[ALSA] Add Aux input switch control for Aureon Universe
[linux-2.6/linux-loongson.git] / include / asm-arm / cacheflush.h
blob746be56b1b705e9a88819868e2fe01f44527c8fc
1 /*
2 * linux/include/asm-arm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/config.h>
14 #include <linux/sched.h>
15 #include <linux/mm.h>
17 #include <asm/glue.h>
18 #include <asm/shmparam.h>
20 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
23 * Cache Model
24 * ===========
26 #undef _CACHE
27 #undef MULTI_CACHE
29 #if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
30 # ifdef _CACHE
31 # define MULTI_CACHE 1
32 # else
33 # define _CACHE v3
34 # endif
35 #endif
37 #if defined(CONFIG_CPU_ARM720T)
38 # ifdef _CACHE
39 # define MULTI_CACHE 1
40 # else
41 # define _CACHE v4
42 # endif
43 #endif
45 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
46 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
47 # define MULTI_CACHE 1
48 #endif
50 #if defined(CONFIG_CPU_ARM926T)
51 # ifdef _CACHE
52 # define MULTI_CACHE 1
53 # else
54 # define _CACHE arm926
55 # endif
56 #endif
58 #if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
59 # ifdef _CACHE
60 # define MULTI_CACHE 1
61 # else
62 # define _CACHE v4wb
63 # endif
64 #endif
66 #if defined(CONFIG_CPU_XSCALE)
67 # ifdef _CACHE
68 # define MULTI_CACHE 1
69 # else
70 # define _CACHE xscale
71 # endif
72 #endif
74 #if defined(CONFIG_CPU_XSC3)
75 # ifdef _CACHE
76 # define MULTI_CACHE 1
77 # else
78 # define _CACHE xsc3
79 # endif
80 #endif
82 #if defined(CONFIG_CPU_V6)
83 //# ifdef _CACHE
84 # define MULTI_CACHE 1
85 //# else
86 //# define _CACHE v6
87 //# endif
88 #endif
90 #if !defined(_CACHE) && !defined(MULTI_CACHE)
91 #error Unknown cache maintainence model
92 #endif
95 * This flag is used to indicate that the page pointed to by a pte
96 * is dirty and requires cleaning before returning it to the user.
98 #define PG_dcache_dirty PG_arch_1
101 * MM Cache Management
102 * ===================
104 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
105 * implement these methods.
107 * Start addresses are inclusive and end addresses are exclusive;
108 * start addresses should be rounded down, end addresses up.
110 * See Documentation/cachetlb.txt for more information.
111 * Please note that the implementation of these, and the required
112 * effects are cache-type (VIVT/VIPT/PIPT) specific.
114 * flush_cache_kern_all()
116 * Unconditionally clean and invalidate the entire cache.
118 * flush_cache_user_mm(mm)
120 * Clean and invalidate all user space cache entries
121 * before a change of page tables.
123 * flush_cache_user_range(start, end, flags)
125 * Clean and invalidate a range of cache entries in the
126 * specified address space before a change of page tables.
127 * - start - user start address (inclusive, page aligned)
128 * - end - user end address (exclusive, page aligned)
129 * - flags - vma->vm_flags field
131 * coherent_kern_range(start, end)
133 * Ensure coherency between the Icache and the Dcache in the
134 * region described by start, end. If you have non-snooping
135 * Harvard caches, you need to implement this function.
136 * - start - virtual start address
137 * - end - virtual end address
139 * DMA Cache Coherency
140 * ===================
142 * dma_inv_range(start, end)
144 * Invalidate (discard) the specified virtual address range.
145 * May not write back any entries. If 'start' or 'end'
146 * are not cache line aligned, those lines must be written
147 * back.
148 * - start - virtual start address
149 * - end - virtual end address
151 * dma_clean_range(start, end)
153 * Clean (write back) the specified virtual address range.
154 * - start - virtual start address
155 * - end - virtual end address
157 * dma_flush_range(start, end)
159 * Clean and invalidate the specified virtual address range.
160 * - start - virtual start address
161 * - end - virtual end address
164 struct cpu_cache_fns {
165 void (*flush_kern_all)(void);
166 void (*flush_user_all)(void);
167 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
169 void (*coherent_kern_range)(unsigned long, unsigned long);
170 void (*coherent_user_range)(unsigned long, unsigned long);
171 void (*flush_kern_dcache_page)(void *);
173 void (*dma_inv_range)(unsigned long, unsigned long);
174 void (*dma_clean_range)(unsigned long, unsigned long);
175 void (*dma_flush_range)(unsigned long, unsigned long);
179 * Select the calling method
181 #ifdef MULTI_CACHE
183 extern struct cpu_cache_fns cpu_cache;
185 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
186 #define __cpuc_flush_user_all cpu_cache.flush_user_all
187 #define __cpuc_flush_user_range cpu_cache.flush_user_range
188 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
189 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
190 #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
193 * These are private to the dma-mapping API. Do not use directly.
194 * Their sole purpose is to ensure that data held in the cache
195 * is visible to DMA, or data written by DMA to system memory is
196 * visible to the CPU.
198 #define dmac_inv_range cpu_cache.dma_inv_range
199 #define dmac_clean_range cpu_cache.dma_clean_range
200 #define dmac_flush_range cpu_cache.dma_flush_range
202 #else
204 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
205 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
206 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
207 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
208 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
209 #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
211 extern void __cpuc_flush_kern_all(void);
212 extern void __cpuc_flush_user_all(void);
213 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
214 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
215 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
216 extern void __cpuc_flush_dcache_page(void *);
219 * These are private to the dma-mapping API. Do not use directly.
220 * Their sole purpose is to ensure that data held in the cache
221 * is visible to DMA, or data written by DMA to system memory is
222 * visible to the CPU.
224 #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
225 #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
226 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
228 extern void dmac_inv_range(unsigned long, unsigned long);
229 extern void dmac_clean_range(unsigned long, unsigned long);
230 extern void dmac_flush_range(unsigned long, unsigned long);
232 #endif
235 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
236 * vmalloc, ioremap etc) in kernel space for pages. Since the
237 * direct-mappings of these pages may contain cached data, we need
238 * to do a full cache flush to ensure that writebacks don't corrupt
239 * data placed into these pages via the new mappings.
241 #define flush_cache_vmap(start, end) flush_cache_all()
242 #define flush_cache_vunmap(start, end) flush_cache_all()
245 * Copy user data from/to a page which is mapped into a different
246 * processes address space. Really, we want to allow our "user
247 * space" model to handle this.
249 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
250 do { \
251 flush_cache_page(vma, vaddr, page_to_pfn(page));\
252 memcpy(dst, src, len); \
253 flush_dcache_page(page); \
254 } while (0)
256 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
257 do { \
258 flush_cache_page(vma, vaddr, page_to_pfn(page));\
259 memcpy(dst, src, len); \
260 } while (0)
263 * Convert calls to our calling convention.
265 #define flush_cache_all() __cpuc_flush_kern_all()
266 #ifndef CONFIG_CPU_CACHE_VIPT
267 static inline void flush_cache_mm(struct mm_struct *mm)
269 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
270 __cpuc_flush_user_all();
273 static inline void
274 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
276 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
277 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
278 vma->vm_flags);
281 static inline void
282 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
284 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
285 unsigned long addr = user_addr & PAGE_MASK;
286 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
289 #else
290 extern void flush_cache_mm(struct mm_struct *mm);
291 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
292 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
293 #endif
296 * flush_cache_user_range is used when we want to ensure that the
297 * Harvard caches are synchronised for the user space address range.
298 * This is used for the ARM private sys_cacheflush system call.
300 #define flush_cache_user_range(vma,start,end) \
301 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
304 * Perform necessary cache operations to ensure that data previously
305 * stored within this range of addresses can be executed by the CPU.
307 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
310 * Perform necessary cache operations to ensure that the TLB will
311 * see data written in the specified area.
313 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
316 * flush_dcache_page is used when the kernel has written to the page
317 * cache page at virtual address page->virtual.
319 * If this page isn't mapped (ie, page_mapping == NULL), or it might
320 * have userspace mappings, then we _must_ always clean + invalidate
321 * the dcache entries associated with the kernel mapping.
323 * Otherwise we can defer the operation, and clean the cache when we are
324 * about to change to user space. This is the same method as used on SPARC64.
325 * See update_mmu_cache for the user space part.
327 extern void flush_dcache_page(struct page *);
329 #define flush_dcache_mmap_lock(mapping) \
330 write_lock_irq(&(mapping)->tree_lock)
331 #define flush_dcache_mmap_unlock(mapping) \
332 write_unlock_irq(&(mapping)->tree_lock)
334 #define flush_icache_user_range(vma,page,addr,len) \
335 flush_dcache_page(page)
338 * We don't appear to need to do anything here. In fact, if we did, we'd
339 * duplicate cache flushing elsewhere performed by flush_dcache_page().
341 #define flush_icache_page(vma,page) do { } while (0)
343 #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
344 #define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
345 #define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
346 #define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
347 #define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
349 #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
351 #define cache_is_vivt() 1
352 #define cache_is_vipt() 0
353 #define cache_is_vipt_nonaliasing() 0
354 #define cache_is_vipt_aliasing() 0
356 #elif defined(CONFIG_CPU_CACHE_VIPT)
358 #define cache_is_vivt() 0
359 #define cache_is_vipt() 1
360 #define cache_is_vipt_nonaliasing() \
361 ({ \
362 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
363 __cacheid_vipt_nonaliasing(__val); \
366 #define cache_is_vipt_aliasing() \
367 ({ \
368 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
369 __cacheid_vipt_aliasing(__val); \
372 #else
374 #define cache_is_vivt() \
375 ({ \
376 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
377 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
380 #define cache_is_vipt() \
381 ({ \
382 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
383 __cacheid_present(__val) && __cacheid_vipt(__val); \
386 #define cache_is_vipt_nonaliasing() \
387 ({ \
388 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
389 __cacheid_present(__val) && \
390 __cacheid_vipt_nonaliasing(__val); \
393 #define cache_is_vipt_aliasing() \
394 ({ \
395 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
396 __cacheid_present(__val) && \
397 __cacheid_vipt_aliasing(__val); \
400 #endif
402 #endif