[SCSI] aacraid: Fix struct element name issue
[linux-2.6/linux-loongson.git] / drivers / scsi / aacraid / commsup.c
blobe67ff13eb3594c9924a1578f53afb441fc248175
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Module Name:
25 * commsup.c
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
50 #include "aacraid.h"
52 /**
53 * fib_map_alloc - allocate the fib objects
54 * @dev: Adapter to allocate for
56 * Allocate and map the shared PCI space for the FIB blocks used to
57 * talk to the Adaptec firmware.
60 static int fib_map_alloc(struct aac_dev *dev)
62 dprintk((KERN_INFO
63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 &dev->hw_fib_pa))==NULL)
69 return -ENOMEM;
70 return 0;
73 /**
74 * aac_fib_map_free - free the fib objects
75 * @dev: Adapter to free
77 * Free the PCI mappings and the memory allocated for FIB blocks
78 * on this adapter.
81 void aac_fib_map_free(struct aac_dev *dev)
83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
86 /**
87 * aac_fib_setup - setup the fibs
88 * @dev: Adapter to set up
90 * Allocate the PCI space for the fibs, map it and then intialise the
91 * fib area, the unmapped fib data and also the free list
94 int aac_fib_setup(struct aac_dev * dev)
96 struct fib *fibptr;
97 struct hw_fib *hw_fib;
98 dma_addr_t hw_fib_pa;
99 int i;
101 while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
106 if (i<0)
107 return -ENOMEM;
109 hw_fib = dev->hw_fib_va;
110 hw_fib_pa = dev->hw_fib_pa;
111 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
113 * Initialise the fibs
115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
117 fibptr->dev = dev;
118 fibptr->hw_fib_va = hw_fib;
119 fibptr->data = (void *) fibptr->hw_fib_va->data;
120 fibptr->next = fibptr+1; /* Forward chain the fibs */
121 init_MUTEX_LOCKED(&fibptr->event_wait);
122 spin_lock_init(&fibptr->event_lock);
123 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
124 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 fibptr->hw_fib_pa = hw_fib_pa;
126 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
127 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
130 * Add the fib chain to the free list
132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
134 * Enable this to debug out of queue space
136 dev->free_fib = &dev->fibs[0];
137 return 0;
141 * aac_fib_alloc - allocate a fib
142 * @dev: Adapter to allocate the fib for
144 * Allocate a fib from the adapter fib pool. If the pool is empty we
145 * return NULL.
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
150 struct fib * fibptr;
151 unsigned long flags;
152 spin_lock_irqsave(&dev->fib_lock, flags);
153 fibptr = dev->free_fib;
154 if(!fibptr){
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
156 return fibptr;
158 dev->free_fib = fibptr->next;
159 spin_unlock_irqrestore(&dev->fib_lock, flags);
161 * Set the proper node type code and node byte size
163 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 fibptr->size = sizeof(struct fib);
166 * Null out fields that depend on being zero at the start of
167 * each I/O
169 fibptr->hw_fib_va->header.XferState = 0;
170 fibptr->callback = NULL;
171 fibptr->callback_data = NULL;
173 return fibptr;
177 * aac_fib_free - free a fib
178 * @fibptr: fib to free up
180 * Frees up a fib and places it on the appropriate queue
181 * (either free or timed out)
184 void aac_fib_free(struct fib *fibptr)
186 unsigned long flags;
188 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
189 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
190 aac_config.fib_timeouts++;
191 fibptr->next = fibptr->dev->timeout_fib;
192 fibptr->dev->timeout_fib = fibptr;
193 } else {
194 if (fibptr->hw_fib_va->header.XferState != 0) {
195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
196 (void*)fibptr,
197 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
199 fibptr->next = fibptr->dev->free_fib;
200 fibptr->dev->free_fib = fibptr;
202 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
206 * aac_fib_init - initialise a fib
207 * @fibptr: The fib to initialize
209 * Set up the generic fib fields ready for use
212 void aac_fib_init(struct fib *fibptr)
214 struct hw_fib *hw_fib = fibptr->hw_fib_va;
216 hw_fib->header.StructType = FIB_MAGIC;
217 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
218 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
219 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
220 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
221 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
225 * fib_deallocate - deallocate a fib
226 * @fibptr: fib to deallocate
228 * Will deallocate and return to the free pool the FIB pointed to by the
229 * caller.
232 static void fib_dealloc(struct fib * fibptr)
234 struct hw_fib *hw_fib = fibptr->hw_fib_va;
235 BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
236 hw_fib->header.XferState = 0;
240 * Commuication primitives define and support the queuing method we use to
241 * support host to adapter commuication. All queue accesses happen through
242 * these routines and are the only routines which have a knowledge of the
243 * how these queues are implemented.
247 * aac_get_entry - get a queue entry
248 * @dev: Adapter
249 * @qid: Queue Number
250 * @entry: Entry return
251 * @index: Index return
252 * @nonotify: notification control
254 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
255 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256 * returned.
259 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
261 struct aac_queue * q;
262 unsigned long idx;
265 * All of the queues wrap when they reach the end, so we check
266 * to see if they have reached the end and if they have we just
267 * set the index back to zero. This is a wrap. You could or off
268 * the high bits in all updates but this is a bit faster I think.
271 q = &dev->queues->queue[qid];
273 idx = *index = le32_to_cpu(*(q->headers.producer));
274 /* Interrupt Moderation, only interrupt for first two entries */
275 if (idx != le32_to_cpu(*(q->headers.consumer))) {
276 if (--idx == 0) {
277 if (qid == AdapNormCmdQueue)
278 idx = ADAP_NORM_CMD_ENTRIES;
279 else
280 idx = ADAP_NORM_RESP_ENTRIES;
282 if (idx != le32_to_cpu(*(q->headers.consumer)))
283 *nonotify = 1;
286 if (qid == AdapNormCmdQueue) {
287 if (*index >= ADAP_NORM_CMD_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
289 } else {
290 if (*index >= ADAP_NORM_RESP_ENTRIES)
291 *index = 0; /* Wrap to front of the Producer Queue. */
294 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
295 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296 qid, q->numpending);
297 return 0;
298 } else {
299 *entry = q->base + *index;
300 return 1;
305 * aac_queue_get - get the next free QE
306 * @dev: Adapter
307 * @index: Returned index
308 * @priority: Priority of fib
309 * @fib: Fib to associate with the queue entry
310 * @wait: Wait if queue full
311 * @fibptr: Driver fib object to go with fib
312 * @nonotify: Don't notify the adapter
314 * Gets the next free QE off the requested priorty adapter command
315 * queue and associates the Fib with the QE. The QE represented by
316 * index is ready to insert on the queue when this routine returns
317 * success.
320 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
322 struct aac_entry * entry = NULL;
323 int map = 0;
325 if (qid == AdapNormCmdQueue) {
326 /* if no entries wait for some if caller wants to */
327 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
329 printk(KERN_ERR "GetEntries failed\n");
332 * Setup queue entry with a command, status and fib mapped
334 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335 map = 1;
336 } else {
337 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
339 /* if no entries wait for some if caller wants to */
342 * Setup queue entry with command, status and fib mapped
344 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
345 entry->addr = hw_fib->header.SenderFibAddress;
346 /* Restore adapters pointer to the FIB */
347 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
348 map = 0;
351 * If MapFib is true than we need to map the Fib and put pointers
352 * in the queue entry.
354 if (map)
355 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
356 return 0;
360 * Define the highest level of host to adapter communication routines.
361 * These routines will support host to adapter FS commuication. These
362 * routines have no knowledge of the commuication method used. This level
363 * sends and receives FIBs. This level has no knowledge of how these FIBs
364 * get passed back and forth.
368 * aac_fib_send - send a fib to the adapter
369 * @command: Command to send
370 * @fibptr: The fib
371 * @size: Size of fib data area
372 * @priority: Priority of Fib
373 * @wait: Async/sync select
374 * @reply: True if a reply is wanted
375 * @callback: Called with reply
376 * @callback_data: Passed to callback
378 * Sends the requested FIB to the adapter and optionally will wait for a
379 * response FIB. If the caller does not wish to wait for a response than
380 * an event to wait on must be supplied. This event will be set when a
381 * response FIB is received from the adapter.
384 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
385 int priority, int wait, int reply, fib_callback callback,
386 void *callback_data)
388 struct aac_dev * dev = fibptr->dev;
389 struct hw_fib * hw_fib = fibptr->hw_fib_va;
390 unsigned long flags = 0;
391 unsigned long qflags;
393 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394 return -EBUSY;
396 * There are 5 cases with the wait and reponse requested flags.
397 * The only invalid cases are if the caller requests to wait and
398 * does not request a response and if the caller does not want a
399 * response and the Fib is not allocated from pool. If a response
400 * is not requesed the Fib will just be deallocaed by the DPC
401 * routine when the response comes back from the adapter. No
402 * further processing will be done besides deleting the Fib. We
403 * will have a debug mode where the adapter can notify the host
404 * it had a problem and the host can log that fact.
406 if (wait && !reply) {
407 return -EINVAL;
408 } else if (!wait && reply) {
409 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
410 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
411 } else if (!wait && !reply) {
412 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
413 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
414 } else if (wait && reply) {
415 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
416 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
419 * Map the fib into 32bits by using the fib number
422 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
423 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
425 * Set FIB state to indicate where it came from and if we want a
426 * response from the adapter. Also load the command from the
427 * caller.
429 * Map the hw fib pointer as a 32bit value
431 hw_fib->header.Command = cpu_to_le16(command);
432 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
433 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/
435 * Set the size of the Fib we want to send to the adapter
437 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
438 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
439 return -EMSGSIZE;
442 * Get a queue entry connect the FIB to it and send an notify
443 * the adapter a command is ready.
445 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
448 * Fill in the Callback and CallbackContext if we are not
449 * going to wait.
451 if (!wait) {
452 fibptr->callback = callback;
453 fibptr->callback_data = callback_data;
456 fibptr->done = 0;
457 fibptr->flags = 0;
459 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
461 dprintk((KERN_DEBUG "Fib contents:.\n"));
462 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
463 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
464 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
465 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
466 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
467 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
469 if (!dev->queues)
470 return -EBUSY;
472 if(wait)
473 spin_lock_irqsave(&fibptr->event_lock, flags);
474 aac_adapter_deliver(fibptr);
477 * If the caller wanted us to wait for response wait now.
480 if (wait) {
481 spin_unlock_irqrestore(&fibptr->event_lock, flags);
482 /* Only set for first known interruptable command */
483 if (wait < 0) {
485 * *VERY* Dangerous to time out a command, the
486 * assumption is made that we have no hope of
487 * functioning because an interrupt routing or other
488 * hardware failure has occurred.
490 unsigned long count = 36000000L; /* 3 minutes */
491 while (down_trylock(&fibptr->event_wait)) {
492 int blink;
493 if (--count == 0) {
494 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
495 spin_lock_irqsave(q->lock, qflags);
496 q->numpending--;
497 spin_unlock_irqrestore(q->lock, qflags);
498 if (wait == -1) {
499 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
500 "Usually a result of a PCI interrupt routing problem;\n"
501 "update mother board BIOS or consider utilizing one of\n"
502 "the SAFE mode kernel options (acpi, apic etc)\n");
504 return -ETIMEDOUT;
506 if ((blink = aac_adapter_check_health(dev)) > 0) {
507 if (wait == -1) {
508 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
509 "Usually a result of a serious unrecoverable hardware problem\n",
510 blink);
512 return -EFAULT;
514 udelay(5);
516 } else if (down_interruptible(&fibptr->event_wait)) {
517 spin_lock_irqsave(&fibptr->event_lock, flags);
518 if (fibptr->done == 0) {
519 fibptr->done = 2; /* Tell interrupt we aborted */
520 spin_unlock_irqrestore(&fibptr->event_lock, flags);
521 return -EINTR;
523 spin_unlock_irqrestore(&fibptr->event_lock, flags);
525 BUG_ON(fibptr->done == 0);
527 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
528 return -ETIMEDOUT;
529 } else {
530 return 0;
534 * If the user does not want a response than return success otherwise
535 * return pending
537 if (reply)
538 return -EINPROGRESS;
539 else
540 return 0;
543 /**
544 * aac_consumer_get - get the top of the queue
545 * @dev: Adapter
546 * @q: Queue
547 * @entry: Return entry
549 * Will return a pointer to the entry on the top of the queue requested that
550 * we are a consumer of, and return the address of the queue entry. It does
551 * not change the state of the queue.
554 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
556 u32 index;
557 int status;
558 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
559 status = 0;
560 } else {
562 * The consumer index must be wrapped if we have reached
563 * the end of the queue, else we just use the entry
564 * pointed to by the header index
566 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
567 index = 0;
568 else
569 index = le32_to_cpu(*q->headers.consumer);
570 *entry = q->base + index;
571 status = 1;
573 return(status);
577 * aac_consumer_free - free consumer entry
578 * @dev: Adapter
579 * @q: Queue
580 * @qid: Queue ident
582 * Frees up the current top of the queue we are a consumer of. If the
583 * queue was full notify the producer that the queue is no longer full.
586 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
588 int wasfull = 0;
589 u32 notify;
591 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
592 wasfull = 1;
594 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
595 *q->headers.consumer = cpu_to_le32(1);
596 else
597 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
599 if (wasfull) {
600 switch (qid) {
602 case HostNormCmdQueue:
603 notify = HostNormCmdNotFull;
604 break;
605 case HostNormRespQueue:
606 notify = HostNormRespNotFull;
607 break;
608 default:
609 BUG();
610 return;
612 aac_adapter_notify(dev, notify);
617 * aac_fib_adapter_complete - complete adapter issued fib
618 * @fibptr: fib to complete
619 * @size: size of fib
621 * Will do all necessary work to complete a FIB that was sent from
622 * the adapter.
625 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
627 struct hw_fib * hw_fib = fibptr->hw_fib_va;
628 struct aac_dev * dev = fibptr->dev;
629 struct aac_queue * q;
630 unsigned long nointr = 0;
631 unsigned long qflags;
633 if (hw_fib->header.XferState == 0) {
634 if (dev->comm_interface == AAC_COMM_MESSAGE)
635 kfree (hw_fib);
636 return 0;
639 * If we plan to do anything check the structure type first.
641 if ( hw_fib->header.StructType != FIB_MAGIC ) {
642 if (dev->comm_interface == AAC_COMM_MESSAGE)
643 kfree (hw_fib);
644 return -EINVAL;
647 * This block handles the case where the adapter had sent us a
648 * command and we have finished processing the command. We
649 * call completeFib when we are done processing the command
650 * and want to send a response back to the adapter. This will
651 * send the completed cdb to the adapter.
653 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
654 if (dev->comm_interface == AAC_COMM_MESSAGE) {
655 kfree (hw_fib);
656 } else {
657 u32 index;
658 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
659 if (size) {
660 size += sizeof(struct aac_fibhdr);
661 if (size > le16_to_cpu(hw_fib->header.SenderSize))
662 return -EMSGSIZE;
663 hw_fib->header.Size = cpu_to_le16(size);
665 q = &dev->queues->queue[AdapNormRespQueue];
666 spin_lock_irqsave(q->lock, qflags);
667 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
668 *(q->headers.producer) = cpu_to_le32(index + 1);
669 spin_unlock_irqrestore(q->lock, qflags);
670 if (!(nointr & (int)aac_config.irq_mod))
671 aac_adapter_notify(dev, AdapNormRespQueue);
674 else
676 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
677 BUG();
679 return 0;
683 * aac_fib_complete - fib completion handler
684 * @fib: FIB to complete
686 * Will do all necessary work to complete a FIB.
689 int aac_fib_complete(struct fib *fibptr)
691 struct hw_fib * hw_fib = fibptr->hw_fib_va;
694 * Check for a fib which has already been completed
697 if (hw_fib->header.XferState == 0)
698 return 0;
700 * If we plan to do anything check the structure type first.
703 if (hw_fib->header.StructType != FIB_MAGIC)
704 return -EINVAL;
706 * This block completes a cdb which orginated on the host and we
707 * just need to deallocate the cdb or reinit it. At this point the
708 * command is complete that we had sent to the adapter and this
709 * cdb could be reused.
711 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
712 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
714 fib_dealloc(fibptr);
716 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
719 * This handles the case when the host has aborted the I/O
720 * to the adapter because the adapter is not responding
722 fib_dealloc(fibptr);
723 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
724 fib_dealloc(fibptr);
725 } else {
726 BUG();
728 return 0;
732 * aac_printf - handle printf from firmware
733 * @dev: Adapter
734 * @val: Message info
736 * Print a message passed to us by the controller firmware on the
737 * Adaptec board
740 void aac_printf(struct aac_dev *dev, u32 val)
742 char *cp = dev->printfbuf;
743 if (dev->printf_enabled)
745 int length = val & 0xffff;
746 int level = (val >> 16) & 0xffff;
749 * The size of the printfbuf is set in port.c
750 * There is no variable or define for it
752 if (length > 255)
753 length = 255;
754 if (cp[length] != 0)
755 cp[length] = 0;
756 if (level == LOG_AAC_HIGH_ERROR)
757 printk(KERN_WARNING "%s:%s", dev->name, cp);
758 else
759 printk(KERN_INFO "%s:%s", dev->name, cp);
761 memset(cp, 0, 256);
766 * aac_handle_aif - Handle a message from the firmware
767 * @dev: Which adapter this fib is from
768 * @fibptr: Pointer to fibptr from adapter
770 * This routine handles a driver notify fib from the adapter and
771 * dispatches it to the appropriate routine for handling.
774 #define AIF_SNIFF_TIMEOUT (30*HZ)
775 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
777 struct hw_fib * hw_fib = fibptr->hw_fib_va;
778 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
779 u32 container;
780 struct scsi_device *device;
781 enum {
782 NOTHING,
783 DELETE,
784 ADD,
785 CHANGE
786 } device_config_needed;
788 /* Sniff for container changes */
790 if (!dev || !dev->fsa_dev)
791 return;
792 container = (u32)-1;
795 * We have set this up to try and minimize the number of
796 * re-configures that take place. As a result of this when
797 * certain AIF's come in we will set a flag waiting for another
798 * type of AIF before setting the re-config flag.
800 switch (le32_to_cpu(aifcmd->command)) {
801 case AifCmdDriverNotify:
802 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
804 * Morph or Expand complete
806 case AifDenMorphComplete:
807 case AifDenVolumeExtendComplete:
808 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
809 if (container >= dev->maximum_num_containers)
810 break;
813 * Find the scsi_device associated with the SCSI
814 * address. Make sure we have the right array, and if
815 * so set the flag to initiate a new re-config once we
816 * see an AifEnConfigChange AIF come through.
819 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
820 device = scsi_device_lookup(dev->scsi_host_ptr,
821 CONTAINER_TO_CHANNEL(container),
822 CONTAINER_TO_ID(container),
823 CONTAINER_TO_LUN(container));
824 if (device) {
825 dev->fsa_dev[container].config_needed = CHANGE;
826 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
827 dev->fsa_dev[container].config_waiting_stamp = jiffies;
828 scsi_device_put(device);
834 * If we are waiting on something and this happens to be
835 * that thing then set the re-configure flag.
837 if (container != (u32)-1) {
838 if (container >= dev->maximum_num_containers)
839 break;
840 if ((dev->fsa_dev[container].config_waiting_on ==
841 le32_to_cpu(*(u32 *)aifcmd->data)) &&
842 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
843 dev->fsa_dev[container].config_waiting_on = 0;
844 } else for (container = 0;
845 container < dev->maximum_num_containers; ++container) {
846 if ((dev->fsa_dev[container].config_waiting_on ==
847 le32_to_cpu(*(u32 *)aifcmd->data)) &&
848 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
849 dev->fsa_dev[container].config_waiting_on = 0;
851 break;
853 case AifCmdEventNotify:
854 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
856 * Add an Array.
858 case AifEnAddContainer:
859 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
860 if (container >= dev->maximum_num_containers)
861 break;
862 dev->fsa_dev[container].config_needed = ADD;
863 dev->fsa_dev[container].config_waiting_on =
864 AifEnConfigChange;
865 dev->fsa_dev[container].config_waiting_stamp = jiffies;
866 break;
869 * Delete an Array.
871 case AifEnDeleteContainer:
872 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
873 if (container >= dev->maximum_num_containers)
874 break;
875 dev->fsa_dev[container].config_needed = DELETE;
876 dev->fsa_dev[container].config_waiting_on =
877 AifEnConfigChange;
878 dev->fsa_dev[container].config_waiting_stamp = jiffies;
879 break;
882 * Container change detected. If we currently are not
883 * waiting on something else, setup to wait on a Config Change.
885 case AifEnContainerChange:
886 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
887 if (container >= dev->maximum_num_containers)
888 break;
889 if (dev->fsa_dev[container].config_waiting_on &&
890 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
891 break;
892 dev->fsa_dev[container].config_needed = CHANGE;
893 dev->fsa_dev[container].config_waiting_on =
894 AifEnConfigChange;
895 dev->fsa_dev[container].config_waiting_stamp = jiffies;
896 break;
898 case AifEnConfigChange:
899 break;
904 * If we are waiting on something and this happens to be
905 * that thing then set the re-configure flag.
907 if (container != (u32)-1) {
908 if (container >= dev->maximum_num_containers)
909 break;
910 if ((dev->fsa_dev[container].config_waiting_on ==
911 le32_to_cpu(*(u32 *)aifcmd->data)) &&
912 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
913 dev->fsa_dev[container].config_waiting_on = 0;
914 } else for (container = 0;
915 container < dev->maximum_num_containers; ++container) {
916 if ((dev->fsa_dev[container].config_waiting_on ==
917 le32_to_cpu(*(u32 *)aifcmd->data)) &&
918 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
919 dev->fsa_dev[container].config_waiting_on = 0;
921 break;
923 case AifCmdJobProgress:
925 * These are job progress AIF's. When a Clear is being
926 * done on a container it is initially created then hidden from
927 * the OS. When the clear completes we don't get a config
928 * change so we monitor the job status complete on a clear then
929 * wait for a container change.
932 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
933 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
934 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
935 for (container = 0;
936 container < dev->maximum_num_containers;
937 ++container) {
939 * Stomp on all config sequencing for all
940 * containers?
942 dev->fsa_dev[container].config_waiting_on =
943 AifEnContainerChange;
944 dev->fsa_dev[container].config_needed = ADD;
945 dev->fsa_dev[container].config_waiting_stamp =
946 jiffies;
949 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
950 && (((u32 *)aifcmd->data)[6] == 0)
951 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
952 for (container = 0;
953 container < dev->maximum_num_containers;
954 ++container) {
956 * Stomp on all config sequencing for all
957 * containers?
959 dev->fsa_dev[container].config_waiting_on =
960 AifEnContainerChange;
961 dev->fsa_dev[container].config_needed = DELETE;
962 dev->fsa_dev[container].config_waiting_stamp =
963 jiffies;
966 break;
969 device_config_needed = NOTHING;
970 for (container = 0; container < dev->maximum_num_containers;
971 ++container) {
972 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
973 (dev->fsa_dev[container].config_needed != NOTHING) &&
974 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
975 device_config_needed =
976 dev->fsa_dev[container].config_needed;
977 dev->fsa_dev[container].config_needed = NOTHING;
978 break;
981 if (device_config_needed == NOTHING)
982 return;
985 * If we decided that a re-configuration needs to be done,
986 * schedule it here on the way out the door, please close the door
987 * behind you.
991 * Find the scsi_device associated with the SCSI address,
992 * and mark it as changed, invalidating the cache. This deals
993 * with changes to existing device IDs.
996 if (!dev || !dev->scsi_host_ptr)
997 return;
999 * force reload of disk info via aac_probe_container
1001 if ((device_config_needed == CHANGE)
1002 && (dev->fsa_dev[container].valid == 1))
1003 dev->fsa_dev[container].valid = 2;
1004 if ((device_config_needed == CHANGE) ||
1005 (device_config_needed == ADD))
1006 aac_probe_container(dev, container);
1007 device = scsi_device_lookup(dev->scsi_host_ptr,
1008 CONTAINER_TO_CHANNEL(container),
1009 CONTAINER_TO_ID(container),
1010 CONTAINER_TO_LUN(container));
1011 if (device) {
1012 switch (device_config_needed) {
1013 case DELETE:
1014 case CHANGE:
1015 scsi_rescan_device(&device->sdev_gendev);
1017 default:
1018 break;
1020 scsi_device_put(device);
1022 if (device_config_needed == ADD) {
1023 scsi_add_device(dev->scsi_host_ptr,
1024 CONTAINER_TO_CHANNEL(container),
1025 CONTAINER_TO_ID(container),
1026 CONTAINER_TO_LUN(container));
1031 static int _aac_reset_adapter(struct aac_dev *aac)
1033 int index, quirks;
1034 int retval;
1035 struct Scsi_Host *host;
1036 struct scsi_device *dev;
1037 struct scsi_cmnd *command;
1038 struct scsi_cmnd *command_list;
1041 * Assumptions:
1042 * - host is locked.
1043 * - in_reset is asserted, so no new i/o is getting to the
1044 * card.
1045 * - The card is dead.
1047 host = aac->scsi_host_ptr;
1048 scsi_block_requests(host);
1049 aac_adapter_disable_int(aac);
1050 spin_unlock_irq(host->host_lock);
1051 kthread_stop(aac->thread);
1054 * If a positive health, means in a known DEAD PANIC
1055 * state and the adapter could be reset to `try again'.
1057 retval = aac_adapter_restart(aac, aac_adapter_check_health(aac));
1059 if (retval)
1060 goto out;
1063 * Loop through the fibs, close the synchronous FIBS
1065 for (index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1066 struct fib *fib = &aac->fibs[index];
1067 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1068 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1069 unsigned long flagv;
1070 spin_lock_irqsave(&fib->event_lock, flagv);
1071 up(&fib->event_wait);
1072 spin_unlock_irqrestore(&fib->event_lock, flagv);
1073 schedule();
1076 index = aac->cardtype;
1079 * Re-initialize the adapter, first free resources, then carefully
1080 * apply the initialization sequence to come back again. Only risk
1081 * is a change in Firmware dropping cache, it is assumed the caller
1082 * will ensure that i/o is queisced and the card is flushed in that
1083 * case.
1085 aac_fib_map_free(aac);
1086 aac->hw_fib_va = NULL;
1087 aac->hw_fib_pa = 0;
1088 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1089 aac->comm_addr = NULL;
1090 aac->comm_phys = 0;
1091 kfree(aac->queues);
1092 aac->queues = NULL;
1093 free_irq(aac->pdev->irq, aac);
1094 kfree(aac->fsa_dev);
1095 aac->fsa_dev = NULL;
1096 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1097 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1098 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1099 goto out;
1100 } else {
1101 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1102 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1103 goto out;
1105 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1106 goto out;
1107 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1108 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1109 goto out;
1110 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1111 if (IS_ERR(aac->thread)) {
1112 retval = PTR_ERR(aac->thread);
1113 goto out;
1115 (void)aac_get_adapter_info(aac);
1116 quirks = aac_get_driver_ident(index)->quirks;
1117 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1118 host->sg_tablesize = 34;
1119 host->max_sectors = (host->sg_tablesize * 8) + 112;
1121 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1122 host->sg_tablesize = 17;
1123 host->max_sectors = (host->sg_tablesize * 8) + 112;
1125 aac_get_config_status(aac, 1);
1126 aac_get_containers(aac);
1128 * This is where the assumption that the Adapter is quiesced
1129 * is important.
1131 command_list = NULL;
1132 __shost_for_each_device(dev, host) {
1133 unsigned long flags;
1134 spin_lock_irqsave(&dev->list_lock, flags);
1135 list_for_each_entry(command, &dev->cmd_list, list)
1136 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1137 command->SCp.buffer = (struct scatterlist *)command_list;
1138 command_list = command;
1140 spin_unlock_irqrestore(&dev->list_lock, flags);
1142 while ((command = command_list)) {
1143 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1144 command->SCp.buffer = NULL;
1145 command->result = DID_OK << 16
1146 | COMMAND_COMPLETE << 8
1147 | SAM_STAT_TASK_SET_FULL;
1148 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1149 command->scsi_done(command);
1151 retval = 0;
1153 out:
1154 aac->in_reset = 0;
1155 scsi_unblock_requests(host);
1156 spin_lock_irq(host->host_lock);
1157 return retval;
1160 int aac_check_health(struct aac_dev * aac)
1162 int BlinkLED;
1163 unsigned long time_now, flagv = 0;
1164 struct list_head * entry;
1165 struct Scsi_Host * host;
1167 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1168 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1169 return 0;
1171 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1172 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1173 return 0; /* OK */
1176 aac->in_reset = 1;
1178 /* Fake up an AIF:
1179 * aac_aifcmd.command = AifCmdEventNotify = 1
1180 * aac_aifcmd.seqnum = 0xFFFFFFFF
1181 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1182 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1183 * aac.aifcmd.data[2] = AifHighPriority = 3
1184 * aac.aifcmd.data[3] = BlinkLED
1187 time_now = jiffies/HZ;
1188 entry = aac->fib_list.next;
1191 * For each Context that is on the
1192 * fibctxList, make a copy of the
1193 * fib, and then set the event to wake up the
1194 * thread that is waiting for it.
1196 while (entry != &aac->fib_list) {
1198 * Extract the fibctx
1200 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1201 struct hw_fib * hw_fib;
1202 struct fib * fib;
1204 * Check if the queue is getting
1205 * backlogged
1207 if (fibctx->count > 20) {
1209 * It's *not* jiffies folks,
1210 * but jiffies / HZ, so do not
1211 * panic ...
1213 u32 time_last = fibctx->jiffies;
1215 * Has it been > 2 minutes
1216 * since the last read off
1217 * the queue?
1219 if ((time_now - time_last) > aif_timeout) {
1220 entry = entry->next;
1221 aac_close_fib_context(aac, fibctx);
1222 continue;
1226 * Warning: no sleep allowed while
1227 * holding spinlock
1229 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1230 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1231 if (fib && hw_fib) {
1232 struct aac_aifcmd * aif;
1234 memset(hw_fib, 0, sizeof(struct hw_fib));
1235 memset(fib, 0, sizeof(struct fib));
1236 fib->hw_fib_va = hw_fib;
1237 fib->dev = aac;
1238 aac_fib_init(fib);
1239 fib->type = FSAFS_NTC_FIB_CONTEXT;
1240 fib->size = sizeof (struct fib);
1241 fib->data = hw_fib->data;
1242 aif = (struct aac_aifcmd *)hw_fib->data;
1243 aif->command = cpu_to_le32(AifCmdEventNotify);
1244 aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1245 aif->data[0] = cpu_to_le32(AifEnExpEvent);
1246 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1247 aif->data[2] = cpu_to_le32(AifHighPriority);
1248 aif->data[3] = cpu_to_le32(BlinkLED);
1251 * Put the FIB onto the
1252 * fibctx's fibs
1254 list_add_tail(&fib->fiblink, &fibctx->fib_list);
1255 fibctx->count++;
1257 * Set the event to wake up the
1258 * thread that will waiting.
1260 up(&fibctx->wait_sem);
1261 } else {
1262 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1263 kfree(fib);
1264 kfree(hw_fib);
1266 entry = entry->next;
1269 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1271 if (BlinkLED < 0) {
1272 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1273 goto out;
1276 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1278 host = aac->scsi_host_ptr;
1279 spin_lock_irqsave(host->host_lock, flagv);
1280 BlinkLED = _aac_reset_adapter(aac);
1281 spin_unlock_irqrestore(host->host_lock, flagv);
1282 return BlinkLED;
1284 out:
1285 aac->in_reset = 0;
1286 return BlinkLED;
1291 * aac_command_thread - command processing thread
1292 * @dev: Adapter to monitor
1294 * Waits on the commandready event in it's queue. When the event gets set
1295 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1296 * until the queue is empty. When the queue is empty it will wait for
1297 * more FIBs.
1300 int aac_command_thread(void *data)
1302 struct aac_dev *dev = data;
1303 struct hw_fib *hw_fib, *hw_newfib;
1304 struct fib *fib, *newfib;
1305 struct aac_fib_context *fibctx;
1306 unsigned long flags;
1307 DECLARE_WAITQUEUE(wait, current);
1310 * We can only have one thread per adapter for AIF's.
1312 if (dev->aif_thread)
1313 return -EINVAL;
1316 * Let the DPC know it has a place to send the AIF's to.
1318 dev->aif_thread = 1;
1319 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1320 set_current_state(TASK_INTERRUPTIBLE);
1321 dprintk ((KERN_INFO "aac_command_thread start\n"));
1322 while(1)
1324 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1325 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1326 struct list_head *entry;
1327 struct aac_aifcmd * aifcmd;
1329 set_current_state(TASK_RUNNING);
1331 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1332 list_del(entry);
1334 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1335 fib = list_entry(entry, struct fib, fiblink);
1337 * We will process the FIB here or pass it to a
1338 * worker thread that is TBD. We Really can't
1339 * do anything at this point since we don't have
1340 * anything defined for this thread to do.
1342 hw_fib = fib->hw_fib_va;
1343 memset(fib, 0, sizeof(struct fib));
1344 fib->type = FSAFS_NTC_FIB_CONTEXT;
1345 fib->size = sizeof( struct fib );
1346 fib->hw_fib_va = hw_fib;
1347 fib->data = hw_fib->data;
1348 fib->dev = dev;
1350 * We only handle AifRequest fibs from the adapter.
1352 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1353 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1354 /* Handle Driver Notify Events */
1355 aac_handle_aif(dev, fib);
1356 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1357 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1358 } else {
1359 struct list_head *entry;
1360 /* The u32 here is important and intended. We are using
1361 32bit wrapping time to fit the adapter field */
1363 u32 time_now, time_last;
1364 unsigned long flagv;
1365 unsigned num;
1366 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1367 struct fib ** fib_pool, ** fib_p;
1369 /* Sniff events */
1370 if ((aifcmd->command ==
1371 cpu_to_le32(AifCmdEventNotify)) ||
1372 (aifcmd->command ==
1373 cpu_to_le32(AifCmdJobProgress))) {
1374 aac_handle_aif(dev, fib);
1377 time_now = jiffies/HZ;
1380 * Warning: no sleep allowed while
1381 * holding spinlock. We take the estimate
1382 * and pre-allocate a set of fibs outside the
1383 * lock.
1385 num = le32_to_cpu(dev->init->AdapterFibsSize)
1386 / sizeof(struct hw_fib); /* some extra */
1387 spin_lock_irqsave(&dev->fib_lock, flagv);
1388 entry = dev->fib_list.next;
1389 while (entry != &dev->fib_list) {
1390 entry = entry->next;
1391 ++num;
1393 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1394 hw_fib_pool = NULL;
1395 fib_pool = NULL;
1396 if (num
1397 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1398 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1399 hw_fib_p = hw_fib_pool;
1400 fib_p = fib_pool;
1401 while (hw_fib_p < &hw_fib_pool[num]) {
1402 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1403 --hw_fib_p;
1404 break;
1406 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1407 kfree(*(--hw_fib_p));
1408 break;
1411 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1412 kfree(fib_pool);
1413 fib_pool = NULL;
1414 kfree(hw_fib_pool);
1415 hw_fib_pool = NULL;
1417 } else {
1418 kfree(hw_fib_pool);
1419 hw_fib_pool = NULL;
1421 spin_lock_irqsave(&dev->fib_lock, flagv);
1422 entry = dev->fib_list.next;
1424 * For each Context that is on the
1425 * fibctxList, make a copy of the
1426 * fib, and then set the event to wake up the
1427 * thread that is waiting for it.
1429 hw_fib_p = hw_fib_pool;
1430 fib_p = fib_pool;
1431 while (entry != &dev->fib_list) {
1433 * Extract the fibctx
1435 fibctx = list_entry(entry, struct aac_fib_context, next);
1437 * Check if the queue is getting
1438 * backlogged
1440 if (fibctx->count > 20)
1443 * It's *not* jiffies folks,
1444 * but jiffies / HZ so do not
1445 * panic ...
1447 time_last = fibctx->jiffies;
1449 * Has it been > 2 minutes
1450 * since the last read off
1451 * the queue?
1453 if ((time_now - time_last) > aif_timeout) {
1454 entry = entry->next;
1455 aac_close_fib_context(dev, fibctx);
1456 continue;
1460 * Warning: no sleep allowed while
1461 * holding spinlock
1463 if (hw_fib_p < &hw_fib_pool[num]) {
1464 hw_newfib = *hw_fib_p;
1465 *(hw_fib_p++) = NULL;
1466 newfib = *fib_p;
1467 *(fib_p++) = NULL;
1469 * Make the copy of the FIB
1471 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1472 memcpy(newfib, fib, sizeof(struct fib));
1473 newfib->hw_fib_va = hw_newfib;
1475 * Put the FIB onto the
1476 * fibctx's fibs
1478 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1479 fibctx->count++;
1481 * Set the event to wake up the
1482 * thread that is waiting.
1484 up(&fibctx->wait_sem);
1485 } else {
1486 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1488 entry = entry->next;
1491 * Set the status of this FIB
1493 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1494 aac_fib_adapter_complete(fib, sizeof(u32));
1495 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1496 /* Free up the remaining resources */
1497 hw_fib_p = hw_fib_pool;
1498 fib_p = fib_pool;
1499 while (hw_fib_p < &hw_fib_pool[num]) {
1500 kfree(*hw_fib_p);
1501 kfree(*fib_p);
1502 ++fib_p;
1503 ++hw_fib_p;
1505 kfree(hw_fib_pool);
1506 kfree(fib_pool);
1508 kfree(fib);
1509 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1512 * There are no more AIF's
1514 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1515 schedule();
1517 if (kthread_should_stop())
1518 break;
1519 set_current_state(TASK_INTERRUPTIBLE);
1521 if (dev->queues)
1522 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1523 dev->aif_thread = 0;
1524 return 0;