xen: allow compilation with non-flat memory
[linux-2.6/linux-loongson.git] / arch / x86 / xen / enlighten.c
blobc8a56e457d61a35c21040bbe91486f9ceb9bf6bf
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
49 #include "xen-ops.h"
50 #include "mmu.h"
51 #include "multicalls.h"
53 EXPORT_SYMBOL_GPL(hypercall_page);
55 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
56 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59 * Note about cr3 (pagetable base) values:
61 * xen_cr3 contains the current logical cr3 value; it contains the
62 * last set cr3. This may not be the current effective cr3, because
63 * its update may be being lazily deferred. However, a vcpu looking
64 * at its own cr3 can use this value knowing that it everything will
65 * be self-consistent.
67 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
68 * hypercall to set the vcpu cr3 is complete (so it may be a little
69 * out of date, but it will never be set early). If one vcpu is
70 * looking at another vcpu's cr3 value, it should use this variable.
72 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
73 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
75 struct start_info *xen_start_info;
76 EXPORT_SYMBOL_GPL(xen_start_info);
78 static /* __initdata */ struct shared_info dummy_shared_info;
81 * Point at some empty memory to start with. We map the real shared_info
82 * page as soon as fixmap is up and running.
84 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
87 * Flag to determine whether vcpu info placement is available on all
88 * VCPUs. We assume it is to start with, and then set it to zero on
89 * the first failure. This is because it can succeed on some VCPUs
90 * and not others, since it can involve hypervisor memory allocation,
91 * or because the guest failed to guarantee all the appropriate
92 * constraints on all VCPUs (ie buffer can't cross a page boundary).
94 * Note that any particular CPU may be using a placed vcpu structure,
95 * but we can only optimise if the all are.
97 * 0: not available, 1: available
99 static int have_vcpu_info_placement = 1;
101 static void __init xen_vcpu_setup(int cpu)
103 struct vcpu_register_vcpu_info info;
104 int err;
105 struct vcpu_info *vcpup;
107 BUG_ON(HYPERVISOR_shared_info == &dummy_shared_info);
108 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
110 if (!have_vcpu_info_placement)
111 return; /* already tested, not available */
113 vcpup = &per_cpu(xen_vcpu_info, cpu);
115 info.mfn = virt_to_mfn(vcpup);
116 info.offset = offset_in_page(vcpup);
118 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
119 cpu, vcpup, info.mfn, info.offset);
121 /* Check to see if the hypervisor will put the vcpu_info
122 structure where we want it, which allows direct access via
123 a percpu-variable. */
124 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
126 if (err) {
127 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
128 have_vcpu_info_placement = 0;
129 } else {
130 /* This cpu is using the registered vcpu info, even if
131 later ones fail to. */
132 per_cpu(xen_vcpu, cpu) = vcpup;
134 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
135 cpu, vcpup);
139 static void __init xen_banner(void)
141 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
142 pv_info.name);
143 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
146 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
147 unsigned int *cx, unsigned int *dx)
149 unsigned maskedx = ~0;
152 * Mask out inconvenient features, to try and disable as many
153 * unsupported kernel subsystems as possible.
155 if (*ax == 1)
156 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
157 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
158 (1 << X86_FEATURE_MCE) | /* disable MCE */
159 (1 << X86_FEATURE_MCA) | /* disable MCA */
160 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
162 asm(XEN_EMULATE_PREFIX "cpuid"
163 : "=a" (*ax),
164 "=b" (*bx),
165 "=c" (*cx),
166 "=d" (*dx)
167 : "0" (*ax), "2" (*cx));
168 *dx &= maskedx;
171 static void xen_set_debugreg(int reg, unsigned long val)
173 HYPERVISOR_set_debugreg(reg, val);
176 static unsigned long xen_get_debugreg(int reg)
178 return HYPERVISOR_get_debugreg(reg);
181 static unsigned long xen_save_fl(void)
183 struct vcpu_info *vcpu;
184 unsigned long flags;
186 vcpu = x86_read_percpu(xen_vcpu);
188 /* flag has opposite sense of mask */
189 flags = !vcpu->evtchn_upcall_mask;
191 /* convert to IF type flag
192 -0 -> 0x00000000
193 -1 -> 0xffffffff
195 return (-flags) & X86_EFLAGS_IF;
198 static void xen_restore_fl(unsigned long flags)
200 struct vcpu_info *vcpu;
202 /* convert from IF type flag */
203 flags = !(flags & X86_EFLAGS_IF);
205 /* There's a one instruction preempt window here. We need to
206 make sure we're don't switch CPUs between getting the vcpu
207 pointer and updating the mask. */
208 preempt_disable();
209 vcpu = x86_read_percpu(xen_vcpu);
210 vcpu->evtchn_upcall_mask = flags;
211 preempt_enable_no_resched();
213 /* Doesn't matter if we get preempted here, because any
214 pending event will get dealt with anyway. */
216 if (flags == 0) {
217 preempt_check_resched();
218 barrier(); /* unmask then check (avoid races) */
219 if (unlikely(vcpu->evtchn_upcall_pending))
220 force_evtchn_callback();
224 static void xen_irq_disable(void)
226 /* There's a one instruction preempt window here. We need to
227 make sure we're don't switch CPUs between getting the vcpu
228 pointer and updating the mask. */
229 preempt_disable();
230 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
231 preempt_enable_no_resched();
234 static void xen_irq_enable(void)
236 struct vcpu_info *vcpu;
238 /* There's a one instruction preempt window here. We need to
239 make sure we're don't switch CPUs between getting the vcpu
240 pointer and updating the mask. */
241 preempt_disable();
242 vcpu = x86_read_percpu(xen_vcpu);
243 vcpu->evtchn_upcall_mask = 0;
244 preempt_enable_no_resched();
246 /* Doesn't matter if we get preempted here, because any
247 pending event will get dealt with anyway. */
249 barrier(); /* unmask then check (avoid races) */
250 if (unlikely(vcpu->evtchn_upcall_pending))
251 force_evtchn_callback();
254 static void xen_safe_halt(void)
256 /* Blocking includes an implicit local_irq_enable(). */
257 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
258 BUG();
261 static void xen_halt(void)
263 if (irqs_disabled())
264 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
265 else
266 xen_safe_halt();
269 static void xen_leave_lazy(void)
271 paravirt_leave_lazy(paravirt_get_lazy_mode());
272 xen_mc_flush();
275 static unsigned long xen_store_tr(void)
277 return 0;
280 static void xen_set_ldt(const void *addr, unsigned entries)
282 struct mmuext_op *op;
283 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
285 op = mcs.args;
286 op->cmd = MMUEXT_SET_LDT;
287 op->arg1.linear_addr = (unsigned long)addr;
288 op->arg2.nr_ents = entries;
290 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
292 xen_mc_issue(PARAVIRT_LAZY_CPU);
295 static void xen_load_gdt(const struct desc_ptr *dtr)
297 unsigned long *frames;
298 unsigned long va = dtr->address;
299 unsigned int size = dtr->size + 1;
300 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
301 int f;
302 struct multicall_space mcs;
304 /* A GDT can be up to 64k in size, which corresponds to 8192
305 8-byte entries, or 16 4k pages.. */
307 BUG_ON(size > 65536);
308 BUG_ON(va & ~PAGE_MASK);
310 mcs = xen_mc_entry(sizeof(*frames) * pages);
311 frames = mcs.args;
313 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
314 frames[f] = virt_to_mfn(va);
315 make_lowmem_page_readonly((void *)va);
318 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
320 xen_mc_issue(PARAVIRT_LAZY_CPU);
323 static void load_TLS_descriptor(struct thread_struct *t,
324 unsigned int cpu, unsigned int i)
326 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
327 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
328 struct multicall_space mc = __xen_mc_entry(0);
330 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
333 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
335 xen_mc_batch();
337 load_TLS_descriptor(t, cpu, 0);
338 load_TLS_descriptor(t, cpu, 1);
339 load_TLS_descriptor(t, cpu, 2);
341 xen_mc_issue(PARAVIRT_LAZY_CPU);
344 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
345 * it means we're in a context switch, and %gs has just been
346 * saved. This means we can zero it out to prevent faults on
347 * exit from the hypervisor if the next process has no %gs.
348 * Either way, it has been saved, and the new value will get
349 * loaded properly. This will go away as soon as Xen has been
350 * modified to not save/restore %gs for normal hypercalls.
352 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
353 loadsegment(gs, 0);
356 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
357 const void *ptr)
359 unsigned long lp = (unsigned long)&dt[entrynum];
360 xmaddr_t mach_lp = virt_to_machine(lp);
361 u64 entry = *(u64 *)ptr;
363 preempt_disable();
365 xen_mc_flush();
366 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
367 BUG();
369 preempt_enable();
372 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
373 struct trap_info *info)
375 u8 type, dpl;
377 type = (high >> 8) & 0x1f;
378 dpl = (high >> 13) & 3;
380 if (type != 0xf && type != 0xe)
381 return 0;
383 info->vector = vector;
384 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
385 info->cs = low >> 16;
386 info->flags = dpl;
387 /* interrupt gates clear IF */
388 if (type == 0xe)
389 info->flags |= 4;
391 return 1;
394 /* Locations of each CPU's IDT */
395 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
397 /* Set an IDT entry. If the entry is part of the current IDT, then
398 also update Xen. */
399 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
401 unsigned long p = (unsigned long)&dt[entrynum];
402 unsigned long start, end;
404 preempt_disable();
406 start = __get_cpu_var(idt_desc).address;
407 end = start + __get_cpu_var(idt_desc).size + 1;
409 xen_mc_flush();
411 native_write_idt_entry(dt, entrynum, g);
413 if (p >= start && (p + 8) <= end) {
414 struct trap_info info[2];
415 u32 *desc = (u32 *)g;
417 info[1].address = 0;
419 if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
420 if (HYPERVISOR_set_trap_table(info))
421 BUG();
424 preempt_enable();
427 static void xen_convert_trap_info(const struct desc_ptr *desc,
428 struct trap_info *traps)
430 unsigned in, out, count;
432 count = (desc->size+1) / 8;
433 BUG_ON(count > 256);
435 for (in = out = 0; in < count; in++) {
436 const u32 *entry = (u32 *)(desc->address + in * 8);
438 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
439 out++;
441 traps[out].address = 0;
444 void xen_copy_trap_info(struct trap_info *traps)
446 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
448 xen_convert_trap_info(desc, traps);
451 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
452 hold a spinlock to protect the static traps[] array (static because
453 it avoids allocation, and saves stack space). */
454 static void xen_load_idt(const struct desc_ptr *desc)
456 static DEFINE_SPINLOCK(lock);
457 static struct trap_info traps[257];
459 spin_lock(&lock);
461 __get_cpu_var(idt_desc) = *desc;
463 xen_convert_trap_info(desc, traps);
465 xen_mc_flush();
466 if (HYPERVISOR_set_trap_table(traps))
467 BUG();
469 spin_unlock(&lock);
472 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
473 they're handled differently. */
474 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
475 const void *desc, int type)
477 preempt_disable();
479 switch (type) {
480 case DESC_LDT:
481 case DESC_TSS:
482 /* ignore */
483 break;
485 default: {
486 xmaddr_t maddr = virt_to_machine(&dt[entry]);
488 xen_mc_flush();
489 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
490 BUG();
495 preempt_enable();
498 static void xen_load_sp0(struct tss_struct *tss,
499 struct thread_struct *thread)
501 struct multicall_space mcs = xen_mc_entry(0);
502 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
503 xen_mc_issue(PARAVIRT_LAZY_CPU);
506 static void xen_set_iopl_mask(unsigned mask)
508 struct physdev_set_iopl set_iopl;
510 /* Force the change at ring 0. */
511 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
512 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
515 static void xen_io_delay(void)
519 #ifdef CONFIG_X86_LOCAL_APIC
520 static u32 xen_apic_read(unsigned long reg)
522 return 0;
525 static void xen_apic_write(unsigned long reg, u32 val)
527 /* Warn to see if there's any stray references */
528 WARN_ON(1);
530 #endif
532 static void xen_flush_tlb(void)
534 struct mmuext_op *op;
535 struct multicall_space mcs;
537 preempt_disable();
539 mcs = xen_mc_entry(sizeof(*op));
541 op = mcs.args;
542 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
543 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
545 xen_mc_issue(PARAVIRT_LAZY_MMU);
547 preempt_enable();
550 static void xen_flush_tlb_single(unsigned long addr)
552 struct mmuext_op *op;
553 struct multicall_space mcs;
555 preempt_disable();
557 mcs = xen_mc_entry(sizeof(*op));
558 op = mcs.args;
559 op->cmd = MMUEXT_INVLPG_LOCAL;
560 op->arg1.linear_addr = addr & PAGE_MASK;
561 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
563 xen_mc_issue(PARAVIRT_LAZY_MMU);
565 preempt_enable();
568 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
569 unsigned long va)
571 struct {
572 struct mmuext_op op;
573 cpumask_t mask;
574 } *args;
575 cpumask_t cpumask = *cpus;
576 struct multicall_space mcs;
579 * A couple of (to be removed) sanity checks:
581 * - current CPU must not be in mask
582 * - mask must exist :)
584 BUG_ON(cpus_empty(cpumask));
585 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
586 BUG_ON(!mm);
588 /* If a CPU which we ran on has gone down, OK. */
589 cpus_and(cpumask, cpumask, cpu_online_map);
590 if (cpus_empty(cpumask))
591 return;
593 mcs = xen_mc_entry(sizeof(*args));
594 args = mcs.args;
595 args->mask = cpumask;
596 args->op.arg2.vcpumask = &args->mask;
598 if (va == TLB_FLUSH_ALL) {
599 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
600 } else {
601 args->op.cmd = MMUEXT_INVLPG_MULTI;
602 args->op.arg1.linear_addr = va;
605 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
607 xen_mc_issue(PARAVIRT_LAZY_MMU);
610 static void xen_write_cr2(unsigned long cr2)
612 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
615 static unsigned long xen_read_cr2(void)
617 return x86_read_percpu(xen_vcpu)->arch.cr2;
620 static unsigned long xen_read_cr2_direct(void)
622 return x86_read_percpu(xen_vcpu_info.arch.cr2);
625 static void xen_write_cr4(unsigned long cr4)
627 /* Just ignore cr4 changes; Xen doesn't allow us to do
628 anything anyway. */
631 static unsigned long xen_read_cr3(void)
633 return x86_read_percpu(xen_cr3);
636 static void set_current_cr3(void *v)
638 x86_write_percpu(xen_current_cr3, (unsigned long)v);
641 static void xen_write_cr3(unsigned long cr3)
643 struct mmuext_op *op;
644 struct multicall_space mcs;
645 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
647 BUG_ON(preemptible());
649 mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
651 /* Update while interrupts are disabled, so its atomic with
652 respect to ipis */
653 x86_write_percpu(xen_cr3, cr3);
655 op = mcs.args;
656 op->cmd = MMUEXT_NEW_BASEPTR;
657 op->arg1.mfn = mfn;
659 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
661 /* Update xen_update_cr3 once the batch has actually
662 been submitted. */
663 xen_mc_callback(set_current_cr3, (void *)cr3);
665 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
668 /* Early in boot, while setting up the initial pagetable, assume
669 everything is pinned. */
670 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
672 #ifdef CONFIG_FLATMEM
673 BUG_ON(mem_map); /* should only be used early */
674 #endif
675 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
678 /* Early release_pte assumes that all pts are pinned, since there's
679 only init_mm and anything attached to that is pinned. */
680 static void xen_release_pte_init(u32 pfn)
682 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
685 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
687 struct mmuext_op op;
688 op.cmd = cmd;
689 op.arg1.mfn = pfn_to_mfn(pfn);
690 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
691 BUG();
694 /* This needs to make sure the new pte page is pinned iff its being
695 attached to a pinned pagetable. */
696 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
698 struct page *page = pfn_to_page(pfn);
700 if (PagePinned(virt_to_page(mm->pgd))) {
701 SetPagePinned(page);
703 if (!PageHighMem(page)) {
704 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
705 if (level == PT_PTE)
706 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
707 } else
708 /* make sure there are no stray mappings of
709 this page */
710 kmap_flush_unused();
714 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
716 xen_alloc_ptpage(mm, pfn, PT_PTE);
719 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
721 xen_alloc_ptpage(mm, pfn, PT_PMD);
724 /* This should never happen until we're OK to use struct page */
725 static void xen_release_ptpage(u32 pfn, unsigned level)
727 struct page *page = pfn_to_page(pfn);
729 if (PagePinned(page)) {
730 if (!PageHighMem(page)) {
731 if (level == PT_PTE)
732 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
733 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
735 ClearPagePinned(page);
739 static void xen_release_pte(u32 pfn)
741 xen_release_ptpage(pfn, PT_PTE);
744 static void xen_release_pmd(u32 pfn)
746 xen_release_ptpage(pfn, PT_PMD);
749 #ifdef CONFIG_HIGHPTE
750 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
752 pgprot_t prot = PAGE_KERNEL;
754 if (PagePinned(page))
755 prot = PAGE_KERNEL_RO;
757 if (0 && PageHighMem(page))
758 printk("mapping highpte %lx type %d prot %s\n",
759 page_to_pfn(page), type,
760 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
762 return kmap_atomic_prot(page, type, prot);
764 #endif
766 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
768 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
769 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
770 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
771 pte_val_ma(pte));
773 return pte;
776 /* Init-time set_pte while constructing initial pagetables, which
777 doesn't allow RO pagetable pages to be remapped RW */
778 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
780 pte = mask_rw_pte(ptep, pte);
782 xen_set_pte(ptep, pte);
785 static __init void xen_pagetable_setup_start(pgd_t *base)
787 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
789 /* special set_pte for pagetable initialization */
790 pv_mmu_ops.set_pte = xen_set_pte_init;
792 init_mm.pgd = base;
794 * copy top-level of Xen-supplied pagetable into place. For
795 * !PAE we can use this as-is, but for PAE it is a stand-in
796 * while we copy the pmd pages.
798 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
800 if (PTRS_PER_PMD > 1) {
801 int i;
803 * For PAE, need to allocate new pmds, rather than
804 * share Xen's, since Xen doesn't like pmd's being
805 * shared between address spaces.
807 for (i = 0; i < PTRS_PER_PGD; i++) {
808 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
809 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
811 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
812 PAGE_SIZE);
814 make_lowmem_page_readonly(pmd);
816 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
817 } else
818 pgd_clear(&base[i]);
822 /* make sure zero_page is mapped RO so we can use it in pagetables */
823 make_lowmem_page_readonly(empty_zero_page);
824 make_lowmem_page_readonly(base);
826 * Switch to new pagetable. This is done before
827 * pagetable_init has done anything so that the new pages
828 * added to the table can be prepared properly for Xen.
830 xen_write_cr3(__pa(base));
832 /* Unpin initial Xen pagetable */
833 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
834 PFN_DOWN(__pa(xen_start_info->pt_base)));
837 static __init void setup_shared_info(void)
839 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
840 unsigned long addr = fix_to_virt(FIX_PARAVIRT_BOOTMAP);
843 * Create a mapping for the shared info page.
844 * Should be set_fixmap(), but shared_info is a machine
845 * address with no corresponding pseudo-phys address.
847 set_pte_mfn(addr,
848 PFN_DOWN(xen_start_info->shared_info),
849 PAGE_KERNEL);
851 HYPERVISOR_shared_info = (struct shared_info *)addr;
852 } else
853 HYPERVISOR_shared_info =
854 (struct shared_info *)__va(xen_start_info->shared_info);
856 #ifndef CONFIG_SMP
857 /* In UP this is as good a place as any to set up shared info */
858 xen_setup_vcpu_info_placement();
859 #endif
862 static __init void xen_pagetable_setup_done(pgd_t *base)
864 /* This will work as long as patching hasn't happened yet
865 (which it hasn't) */
866 pv_mmu_ops.alloc_pte = xen_alloc_pte;
867 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
868 pv_mmu_ops.release_pte = xen_release_pte;
869 pv_mmu_ops.release_pmd = xen_release_pmd;
870 pv_mmu_ops.set_pte = xen_set_pte;
872 setup_shared_info();
874 /* Actually pin the pagetable down, but we can't set PG_pinned
875 yet because the page structures don't exist yet. */
877 unsigned level;
879 #ifdef CONFIG_X86_PAE
880 level = MMUEXT_PIN_L3_TABLE;
881 #else
882 level = MMUEXT_PIN_L2_TABLE;
883 #endif
885 pin_pagetable_pfn(level, PFN_DOWN(__pa(base)));
889 /* This is called once we have the cpu_possible_map */
890 void __init xen_setup_vcpu_info_placement(void)
892 int cpu;
894 for_each_possible_cpu(cpu)
895 xen_vcpu_setup(cpu);
897 /* xen_vcpu_setup managed to place the vcpu_info within the
898 percpu area for all cpus, so make use of it */
899 if (have_vcpu_info_placement) {
900 printk(KERN_INFO "Xen: using vcpu_info placement\n");
902 pv_irq_ops.save_fl = xen_save_fl_direct;
903 pv_irq_ops.restore_fl = xen_restore_fl_direct;
904 pv_irq_ops.irq_disable = xen_irq_disable_direct;
905 pv_irq_ops.irq_enable = xen_irq_enable_direct;
906 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
910 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
911 unsigned long addr, unsigned len)
913 char *start, *end, *reloc;
914 unsigned ret;
916 start = end = reloc = NULL;
918 #define SITE(op, x) \
919 case PARAVIRT_PATCH(op.x): \
920 if (have_vcpu_info_placement) { \
921 start = (char *)xen_##x##_direct; \
922 end = xen_##x##_direct_end; \
923 reloc = xen_##x##_direct_reloc; \
925 goto patch_site
927 switch (type) {
928 SITE(pv_irq_ops, irq_enable);
929 SITE(pv_irq_ops, irq_disable);
930 SITE(pv_irq_ops, save_fl);
931 SITE(pv_irq_ops, restore_fl);
932 #undef SITE
934 patch_site:
935 if (start == NULL || (end-start) > len)
936 goto default_patch;
938 ret = paravirt_patch_insns(insnbuf, len, start, end);
940 /* Note: because reloc is assigned from something that
941 appears to be an array, gcc assumes it's non-null,
942 but doesn't know its relationship with start and
943 end. */
944 if (reloc > start && reloc < end) {
945 int reloc_off = reloc - start;
946 long *relocp = (long *)(insnbuf + reloc_off);
947 long delta = start - (char *)addr;
949 *relocp += delta;
951 break;
953 default_patch:
954 default:
955 ret = paravirt_patch_default(type, clobbers, insnbuf,
956 addr, len);
957 break;
960 return ret;
963 static const struct pv_info xen_info __initdata = {
964 .paravirt_enabled = 1,
965 .shared_kernel_pmd = 0,
967 .name = "Xen",
970 static const struct pv_init_ops xen_init_ops __initdata = {
971 .patch = xen_patch,
973 .banner = xen_banner,
974 .memory_setup = xen_memory_setup,
975 .arch_setup = xen_arch_setup,
976 .post_allocator_init = xen_mark_init_mm_pinned,
979 static const struct pv_time_ops xen_time_ops __initdata = {
980 .time_init = xen_time_init,
982 .set_wallclock = xen_set_wallclock,
983 .get_wallclock = xen_get_wallclock,
984 .get_cpu_khz = xen_cpu_khz,
985 .sched_clock = xen_sched_clock,
988 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
989 .cpuid = xen_cpuid,
991 .set_debugreg = xen_set_debugreg,
992 .get_debugreg = xen_get_debugreg,
994 .clts = native_clts,
996 .read_cr0 = native_read_cr0,
997 .write_cr0 = native_write_cr0,
999 .read_cr4 = native_read_cr4,
1000 .read_cr4_safe = native_read_cr4_safe,
1001 .write_cr4 = xen_write_cr4,
1003 .wbinvd = native_wbinvd,
1005 .read_msr = native_read_msr_safe,
1006 .write_msr = native_write_msr_safe,
1007 .read_tsc = native_read_tsc,
1008 .read_pmc = native_read_pmc,
1010 .iret = xen_iret,
1011 .irq_enable_syscall_ret = xen_sysexit,
1013 .load_tr_desc = paravirt_nop,
1014 .set_ldt = xen_set_ldt,
1015 .load_gdt = xen_load_gdt,
1016 .load_idt = xen_load_idt,
1017 .load_tls = xen_load_tls,
1019 .store_gdt = native_store_gdt,
1020 .store_idt = native_store_idt,
1021 .store_tr = xen_store_tr,
1023 .write_ldt_entry = xen_write_ldt_entry,
1024 .write_gdt_entry = xen_write_gdt_entry,
1025 .write_idt_entry = xen_write_idt_entry,
1026 .load_sp0 = xen_load_sp0,
1028 .set_iopl_mask = xen_set_iopl_mask,
1029 .io_delay = xen_io_delay,
1031 .lazy_mode = {
1032 .enter = paravirt_enter_lazy_cpu,
1033 .leave = xen_leave_lazy,
1037 static const struct pv_irq_ops xen_irq_ops __initdata = {
1038 .init_IRQ = xen_init_IRQ,
1039 .save_fl = xen_save_fl,
1040 .restore_fl = xen_restore_fl,
1041 .irq_disable = xen_irq_disable,
1042 .irq_enable = xen_irq_enable,
1043 .safe_halt = xen_safe_halt,
1044 .halt = xen_halt,
1047 static const struct pv_apic_ops xen_apic_ops __initdata = {
1048 #ifdef CONFIG_X86_LOCAL_APIC
1049 .apic_write = xen_apic_write,
1050 .apic_write_atomic = xen_apic_write,
1051 .apic_read = xen_apic_read,
1052 .setup_boot_clock = paravirt_nop,
1053 .setup_secondary_clock = paravirt_nop,
1054 .startup_ipi_hook = paravirt_nop,
1055 #endif
1058 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1059 .pagetable_setup_start = xen_pagetable_setup_start,
1060 .pagetable_setup_done = xen_pagetable_setup_done,
1062 .read_cr2 = xen_read_cr2,
1063 .write_cr2 = xen_write_cr2,
1065 .read_cr3 = xen_read_cr3,
1066 .write_cr3 = xen_write_cr3,
1068 .flush_tlb_user = xen_flush_tlb,
1069 .flush_tlb_kernel = xen_flush_tlb,
1070 .flush_tlb_single = xen_flush_tlb_single,
1071 .flush_tlb_others = xen_flush_tlb_others,
1073 .pte_update = paravirt_nop,
1074 .pte_update_defer = paravirt_nop,
1076 .alloc_pte = xen_alloc_pte_init,
1077 .release_pte = xen_release_pte_init,
1078 .alloc_pmd = xen_alloc_pte_init,
1079 .alloc_pmd_clone = paravirt_nop,
1080 .release_pmd = xen_release_pte_init,
1082 #ifdef CONFIG_HIGHPTE
1083 .kmap_atomic_pte = xen_kmap_atomic_pte,
1084 #endif
1086 .set_pte = NULL, /* see xen_pagetable_setup_* */
1087 .set_pte_at = xen_set_pte_at,
1088 .set_pmd = xen_set_pmd,
1090 .pte_val = xen_pte_val,
1091 .pgd_val = xen_pgd_val,
1093 .make_pte = xen_make_pte,
1094 .make_pgd = xen_make_pgd,
1096 #ifdef CONFIG_X86_PAE
1097 .set_pte_atomic = xen_set_pte_atomic,
1098 .set_pte_present = xen_set_pte_at,
1099 .set_pud = xen_set_pud,
1100 .pte_clear = xen_pte_clear,
1101 .pmd_clear = xen_pmd_clear,
1103 .make_pmd = xen_make_pmd,
1104 .pmd_val = xen_pmd_val,
1105 #endif /* PAE */
1107 .activate_mm = xen_activate_mm,
1108 .dup_mmap = xen_dup_mmap,
1109 .exit_mmap = xen_exit_mmap,
1111 .lazy_mode = {
1112 .enter = paravirt_enter_lazy_mmu,
1113 .leave = xen_leave_lazy,
1117 #ifdef CONFIG_SMP
1118 static const struct smp_ops xen_smp_ops __initdata = {
1119 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1120 .smp_prepare_cpus = xen_smp_prepare_cpus,
1121 .cpu_up = xen_cpu_up,
1122 .smp_cpus_done = xen_smp_cpus_done,
1124 .smp_send_stop = xen_smp_send_stop,
1125 .smp_send_reschedule = xen_smp_send_reschedule,
1126 .smp_call_function_mask = xen_smp_call_function_mask,
1128 #endif /* CONFIG_SMP */
1130 static void xen_reboot(int reason)
1132 #ifdef CONFIG_SMP
1133 smp_send_stop();
1134 #endif
1136 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1137 BUG();
1140 static void xen_restart(char *msg)
1142 xen_reboot(SHUTDOWN_reboot);
1145 static void xen_emergency_restart(void)
1147 xen_reboot(SHUTDOWN_reboot);
1150 static void xen_machine_halt(void)
1152 xen_reboot(SHUTDOWN_poweroff);
1155 static void xen_crash_shutdown(struct pt_regs *regs)
1157 xen_reboot(SHUTDOWN_crash);
1160 static const struct machine_ops __initdata xen_machine_ops = {
1161 .restart = xen_restart,
1162 .halt = xen_machine_halt,
1163 .power_off = xen_machine_halt,
1164 .shutdown = xen_machine_halt,
1165 .crash_shutdown = xen_crash_shutdown,
1166 .emergency_restart = xen_emergency_restart,
1170 static void __init xen_reserve_top(void)
1172 unsigned long top = HYPERVISOR_VIRT_START;
1173 struct xen_platform_parameters pp;
1175 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1176 top = pp.virt_start;
1178 reserve_top_address(-top + 2 * PAGE_SIZE);
1181 /* First C function to be called on Xen boot */
1182 asmlinkage void __init xen_start_kernel(void)
1184 pgd_t *pgd;
1186 if (!xen_start_info)
1187 return;
1189 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1191 /* Install Xen paravirt ops */
1192 pv_info = xen_info;
1193 pv_init_ops = xen_init_ops;
1194 pv_time_ops = xen_time_ops;
1195 pv_cpu_ops = xen_cpu_ops;
1196 pv_irq_ops = xen_irq_ops;
1197 pv_apic_ops = xen_apic_ops;
1198 pv_mmu_ops = xen_mmu_ops;
1200 machine_ops = xen_machine_ops;
1202 #ifdef CONFIG_SMP
1203 smp_ops = xen_smp_ops;
1204 #endif
1206 xen_setup_features();
1208 /* Get mfn list */
1209 if (!xen_feature(XENFEAT_auto_translated_physmap))
1210 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1212 pgd = (pgd_t *)xen_start_info->pt_base;
1214 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1216 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1218 /* keep using Xen gdt for now; no urgent need to change it */
1220 x86_write_percpu(xen_cr3, __pa(pgd));
1221 x86_write_percpu(xen_current_cr3, __pa(pgd));
1223 /* Don't do the full vcpu_info placement stuff until we have a
1224 possible map and a non-dummy shared_info. */
1225 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1227 pv_info.kernel_rpl = 1;
1228 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1229 pv_info.kernel_rpl = 0;
1231 /* set the limit of our address space */
1232 xen_reserve_top();
1234 /* set up basic CPUID stuff */
1235 cpu_detect(&new_cpu_data);
1236 new_cpu_data.hard_math = 1;
1237 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1239 /* Poke various useful things into boot_params */
1240 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1241 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1242 ? __pa(xen_start_info->mod_start) : 0;
1243 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1245 if (!is_initial_xendomain())
1246 add_preferred_console("hvc", 0, NULL);
1248 /* Start the world */
1249 start_kernel();