2446 if (!tcp_try_undo_loss(sk)) {
2447 tcp_moderate_cwnd(tp);
2448 tcp_xmit_retransmit_queue(sk);
2449 return;
2451 if (icsk->icsk_ca_state != TCP_CA_Open)
2452 return;
2453 /* Loss is undone; fall through to processing in Open state. */
2454 default:
2455 if (tcp_is_reno(tp)) {
2456 if (flag & FLAG_SND_UNA_ADVANCED)
2457 tcp_reset_reno_sack(tp);
2458 if (is_dupack)
2459 tcp_add_reno_sack(sk);
2462 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2463 tcp_try_undo_dsack(sk);
2465 if (!tcp_time_to_recover(sk)) {
2466 tcp_try_to_open(sk, flag);
2467 return;
2470 /* MTU probe failure: don't reduce cwnd */
2471 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2472 icsk->icsk_mtup.probe_size &&
2473 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2474 tcp_mtup_probe_failed(sk);
2475 /* Restores the reduction we did in tcp_mtup_probe() */
2476 tp->snd_cwnd++;
2477 tcp_simple_retransmit(sk);
2478 return;
2481 /* Otherwise enter Recovery state */
2483 if (tcp_is_reno(tp))
2484 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2485 else
2486 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2488 tp->high_seq = tp->snd_nxt;
2489 tp->prior_ssthresh = 0;
2490 tp->undo_marker = tp->snd_una;
2491 tp->undo_retrans = tp->retrans_out;
2493 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2494 if (!(flag&FLAG_ECE))
2495 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2496 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2497 TCP_ECN_queue_cwr(tp);
2500 tp->bytes_acked = 0;
2501 tp->snd_cwnd_cnt = 0;
2502 tcp_set_ca_state(sk, TCP_CA_Recovery);
2505 if (do_lost || tcp_head_timedout(sk))
2506 tcp_update_scoreboard(sk);
2507 tcp_cwnd_down(sk, flag);
2508 tcp_xmit_retransmit_queue(sk);
2511 /* Read draft-ietf-tcplw-high-performance before mucking
2512 * with this code. (Supersedes RFC1323)
2514 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2516 /* RTTM Rule: A TSecr value received in a segment is used to
2517 * update the averaged RTT measurement only if the segment
2518 * acknowledges some new data, i.e., only if it advances the
2519 * left edge of the send window.
2521 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2522 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2524 * Changed: reset backoff as soon as we see the first valid sample.
2525 * If we do not, we get strongly overestimated rto. With timestamps
2526 * samples are accepted even from very old segments: f.e., when rtt=1
2527 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2528 * answer arrives rto becomes 120 seconds! If at least one of segments
2529 * in window is lost... Voila. --ANK (010210)
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2533 tcp_rtt_estimator(sk, seq_rtt);
2534 tcp_set_rto(sk);
2535 inet_csk(sk)->icsk_backoff = 0;
2536 tcp_bound_rto(sk);
2539 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2541 /* We don't have a timestamp. Can only use
2542 * packets that are not retransmitted to determine
2543 * rtt estimates. Also, we must not reset the
2544 * backoff for rto until we get a non-retransmitted
2545 * packet. This allows us to deal with a situation
2546 * where the network delay has increased suddenly.
2547 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2550 if (flag & FLAG_RETRANS_DATA_ACKED)
2551 return;
2553 tcp_rtt_estimator(sk, seq_rtt);
2554 tcp_set_rto(sk);
2555 inet_csk(sk)->icsk_backoff = 0;
2556 tcp_bound_rto(sk);
2559 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2560 const s32 seq_rtt)
2562 const struct tcp_sock *tp = tcp_sk(sk);
2563 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2564 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2565 tcp_ack_saw_tstamp(sk, flag);
2566 else if (seq_rtt >= 0)
2567 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2570 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2571 u32 in_flight, int good)
2573 const struct inet_connection_sock *icsk = inet_csk(sk);
2574 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2575 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2578 /* Restart timer after forward progress on connection.
2579 * RFC2988 recommends to restart timer to now+rto.
2581 static void tcp_rearm_rto(struct sock *sk)
2583 struct tcp_sock *tp = tcp_sk(sk);
2585 if (!tp->packets_out) {
2586 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2587 } else {
2588 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2592 /* If we get here, the whole TSO packet has not been acked. */
2593 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2595 struct tcp_sock *tp = tcp_sk(sk);
2596 u32 packets_acked;
2598 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2600 packets_acked = tcp_skb_pcount(skb);
2601 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2602 return 0;
2603 packets_acked -= tcp_skb_pcount(skb);
2605 if (packets_acked) {
2606 BUG_ON(tcp_skb_pcount(skb) == 0);
2607 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2610 return packets_acked;
2613 /* Remove acknowledged frames from the retransmission queue. If our packet
2614 * is before the ack sequence we can discard it as it's confirmed to have
2615 * arrived at the other end.
2617 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2619 struct tcp_sock *tp = tcp_sk(sk);
2620 const struct inet_connection_sock *icsk = inet_csk(sk);
2621 struct sk_buff *skb;
2622 u32 now = tcp_time_stamp;
2623 int fully_acked = 1;
2624 int flag = 0;
2625 int prior_packets = tp->packets_out;
2626 s32 seq_rtt = -1;
2627 ktime_t last_ackt = net_invalid_timestamp();
2629 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2630 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2631 u32 end_seq;
2632 u32 packets_acked;
2633 u8 sacked = scb->sacked;
2635 if (after(scb->end_seq, tp->snd_una)) {
2636 if (tcp_skb_pcount(skb) == 1 ||
2637 !after(tp->snd_una, scb->seq))
2638 break;
2640 packets_acked = tcp_tso_acked(sk, skb);
2641 if (!packets_acked)
2642 break;
2644 fully_acked = 0;
2645 end_seq = tp->snd_una;
2646 } else {
2647 packets_acked = tcp_skb_pcount(skb);
2648 end_seq = scb->end_seq;
2651 /* MTU probing checks */
2652 if (fully_acked && icsk->icsk_mtup.probe_size &&
2653 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2654 tcp_mtup_probe_success(sk, skb);
2657 if (sacked) {
2658 if (sacked & TCPCB_RETRANS) {
2659 if (sacked & TCPCB_SACKED_RETRANS)
2660 tp->retrans_out -= packets_acked;
2661 flag |= FLAG_RETRANS_DATA_ACKED;
2662 seq_rtt = -1;
2663 if ((flag & FLAG_DATA_ACKED) ||
2664 (packets_acked > 1))
2665 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2666 } else if (seq_rtt < 0) {
2667 seq_rtt = now - scb->when;
2668 if (fully_acked)
2669 last_ackt = skb->tstamp;
2672 if (sacked & TCPCB_SACKED_ACKED)
2673 tp->sacked_out -= packets_acked;
2674 if (sacked & TCPCB_LOST)
2675 tp->lost_out -= packets_acked;
2677 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2678 !before(end_seq, tp->snd_up))
2679 tp->urg_mode = 0;
2680 } else if (seq_rtt < 0) {
2681 seq_rtt = now - scb->when;
2682 if (fully_acked)
2683 last_ackt = skb->tstamp;
2685 tp->packets_out -= packets_acked;
2687 /* Initial outgoing SYN's get put onto the write_queue
2688 * just like anything else we transmit. It is not
2689 * true data, and if we misinform our callers that
2690 * this ACK acks real data, we will erroneously exit
2691 * connection startup slow start one packet too
2692 * quickly. This is severely frowned upon behavior.
2694 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2695 flag |= FLAG_DATA_ACKED;
2696 } else {
2697 flag |= FLAG_SYN_ACKED;
2698 tp->retrans_stamp = 0;
2701 if (!fully_acked)
2702 break;
2704 tcp_unlink_write_queue(skb, sk);
2705 sk_stream_free_skb(sk, skb);
2706 tcp_clear_all_retrans_hints(tp);
2709 if (flag & FLAG_ACKED) {
2710 u32 pkts_acked = prior_packets - tp->packets_out;
2711 const struct tcp_congestion_ops *ca_ops
2712 = inet_csk(sk)->icsk_ca_ops;
2714 tcp_ack_update_rtt(sk, flag, seq_rtt);
2715 tcp_rearm_rto(sk);
2717 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2718 /* hint's skb might be NULL but we don't need to care */
2719 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2720 tp->fastpath_cnt_hint);
2721 if (tcp_is_reno(tp))
2722 tcp_remove_reno_sacks(sk, pkts_acked);
2724 if (ca_ops->pkts_acked) {
2725 s32 rtt_us = -1;
2727 /* Is the ACK triggering packet unambiguous? */
2728 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2729 /* High resolution needed and available? */
2730 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2731 !ktime_equal(last_ackt,
2732 net_invalid_timestamp()))
2733 rtt_us = ktime_us_delta(ktime_get_real(),
2734 last_ackt);
2735 else if (seq_rtt > 0)
2736 rtt_us = jiffies_to_usecs(seq_rtt);
2739 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2743 #if FASTRETRANS_DEBUG > 0
2744 BUG_TRAP((int)tp->sacked_out >= 0);
2745 BUG_TRAP((int)tp->lost_out >= 0);
2746 BUG_TRAP((int)tp->retrans_out >= 0);
2747 if (!tp->packets_out && tcp_is_sack(tp)) {
2748 icsk = inet_csk(sk);
2749 if (tp->lost_out) {
2750 printk(KERN_DEBUG "Leak l=%u %d\n",
2751 tp->lost_out, icsk->icsk_ca_state);
2752 tp->lost_out = 0;
2754 if (tp->sacked_out) {
2755 printk(KERN_DEBUG "Leak s=%u %d\n",
2756 tp->sacked_out, icsk->icsk_ca_state);
2757 tp->sacked_out = 0;
2759 if (tp->retrans_out) {
2760 printk(KERN_DEBUG "Leak r=%u %d\n",
2761 tp->retrans_out, icsk->icsk_ca_state);
2762 tp->retrans_out = 0;
2765 #endif
2766 *seq_rtt_p = seq_rtt;
2767 return flag;
2770 static void tcp_ack_probe(struct sock *sk)
2772 const struct tcp_sock *tp = tcp_sk(sk);
2773 struct inet_connection_sock *icsk = inet_csk(sk);
2775 /* Was it a usable window open? */
2777 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2778 tp->snd_una + tp->snd_wnd)) {
2779 icsk->icsk_backoff = 0;
2780 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2781 /* Socket must be waked up by subsequent tcp_data_snd_check().
2782 * This function is not for random using!
2784 } else {
2785 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2786 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2787 TCP_RTO_MAX);
2791 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2793 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2794 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2797 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2799 const struct tcp_sock *tp = tcp_sk(sk);
2800 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2801 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2804 /* Check that window update is acceptable.
2805 * The function assumes that snd_una<=ack<=snd_next.
2807 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2808 const u32 ack_seq, const u32 nwin)
2810 return (after(ack, tp->snd_una) ||
2811 after(ack_seq, tp->snd_wl1) ||
2812 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2815 /* Update our send window.
2817 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2818 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2820 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2821 u32 ack_seq)
2823 struct tcp_sock *tp = tcp_sk(sk);
2824 int flag = 0;
2825 u32 nwin = ntohs(tcp_hdr(skb)->window);
2827 if (likely(!tcp_hdr(skb)->syn))
2828 nwin <<= tp->rx_opt.snd_wscale;
2830 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2831 flag |= FLAG_WIN_UPDATE;
2832 tcp_update_wl(tp, ack, ack_seq);
2834 if (tp->snd_wnd != nwin) {
2835 tp->snd_wnd = nwin;
2837 /* Note, it is the only place, where
2838 * fast path is recovered for sending TCP.
2840 tp->pred_flags = 0;
2841 tcp_fast_path_check(sk);
2843 if (nwin > tp->max_window) {
2844 tp->max_window = nwin;
2845 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2850 tp->snd_una = ack;
2852 return flag;
2855 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2856 * continue in congestion avoidance.
2858 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2860 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2861 tp->snd_cwnd_cnt = 0;
2862 tp->bytes_acked = 0;
2863 TCP_ECN_queue_cwr(tp);
2864 tcp_moderate_cwnd(tp);
2867 /* A conservative spurious RTO response algorithm: reduce cwnd using
2868 * rate halving and continue in congestion avoidance.
2870 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2872 tcp_enter_cwr(sk, 0);
2875 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2877 if (flag&FLAG_ECE)
2878 tcp_ratehalving_spur_to_response(sk);
2879 else
2880 tcp_undo_cwr(sk, 1);
2883 /* F-RTO spurious RTO detection algorithm (RFC4138)
2885 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2886 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2887 * window (but not to or beyond highest sequence sent before RTO):
2888 * On First ACK, send two new segments out.
2889 * On Second ACK, RTO was likely spurious. Do spurious response (response
2890 * algorithm is not part of the F-RTO detection algorithm
2891 * given in RFC4138 but can be selected separately).
2892 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2893 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2894 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2895 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2897 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2898 * original window even after we transmit two new data segments.
2900 * SACK version:
2901 * on first step, wait until first cumulative ACK arrives, then move to
2902 * the second step. In second step, the next ACK decides.
2904 * F-RTO is implemented (mainly) in four functions:
2905 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2906 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2907 * called when tcp_use_frto() showed green light
2908 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2909 * - tcp_enter_frto_loss() is called if there is not enough evidence
2910 * to prove that the RTO is indeed spurious. It transfers the control
2911 * from F-RTO to the conventional RTO recovery
2913 static int tcp_process_frto(struct sock *sk, int flag)
2915 struct tcp_sock *tp = tcp_sk(sk);
2917 tcp_verify_left_out(tp);
2919 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2920 if (flag&FLAG_DATA_ACKED)
2921 inet_csk(sk)->icsk_retransmits = 0;
2923 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2924 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2925 tp->undo_marker = 0;
2927 if (!before(tp->snd_una, tp->frto_highmark)) {
2928 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2929 return 1;
2932 if (!IsSackFrto() || tcp_is_reno(tp)) {
2933 /* RFC4138 shortcoming in step 2; should also have case c):
2934 * ACK isn't duplicate nor advances window, e.g., opposite dir
2935 * data, winupdate
2937 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2938 return 1;
2940 if (!(flag&FLAG_DATA_ACKED)) {
2941 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2942 flag);
2943 return 1;
2945 } else {
2946 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2947 /* Prevent sending of new data. */
2948 tp->snd_cwnd = min(tp->snd_cwnd,
2949 tcp_packets_in_flight(tp));
2950 return 1;
2953 if ((tp->frto_counter >= 2) &&
2954 (!(flag&FLAG_FORWARD_PROGRESS) ||
2955 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2956 /* RFC4138 shortcoming (see comment above) */
2957 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2958 return 1;
2960 tcp_enter_frto_loss(sk, 3, flag);
2961 return 1;
2965 if (tp->frto_counter == 1) {
2966 /* Sending of the next skb must be allowed or no FRTO */
2967 if (!tcp_send_head(sk) ||
2968 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2969 tp->snd_una + tp->snd_wnd)) {
2970 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2971 flag);
2972 return 1;
2975 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2976 tp->frto_counter = 2;
2977 return 1;
2978 } else {
2979 switch (sysctl_tcp_frto_response) {
2980 case 2:
2981 tcp_undo_spur_to_response(sk, flag);
2982 break;
2983 case 1:
2984 tcp_conservative_spur_to_response(tp);
2985 break;
2986 default:
2987 tcp_ratehalving_spur_to_response(sk);
2988 break;
2990 tp->frto_counter = 0;
2991 tp->undo_marker = 0;
2992 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
2994 return 0;
2997 /* This routine deals with incoming acks, but not outgoing ones. */
2998 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3000 struct inet_connection_sock *icsk = inet_csk(sk);
3001 struct tcp_sock *tp = tcp_sk(sk);
3002 u32 prior_snd_una = tp->snd_una;
3003 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3004 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3005 u32 prior_in_flight;
3006 s32 seq_rtt;
3007 int prior_packets;
3008 int frto_cwnd = 0;
3010 /* If the ack is newer than sent or older than previous acks
3011 * then we can probably ignore it.
3013 if (after(ack, tp->snd_nxt))
3014 goto uninteresting_ack;
3016 if (before(ack, prior_snd_una))
3017 goto old_ack;
3019 if (after(ack, prior_snd_una))
3020 flag |= FLAG_SND_UNA_ADVANCED;
3022 if (sysctl_tcp_abc) {
3023 if (icsk->icsk_ca_state < TCP_CA_CWR)
3024 tp->bytes_acked += ack - prior_snd_una;
3025 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3026 /* we assume just one segment left network */
3027 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3030 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3031 /* Window is constant, pure forward advance.
3032 * No more checks are required.
3033 * Note, we use the fact that SND.UNA>=SND.WL2.
3035 tcp_update_wl(tp, ack, ack_seq);
3036 tp->snd_una = ack;
3037 flag |= FLAG_WIN_UPDATE;
3039 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3041 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3042 } else {
3043 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3044 flag |= FLAG_DATA;
3045 else
3046 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3048 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3050 if (TCP_SKB_CB(skb)->sacked)
3051 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3053 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3054 flag |= FLAG_ECE;
3056 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3059 /* We passed data and got it acked, remove any soft error
3060 * log. Something worked...
3062 sk->sk_err_soft = 0;
3063 tp->rcv_tstamp = tcp_time_stamp;
3064 prior_packets = tp->packets_out;
3065 if (!prior_packets)
3066 goto no_queue;
3068 prior_in_flight = tcp_packets_in_flight(tp);
3070 /* See if we can take anything off of the retransmit queue. */
3071 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3073 /* Guarantee sacktag reordering detection against wrap-arounds */
3074 if (before(tp->frto_highmark, tp->snd_una))
3075 tp->frto_highmark = 0;
3076 if (tp->frto_counter)
3077 frto_cwnd = tcp_process_frto(sk, flag);
3079 if (tcp_ack_is_dubious(sk, flag)) {
3080 /* Advance CWND, if state allows this. */
3081 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3082 tcp_may_raise_cwnd(sk, flag))
3083 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3084 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3085 } else {
3086 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3087 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3090 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3091 dst_confirm(sk->sk_dst_cache);
3093 return 1;
3095 no_queue:
3096 icsk->icsk_probes_out = 0;
3098 /* If this ack opens up a zero window, clear backoff. It was
3099 * being used to time the probes, and is probably far higher than
3100 * it needs to be for normal retransmission.
3102 if (tcp_send_head(sk))
3103 tcp_ack_probe(sk);
3104 return 1;
3106 old_ack:
3107 if (TCP_SKB_CB(skb)->sacked)
3108 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3110 uninteresting_ack:
3111 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3112 return 0;
3116 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3117 * But, this can also be called on packets in the established flow when
3118 * the fast version below fails.
3120 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3122 unsigned char *ptr;
3123 struct tcphdr *th = tcp_hdr(skb);
3124 int length=(th->doff*4)-sizeof(struct tcphdr);
3126 ptr = (unsigned char *)(th + 1);
3127 opt_rx->saw_tstamp = 0;
3129 while (length > 0) {
3130 int opcode=*ptr++;
3131 int opsize;
3133 switch (opcode) {
3134 case TCPOPT_EOL:
3135 return;
3136 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3137 length--;
3138 continue;
3139 default:
3140 opsize=*ptr++;
3141 if (opsize < 2) /* "silly options" */
3142 return;
3143 if (opsize > length)
3144 return; /* don't parse partial options */
3145 switch (opcode) {
3146 case TCPOPT_MSS:
3147 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3148 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3149 if (in_mss) {
3150 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3151 in_mss = opt_rx->user_mss;
3152 opt_rx->mss_clamp = in_mss;
3155 break;
3156 case TCPOPT_WINDOW:
3157 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3158 if (sysctl_tcp_window_scaling) {
3159 __u8 snd_wscale = *(__u8 *) ptr;
3160 opt_rx->wscale_ok = 1;
3161 if (snd_wscale > 14) {
3162 if (net_ratelimit())
3163 printk(KERN_INFO "tcp_parse_options: Illegal window "
3164 "scaling value %d >14 received.\n",
3165 snd_wscale);
3166 snd_wscale = 14;
3168 opt_rx->snd_wscale = snd_wscale;
3170 break;
3171 case TCPOPT_TIMESTAMP:
3172 if (opsize==TCPOLEN_TIMESTAMP) {
3173 if ((estab && opt_rx->tstamp_ok) ||
3174 (!estab && sysctl_tcp_timestamps)) {
3175 opt_rx->saw_tstamp = 1;
3176 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3177 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3180 break;
3181 case TCPOPT_SACK_PERM:
3182 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3183 if (sysctl_tcp_sack) {
3184 opt_rx->sack_ok = 1;
3185 tcp_sack_reset(opt_rx);
3188 break;
3190 case TCPOPT_SACK:
3191 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3192 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3193 opt_rx->sack_ok) {
3194 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3196 break;
3197 #ifdef CONFIG_TCP_MD5SIG
3198 case TCPOPT_MD5SIG:
3200 * The MD5 Hash has already been
3201 * checked (see tcp_v{4,6}_do_rcv()).
3203 break;
3204 #endif
3207 ptr+=opsize-2;
3208 length-=opsize;
3213 /* Fast parse options. This hopes to only see timestamps.
3214 * If it is wrong it falls back on tcp_parse_options().
3216 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3217 struct tcp_sock *tp)
3219 if (th->doff == sizeof(struct tcphdr)>>2) {
3220 tp->rx_opt.saw_tstamp = 0;
3221 return 0;
3222 } else if (tp->rx_opt.tstamp_ok &&
3223 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3224 __be32 *ptr = (__be32 *)(th + 1);
3225 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3226 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3227 tp->rx_opt.saw_tstamp = 1;
3228 ++ptr;
3229 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3230 ++ptr;
3231 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3232 return 1;
3235 tcp_parse_options(skb, &tp->rx_opt, 1);
3236 return 1;
3239 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3241 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3242 tp->rx_opt.ts_recent_stamp = get_seconds();
3245 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3247 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3248 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3249 * extra check below makes sure this can only happen
3250 * for pure ACK frames. -DaveM
3252 * Not only, also it occurs for expired timestamps.
3255 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3256 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3257 tcp_store_ts_recent(tp);
3261 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3263 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3264 * it can pass through stack. So, the following predicate verifies that
3265 * this segment is not used for anything but congestion avoidance or
3266 * fast retransmit. Moreover, we even are able to eliminate most of such
3267 * second order effects, if we apply some small "replay" window (~RTO)
3268 * to timestamp space.
3270 * All these measures still do not guarantee that we reject wrapped ACKs
3271 * on networks with high bandwidth, when sequence space is recycled fastly,
3272 * but it guarantees that such events will be very rare and do not affect
3273 * connection seriously. This doesn't look nice, but alas, PAWS is really
3274 * buggy extension.
3276 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3277 * states that events when retransmit arrives after original data are rare.
3278 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3279 * the biggest problem on large power networks even with minor reordering.
3280 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3281 * up to bandwidth of 18Gigabit/sec. 8) ]
3284 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3286 struct tcp_sock *tp = tcp_sk(sk);
3287 struct tcphdr *th = tcp_hdr(skb);
3288 u32 seq = TCP_SKB_CB(skb)->seq;
3289 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3291 return (/* 1. Pure ACK with correct sequence number. */
3292 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3294 /* 2. ... and duplicate ACK. */
3295 ack == tp->snd_una &&
3297 /* 3. ... and does not update window. */
3298 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3300 /* 4. ... and sits in replay window. */
3301 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3304 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3306 const struct tcp_sock *tp = tcp_sk(sk);
3307 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3308 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3309 !tcp_disordered_ack(sk, skb));
3312 /* Check segment sequence number for validity.
3314 * Segment controls are considered valid, if the segment
3315 * fits to the window after truncation to the window. Acceptability
3316 * of data (and SYN, FIN, of course) is checked separately.
3317 * See tcp_data_queue(), for example.
3319 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3320 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3321 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3322 * (borrowed from freebsd)
3325 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3327 return !before(end_seq, tp->rcv_wup) &&
3328 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3331 /* When we get a reset we do this. */
3332 static void tcp_reset(struct sock *sk)
3334 /* We want the right error as BSD sees it (and indeed as we do). */
3335 switch (sk->sk_state) {
3336 case TCP_SYN_SENT:
3337 sk->sk_err = ECONNREFUSED;
3338 break;
3339 case TCP_CLOSE_WAIT:
3340 sk->sk_err = EPIPE;
3341 break;
3342 case TCP_CLOSE:
3343 return;
3344 default:
3345 sk->sk_err = ECONNRESET;
3348 if (!sock_flag(sk, SOCK_DEAD))
3349 sk->sk_error_report(sk);
3351 tcp_done(sk);
3355 * Process the FIN bit. This now behaves as it is supposed to work
3356 * and the FIN takes effect when it is validly part of sequence
3357 * space. Not before when we get holes.
3359 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3360 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3361 * TIME-WAIT)
3363 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3364 * close and we go into CLOSING (and later onto TIME-WAIT)
3366 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3368 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3370 struct tcp_sock *tp = tcp_sk(sk);
3372 inet_csk_schedule_ack(sk);
3374 sk->sk_shutdown |= RCV_SHUTDOWN;
3375 sock_set_flag(sk, SOCK_DONE);
3377 switch (sk->sk_state) {
3378 case TCP_SYN_RECV:
3379 case TCP_ESTABLISHED:
3380 /* Move to CLOSE_WAIT */
3381 tcp_set_state(sk, TCP_CLOSE_WAIT);
3382 inet_csk(sk)->icsk_ack.pingpong = 1;
3383 break;
3385 case TCP_CLOSE_WAIT:
3386 case TCP_CLOSING:
3387 /* Received a retransmission of the FIN, do
3388 * nothing.
3390 break;
3391 case TCP_LAST_ACK:
3392 /* RFC793: Remain in the LAST-ACK state. */
3393 break;
3395 case TCP_FIN_WAIT1:
3396 /* This case occurs when a simultaneous close
3397 * happens, we must ack the received FIN and
3398 * enter the CLOSING state.
3400 tcp_send_ack(sk);
3401 tcp_set_state(sk, TCP_CLOSING);
3402 break;
3403 case TCP_FIN_WAIT2:
3404 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3405 tcp_send_ack(sk);
3406 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3407 break;
3408 default:
3409 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3410 * cases we should never reach this piece of code.
3412 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3413 __FUNCTION__, sk->sk_state);
3414 break;
3417 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3418 * Probably, we should reset in this case. For now drop them.
3420 __skb_queue_purge(&tp->out_of_order_queue);
3421 if (tcp_is_sack(tp))
3422 tcp_sack_reset(&tp->rx_opt);
3423 sk_stream_mem_reclaim(sk);
3425 if (!sock_flag(sk, SOCK_DEAD)) {
3426 sk->sk_state_change(sk);
3428 /* Do not send POLL_HUP for half duplex close. */
3429 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3430 sk->sk_state == TCP_CLOSE)
3431 sk_wake_async(sk, 1, POLL_HUP);
3432 else
3433 sk_wake_async(sk, 1, POLL_IN);
3437 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3439 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3440 if (before(seq, sp->start_seq))
3441 sp->start_seq = seq;
3442 if (after(end_seq, sp->end_seq))
3443 sp->end_seq = end_seq;
3444 return 1;
3446 return 0;
3449 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3451 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3452 if (before(seq, tp->rcv_nxt))
3453 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3454 else
3455 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3457 tp->rx_opt.dsack = 1;
3458 tp->duplicate_sack[0].start_seq = seq;
3459 tp->duplicate_sack[0].end_seq = end_seq;
3460 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3464 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3466 if (!tp->rx_opt.dsack)
3467 tcp_dsack_set(tp, seq, end_seq);
3468 else
3469 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3472 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3474 struct tcp_sock *tp = tcp_sk(sk);
3476 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3477 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3478 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3479 tcp_enter_quickack_mode(sk);
3481 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3482 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3484 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3485 end_seq = tp->rcv_nxt;
3486 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3490 tcp_send_ack(sk);
3493 /* These routines update the SACK block as out-of-order packets arrive or
3494 * in-order packets close up the sequence space.
3496 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3498 int this_sack;
3499 struct tcp_sack_block *sp = &tp->selective_acks[0];
3500 struct tcp_sack_block *swalk = sp+1;
3502 /* See if the recent change to the first SACK eats into
3503 * or hits the sequence space of other SACK blocks, if so coalesce.
3505 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3506 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3507 int i;
3509 /* Zap SWALK, by moving every further SACK up by one slot.
3510 * Decrease num_sacks.
3512 tp->rx_opt.num_sacks--;
3513 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3514 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3515 sp[i] = sp[i+1];
3516 continue;
3518 this_sack++, swalk++;
3522 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3524 __u32 tmp;
3526 tmp = sack1->start_seq;
3527 sack1->start_seq = sack2->start_seq;
3528 sack2->start_seq = tmp;
3530 tmp = sack1->end_seq;
3531 sack1->end_seq = sack2->end_seq;
3532 sack2->end_seq = tmp;
3535 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3537 struct tcp_sock *tp = tcp_sk(sk);
3538 struct tcp_sack_block *sp = &tp->selective_acks[0];
3539 int cur_sacks = tp->rx_opt.num_sacks;
3540 int this_sack;
3542 if (!cur_sacks)
3543 goto new_sack;
3545 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3546 if (tcp_sack_extend(sp, seq, end_seq)) {
3547 /* Rotate this_sack to the first one. */
3548 for (; this_sack>0; this_sack--, sp--)
3549 tcp_sack_swap(sp, sp-1);
3550 if (cur_sacks > 1)
3551 tcp_sack_maybe_coalesce(tp);
3552 return;
3556 /* Could not find an adjacent existing SACK, build a new one,
3557 * put it at the front, and shift everyone else down. We
3558 * always know there is at least one SACK present already here.
3560 * If the sack array is full, forget about the last one.
3562 if (this_sack >= 4) {
3563 this_sack--;
3564 tp->rx_opt.num_sacks--;
3565 sp--;
3567 for (; this_sack > 0; this_sack--, sp--)
3568 *sp = *(sp-1);
3570 new_sack:
3571 /* Build the new head SACK, and we're done. */
3572 sp->start_seq = seq;
3573 sp->end_seq = end_seq;
3574 tp->rx_opt.num_sacks++;
3575 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3578 /* RCV.NXT advances, some SACKs should be eaten. */
3580 static void tcp_sack_remove(struct tcp_sock *tp)
3582 struct tcp_sack_block *sp = &tp->selective_acks[0];
3583 int num_sacks = tp->rx_opt.num_sacks;
3584 int this_sack;
3586 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3587 if (skb_queue_empty(&tp->out_of_order_queue)) {
3588 tp->rx_opt.num_sacks = 0;
3589 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3590 return;
3593 for (this_sack = 0; this_sack < num_sacks; ) {
3594 /* Check if the start of the sack is covered by RCV.NXT. */
3595 if (!before(tp->rcv_nxt, sp->start_seq)) {
3596 int i;
3598 /* RCV.NXT must cover all the block! */
3599 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3601 /* Zap this SACK, by moving forward any other SACKS. */
3602 for (i=this_sack+1; i < num_sacks; i++)
3603 tp->selective_acks[i-1] = tp->selective_acks[i];
3604 num_sacks--;
3605 continue;
3607 this_sack++;
3608 sp++;
3610 if (num_sacks != tp->rx_opt.num_sacks) {
3611 tp->rx_opt.num_sacks = num_sacks;
3612 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3616 /* This one checks to see if we can put data from the
3617 * out_of_order queue into the receive_queue.
3619 static void tcp_ofo_queue(struct sock *sk)
3621 struct tcp_sock *tp = tcp_sk(sk);
3622 __u32 dsack_high = tp->rcv_nxt;
3623 struct sk_buff *skb;
3625 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3626 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3627 break;
3629 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3630 __u32 dsack = dsack_high;
3631 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3632 dsack_high = TCP_SKB_CB(skb)->end_seq;
3633 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3636 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3637 SOCK_DEBUG(sk, "ofo packet was already received \n");
3638 __skb_unlink(skb, &tp->out_of_order_queue);
3639 __kfree_skb(skb);
3640 continue;
3642 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3643 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3644 TCP_SKB_CB(skb)->end_seq);
3646 __skb_unlink(skb, &tp->out_of_order_queue);
3647 __skb_queue_tail(&sk->sk_receive_queue, skb);
3648 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3649 if (tcp_hdr(skb)->fin)
3650 tcp_fin(skb, sk, tcp_hdr(skb));
3654 static int tcp_prune_queue(struct sock *sk);
3656 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3658 struct tcphdr *th = tcp_hdr(skb);
3659 struct tcp_sock *tp = tcp_sk(sk);
3660 int eaten = -1;
3662 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3663 goto drop;
3665 __skb_pull(skb, th->doff*4);
3667 TCP_ECN_accept_cwr(tp, skb);
3669 if (tp->rx_opt.dsack) {
3670 tp->rx_opt.dsack = 0;
3671 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3672 4 - tp->rx_opt.tstamp_ok);
3675 /* Queue data for delivery to the user.
3676 * Packets in sequence go to the receive queue.
3677 * Out of sequence packets to the out_of_order_queue.
3679 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3680 if (tcp_receive_window(tp) == 0)
3681 goto out_of_window;
3683 /* Ok. In sequence. In window. */
3684 if (tp->ucopy.task == current &&
3685 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3686 sock_owned_by_user(sk) && !tp->urg_data) {
3687 int chunk = min_t(unsigned int, skb->len,
3688 tp->ucopy.len);
3690 __set_current_state(TASK_RUNNING);
3692 local_bh_enable();
3693 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3694 tp->ucopy.len -= chunk;
3695 tp->copied_seq += chunk;
3696 eaten = (chunk == skb->len && !th->fin);
3697 tcp_rcv_space_adjust(sk);
3699 local_bh_disable();
3702 if (eaten <= 0) {
3703 queue_and_out:
3704 if (eaten < 0 &&
3705 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3706 !sk_stream_rmem_schedule(sk, skb))) {
3707 if (tcp_prune_queue(sk) < 0 ||
3708 !sk_stream_rmem_schedule(sk, skb))
3709 goto drop;
3711 sk_stream_set_owner_r(skb, sk);
3712 __skb_queue_tail(&sk->sk_receive_queue, skb);
3714 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3715 if (skb->len)
3716 tcp_event_data_recv(sk, skb);
3717 if (th->fin)
3718 tcp_fin(skb, sk, th);
3720 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3721 tcp_ofo_queue(sk);
3723 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3724 * gap in queue is filled.
3726 if (skb_queue_empty(&tp->out_of_order_queue))
3727 inet_csk(sk)->icsk_ack.pingpong = 0;
3730 if (tp->rx_opt.num_sacks)
3731 tcp_sack_remove(tp);
3733 tcp_fast_path_check(sk);
3735 if (eaten > 0)
3736 __kfree_skb(skb);
3737 else if (!sock_flag(sk, SOCK_DEAD))
3738 sk->sk_data_ready(sk, 0);
3739 return;
3742 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3743 /* A retransmit, 2nd most common case. Force an immediate ack. */
3744 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3745 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3747 out_of_window:
3748 tcp_enter_quickack_mode(sk);
3749 inet_csk_schedule_ack(sk);
3750 drop:
3751 __kfree_skb(skb);
3752 return;
3755 /* Out of window. F.e. zero window probe. */
3756 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3757 goto out_of_window;
3759 tcp_enter_quickack_mode(sk);
3761 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3762 /* Partial packet, seq < rcv_next < end_seq */
3763 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3764 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3765 TCP_SKB_CB(skb)->end_seq);
3767 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3769 /* If window is closed, drop tail of packet. But after
3770 * remembering D-SACK for its head made in previous line.
3772 if (!tcp_receive_window(tp))
3773 goto out_of_window;
3774 goto queue_and_out;
3777 TCP_ECN_check_ce(tp, skb);
3779 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3780 !sk_stream_rmem_schedule(sk, skb)) {
3781 if (tcp_prune_queue(sk) < 0 ||
3782 !sk_stream_rmem_schedule(sk, skb))
3783 goto drop;
3786 /* Disable header prediction. */
3787 tp->pred_flags = 0;
3788 inet_csk_schedule_ack(sk);
3790 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3791 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3793 sk_stream_set_owner_r(skb, sk);
3795 if (!skb_peek(&tp->out_of_order_queue)) {
3796 /* Initial out of order segment, build 1 SACK. */
3797 if (tcp_is_sack(tp)) {
3798 tp->rx_opt.num_sacks = 1;
3799 tp->rx_opt.dsack = 0;
3800 tp->rx_opt.eff_sacks = 1;
3801 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3802 tp->selective_acks[0].end_seq =
3803 TCP_SKB_CB(skb)->end_seq;
3805 __skb_queue_head(&tp->out_of_order_queue,skb);
3806 } else {
3807 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3808 u32 seq = TCP_SKB_CB(skb)->seq;
3809 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3811 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3812 __skb_append(skb1, skb, &tp->out_of_order_queue);
3814 if (!tp->rx_opt.num_sacks ||
3815 tp->selective_acks[0].end_seq != seq)
3816 goto add_sack;
3818 /* Common case: data arrive in order after hole. */
3819 tp->selective_acks[0].end_seq = end_seq;
3820 return;
3823 /* Find place to insert this segment. */
3824 do {
3825 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3826 break;
3827 } while ((skb1 = skb1->prev) !=
3828 (struct sk_buff*)&tp->out_of_order_queue);
3830 /* Do skb overlap to previous one? */
3831 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3832 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3833 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3834 /* All the bits are present. Drop. */
3835 __kfree_skb(skb);
3836 tcp_dsack_set(tp, seq, end_seq);
3837 goto add_sack;
3839 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3840 /* Partial overlap. */
3841 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3842 } else {
3843 skb1 = skb1->prev;
3846 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3848 /* And clean segments covered by new one as whole. */
3849 while ((skb1 = skb->next) !=
3850 (struct sk_buff*)&tp->out_of_order_queue &&
3851 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3852 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3853 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3854 break;
3856 __skb_unlink(skb1, &tp->out_of_order_queue);
3857 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3858 __kfree_skb(skb1);
3861 add_sack:
3862 if (tcp_is_sack(tp))
3863 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3867 /* Collapse contiguous sequence of skbs head..tail with
3868 * sequence numbers start..end.
3869 * Segments with FIN/SYN are not collapsed (only because this
3870 * simplifies code)
3872 static void
3873 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3874 struct sk_buff *head, struct sk_buff *tail,
3875 u32 start, u32 end)
3877 struct sk_buff *skb;
3879 /* First, check that queue is collapsible and find
3880 * the point where collapsing can be useful. */
3881 for (skb = head; skb != tail; ) {
3882 /* No new bits? It is possible on ofo queue. */
3883 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3884 struct sk_buff *next = skb->next;
3885 __skb_unlink(skb, list);
3886 __kfree_skb(skb);
3887 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3888 skb = next;
3889 continue;
3892 /* The first skb to collapse is:
3893 * - not SYN/FIN and
3894 * - bloated or contains data before "start" or
3895 * overlaps to the next one.
3897 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3898 (tcp_win_from_space(skb->truesize) > skb->len ||
3899 before(TCP_SKB_CB(skb)->seq, start) ||
3900 (skb->next != tail &&
3901 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3902 break;
3904 /* Decided to skip this, advance start seq. */
3905 start = TCP_SKB_CB(skb)->end_seq;
3906 skb = skb->next;
3908 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3909 return;
3911 while (before(start, end)) {
3912 struct sk_buff *nskb;
3913 int header = skb_headroom(skb);
3914 int copy = SKB_MAX_ORDER(header, 0);
3916 /* Too big header? This can happen with IPv6. */
3917 if (copy < 0)
3918 return;
3919 if (end-start < copy)
3920 copy = end-start;
3921 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3922 if (!nskb)
3923 return;
3925 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3926 skb_set_network_header(nskb, (skb_network_header(skb) -
3927 skb->head));
3928 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3929 skb->head));
3930 skb_reserve(nskb, header);
3931 memcpy(nskb->head, skb->head, header);
3932 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3933 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3934 __skb_insert(nskb, skb->prev, skb, list);
3935 sk_stream_set_owner_r(nskb, sk);
3937 /* Copy data, releasing collapsed skbs. */
3938 while (copy > 0) {
3939 int offset = start - TCP_SKB_CB(skb)->seq;
3940 int size = TCP_SKB_CB(skb)->end_seq - start;
3942 BUG_ON(offset < 0);
3943 if (size > 0) {
3944 size = min(copy, size);
3945 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3946 BUG();
3947 TCP_SKB_CB(nskb)->end_seq += size;
3948 copy -= size;
3949 start += size;
3951 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3952 struct sk_buff *next = skb->next;
3953 __skb_unlink(skb, list);
3954 __kfree_skb(skb);
3955 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3956 skb = next;
3957 if (skb == tail ||
3958 tcp_hdr(skb)->syn ||
3959 tcp_hdr(skb)->fin)
3960 return;
3966 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3967 * and tcp_collapse() them until all the queue is collapsed.
3969 static void tcp_collapse_ofo_queue(struct sock *sk)
3971 struct tcp_sock *tp = tcp_sk(sk);
3972 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3973 struct sk_buff *head;
3974 u32 start, end;
3976 if (skb == NULL)
3977 return;
3979 start = TCP_SKB_CB(skb)->seq;
3980 end = TCP_SKB_CB(skb)->end_seq;
3981 head = skb;
3983 for (;;) {
3984 skb = skb->next;
3986 /* Segment is terminated when we see gap or when
3987 * we are at the end of all the queue. */
3988 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3989 after(TCP_SKB_CB(skb)->seq, end) ||
3990 before(TCP_SKB_CB(skb)->end_seq, start)) {
3991 tcp_collapse(sk, &tp->out_of_order_queue,
3992 head, skb, start, end);
3993 head = skb;
3994 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3995 break;
3996 /* Start new segment */
3997 start = TCP_SKB_CB(skb)->seq;
3998 end = TCP_SKB_CB(skb)->end_seq;
3999 } else {
4000 if (before(TCP_SKB_CB(skb)->seq, start))
4001 start = TCP_SKB_CB(skb)->seq;
4002 if (after(TCP_SKB_CB(skb)->end_seq, end))
4003 end = TCP_SKB_CB(skb)->end_seq;
4008 /* Reduce allocated memory if we can, trying to get
4009 * the socket within its memory limits again.
4011 * Return less than zero if we should start dropping frames
4012 * until the socket owning process reads some of the data
4013 * to stabilize the situation.
4015 static int tcp_prune_queue(struct sock *sk)
4017 struct tcp_sock *tp = tcp_sk(sk);
4019 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4021 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4023 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4024 tcp_clamp_window(sk);
4025 else if (tcp_memory_pressure)
4026 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4028 tcp_collapse_ofo_queue(sk);
4029 tcp_collapse(sk, &sk->sk_receive_queue,
4030 sk->sk_receive_queue.next,
4031 (struct sk_buff*)&sk->sk_receive_queue,
4032 tp->copied_seq, tp->rcv_nxt);
4033 sk_stream_mem_reclaim(sk);
4035 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4036 return 0;
4038 /* Collapsing did not help, destructive actions follow.
4039 * This must not ever occur. */
4041 /* First, purge the out_of_order queue. */
4042 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4043 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4044 __skb_queue_purge(&tp->out_of_order_queue);
4046 /* Reset SACK state. A conforming SACK implementation will
4047 * do the same at a timeout based retransmit. When a connection
4048 * is in a sad state like this, we care only about integrity
4049 * of the connection not performance.
4051 if (tcp_is_sack(tp))
4052 tcp_sack_reset(&tp->rx_opt);
4053 sk_stream_mem_reclaim(sk);
4056 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4057 return 0;
4059 /* If we are really being abused, tell the caller to silently
4060 * drop receive data on the floor. It will get retransmitted
4061 * and hopefully then we'll have sufficient space.
4063 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4065 /* Massive buffer overcommit. */
4066 tp->pred_flags = 0;
4067 return -1;
4071 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4072 * As additional protections, we do not touch cwnd in retransmission phases,
4073 * and if application hit its sndbuf limit recently.
4075 void tcp_cwnd_application_limited(struct sock *sk)
4077 struct tcp_sock *tp = tcp_sk(sk);
4079 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4080 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4081 /* Limited by application or receiver window. */
4082 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4083 u32 win_used = max(tp->snd_cwnd_used, init_win);
4084 if (win_used < tp->snd_cwnd) {
4085 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4086 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4088 tp->snd_cwnd_used = 0;
4090 tp->snd_cwnd_stamp = tcp_time_stamp;
4093 static int tcp_should_expand_sndbuf(struct sock *sk)
4095 struct tcp_sock *tp = tcp_sk(sk);
4097 /* If the user specified a specific send buffer setting, do
4098 * not modify it.
4100 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4101 return 0;
4103 /* If we are under global TCP memory pressure, do not expand. */
4104 if (tcp_memory_pressure)
4105 return 0;
4107 /* If we are under soft global TCP memory pressure, do not expand. */
4108 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4109 return 0;
4111 /* If we filled the congestion window, do not expand. */
4112 if (tp->packets_out >= tp->snd_cwnd)
4113 return 0;
4115 return 1;
4118 /* When incoming ACK allowed to free some skb from write_queue,
4119 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4120 * on the exit from tcp input handler.
4122 * PROBLEM: sndbuf expansion does not work well with largesend.
4124 static void tcp_new_space(struct sock *sk)
4126 struct tcp_sock *tp = tcp_sk(sk);
4128 if (tcp_should_expand_sndbuf(sk)) {
4129 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4130 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4131 demanded = max_t(unsigned int, tp->snd_cwnd,
4132 tp->reordering + 1);
4133 sndmem *= 2*demanded;
4134 if (sndmem > sk->sk_sndbuf)
4135 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4136 tp->snd_cwnd_stamp = tcp_time_stamp;
4139 sk->sk_write_space(sk);
4142 static void tcp_check_space(struct sock *sk)
4144 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4145 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4146 if (sk->sk_socket &&
4147 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4148 tcp_new_space(sk);
4152 static inline void tcp_data_snd_check(struct sock *sk)
4154 tcp_push_pending_frames(sk);
4155 tcp_check_space(sk);
4159 * Check if sending an ack is needed.
4161 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4163 struct tcp_sock *tp = tcp_sk(sk);
4165 /* More than one full frame received... */
4166 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4167 /* ... and right edge of window advances far enough.
4168 * (tcp_recvmsg() will send ACK otherwise). Or...
4170 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4171 /* We ACK each frame or... */
4172 tcp_in_quickack_mode(sk) ||
4173 /* We have out of order data. */
4174 (ofo_possible &&
4175 skb_peek(&tp->out_of_order_queue))) {
4176 /* Then ack it now */
4177 tcp_send_ack(sk);
4178 } else {
4179 /* Else, send delayed ack. */
4180 tcp_send_delayed_ack(sk);
4184 static inline void tcp_ack_snd_check(struct sock *sk)
4186 if (!inet_csk_ack_scheduled(sk)) {
4187 /* We sent a data segment already. */
4188 return;
4190 __tcp_ack_snd_check(sk, 1);
4194 * This routine is only called when we have urgent data
4195 * signaled. Its the 'slow' part of tcp_urg. It could be
4196 * moved inline now as tcp_urg is only called from one
4197 * place. We handle URGent data wrong. We have to - as
4198 * BSD still doesn't use the correction from RFC961.
4199 * For 1003.1g we should support a new option TCP_STDURG to permit
4200 * either form (or just set the sysctl tcp_stdurg).
4203 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4205 struct tcp_sock *tp = tcp_sk(sk);
4206 u32 ptr = ntohs(th->urg_ptr);
4208 if (ptr && !sysctl_tcp_stdurg)
4209 ptr--;
4210 ptr += ntohl(th->seq);
4212 /* Ignore urgent data that we've already seen and read. */
4213 if (after(tp->copied_seq, ptr))
4214 return;
4216 /* Do not replay urg ptr.
4218 * NOTE: interesting situation not covered by specs.
4219 * Misbehaving sender may send urg ptr, pointing to segment,
4220 * which we already have in ofo queue. We are not able to fetch
4221 * such data and will stay in TCP_URG_NOTYET until will be eaten
4222 * by recvmsg(). Seems, we are not obliged to handle such wicked
4223 * situations. But it is worth to think about possibility of some
4224 * DoSes using some hypothetical application level deadlock.
4226 if (before(ptr, tp->rcv_nxt))
4227 return;
4229 /* Do we already have a newer (or duplicate) urgent pointer? */
4230 if (tp->urg_data && !after(ptr, tp->urg_seq))
4231 return;
4233 /* Tell the world about our new urgent pointer. */
4234 sk_send_sigurg(sk);
4236 /* We may be adding urgent data when the last byte read was
4237 * urgent. To do this requires some care. We cannot just ignore
4238 * tp->copied_seq since we would read the last urgent byte again
4239 * as data, nor can we alter copied_seq until this data arrives
4240 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4242 * NOTE. Double Dutch. Rendering to plain English: author of comment
4243 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4244 * and expect that both A and B disappear from stream. This is _wrong_.
4245 * Though this happens in BSD with high probability, this is occasional.
4246 * Any application relying on this is buggy. Note also, that fix "works"
4247 * only in this artificial test. Insert some normal data between A and B and we will
4248 * decline of BSD again. Verdict: it is better to remove to trap
4249 * buggy users.
4251 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4252 !sock_flag(sk, SOCK_URGINLINE) &&
4253 tp->copied_seq != tp->rcv_nxt) {
4254 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4255 tp->copied_seq++;
4256 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4257 __skb_unlink(skb, &sk->sk_receive_queue);
4258 __kfree_skb(skb);
4262 tp->urg_data = TCP_URG_NOTYET;
4263 tp->urg_seq = ptr;
4265 /* Disable header prediction. */
4266 tp->pred_flags = 0;
4269 /* This is the 'fast' part of urgent handling. */
4270 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4272 struct tcp_sock *tp = tcp_sk(sk);
4274 /* Check if we get a new urgent pointer - normally not. */
4275 if (th->urg)
4276 tcp_check_urg(sk,th);
4278 /* Do we wait for any urgent data? - normally not... */
4279 if (tp->urg_data == TCP_URG_NOTYET) {
4280 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4281 th->syn;
4283 /* Is the urgent pointer pointing into this packet? */
4284 if (ptr < skb->len) {
4285 u8 tmp;
4286 if (skb_copy_bits(skb, ptr, &tmp, 1))
4287 BUG();
4288 tp->urg_data = TCP_URG_VALID | tmp;
4289 if (!sock_flag(sk, SOCK_DEAD))
4290 sk->sk_data_ready(sk, 0);
4295 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4297 struct tcp_sock *tp = tcp_sk(sk);
4298 int chunk = skb->len - hlen;
4299 int err;
4301 local_bh_enable();
4302 if (skb_csum_unnecessary(skb))
4303 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4304 else
4305 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4306 tp->ucopy.iov);
4308 if (!err) {
4309 tp->ucopy.len -= chunk;
4310 tp->copied_seq += chunk;
4311 tcp_rcv_space_adjust(sk);
4314 local_bh_disable();
4315 return err;
4318 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4320 __sum16 result;
4322 if (sock_owned_by_user(sk)) {
4323 local_bh_enable();
4324 result = __tcp_checksum_complete(skb);
4325 local_bh_disable();
4326 } else {
4327 result = __tcp_checksum_complete(skb);
4329 return result;
4332 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4334 return !skb_csum_unnecessary(skb) &&
4335 __tcp_checksum_complete_user(sk, skb);
4338 #ifdef CONFIG_NET_DMA
4339 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4341 struct tcp_sock *tp = tcp_sk(sk);
4342 int chunk = skb->len - hlen;
4343 int dma_cookie;
4344 int copied_early = 0;
4346 if (tp->ucopy.wakeup)
4347 return 0;
4349 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4350 tp->ucopy.dma_chan = get_softnet_dma();
4352 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4354 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4355 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4357 if (dma_cookie < 0)
4358 goto out;
4360 tp->ucopy.dma_cookie = dma_cookie;
4361 copied_early = 1;
4363 tp->ucopy.len -= chunk;
4364 tp->copied_seq += chunk;
4365 tcp_rcv_space_adjust(sk);
4367 if ((tp->ucopy.len == 0) ||
4368 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4369 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4370 tp->ucopy.wakeup = 1;
4371 sk->sk_data_ready(sk, 0);
4373 } else if (chunk > 0) {
4374 tp->ucopy.wakeup = 1;
4375 sk->sk_data_ready(sk, 0);
4377 out:
4378 return copied_early;
4380 #endif /* CONFIG_NET_DMA */
4383 * TCP receive function for the ESTABLISHED state.
4385 * It is split into a fast path and a slow path. The fast path is
4386 * disabled when:
4387 * - A zero window was announced from us - zero window probing
4388 * is only handled properly in the slow path.
4389 * - Out of order segments arrived.
4390 * - Urgent data is expected.
4391 * - There is no buffer space left
4392 * - Unexpected TCP flags/window values/header lengths are received
4393 * (detected by checking the TCP header against pred_flags)
4394 * - Data is sent in both directions. Fast path only supports pure senders
4395 * or pure receivers (this means either the sequence number or the ack
4396 * value must stay constant)
4397 * - Unexpected TCP option.
4399 * When these conditions are not satisfied it drops into a standard
4400 * receive procedure patterned after RFC793 to handle all cases.
4401 * The first three cases are guaranteed by proper pred_flags setting,
4402 * the rest is checked inline. Fast processing is turned on in
4403 * tcp_data_queue when everything is OK.
4405 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4406 struct tcphdr *th, unsigned len)
4408 struct tcp_sock *tp = tcp_sk(sk);
4411 * Header prediction.
4412 * The code loosely follows the one in the famous
4413 * "30 instruction TCP receive" Van Jacobson mail.
4415 * Van's trick is to deposit buffers into socket queue
4416 * on a device interrupt, to call tcp_recv function
4417 * on the receive process context and checksum and copy
4418 * the buffer to user space. smart...
4420 * Our current scheme is not silly either but we take the
4421 * extra cost of the net_bh soft interrupt processing...
4422 * We do checksum and copy also but from device to kernel.
4425 tp->rx_opt.saw_tstamp = 0;
4427 /* pred_flags is 0xS?10 << 16 + snd_wnd
4428 * if header_prediction is to be made
4429 * 'S' will always be tp->tcp_header_len >> 2
4430 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4431 * turn it off (when there are holes in the receive
4432 * space for instance)
4433 * PSH flag is ignored.
4436 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4437 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4438 int tcp_header_len = tp->tcp_header_len;
4440 /* Timestamp header prediction: tcp_header_len
4441 * is automatically equal to th->doff*4 due to pred_flags
4442 * match.
4445 /* Check timestamp */
4446 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4447 __be32 *ptr = (__be32 *)(th + 1);
4449 /* No? Slow path! */
4450 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4451 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4452 goto slow_path;
4454 tp->rx_opt.saw_tstamp = 1;
4455 ++ptr;
4456 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4457 ++ptr;
4458 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4460 /* If PAWS failed, check it more carefully in slow path */
4461 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4462 goto slow_path;
4464 /* DO NOT update ts_recent here, if checksum fails
4465 * and timestamp was corrupted part, it will result
4466 * in a hung connection since we will drop all
4467 * future packets due to the PAWS test.
4471 if (len <= tcp_header_len) {
4472 /* Bulk data transfer: sender */
4473 if (len == tcp_header_len) {
4474 /* Predicted packet is in window by definition.
4475 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4476 * Hence, check seq<=rcv_wup reduces to:
4478 if (tcp_header_len ==
4479 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4480 tp->rcv_nxt == tp->rcv_wup)
4481 tcp_store_ts_recent(tp);
4483 /* We know that such packets are checksummed
4484 * on entry.
4486 tcp_ack(sk, skb, 0);
4487 __kfree_skb(skb);
4488 tcp_data_snd_check(sk);
4489 return 0;
4490 } else { /* Header too small */
4491 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4492 goto discard;
4494 } else {
4495 int eaten = 0;
4496 int copied_early = 0;
4498 if (tp->copied_seq == tp->rcv_nxt &&
4499 len - tcp_header_len <= tp->ucopy.len) {
4500 #ifdef CONFIG_NET_DMA
4501 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4502 copied_early = 1;
4503 eaten = 1;
4505 #endif
4506 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4507 __set_current_state(TASK_RUNNING);
4509 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4510 eaten = 1;
4512 if (eaten) {
4513 /* Predicted packet is in window by definition.
4514 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4515 * Hence, check seq<=rcv_wup reduces to:
4517 if (tcp_header_len ==
4518 (sizeof(struct tcphdr) +
4519 TCPOLEN_TSTAMP_ALIGNED) &&
4520 tp->rcv_nxt == tp->rcv_wup)
4521 tcp_store_ts_recent(tp);
4523 tcp_rcv_rtt_measure_ts(sk, skb);
4525 __skb_pull(skb, tcp_header_len);
4526 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4527 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4529 if (copied_early)
4530 tcp_cleanup_rbuf(sk, skb->len);
4532 if (!eaten) {
4533 if (tcp_checksum_complete_user(sk, skb))
4534 goto csum_error;
4536 /* Predicted packet is in window by definition.
4537 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4538 * Hence, check seq<=rcv_wup reduces to:
4540 if (tcp_header_len ==
4541 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4542 tp->rcv_nxt == tp->rcv_wup)
4543 tcp_store_ts_recent(tp);
4545 tcp_rcv_rtt_measure_ts(sk, skb);
4547 if ((int)skb->truesize > sk->sk_forward_alloc)
4548 goto step5;
4550 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4552 /* Bulk data transfer: receiver */
4553 __skb_pull(skb,tcp_header_len);
4554 __skb_queue_tail(&sk->sk_receive_queue, skb);
4555 sk_stream_set_owner_r(skb, sk);
4556 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4559 tcp_event_data_recv(sk, skb);
4561 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4562 /* Well, only one small jumplet in fast path... */
4563 tcp_ack(sk, skb, FLAG_DATA);
4564 tcp_data_snd_check(sk);
4565 if (!inet_csk_ack_scheduled(sk))
4566 goto no_ack;
4569 __tcp_ack_snd_check(sk, 0);
4570 no_ack:
4571 #ifdef CONFIG_NET_DMA
4572 if (copied_early)
4573 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4574 else
4575 #endif
4576 if (eaten)
4577 __kfree_skb(skb);
4578 else
4579 sk->sk_data_ready(sk, 0);
4580 return 0;
4584 slow_path:
4585 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4586 goto csum_error;
4589 * RFC1323: H1. Apply PAWS check first.
4591 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4592 tcp_paws_discard(sk, skb)) {
4593 if (!th->rst) {
4594 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4595 tcp_send_dupack(sk, skb);
4596 goto discard;
4598 /* Resets are accepted even if PAWS failed.
4600 ts_recent update must be made after we are sure
4601 that the packet is in window.
4606 * Standard slow path.
4609 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4610 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4611 * (RST) segments are validated by checking their SEQ-fields."
4612 * And page 69: "If an incoming segment is not acceptable,
4613 * an acknowledgment should be sent in reply (unless the RST bit
4614 * is set, if so drop the segment and return)".
4616 if (!th->rst)
4617 tcp_send_dupack(sk, skb);
4618 goto discard;
4621 if (th->rst) {
4622 tcp_reset(sk);
4623 goto discard;
4626 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4628 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4629 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4630 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4631 tcp_reset(sk);
4632 return 1;
4635 step5:
4636 if (th->ack)
4637 tcp_ack(sk, skb, FLAG_SLOWPATH);
4639 tcp_rcv_rtt_measure_ts(sk, skb);
4641 /* Process urgent data. */
4642 tcp_urg(sk, skb, th);
4644 /* step 7: process the segment text */
4645 tcp_data_queue(sk, skb);
4647 tcp_data_snd_check(sk);
4648 tcp_ack_snd_check(sk);
4649 return 0;
4651 csum_error:
4652 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4654 discard:
4655 __kfree_skb(skb);
4656 return 0;
4659 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4660 struct tcphdr *th, unsigned len)
4662 struct tcp_sock *tp = tcp_sk(sk);
4663 struct inet_connection_sock *icsk = inet_csk(sk);
4664 int saved_clamp = tp->rx_opt.mss_clamp;
4666 tcp_parse_options(skb, &tp->rx_opt, 0);
4668 if (th->ack) {
4669 /* rfc793:
4670 * "If the state is SYN-SENT then
4671 * first check the ACK bit
4672 * If the ACK bit is set
4673 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4674 * a reset (unless the RST bit is set, if so drop
4675 * the segment and return)"
4677 * We do not send data with SYN, so that RFC-correct
4678 * test reduces to:
4680 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4681 goto reset_and_undo;
4683 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4684 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4685 tcp_time_stamp)) {
4686 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4687 goto reset_and_undo;
4690 /* Now ACK is acceptable.
4692 * "If the RST bit is set
4693 * If the ACK was acceptable then signal the user "error:
4694 * connection reset", drop the segment, enter CLOSED state,
4695 * delete TCB, and return."
4698 if (th->rst) {
4699 tcp_reset(sk);
4700 goto discard;
4703 /* rfc793:
4704 * "fifth, if neither of the SYN or RST bits is set then
4705 * drop the segment and return."
4707 * See note below!
4708 * --ANK(990513)
4710 if (!th->syn)
4711 goto discard_and_undo;
4713 /* rfc793:
4714 * "If the SYN bit is on ...
4715 * are acceptable then ...
4716 * (our SYN has been ACKed), change the connection
4717 * state to ESTABLISHED..."
4720 TCP_ECN_rcv_synack(tp, th);
4722 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4723 tcp_ack(sk, skb, FLAG_SLOWPATH);
4725 /* Ok.. it's good. Set up sequence numbers and
4726 * move to established.
4728 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4729 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4731 /* RFC1323: The window in SYN & SYN/ACK segments is
4732 * never scaled.
4734 tp->snd_wnd = ntohs(th->window);
4735 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4737 if (!tp->rx_opt.wscale_ok) {
4738 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4739 tp->window_clamp = min(tp->window_clamp, 65535U);
4742 if (tp->rx_opt.saw_tstamp) {
4743 tp->rx_opt.tstamp_ok = 1;
4744 tp->tcp_header_len =
4745 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4746 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4747 tcp_store_ts_recent(tp);
4748 } else {
4749 tp->tcp_header_len = sizeof(struct tcphdr);
4752 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4753 tcp_enable_fack(tp);
4755 tcp_mtup_init(sk);
4756 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4757 tcp_initialize_rcv_mss(sk);
4759 /* Remember, tcp_poll() does not lock socket!
4760 * Change state from SYN-SENT only after copied_seq
4761 * is initialized. */
4762 tp->copied_seq = tp->rcv_nxt;
4763 smp_mb();
4764 tcp_set_state(sk, TCP_ESTABLISHED);
4766 security_inet_conn_established(sk, skb);
4768 /* Make sure socket is routed, for correct metrics. */
4769 icsk->icsk_af_ops->rebuild_header(sk);
4771 tcp_init_metrics(sk);
4773 tcp_init_congestion_control(sk);
4775 /* Prevent spurious tcp_cwnd_restart() on first data
4776 * packet.
4778 tp->lsndtime = tcp_time_stamp;
4780 tcp_init_buffer_space(sk);
4782 if (sock_flag(sk, SOCK_KEEPOPEN))
4783 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4785 if (!tp->rx_opt.snd_wscale)
4786 __tcp_fast_path_on(tp, tp->snd_wnd);
4787 else
4788 tp->pred_flags = 0;
4790 if (!sock_flag(sk, SOCK_DEAD)) {
4791 sk->sk_state_change(sk);
4792 sk_wake_async(sk, 0, POLL_OUT);
4795 if (sk->sk_write_pending ||
4796 icsk->icsk_accept_queue.rskq_defer_accept ||
4797 icsk->icsk_ack.pingpong) {
4798 /* Save one ACK. Data will be ready after
4799 * several ticks, if write_pending is set.
4801 * It may be deleted, but with this feature tcpdumps
4802 * look so _wonderfully_ clever, that I was not able
4803 * to stand against the temptation 8) --ANK
4805 inet_csk_schedule_ack(sk);
4806 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4807 icsk->icsk_ack.ato = TCP_ATO_MIN;
4808 tcp_incr_quickack(sk);
4809 tcp_enter_quickack_mode(sk);
4810 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4811 TCP_DELACK_MAX, TCP_RTO_MAX);
4813 discard:
4814 __kfree_skb(skb);
4815 return 0;
4816 } else {
4817 tcp_send_ack(sk);
4819 return -1;
4822 /* No ACK in the segment */
4824 if (th->rst) {
4825 /* rfc793:
4826 * "If the RST bit is set
4828 * Otherwise (no ACK) drop the segment and return."
4831 goto discard_and_undo;
4834 /* PAWS check. */
4835 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4836 goto discard_and_undo;
4838 if (th->syn) {
4839 /* We see SYN without ACK. It is attempt of
4840 * simultaneous connect with crossed SYNs.
4841 * Particularly, it can be connect to self.
4843 tcp_set_state(sk, TCP_SYN_RECV);
4845 if (tp->rx_opt.saw_tstamp) {
4846 tp->rx_opt.tstamp_ok = 1;
4847 tcp_store_ts_recent(tp);
4848 tp->tcp_header_len =
4849 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4850 } else {
4851 tp->tcp_header_len = sizeof(struct tcphdr);
4854 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4855 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4857 /* RFC1323: The window in SYN & SYN/ACK segments is
4858 * never scaled.
4860 tp->snd_wnd = ntohs(th->window);
4861 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4862 tp->max_window = tp->snd_wnd;
4864 TCP_ECN_rcv_syn(tp, th);
4866 tcp_mtup_init(sk);
4867 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4868 tcp_initialize_rcv_mss(sk);
4871 tcp_send_synack(sk);
4872 #if 0
4873 /* Note, we could accept data and URG from this segment.
4874 * There are no obstacles to make this.
4876 * However, if we ignore data in ACKless segments sometimes,
4877 * we have no reasons to accept it sometimes.
4878 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4879 * is not flawless. So, discard packet for sanity.
4880 * Uncomment this return to process the data.
4882 return -1;
4883 #else
4884 goto discard;
4885 #endif
4887 /* "fifth, if neither of the SYN or RST bits is set then
4888 * drop the segment and return."
4891 discard_and_undo:
4892 tcp_clear_options(&tp->rx_opt);
4893 tp->rx_opt.mss_clamp = saved_clamp;
4894 goto discard;
4896 reset_and_undo:
4897 tcp_clear_options(&tp->rx_opt);
4898 tp->rx_opt.mss_clamp = saved_clamp;
4899 return 1;
4904 * This function implements the receiving procedure of RFC 793 for
4905 * all states except ESTABLISHED and TIME_WAIT.
4906 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4907 * address independent.
4910 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4911 struct tcphdr *th, unsigned len)
4913 struct tcp_sock *tp = tcp_sk(sk);
4914 struct inet_connection_sock *icsk = inet_csk(sk);
4915 int queued = 0;
4917 tp->rx_opt.saw_tstamp = 0;
4919 switch (sk->sk_state) {
4920 case TCP_CLOSE:
4921 goto discard;
4923 case TCP_LISTEN:
4924 if (th->ack)
4925 return 1;
4927 if (th->rst)
4928 goto discard;
4930 if (th->syn) {
4931 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4932 return 1;
4934 /* Now we have several options: In theory there is
4935 * nothing else in the frame. KA9Q has an option to
4936 * send data with the syn, BSD accepts data with the
4937 * syn up to the [to be] advertised window and
4938 * Solaris 2.1 gives you a protocol error. For now
4939 * we just ignore it, that fits the spec precisely
4940 * and avoids incompatibilities. It would be nice in
4941 * future to drop through and process the data.
4943 * Now that TTCP is starting to be used we ought to
4944 * queue this data.
4945 * But, this leaves one open to an easy denial of
4946 * service attack, and SYN cookies can't defend
4947 * against this problem. So, we drop the data
4948 * in the interest of security over speed unless
4949 * it's still in use.
4951 kfree_skb(skb);
4952 return 0;
4954 goto discard;
4956 case TCP_SYN_SENT:
4957 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4958 if (queued >= 0)
4959 return queued;
4961 /* Do step6 onward by hand. */
4962 tcp_urg(sk, skb, th);
4963 __kfree_skb(skb);
4964 tcp_data_snd_check(sk);
4965 return 0;
4968 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4969 tcp_paws_discard(sk, skb)) {
4970 if (!th->rst) {
4971 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4972 tcp_send_dupack(sk, skb);
4973 goto discard;
4975 /* Reset is accepted even if it did not pass PAWS. */
4978 /* step 1: check sequence number */
4979 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4980 if (!th->rst)
4981 tcp_send_dupack(sk, skb);
4982 goto discard;
4985 /* step 2: check RST bit */
4986 if (th->rst) {
4987 tcp_reset(sk);
4988 goto discard;
4991 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4993 /* step 3: check security and precedence [ignored] */
4995 /* step 4:
4997 * Check for a SYN in window.
4999 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5000 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5001 tcp_reset(sk);
5002 return 1;
5005 /* step 5: check the ACK field */
5006 if (th->ack) {
5007 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5009 switch (sk->sk_state) {
5010 case TCP_SYN_RECV:
5011 if (acceptable) {
5012 tp->copied_seq = tp->rcv_nxt;
5013 smp_mb();
5014 tcp_set_state(sk, TCP_ESTABLISHED);
5015 sk->sk_state_change(sk);
5017 /* Note, that this wakeup is only for marginal
5018 * crossed SYN case. Passively open sockets
5019 * are not waked up, because sk->sk_sleep ==
5020 * NULL and sk->sk_socket == NULL.
5022 if (sk->sk_socket) {
5023 sk_wake_async(sk,0,POLL_OUT);
5026 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5027 tp->snd_wnd = ntohs(th->window) <<
5028 tp->rx_opt.snd_wscale;
5029 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5030 TCP_SKB_CB(skb)->seq);
5032 /* tcp_ack considers this ACK as duplicate
5033 * and does not calculate rtt.
5034 * Fix it at least with timestamps.
5036 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5037 !tp->srtt)
5038 tcp_ack_saw_tstamp(sk, 0);
5040 if (tp->rx_opt.tstamp_ok)
5041 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5043 /* Make sure socket is routed, for
5044 * correct metrics.
5046 icsk->icsk_af_ops->rebuild_header(sk);
5048 tcp_init_metrics(sk);
5050 tcp_init_congestion_control(sk);
5052 /* Prevent spurious tcp_cwnd_restart() on
5053 * first data packet.
5055 tp->lsndtime = tcp_time_stamp;
5057 tcp_mtup_init(sk);
5058 tcp_initialize_rcv_mss(sk);
5059 tcp_init_buffer_space(sk);
5060 tcp_fast_path_on(tp);
5061 } else {
5062 return 1;
5064 break;
5066 case TCP_FIN_WAIT1:
5067 if (tp->snd_una == tp->write_seq) {
5068 tcp_set_state(sk, TCP_FIN_WAIT2);
5069 sk->sk_shutdown |= SEND_SHUTDOWN;
5070 dst_confirm(sk->sk_dst_cache);
5072 if (!sock_flag(sk, SOCK_DEAD))
5073 /* Wake up lingering close() */
5074 sk->sk_state_change(sk);
5075 else {
5076 int tmo;
5078 if (tp->linger2 < 0 ||
5079 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5080 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5081 tcp_done(sk);
5082 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5083 return 1;
5086 tmo = tcp_fin_time(sk);
5087 if (tmo > TCP_TIMEWAIT_LEN) {
5088 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5089 } else if (th->fin || sock_owned_by_user(sk)) {
5090 /* Bad case. We could lose such FIN otherwise.
5091 * It is not a big problem, but it looks confusing
5092 * and not so rare event. We still can lose it now,
5093 * if it spins in bh_lock_sock(), but it is really
5094 * marginal case.
5096 inet_csk_reset_keepalive_timer(sk, tmo);
5097 } else {
5098 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5099 goto discard;
5103 break;
5105 case TCP_CLOSING:
5106 if (tp->snd_una == tp->write_seq) {
5107 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5108 goto discard;
5110 break;
5112 case TCP_LAST_ACK:
5113 if (tp->snd_una == tp->write_seq) {
5114 tcp_update_metrics(sk);
5115 tcp_done(sk);
5116 goto discard;
5118 break;
5120 } else
5121 goto discard;
5123 /* step 6: check the URG bit */
5124 tcp_urg(sk, skb, th);
5126 /* step 7: process the segment text */
5127 switch (sk->sk_state) {
5128 case TCP_CLOSE_WAIT:
5129 case TCP_CLOSING:
5130 case TCP_LAST_ACK:
5131 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5132 break;
5133 case TCP_FIN_WAIT1:
5134 case TCP_FIN_WAIT2:
5135 /* RFC 793 says to queue data in these states,
5136 * RFC 1122 says we MUST send a reset.
5137 * BSD 4.4 also does reset.
5139 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5141 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5142 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5143 tcp_reset(sk);
5144 return 1;
5147 /* Fall through */
5148 case TCP_ESTABLISHED:
5149 tcp_data_queue(sk, skb);
5150 queued = 1;
5151 break;
5154 /* tcp_data could move socket to TIME-WAIT */
5155 if (sk->sk_state != TCP_CLOSE) {
5156 tcp_data_snd_check(sk);
5157 tcp_ack_snd_check(sk);
5160 if (!queued) {
5161 discard:
5162 __kfree_skb(skb);
5164 return 0;
5167 EXPORT_SYMBOL(sysctl_tcp_ecn);
5168 EXPORT_SYMBOL(sysctl_tcp_reordering);
5169 EXPORT_SYMBOL(tcp_parse_options);
5170 EXPORT_SYMBOL(tcp_rcv_established);
5171 EXPORT_SYMBOL(tcp_rcv_state_process);
5172 EXPORT_SYMBOL(tcp_initialize_rcv_mss);