sgi-xpc: prevent false heartbeat failures
[linux-2.6/linux-loongson.git] / drivers / misc / sgi-xp / xpc_sn2.c
blob43ad2968daf57f018c3afae94840c81ca7c1f93b
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) sn2-based functions.
12 * Architecture specific implementation of common functions.
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
23 * Define the number of u64s required to represent all the C-brick nasids
24 * as a bitmap. The cross-partition kernel modules deal only with
25 * C-brick nasids, thus the need for bitmaps which don't account for
26 * odd-numbered (non C-brick) nasids.
28 #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
33 * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34 * pages are located in the lowest granule. The lowest granule uses 4k pages
35 * for cached references and an alternate TLB handler to never provide a
36 * cacheable mapping for the entire region. This will prevent speculative
37 * reading of cached copies of our lines from being issued which will cause
38 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39 * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40 * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41 * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42 * partitions (i.e., XPCs) consider themselves currently engaged with the
43 * local XPC and 1 amo variable to request partition deactivation.
45 #define XPC_NOTIFY_IRQ_AMOS_SN2 0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47 XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49 XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
53 * Buffer used to store a local copy of portions of a remote partition's
54 * reserved page (either its header and part_nasids mask, or its vars).
56 static void *xpc_remote_copy_buffer_base_sn2;
57 static char *xpc_remote_copy_buffer_sn2;
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62 static int
63 xpc_setup_partitions_sn_sn2(void)
65 /* nothing needs to be done */
66 return 0;
69 static void
70 xpc_teardown_partitions_sn_sn2(void)
72 /* nothing needs to be done */
75 /* SH_IPI_ACCESS shub register value on startup */
76 static u64 xpc_sh1_IPI_access_sn2;
77 static u64 xpc_sh2_IPI_access0_sn2;
78 static u64 xpc_sh2_IPI_access1_sn2;
79 static u64 xpc_sh2_IPI_access2_sn2;
80 static u64 xpc_sh2_IPI_access3_sn2;
83 * Change protections to allow IPI operations.
85 static void
86 xpc_allow_IPI_ops_sn2(void)
88 int node;
89 int nasid;
91 /* !!! The following should get moved into SAL. */
92 if (is_shub2()) {
93 xpc_sh2_IPI_access0_sn2 =
94 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
95 xpc_sh2_IPI_access1_sn2 =
96 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
97 xpc_sh2_IPI_access2_sn2 =
98 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
99 xpc_sh2_IPI_access3_sn2 =
100 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
102 for_each_online_node(node) {
103 nasid = cnodeid_to_nasid(node);
104 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
105 -1UL);
106 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
107 -1UL);
108 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
109 -1UL);
110 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
111 -1UL);
113 } else {
114 xpc_sh1_IPI_access_sn2 =
115 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
117 for_each_online_node(node) {
118 nasid = cnodeid_to_nasid(node);
119 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
120 -1UL);
126 * Restrict protections to disallow IPI operations.
128 static void
129 xpc_disallow_IPI_ops_sn2(void)
131 int node;
132 int nasid;
134 /* !!! The following should get moved into SAL. */
135 if (is_shub2()) {
136 for_each_online_node(node) {
137 nasid = cnodeid_to_nasid(node);
138 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
139 xpc_sh2_IPI_access0_sn2);
140 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
141 xpc_sh2_IPI_access1_sn2);
142 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
143 xpc_sh2_IPI_access2_sn2);
144 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
145 xpc_sh2_IPI_access3_sn2);
147 } else {
148 for_each_online_node(node) {
149 nasid = cnodeid_to_nasid(node);
150 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
151 xpc_sh1_IPI_access_sn2);
157 * The following set of functions are used for the sending and receiving of
158 * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
159 * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
160 * is associated with channel activity (SGI_XPC_NOTIFY).
163 static u64
164 xpc_receive_IRQ_amo_sn2(struct amo *amo)
166 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
169 static enum xp_retval
170 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
171 int vector)
173 int ret = 0;
174 unsigned long irq_flags;
176 local_irq_save(irq_flags);
178 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
179 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
182 * We must always use the nofault function regardless of whether we
183 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
184 * didn't, we'd never know that the other partition is down and would
185 * keep sending IRQs and amos to it until the heartbeat times out.
187 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
188 xp_nofault_PIOR_target));
190 local_irq_restore(irq_flags);
192 return (ret == 0) ? xpSuccess : xpPioReadError;
195 static struct amo *
196 xpc_init_IRQ_amo_sn2(int index)
198 struct amo *amo = xpc_vars_sn2->amos_page + index;
200 (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
201 return amo;
205 * Functions associated with SGI_XPC_ACTIVATE IRQ.
209 * Notify the heartbeat check thread that an activate IRQ has been received.
211 static irqreturn_t
212 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
214 unsigned long irq_flags;
216 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
217 xpc_activate_IRQ_rcvd++;
218 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
220 wake_up_interruptible(&xpc_activate_IRQ_wq);
221 return IRQ_HANDLED;
225 * Flag the appropriate amo variable and send an IRQ to the specified node.
227 static void
228 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
229 int to_nasid, int to_phys_cpuid)
231 struct amo *amos = (struct amo *)__va(amos_page_pa +
232 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
233 sizeof(struct amo)));
235 (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
236 BIT_MASK(from_nasid / 2), to_nasid,
237 to_phys_cpuid, SGI_XPC_ACTIVATE);
240 static void
241 xpc_send_local_activate_IRQ_sn2(int from_nasid)
243 unsigned long irq_flags;
244 struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
245 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
246 sizeof(struct amo)));
248 /* fake the sending and receipt of an activate IRQ from remote nasid */
249 FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
250 FETCHOP_OR, BIT_MASK(from_nasid / 2));
252 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
253 xpc_activate_IRQ_rcvd++;
254 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
256 wake_up_interruptible(&xpc_activate_IRQ_wq);
260 * Functions associated with SGI_XPC_NOTIFY IRQ.
264 * Check to see if any chctl flags were sent from the specified partition.
266 static void
267 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
269 union xpc_channel_ctl_flags chctl;
270 unsigned long irq_flags;
272 chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
273 local_chctl_amo_va);
274 if (chctl.all_flags == 0)
275 return;
277 spin_lock_irqsave(&part->chctl_lock, irq_flags);
278 part->chctl.all_flags |= chctl.all_flags;
279 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
281 dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
282 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
284 xpc_wakeup_channel_mgr(part);
288 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
289 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
290 * than one partition, we use an amo structure per partition to indicate
291 * whether a partition has sent an IRQ or not. If it has, then wake up the
292 * associated kthread to handle it.
294 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
295 * running on other partitions.
297 * Noteworthy Arguments:
299 * irq - Interrupt ReQuest number. NOT USED.
301 * dev_id - partid of IRQ's potential sender.
303 static irqreturn_t
304 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
306 short partid = (short)(u64)dev_id;
307 struct xpc_partition *part = &xpc_partitions[partid];
309 DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
311 if (xpc_part_ref(part)) {
312 xpc_check_for_sent_chctl_flags_sn2(part);
314 xpc_part_deref(part);
316 return IRQ_HANDLED;
320 * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
321 * because the write to their associated amo variable completed after the IRQ
322 * was received.
324 static void
325 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
327 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
329 if (xpc_part_ref(part)) {
330 xpc_check_for_sent_chctl_flags_sn2(part);
332 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
333 XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
334 add_timer(&part_sn2->dropped_notify_IRQ_timer);
335 xpc_part_deref(part);
340 * Send a notify IRQ to the remote partition that is associated with the
341 * specified channel.
343 static void
344 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
345 char *chctl_flag_string, unsigned long *irq_flags)
347 struct xpc_partition *part = &xpc_partitions[ch->partid];
348 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
349 union xpc_channel_ctl_flags chctl = { 0 };
350 enum xp_retval ret;
352 if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
353 chctl.flags[ch->number] = chctl_flag;
354 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
355 chctl.all_flags,
356 part_sn2->notify_IRQ_nasid,
357 part_sn2->notify_IRQ_phys_cpuid,
358 SGI_XPC_NOTIFY);
359 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
360 chctl_flag_string, ch->partid, ch->number, ret);
361 if (unlikely(ret != xpSuccess)) {
362 if (irq_flags != NULL)
363 spin_unlock_irqrestore(&ch->lock, *irq_flags);
364 XPC_DEACTIVATE_PARTITION(part, ret);
365 if (irq_flags != NULL)
366 spin_lock_irqsave(&ch->lock, *irq_flags);
371 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
372 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
375 * Make it look like the remote partition, which is associated with the
376 * specified channel, sent us a notify IRQ. This faked IRQ will be handled
377 * by xpc_check_for_dropped_notify_IRQ_sn2().
379 static void
380 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
381 char *chctl_flag_string)
383 struct xpc_partition *part = &xpc_partitions[ch->partid];
384 union xpc_channel_ctl_flags chctl = { 0 };
386 chctl.flags[ch->number] = chctl_flag;
387 FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
388 variable), FETCHOP_OR, chctl.all_flags);
389 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
390 chctl_flag_string, ch->partid, ch->number);
393 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
394 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
396 static void
397 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
398 unsigned long *irq_flags)
400 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
402 args->reason = ch->reason;
403 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
406 static void
407 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
412 static void
413 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
415 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
417 args->entry_size = ch->entry_size;
418 args->local_nentries = ch->local_nentries;
419 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
422 static void
423 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
425 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
427 args->remote_nentries = ch->remote_nentries;
428 args->local_nentries = ch->local_nentries;
429 args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
430 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
433 static void
434 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
436 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
439 static void
440 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
442 XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
445 static enum xp_retval
446 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
447 unsigned long msgqueue_pa)
449 ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
450 return xpSuccess;
454 * This next set of functions are used to keep track of when a partition is
455 * potentially engaged in accessing memory belonging to another partition.
458 static void
459 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
461 unsigned long irq_flags;
462 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
463 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
464 sizeof(struct amo)));
466 local_irq_save(irq_flags);
468 /* set bit corresponding to our partid in remote partition's amo */
469 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
470 BIT(sn_partition_id));
473 * We must always use the nofault function regardless of whether we
474 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
475 * didn't, we'd never know that the other partition is down and would
476 * keep sending IRQs and amos to it until the heartbeat times out.
478 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
479 variable),
480 xp_nofault_PIOR_target));
482 local_irq_restore(irq_flags);
485 static void
486 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
488 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
489 unsigned long irq_flags;
490 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
491 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
492 sizeof(struct amo)));
494 local_irq_save(irq_flags);
496 /* clear bit corresponding to our partid in remote partition's amo */
497 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
498 ~BIT(sn_partition_id));
501 * We must always use the nofault function regardless of whether we
502 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
503 * didn't, we'd never know that the other partition is down and would
504 * keep sending IRQs and amos to it until the heartbeat times out.
506 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
507 variable),
508 xp_nofault_PIOR_target));
510 local_irq_restore(irq_flags);
513 * Send activate IRQ to get other side to see that we've cleared our
514 * bit in their engaged partitions amo.
516 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
517 cnodeid_to_nasid(0),
518 part_sn2->activate_IRQ_nasid,
519 part_sn2->activate_IRQ_phys_cpuid);
522 static void
523 xpc_assume_partition_disengaged_sn2(short partid)
525 struct amo *amo = xpc_vars_sn2->amos_page +
526 XPC_ENGAGED_PARTITIONS_AMO_SN2;
528 /* clear bit(s) based on partid mask in our partition's amo */
529 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
530 ~BIT(partid));
533 static int
534 xpc_partition_engaged_sn2(short partid)
536 struct amo *amo = xpc_vars_sn2->amos_page +
537 XPC_ENGAGED_PARTITIONS_AMO_SN2;
539 /* our partition's amo variable ANDed with partid mask */
540 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
541 BIT(partid)) != 0;
544 static int
545 xpc_any_partition_engaged_sn2(void)
547 struct amo *amo = xpc_vars_sn2->amos_page +
548 XPC_ENGAGED_PARTITIONS_AMO_SN2;
550 /* our partition's amo variable */
551 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
554 /* original protection values for each node */
555 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
558 * Change protections to allow amo operations on non-Shub 1.1 systems.
560 static enum xp_retval
561 xpc_allow_amo_ops_sn2(struct amo *amos_page)
563 enum xp_retval ret = xpSuccess;
566 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
567 * collides with memory operations. On those systems we call
568 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
570 if (!enable_shub_wars_1_1())
571 ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
573 return ret;
577 * Change protections to allow amo operations on Shub 1.1 systems.
579 static void
580 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
582 int node;
583 int nasid;
585 if (!enable_shub_wars_1_1())
586 return;
588 for_each_online_node(node) {
589 nasid = cnodeid_to_nasid(node);
590 /* save current protection values */
591 xpc_prot_vec_sn2[node] =
592 (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
593 SH1_MD_DQLP_MMR_DIR_PRIVEC0));
594 /* open up everything */
595 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
596 SH1_MD_DQLP_MMR_DIR_PRIVEC0),
597 -1UL);
598 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
599 SH1_MD_DQRP_MMR_DIR_PRIVEC0),
600 -1UL);
604 static enum xp_retval
605 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
606 size_t *len)
608 s64 status;
609 enum xp_retval ret;
611 status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
612 if (status == SALRET_OK)
613 ret = xpSuccess;
614 else if (status == SALRET_MORE_PASSES)
615 ret = xpNeedMoreInfo;
616 else
617 ret = xpSalError;
619 return ret;
623 static int
624 xpc_setup_rsvd_page_sn_sn2(struct xpc_rsvd_page *rp)
626 struct amo *amos_page;
627 int i;
628 int ret;
630 xpc_vars_sn2 = XPC_RP_VARS(rp);
632 rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
634 /* vars_part array follows immediately after vars */
635 xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
636 XPC_RP_VARS_SIZE);
639 * Before clearing xpc_vars_sn2, see if a page of amos had been
640 * previously allocated. If not we'll need to allocate one and set
641 * permissions so that cross-partition amos are allowed.
643 * The allocated amo page needs MCA reporting to remain disabled after
644 * XPC has unloaded. To make this work, we keep a copy of the pointer
645 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
646 * which is pointed to by the reserved page, and re-use that saved copy
647 * on subsequent loads of XPC. This amo page is never freed, and its
648 * memory protections are never restricted.
650 amos_page = xpc_vars_sn2->amos_page;
651 if (amos_page == NULL) {
652 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
653 if (amos_page == NULL) {
654 dev_err(xpc_part, "can't allocate page of amos\n");
655 return -ENOMEM;
659 * Open up amo-R/W to cpu. This is done on Shub 1.1 systems
660 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
662 ret = xpc_allow_amo_ops_sn2(amos_page);
663 if (ret != xpSuccess) {
664 dev_err(xpc_part, "can't allow amo operations\n");
665 uncached_free_page(__IA64_UNCACHED_OFFSET |
666 TO_PHYS((u64)amos_page), 1);
667 return -EPERM;
671 /* clear xpc_vars_sn2 */
672 memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
674 xpc_vars_sn2->version = XPC_V_VERSION;
675 xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
676 xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
677 xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
678 xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
679 xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */
681 /* clear xpc_vars_part_sn2 */
682 memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
683 XP_MAX_NPARTITIONS_SN2);
685 /* initialize the activate IRQ related amo variables */
686 for (i = 0; i < xpc_nasid_mask_nlongs; i++)
687 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
689 /* initialize the engaged remote partitions related amo variables */
690 (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
691 (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
693 return 0;
696 static int
697 xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
699 return test_bit(partid, heartbeating_to_mask);
702 static void
703 xpc_allow_hb_sn2(short partid)
705 DBUG_ON(xpc_vars_sn2 == NULL);
706 set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
709 static void
710 xpc_disallow_hb_sn2(short partid)
712 DBUG_ON(xpc_vars_sn2 == NULL);
713 clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
716 static void
717 xpc_disallow_all_hbs_sn2(void)
719 DBUG_ON(xpc_vars_sn2 == NULL);
720 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
723 static void
724 xpc_increment_heartbeat_sn2(void)
726 xpc_vars_sn2->heartbeat++;
729 static void
730 xpc_offline_heartbeat_sn2(void)
732 xpc_increment_heartbeat_sn2();
733 xpc_vars_sn2->heartbeat_offline = 1;
736 static void
737 xpc_online_heartbeat_sn2(void)
739 xpc_increment_heartbeat_sn2();
740 xpc_vars_sn2->heartbeat_offline = 0;
743 static void
744 xpc_heartbeat_init_sn2(void)
746 DBUG_ON(xpc_vars_sn2 == NULL);
748 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
749 xpc_online_heartbeat_sn2();
752 static void
753 xpc_heartbeat_exit_sn2(void)
755 xpc_offline_heartbeat_sn2();
758 static enum xp_retval
759 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
761 struct xpc_vars_sn2 *remote_vars;
762 enum xp_retval ret;
764 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
766 /* pull the remote vars structure that contains the heartbeat */
767 ret = xp_remote_memcpy(xp_pa(remote_vars),
768 part->sn.sn2.remote_vars_pa,
769 XPC_RP_VARS_SIZE);
770 if (ret != xpSuccess)
771 return ret;
773 dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, "
774 "heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
775 remote_vars->heartbeat, part->last_heartbeat,
776 remote_vars->heartbeat_offline,
777 remote_vars->heartbeating_to_mask[0]);
779 if ((remote_vars->heartbeat == part->last_heartbeat &&
780 !remote_vars->heartbeat_offline) ||
781 !xpc_hb_allowed_sn2(sn_partition_id,
782 remote_vars->heartbeating_to_mask)) {
783 ret = xpNoHeartbeat;
784 } else {
785 part->last_heartbeat = remote_vars->heartbeat;
788 return ret;
792 * Get a copy of the remote partition's XPC variables from the reserved page.
794 * remote_vars points to a buffer that is cacheline aligned for BTE copies and
795 * assumed to be of size XPC_RP_VARS_SIZE.
797 static enum xp_retval
798 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
799 struct xpc_vars_sn2 *remote_vars)
801 enum xp_retval ret;
803 if (remote_vars_pa == 0)
804 return xpVarsNotSet;
806 /* pull over the cross partition variables */
807 ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
808 XPC_RP_VARS_SIZE);
809 if (ret != xpSuccess)
810 return ret;
812 if (XPC_VERSION_MAJOR(remote_vars->version) !=
813 XPC_VERSION_MAJOR(XPC_V_VERSION)) {
814 return xpBadVersion;
817 return xpSuccess;
820 static void
821 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
822 unsigned long remote_rp_pa, int nasid)
824 xpc_send_local_activate_IRQ_sn2(nasid);
827 static void
828 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
830 xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
833 static void
834 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
836 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
837 unsigned long irq_flags;
838 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
839 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
840 sizeof(struct amo)));
842 local_irq_save(irq_flags);
844 /* set bit corresponding to our partid in remote partition's amo */
845 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
846 BIT(sn_partition_id));
849 * We must always use the nofault function regardless of whether we
850 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
851 * didn't, we'd never know that the other partition is down and would
852 * keep sending IRQs and amos to it until the heartbeat times out.
854 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
855 variable),
856 xp_nofault_PIOR_target));
858 local_irq_restore(irq_flags);
861 * Send activate IRQ to get other side to see that we've set our
862 * bit in their deactivate request amo.
864 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
865 cnodeid_to_nasid(0),
866 part_sn2->activate_IRQ_nasid,
867 part_sn2->activate_IRQ_phys_cpuid);
870 static void
871 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
873 unsigned long irq_flags;
874 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
875 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
876 sizeof(struct amo)));
878 local_irq_save(irq_flags);
880 /* clear bit corresponding to our partid in remote partition's amo */
881 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
882 ~BIT(sn_partition_id));
885 * We must always use the nofault function regardless of whether we
886 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
887 * didn't, we'd never know that the other partition is down and would
888 * keep sending IRQs and amos to it until the heartbeat times out.
890 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
891 variable),
892 xp_nofault_PIOR_target));
894 local_irq_restore(irq_flags);
897 static int
898 xpc_partition_deactivation_requested_sn2(short partid)
900 struct amo *amo = xpc_vars_sn2->amos_page +
901 XPC_DEACTIVATE_REQUEST_AMO_SN2;
903 /* our partition's amo variable ANDed with partid mask */
904 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
905 BIT(partid)) != 0;
909 * Update the remote partition's info.
911 static void
912 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
913 unsigned long *remote_rp_ts_jiffies,
914 unsigned long remote_rp_pa,
915 unsigned long remote_vars_pa,
916 struct xpc_vars_sn2 *remote_vars)
918 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
920 part->remote_rp_version = remote_rp_version;
921 dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
922 part->remote_rp_version);
924 part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
925 dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n",
926 part->remote_rp_ts_jiffies);
928 part->remote_rp_pa = remote_rp_pa;
929 dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
931 part_sn2->remote_vars_pa = remote_vars_pa;
932 dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
933 part_sn2->remote_vars_pa);
935 part->last_heartbeat = remote_vars->heartbeat - 1;
936 dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
937 part->last_heartbeat);
939 part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
940 dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
941 part_sn2->remote_vars_part_pa);
943 part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
944 dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
945 part_sn2->activate_IRQ_nasid);
947 part_sn2->activate_IRQ_phys_cpuid =
948 remote_vars->activate_IRQ_phys_cpuid;
949 dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
950 part_sn2->activate_IRQ_phys_cpuid);
952 part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
953 dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
954 part_sn2->remote_amos_page_pa);
956 part_sn2->remote_vars_version = remote_vars->version;
957 dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
958 part_sn2->remote_vars_version);
962 * Prior code has determined the nasid which generated a activate IRQ.
963 * Inspect that nasid to determine if its partition needs to be activated
964 * or deactivated.
966 * A partition is considered "awaiting activation" if our partition
967 * flags indicate it is not active and it has a heartbeat. A
968 * partition is considered "awaiting deactivation" if our partition
969 * flags indicate it is active but it has no heartbeat or it is not
970 * sending its heartbeat to us.
972 * To determine the heartbeat, the remote nasid must have a properly
973 * initialized reserved page.
975 static void
976 xpc_identify_activate_IRQ_req_sn2(int nasid)
978 struct xpc_rsvd_page *remote_rp;
979 struct xpc_vars_sn2 *remote_vars;
980 unsigned long remote_rp_pa;
981 unsigned long remote_vars_pa;
982 int remote_rp_version;
983 int reactivate = 0;
984 unsigned long remote_rp_ts_jiffies = 0;
985 short partid;
986 struct xpc_partition *part;
987 struct xpc_partition_sn2 *part_sn2;
988 enum xp_retval ret;
990 /* pull over the reserved page structure */
992 remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
994 ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
995 if (ret != xpSuccess) {
996 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
997 "which sent interrupt, reason=%d\n", nasid, ret);
998 return;
1001 remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1002 remote_rp_version = remote_rp->version;
1003 remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1005 partid = remote_rp->SAL_partid;
1006 part = &xpc_partitions[partid];
1007 part_sn2 = &part->sn.sn2;
1009 /* pull over the cross partition variables */
1011 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1013 ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1014 if (ret != xpSuccess) {
1015 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1016 "which sent interrupt, reason=%d\n", nasid, ret);
1018 XPC_DEACTIVATE_PARTITION(part, ret);
1019 return;
1022 part->activate_IRQ_rcvd++;
1024 dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1025 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
1026 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1028 if (xpc_partition_disengaged(part) &&
1029 part->act_state == XPC_P_AS_INACTIVE) {
1031 xpc_update_partition_info_sn2(part, remote_rp_version,
1032 &remote_rp_ts_jiffies,
1033 remote_rp_pa, remote_vars_pa,
1034 remote_vars);
1036 if (xpc_partition_deactivation_requested_sn2(partid)) {
1038 * Other side is waiting on us to deactivate even though
1039 * we already have.
1041 return;
1044 xpc_activate_partition(part);
1045 return;
1048 DBUG_ON(part->remote_rp_version == 0);
1049 DBUG_ON(part_sn2->remote_vars_version == 0);
1051 if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1053 /* the other side rebooted */
1055 DBUG_ON(xpc_partition_engaged_sn2(partid));
1056 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1058 xpc_update_partition_info_sn2(part, remote_rp_version,
1059 &remote_rp_ts_jiffies,
1060 remote_rp_pa, remote_vars_pa,
1061 remote_vars);
1062 reactivate = 1;
1065 if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1066 /* still waiting on other side to disengage from us */
1067 return;
1070 if (reactivate)
1071 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1072 else if (xpc_partition_deactivation_requested_sn2(partid))
1073 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1077 * Loop through the activation amo variables and process any bits
1078 * which are set. Each bit indicates a nasid sending a partition
1079 * activation or deactivation request.
1081 * Return #of IRQs detected.
1084 xpc_identify_activate_IRQ_sender_sn2(void)
1086 int l;
1087 int b;
1088 unsigned long nasid_mask_long;
1089 u64 nasid; /* remote nasid */
1090 int n_IRQs_detected = 0;
1091 struct amo *act_amos;
1093 act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1095 /* scan through activate amo variables looking for non-zero entries */
1096 for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1098 if (xpc_exiting)
1099 break;
1101 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1103 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1104 if (b >= BITS_PER_LONG) {
1105 /* no IRQs from nasids in this amo variable */
1106 continue;
1109 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1110 nasid_mask_long);
1113 * If this nasid has been added to the machine since
1114 * our partition was reset, this will retain the
1115 * remote nasid in our reserved pages machine mask.
1116 * This is used in the event of module reload.
1118 xpc_mach_nasids[l] |= nasid_mask_long;
1120 /* locate the nasid(s) which sent interrupts */
1122 do {
1123 n_IRQs_detected++;
1124 nasid = (l * BITS_PER_LONG + b) * 2;
1125 dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1126 xpc_identify_activate_IRQ_req_sn2(nasid);
1128 b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1129 b + 1);
1130 } while (b < BITS_PER_LONG);
1132 return n_IRQs_detected;
1135 static void
1136 xpc_process_activate_IRQ_rcvd_sn2(void)
1138 unsigned long irq_flags;
1139 int n_IRQs_expected;
1140 int n_IRQs_detected;
1142 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1143 n_IRQs_expected = xpc_activate_IRQ_rcvd;
1144 xpc_activate_IRQ_rcvd = 0;
1145 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1147 n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1148 if (n_IRQs_detected < n_IRQs_expected) {
1149 /* retry once to help avoid missing amo */
1150 (void)xpc_identify_activate_IRQ_sender_sn2();
1155 * Setup the channel structures that are sn2 specific.
1157 static enum xp_retval
1158 xpc_setup_ch_structures_sn_sn2(struct xpc_partition *part)
1160 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1161 struct xpc_channel_sn2 *ch_sn2;
1162 enum xp_retval retval;
1163 int ret;
1164 int cpuid;
1165 int ch_number;
1166 struct timer_list *timer;
1167 short partid = XPC_PARTID(part);
1169 /* allocate all the required GET/PUT values */
1171 part_sn2->local_GPs =
1172 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1173 &part_sn2->local_GPs_base);
1174 if (part_sn2->local_GPs == NULL) {
1175 dev_err(xpc_chan, "can't get memory for local get/put "
1176 "values\n");
1177 return xpNoMemory;
1180 part_sn2->remote_GPs =
1181 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1182 &part_sn2->remote_GPs_base);
1183 if (part_sn2->remote_GPs == NULL) {
1184 dev_err(xpc_chan, "can't get memory for remote get/put "
1185 "values\n");
1186 retval = xpNoMemory;
1187 goto out_1;
1190 part_sn2->remote_GPs_pa = 0;
1192 /* allocate all the required open and close args */
1194 part_sn2->local_openclose_args =
1195 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1196 GFP_KERNEL, &part_sn2->
1197 local_openclose_args_base);
1198 if (part_sn2->local_openclose_args == NULL) {
1199 dev_err(xpc_chan, "can't get memory for local connect args\n");
1200 retval = xpNoMemory;
1201 goto out_2;
1204 part_sn2->remote_openclose_args_pa = 0;
1206 part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1208 part_sn2->notify_IRQ_nasid = 0;
1209 part_sn2->notify_IRQ_phys_cpuid = 0;
1210 part_sn2->remote_chctl_amo_va = NULL;
1212 sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1213 ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1214 IRQF_SHARED, part_sn2->notify_IRQ_owner,
1215 (void *)(u64)partid);
1216 if (ret != 0) {
1217 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1218 "errno=%d\n", -ret);
1219 retval = xpLackOfResources;
1220 goto out_3;
1223 /* Setup a timer to check for dropped notify IRQs */
1224 timer = &part_sn2->dropped_notify_IRQ_timer;
1225 init_timer(timer);
1226 timer->function =
1227 (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1228 timer->data = (unsigned long)part;
1229 timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1230 add_timer(timer);
1232 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1233 ch_sn2 = &part->channels[ch_number].sn.sn2;
1235 ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1236 ch_sn2->local_openclose_args =
1237 &part_sn2->local_openclose_args[ch_number];
1239 mutex_init(&ch_sn2->msg_to_pull_mutex);
1243 * Setup the per partition specific variables required by the
1244 * remote partition to establish channel connections with us.
1246 * The setting of the magic # indicates that these per partition
1247 * specific variables are ready to be used.
1249 xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1250 xpc_vars_part_sn2[partid].openclose_args_pa =
1251 xp_pa(part_sn2->local_openclose_args);
1252 xpc_vars_part_sn2[partid].chctl_amo_pa =
1253 xp_pa(part_sn2->local_chctl_amo_va);
1254 cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1255 xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1256 xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1257 cpu_physical_id(cpuid);
1258 xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1259 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1261 return xpSuccess;
1263 /* setup of ch structures failed */
1264 out_3:
1265 kfree(part_sn2->local_openclose_args_base);
1266 part_sn2->local_openclose_args = NULL;
1267 out_2:
1268 kfree(part_sn2->remote_GPs_base);
1269 part_sn2->remote_GPs = NULL;
1270 out_1:
1271 kfree(part_sn2->local_GPs_base);
1272 part_sn2->local_GPs = NULL;
1273 return retval;
1277 * Teardown the channel structures that are sn2 specific.
1279 static void
1280 xpc_teardown_ch_structures_sn_sn2(struct xpc_partition *part)
1282 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1283 short partid = XPC_PARTID(part);
1286 * Indicate that the variables specific to the remote partition are no
1287 * longer available for its use.
1289 xpc_vars_part_sn2[partid].magic = 0;
1291 /* in case we've still got outstanding timers registered... */
1292 del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1293 free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1295 kfree(part_sn2->local_openclose_args_base);
1296 part_sn2->local_openclose_args = NULL;
1297 kfree(part_sn2->remote_GPs_base);
1298 part_sn2->remote_GPs = NULL;
1299 kfree(part_sn2->local_GPs_base);
1300 part_sn2->local_GPs = NULL;
1301 part_sn2->local_chctl_amo_va = NULL;
1305 * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1306 * (or multiple cachelines) from a remote partition.
1308 * src_pa must be a cacheline aligned physical address on the remote partition.
1309 * dst must be a cacheline aligned virtual address on this partition.
1310 * cnt must be cacheline sized
1312 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1313 static enum xp_retval
1314 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1315 const unsigned long src_pa, size_t cnt)
1317 enum xp_retval ret;
1319 DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1320 DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1321 DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1323 if (part->act_state == XPC_P_AS_DEACTIVATING)
1324 return part->reason;
1326 ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1327 if (ret != xpSuccess) {
1328 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1329 " ret=%d\n", XPC_PARTID(part), ret);
1331 return ret;
1335 * Pull the remote per partition specific variables from the specified
1336 * partition.
1338 static enum xp_retval
1339 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1341 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1342 u8 buffer[L1_CACHE_BYTES * 2];
1343 struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1344 (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1345 struct xpc_vars_part_sn2 *pulled_entry;
1346 unsigned long remote_entry_cacheline_pa;
1347 unsigned long remote_entry_pa;
1348 short partid = XPC_PARTID(part);
1349 enum xp_retval ret;
1351 /* pull the cacheline that contains the variables we're interested in */
1353 DBUG_ON(part_sn2->remote_vars_part_pa !=
1354 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1355 DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1357 remote_entry_pa = part_sn2->remote_vars_part_pa +
1358 sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1360 remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1362 pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1363 + (remote_entry_pa &
1364 (L1_CACHE_BYTES - 1)));
1366 ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1367 remote_entry_cacheline_pa,
1368 L1_CACHE_BYTES);
1369 if (ret != xpSuccess) {
1370 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1371 "partition %d, ret=%d\n", partid, ret);
1372 return ret;
1375 /* see if they've been set up yet */
1377 if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1378 pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1380 if (pulled_entry->magic != 0) {
1381 dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1382 "partition %d has bad magic value (=0x%lx)\n",
1383 partid, sn_partition_id, pulled_entry->magic);
1384 return xpBadMagic;
1387 /* they've not been initialized yet */
1388 return xpRetry;
1391 if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1393 /* validate the variables */
1395 if (pulled_entry->GPs_pa == 0 ||
1396 pulled_entry->openclose_args_pa == 0 ||
1397 pulled_entry->chctl_amo_pa == 0) {
1399 dev_err(xpc_chan, "partition %d's XPC vars_part for "
1400 "partition %d are not valid\n", partid,
1401 sn_partition_id);
1402 return xpInvalidAddress;
1405 /* the variables we imported look to be valid */
1407 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1408 part_sn2->remote_openclose_args_pa =
1409 pulled_entry->openclose_args_pa;
1410 part_sn2->remote_chctl_amo_va =
1411 (struct amo *)__va(pulled_entry->chctl_amo_pa);
1412 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1413 part_sn2->notify_IRQ_phys_cpuid =
1414 pulled_entry->notify_IRQ_phys_cpuid;
1416 if (part->nchannels > pulled_entry->nchannels)
1417 part->nchannels = pulled_entry->nchannels;
1419 /* let the other side know that we've pulled their variables */
1421 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1424 if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1425 return xpRetry;
1427 return xpSuccess;
1431 * Establish first contact with the remote partititon. This involves pulling
1432 * the XPC per partition variables from the remote partition and waiting for
1433 * the remote partition to pull ours.
1435 static enum xp_retval
1436 xpc_make_first_contact_sn2(struct xpc_partition *part)
1438 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1439 enum xp_retval ret;
1442 * Register the remote partition's amos with SAL so it can handle
1443 * and cleanup errors within that address range should the remote
1444 * partition go down. We don't unregister this range because it is
1445 * difficult to tell when outstanding writes to the remote partition
1446 * are finished and thus when it is safe to unregister. This should
1447 * not result in wasted space in the SAL xp_addr_region table because
1448 * we should get the same page for remote_amos_page_pa after module
1449 * reloads and system reboots.
1451 if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1452 PAGE_SIZE, 1) < 0) {
1453 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1454 "xp_addr region\n", XPC_PARTID(part));
1456 ret = xpPhysAddrRegFailed;
1457 XPC_DEACTIVATE_PARTITION(part, ret);
1458 return ret;
1462 * Send activate IRQ to get other side to activate if they've not
1463 * already begun to do so.
1465 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1466 cnodeid_to_nasid(0),
1467 part_sn2->activate_IRQ_nasid,
1468 part_sn2->activate_IRQ_phys_cpuid);
1470 while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1471 if (ret != xpRetry) {
1472 XPC_DEACTIVATE_PARTITION(part, ret);
1473 return ret;
1476 dev_dbg(xpc_part, "waiting to make first contact with "
1477 "partition %d\n", XPC_PARTID(part));
1479 /* wait a 1/4 of a second or so */
1480 (void)msleep_interruptible(250);
1482 if (part->act_state == XPC_P_AS_DEACTIVATING)
1483 return part->reason;
1486 return xpSuccess;
1490 * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1492 static u64
1493 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1495 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1496 unsigned long irq_flags;
1497 union xpc_channel_ctl_flags chctl;
1498 enum xp_retval ret;
1501 * See if there are any chctl flags to be handled.
1504 spin_lock_irqsave(&part->chctl_lock, irq_flags);
1505 chctl = part->chctl;
1506 if (chctl.all_flags != 0)
1507 part->chctl.all_flags = 0;
1509 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1511 if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1512 ret = xpc_pull_remote_cachelines_sn2(part, part->
1513 remote_openclose_args,
1514 part_sn2->
1515 remote_openclose_args_pa,
1516 XPC_OPENCLOSE_ARGS_SIZE);
1517 if (ret != xpSuccess) {
1518 XPC_DEACTIVATE_PARTITION(part, ret);
1520 dev_dbg(xpc_chan, "failed to pull openclose args from "
1521 "partition %d, ret=%d\n", XPC_PARTID(part),
1522 ret);
1524 /* don't bother processing chctl flags anymore */
1525 chctl.all_flags = 0;
1529 if (xpc_any_msg_chctl_flags_set(&chctl)) {
1530 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1531 part_sn2->remote_GPs_pa,
1532 XPC_GP_SIZE);
1533 if (ret != xpSuccess) {
1534 XPC_DEACTIVATE_PARTITION(part, ret);
1536 dev_dbg(xpc_chan, "failed to pull GPs from partition "
1537 "%d, ret=%d\n", XPC_PARTID(part), ret);
1539 /* don't bother processing chctl flags anymore */
1540 chctl.all_flags = 0;
1544 return chctl.all_flags;
1548 * Allocate the local message queue and the notify queue.
1550 static enum xp_retval
1551 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1553 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1554 unsigned long irq_flags;
1555 int nentries;
1556 size_t nbytes;
1558 for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1560 nbytes = nentries * ch->entry_size;
1561 ch_sn2->local_msgqueue =
1562 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1563 &ch_sn2->local_msgqueue_base);
1564 if (ch_sn2->local_msgqueue == NULL)
1565 continue;
1567 nbytes = nentries * sizeof(struct xpc_notify_sn2);
1568 ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1569 if (ch_sn2->notify_queue == NULL) {
1570 kfree(ch_sn2->local_msgqueue_base);
1571 ch_sn2->local_msgqueue = NULL;
1572 continue;
1575 spin_lock_irqsave(&ch->lock, irq_flags);
1576 if (nentries < ch->local_nentries) {
1577 dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1578 "partid=%d, channel=%d\n", nentries,
1579 ch->local_nentries, ch->partid, ch->number);
1581 ch->local_nentries = nentries;
1583 spin_unlock_irqrestore(&ch->lock, irq_flags);
1584 return xpSuccess;
1587 dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1588 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1589 return xpNoMemory;
1593 * Allocate the cached remote message queue.
1595 static enum xp_retval
1596 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1598 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1599 unsigned long irq_flags;
1600 int nentries;
1601 size_t nbytes;
1603 DBUG_ON(ch->remote_nentries <= 0);
1605 for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1607 nbytes = nentries * ch->entry_size;
1608 ch_sn2->remote_msgqueue =
1609 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1610 remote_msgqueue_base);
1611 if (ch_sn2->remote_msgqueue == NULL)
1612 continue;
1614 spin_lock_irqsave(&ch->lock, irq_flags);
1615 if (nentries < ch->remote_nentries) {
1616 dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1617 "partid=%d, channel=%d\n", nentries,
1618 ch->remote_nentries, ch->partid, ch->number);
1620 ch->remote_nentries = nentries;
1622 spin_unlock_irqrestore(&ch->lock, irq_flags);
1623 return xpSuccess;
1626 dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1627 "partid=%d, channel=%d\n", ch->partid, ch->number);
1628 return xpNoMemory;
1632 * Allocate message queues and other stuff associated with a channel.
1634 * Note: Assumes all of the channel sizes are filled in.
1636 static enum xp_retval
1637 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1639 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1640 enum xp_retval ret;
1642 DBUG_ON(ch->flags & XPC_C_SETUP);
1644 ret = xpc_allocate_local_msgqueue_sn2(ch);
1645 if (ret == xpSuccess) {
1647 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1648 if (ret != xpSuccess) {
1649 kfree(ch_sn2->local_msgqueue_base);
1650 ch_sn2->local_msgqueue = NULL;
1651 kfree(ch_sn2->notify_queue);
1652 ch_sn2->notify_queue = NULL;
1655 return ret;
1659 * Free up message queues and other stuff that were allocated for the specified
1660 * channel.
1662 static void
1663 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1665 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1667 DBUG_ON(!spin_is_locked(&ch->lock));
1669 ch_sn2->remote_msgqueue_pa = 0;
1671 ch_sn2->local_GP->get = 0;
1672 ch_sn2->local_GP->put = 0;
1673 ch_sn2->remote_GP.get = 0;
1674 ch_sn2->remote_GP.put = 0;
1675 ch_sn2->w_local_GP.get = 0;
1676 ch_sn2->w_local_GP.put = 0;
1677 ch_sn2->w_remote_GP.get = 0;
1678 ch_sn2->w_remote_GP.put = 0;
1679 ch_sn2->next_msg_to_pull = 0;
1681 if (ch->flags & XPC_C_SETUP) {
1682 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1683 ch->flags, ch->partid, ch->number);
1685 kfree(ch_sn2->local_msgqueue_base);
1686 ch_sn2->local_msgqueue = NULL;
1687 kfree(ch_sn2->remote_msgqueue_base);
1688 ch_sn2->remote_msgqueue = NULL;
1689 kfree(ch_sn2->notify_queue);
1690 ch_sn2->notify_queue = NULL;
1695 * Notify those who wanted to be notified upon delivery of their message.
1697 static void
1698 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1700 struct xpc_notify_sn2 *notify;
1701 u8 notify_type;
1702 s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1704 while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1706 notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1709 * See if the notify entry indicates it was associated with
1710 * a message who's sender wants to be notified. It is possible
1711 * that it is, but someone else is doing or has done the
1712 * notification.
1714 notify_type = notify->type;
1715 if (notify_type == 0 ||
1716 cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1717 continue;
1720 DBUG_ON(notify_type != XPC_N_CALL);
1722 atomic_dec(&ch->n_to_notify);
1724 if (notify->func != NULL) {
1725 dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1726 "msg_number=%ld partid=%d channel=%d\n",
1727 (void *)notify, get, ch->partid, ch->number);
1729 notify->func(reason, ch->partid, ch->number,
1730 notify->key);
1732 dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1733 " msg_number=%ld partid=%d channel=%d\n",
1734 (void *)notify, get, ch->partid, ch->number);
1739 static void
1740 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1742 xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1746 * Clear some of the msg flags in the local message queue.
1748 static inline void
1749 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1751 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1752 struct xpc_msg_sn2 *msg;
1753 s64 get;
1755 get = ch_sn2->w_remote_GP.get;
1756 do {
1757 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1758 (get % ch->local_nentries) *
1759 ch->entry_size);
1760 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1761 msg->flags = 0;
1762 } while (++get < ch_sn2->remote_GP.get);
1766 * Clear some of the msg flags in the remote message queue.
1768 static inline void
1769 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1771 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1772 struct xpc_msg_sn2 *msg;
1773 s64 put, remote_nentries = ch->remote_nentries;
1775 /* flags are zeroed when the buffer is allocated */
1776 if (ch_sn2->remote_GP.put < remote_nentries)
1777 return;
1779 put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1780 do {
1781 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1782 (put % remote_nentries) *
1783 ch->entry_size);
1784 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1785 DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1786 DBUG_ON(msg->number != put - remote_nentries);
1787 msg->flags = 0;
1788 } while (++put < ch_sn2->remote_GP.put);
1791 static int
1792 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1794 return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1797 static void
1798 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1800 struct xpc_channel *ch = &part->channels[ch_number];
1801 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1802 int npayloads_sent;
1804 ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1806 /* See what, if anything, has changed for each connected channel */
1808 xpc_msgqueue_ref(ch);
1810 if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1811 ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1812 /* nothing changed since GPs were last pulled */
1813 xpc_msgqueue_deref(ch);
1814 return;
1817 if (!(ch->flags & XPC_C_CONNECTED)) {
1818 xpc_msgqueue_deref(ch);
1819 return;
1823 * First check to see if messages recently sent by us have been
1824 * received by the other side. (The remote GET value will have
1825 * changed since we last looked at it.)
1828 if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1831 * We need to notify any senders that want to be notified
1832 * that their sent messages have been received by their
1833 * intended recipients. We need to do this before updating
1834 * w_remote_GP.get so that we don't allocate the same message
1835 * queue entries prematurely (see xpc_allocate_msg()).
1837 if (atomic_read(&ch->n_to_notify) > 0) {
1839 * Notify senders that messages sent have been
1840 * received and delivered by the other side.
1842 xpc_notify_senders_sn2(ch, xpMsgDelivered,
1843 ch_sn2->remote_GP.get);
1847 * Clear msg->flags in previously sent messages, so that
1848 * they're ready for xpc_allocate_msg().
1850 xpc_clear_local_msgqueue_flags_sn2(ch);
1852 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1854 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1855 "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1856 ch->number);
1859 * If anyone was waiting for message queue entries to become
1860 * available, wake them up.
1862 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1863 wake_up(&ch->msg_allocate_wq);
1867 * Now check for newly sent messages by the other side. (The remote
1868 * PUT value will have changed since we last looked at it.)
1871 if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1873 * Clear msg->flags in previously received messages, so that
1874 * they're ready for xpc_get_deliverable_payload_sn2().
1876 xpc_clear_remote_msgqueue_flags_sn2(ch);
1878 smp_wmb(); /* ensure flags have been cleared before bte_copy */
1879 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1881 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1882 "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1883 ch->number);
1885 npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1886 if (npayloads_sent > 0) {
1887 dev_dbg(xpc_chan, "msgs waiting to be copied and "
1888 "delivered=%d, partid=%d, channel=%d\n",
1889 npayloads_sent, ch->partid, ch->number);
1891 if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1892 xpc_activate_kthreads(ch, npayloads_sent);
1896 xpc_msgqueue_deref(ch);
1899 static struct xpc_msg_sn2 *
1900 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1902 struct xpc_partition *part = &xpc_partitions[ch->partid];
1903 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1904 unsigned long remote_msg_pa;
1905 struct xpc_msg_sn2 *msg;
1906 u32 msg_index;
1907 u32 nmsgs;
1908 u64 msg_offset;
1909 enum xp_retval ret;
1911 if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1912 /* we were interrupted by a signal */
1913 return NULL;
1916 while (get >= ch_sn2->next_msg_to_pull) {
1918 /* pull as many messages as are ready and able to be pulled */
1920 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1922 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1923 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1924 if (msg_index + nmsgs > ch->remote_nentries) {
1925 /* ignore the ones that wrap the msg queue for now */
1926 nmsgs = ch->remote_nentries - msg_index;
1929 msg_offset = msg_index * ch->entry_size;
1930 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1931 msg_offset);
1932 remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1934 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1935 nmsgs * ch->entry_size);
1936 if (ret != xpSuccess) {
1938 dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1939 " msg %ld from partition %d, channel=%d, "
1940 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1941 ch->partid, ch->number, ret);
1943 XPC_DEACTIVATE_PARTITION(part, ret);
1945 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1946 return NULL;
1949 ch_sn2->next_msg_to_pull += nmsgs;
1952 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1954 /* return the message we were looking for */
1955 msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1956 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1958 return msg;
1962 * Get the next deliverable message's payload.
1964 static void *
1965 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1967 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1968 struct xpc_msg_sn2 *msg;
1969 void *payload = NULL;
1970 s64 get;
1972 do {
1973 if (ch->flags & XPC_C_DISCONNECTING)
1974 break;
1976 get = ch_sn2->w_local_GP.get;
1977 smp_rmb(); /* guarantee that .get loads before .put */
1978 if (get == ch_sn2->w_remote_GP.put)
1979 break;
1981 /* There are messages waiting to be pulled and delivered.
1982 * We need to try to secure one for ourselves. We'll do this
1983 * by trying to increment w_local_GP.get and hope that no one
1984 * else beats us to it. If they do, we'll we'll simply have
1985 * to try again for the next one.
1988 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1989 /* we got the entry referenced by get */
1991 dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1992 "partid=%d, channel=%d\n", get + 1,
1993 ch->partid, ch->number);
1995 /* pull the message from the remote partition */
1997 msg = xpc_pull_remote_msg_sn2(ch, get);
1999 if (msg != NULL) {
2000 DBUG_ON(msg->number != get);
2001 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2002 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2004 payload = &msg->payload;
2006 break;
2009 } while (1);
2011 return payload;
2015 * Now we actually send the messages that are ready to be sent by advancing
2016 * the local message queue's Put value and then send a chctl msgrequest to the
2017 * recipient partition.
2019 static void
2020 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2022 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2023 struct xpc_msg_sn2 *msg;
2024 s64 put = initial_put + 1;
2025 int send_msgrequest = 0;
2027 while (1) {
2029 while (1) {
2030 if (put == ch_sn2->w_local_GP.put)
2031 break;
2033 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2034 local_msgqueue + (put %
2035 ch->local_nentries) *
2036 ch->entry_size);
2038 if (!(msg->flags & XPC_M_SN2_READY))
2039 break;
2041 put++;
2044 if (put == initial_put) {
2045 /* nothing's changed */
2046 break;
2049 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2050 initial_put) {
2051 /* someone else beat us to it */
2052 DBUG_ON(ch_sn2->local_GP->put < initial_put);
2053 break;
2056 /* we just set the new value of local_GP->put */
2058 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2059 "channel=%d\n", put, ch->partid, ch->number);
2061 send_msgrequest = 1;
2064 * We need to ensure that the message referenced by
2065 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2066 * equals w_local_GP.put, so we'll go have a look.
2068 initial_put = put;
2071 if (send_msgrequest)
2072 xpc_send_chctl_msgrequest_sn2(ch);
2076 * Allocate an entry for a message from the message queue associated with the
2077 * specified channel.
2079 static enum xp_retval
2080 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2081 struct xpc_msg_sn2 **address_of_msg)
2083 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2084 struct xpc_msg_sn2 *msg;
2085 enum xp_retval ret;
2086 s64 put;
2089 * Get the next available message entry from the local message queue.
2090 * If none are available, we'll make sure that we grab the latest
2091 * GP values.
2093 ret = xpTimeout;
2095 while (1) {
2097 put = ch_sn2->w_local_GP.put;
2098 smp_rmb(); /* guarantee that .put loads before .get */
2099 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2101 /* There are available message entries. We need to try
2102 * to secure one for ourselves. We'll do this by trying
2103 * to increment w_local_GP.put as long as someone else
2104 * doesn't beat us to it. If they do, we'll have to
2105 * try again.
2107 if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2108 put) {
2109 /* we got the entry referenced by put */
2110 break;
2112 continue; /* try again */
2116 * There aren't any available msg entries at this time.
2118 * In waiting for a message entry to become available,
2119 * we set a timeout in case the other side is not sending
2120 * completion interrupts. This lets us fake a notify IRQ
2121 * that will cause the notify IRQ handler to fetch the latest
2122 * GP values as if an interrupt was sent by the other side.
2124 if (ret == xpTimeout)
2125 xpc_send_chctl_local_msgrequest_sn2(ch);
2127 if (flags & XPC_NOWAIT)
2128 return xpNoWait;
2130 ret = xpc_allocate_msg_wait(ch);
2131 if (ret != xpInterrupted && ret != xpTimeout)
2132 return ret;
2135 /* get the message's address and initialize it */
2136 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2137 (put % ch->local_nentries) *
2138 ch->entry_size);
2140 DBUG_ON(msg->flags != 0);
2141 msg->number = put;
2143 dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2144 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2145 (void *)msg, msg->number, ch->partid, ch->number);
2147 *address_of_msg = msg;
2148 return xpSuccess;
2152 * Common code that does the actual sending of the message by advancing the
2153 * local message queue's Put value and sends a chctl msgrequest to the
2154 * partition the message is being sent to.
2156 static enum xp_retval
2157 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2158 u16 payload_size, u8 notify_type, xpc_notify_func func,
2159 void *key)
2161 enum xp_retval ret = xpSuccess;
2162 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2163 struct xpc_msg_sn2 *msg = msg;
2164 struct xpc_notify_sn2 *notify = notify;
2165 s64 msg_number;
2166 s64 put;
2168 DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2170 if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2171 return xpPayloadTooBig;
2173 xpc_msgqueue_ref(ch);
2175 if (ch->flags & XPC_C_DISCONNECTING) {
2176 ret = ch->reason;
2177 goto out_1;
2179 if (!(ch->flags & XPC_C_CONNECTED)) {
2180 ret = xpNotConnected;
2181 goto out_1;
2184 ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2185 if (ret != xpSuccess)
2186 goto out_1;
2188 msg_number = msg->number;
2190 if (notify_type != 0) {
2192 * Tell the remote side to send an ACK interrupt when the
2193 * message has been delivered.
2195 msg->flags |= XPC_M_SN2_INTERRUPT;
2197 atomic_inc(&ch->n_to_notify);
2199 notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2200 notify->func = func;
2201 notify->key = key;
2202 notify->type = notify_type;
2204 /* ??? Is a mb() needed here? */
2206 if (ch->flags & XPC_C_DISCONNECTING) {
2208 * An error occurred between our last error check and
2209 * this one. We will try to clear the type field from
2210 * the notify entry. If we succeed then
2211 * xpc_disconnect_channel() didn't already process
2212 * the notify entry.
2214 if (cmpxchg(&notify->type, notify_type, 0) ==
2215 notify_type) {
2216 atomic_dec(&ch->n_to_notify);
2217 ret = ch->reason;
2219 goto out_1;
2223 memcpy(&msg->payload, payload, payload_size);
2225 msg->flags |= XPC_M_SN2_READY;
2228 * The preceding store of msg->flags must occur before the following
2229 * load of local_GP->put.
2231 smp_mb();
2233 /* see if the message is next in line to be sent, if so send it */
2235 put = ch_sn2->local_GP->put;
2236 if (put == msg_number)
2237 xpc_send_msgs_sn2(ch, put);
2239 out_1:
2240 xpc_msgqueue_deref(ch);
2241 return ret;
2245 * Now we actually acknowledge the messages that have been delivered and ack'd
2246 * by advancing the cached remote message queue's Get value and if requested
2247 * send a chctl msgrequest to the message sender's partition.
2249 * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2250 * that sent the message.
2252 static void
2253 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2255 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2256 struct xpc_msg_sn2 *msg;
2257 s64 get = initial_get + 1;
2258 int send_msgrequest = 0;
2260 while (1) {
2262 while (1) {
2263 if (get == ch_sn2->w_local_GP.get)
2264 break;
2266 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2267 remote_msgqueue + (get %
2268 ch->remote_nentries) *
2269 ch->entry_size);
2271 if (!(msg->flags & XPC_M_SN2_DONE))
2272 break;
2274 msg_flags |= msg->flags;
2275 get++;
2278 if (get == initial_get) {
2279 /* nothing's changed */
2280 break;
2283 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2284 initial_get) {
2285 /* someone else beat us to it */
2286 DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2287 break;
2290 /* we just set the new value of local_GP->get */
2292 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2293 "channel=%d\n", get, ch->partid, ch->number);
2295 send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2298 * We need to ensure that the message referenced by
2299 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2300 * equals w_local_GP.get, so we'll go have a look.
2302 initial_get = get;
2305 if (send_msgrequest)
2306 xpc_send_chctl_msgrequest_sn2(ch);
2309 static void
2310 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2312 struct xpc_msg_sn2 *msg;
2313 s64 msg_number;
2314 s64 get;
2316 msg = container_of(payload, struct xpc_msg_sn2, payload);
2317 msg_number = msg->number;
2319 dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2320 (void *)msg, msg_number, ch->partid, ch->number);
2322 DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2323 msg_number % ch->remote_nentries);
2324 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2325 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2327 msg->flags |= XPC_M_SN2_DONE;
2330 * The preceding store of msg->flags must occur before the following
2331 * load of local_GP->get.
2333 smp_mb();
2336 * See if this message is next in line to be acknowledged as having
2337 * been delivered.
2339 get = ch->sn.sn2.local_GP->get;
2340 if (get == msg_number)
2341 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2345 xpc_init_sn2(void)
2347 int ret;
2348 size_t buf_size;
2350 xpc_setup_partitions_sn = xpc_setup_partitions_sn_sn2;
2351 xpc_teardown_partitions_sn = xpc_teardown_partitions_sn_sn2;
2352 xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2;
2353 xpc_setup_rsvd_page_sn = xpc_setup_rsvd_page_sn_sn2;
2355 xpc_allow_hb = xpc_allow_hb_sn2;
2356 xpc_disallow_hb = xpc_disallow_hb_sn2;
2357 xpc_disallow_all_hbs = xpc_disallow_all_hbs_sn2;
2358 xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2359 xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2360 xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2361 xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2362 xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2363 xpc_get_remote_heartbeat = xpc_get_remote_heartbeat_sn2;
2365 xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2366 xpc_request_partition_reactivation =
2367 xpc_request_partition_reactivation_sn2;
2368 xpc_request_partition_deactivation =
2369 xpc_request_partition_deactivation_sn2;
2370 xpc_cancel_partition_deactivation_request =
2371 xpc_cancel_partition_deactivation_request_sn2;
2373 xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2374 xpc_setup_ch_structures_sn = xpc_setup_ch_structures_sn_sn2;
2375 xpc_teardown_ch_structures_sn = xpc_teardown_ch_structures_sn_sn2;
2376 xpc_make_first_contact = xpc_make_first_contact_sn2;
2378 xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2379 xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2380 xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2381 xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2382 xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2384 xpc_save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2;
2386 xpc_setup_msg_structures = xpc_setup_msg_structures_sn2;
2387 xpc_teardown_msg_structures = xpc_teardown_msg_structures_sn2;
2389 xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2390 xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2391 xpc_n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2;
2392 xpc_get_deliverable_payload = xpc_get_deliverable_payload_sn2;
2394 xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2395 xpc_indicate_partition_disengaged =
2396 xpc_indicate_partition_disengaged_sn2;
2397 xpc_partition_engaged = xpc_partition_engaged_sn2;
2398 xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2399 xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2401 xpc_send_payload = xpc_send_payload_sn2;
2402 xpc_received_payload = xpc_received_payload_sn2;
2404 if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2405 dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2406 "larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2407 return -E2BIG;
2410 buf_size = max(XPC_RP_VARS_SIZE,
2411 XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2412 xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2413 GFP_KERNEL,
2414 &xpc_remote_copy_buffer_base_sn2);
2415 if (xpc_remote_copy_buffer_sn2 == NULL) {
2416 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2417 return -ENOMEM;
2420 /* open up protections for IPI and [potentially] amo operations */
2421 xpc_allow_IPI_ops_sn2();
2422 xpc_allow_amo_ops_shub_wars_1_1_sn2();
2425 * This is safe to do before the xpc_hb_checker thread has started
2426 * because the handler releases a wait queue. If an interrupt is
2427 * received before the thread is waiting, it will not go to sleep,
2428 * but rather immediately process the interrupt.
2430 ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2431 "xpc hb", NULL);
2432 if (ret != 0) {
2433 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2434 "errno=%d\n", -ret);
2435 xpc_disallow_IPI_ops_sn2();
2436 kfree(xpc_remote_copy_buffer_base_sn2);
2438 return ret;
2441 void
2442 xpc_exit_sn2(void)
2444 free_irq(SGI_XPC_ACTIVATE, NULL);
2445 xpc_disallow_IPI_ops_sn2();
2446 kfree(xpc_remote_copy_buffer_base_sn2);