MIPS: handle write_combine in pci_mmap_page_range
[linux-2.6/linux-loongson.git] / drivers / usb / core / message.c
blobb626283776541fe192c0442a46ab0e33415cc167
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <asm/byteorder.h>
18 #include "hcd.h" /* for usbcore internals */
19 #include "usb.h"
21 static void cancel_async_set_config(struct usb_device *udev);
23 struct api_context {
24 struct completion done;
25 int status;
28 static void usb_api_blocking_completion(struct urb *urb)
30 struct api_context *ctx = urb->context;
32 ctx->status = urb->status;
33 complete(&ctx->done);
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
74 usb_free_urb(urb);
75 return retval;
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
85 struct urb *urb;
86 int retv;
87 int length;
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
116 * Context: !in_interrupt ()
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
121 * If successful, it returns the number of bytes transferred, otherwise a
122 * negative error number.
124 * Don't use this function from within an interrupt context, like a bottom half
125 * handler. If you need an asynchronous message, or need to send a message
126 * from within interrupt context, use usb_submit_urb().
127 * If a thread in your driver uses this call, make sure your disconnect()
128 * method can wait for it to complete. Since you don't have a handle on the
129 * URB used, you can't cancel the request.
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
135 struct usb_ctrlrequest *dr;
136 int ret;
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
148 /* dbg("usb_control_msg"); */
150 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 kfree(dr);
154 return ret;
156 EXPORT_SYMBOL_GPL(usb_control_msg);
159 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
160 * @usb_dev: pointer to the usb device to send the message to
161 * @pipe: endpoint "pipe" to send the message to
162 * @data: pointer to the data to send
163 * @len: length in bytes of the data to send
164 * @actual_length: pointer to a location to put the actual length transferred
165 * in bytes
166 * @timeout: time in msecs to wait for the message to complete before
167 * timing out (if 0 the wait is forever)
169 * Context: !in_interrupt ()
171 * This function sends a simple interrupt message to a specified endpoint and
172 * waits for the message to complete, or timeout.
174 * If successful, it returns 0, otherwise a negative error number. The number
175 * of actual bytes transferred will be stored in the actual_length paramater.
177 * Don't use this function from within an interrupt context, like a bottom half
178 * handler. If you need an asynchronous message, or need to send a message
179 * from within interrupt context, use usb_submit_urb() If a thread in your
180 * driver uses this call, make sure your disconnect() method can wait for it to
181 * complete. Since you don't have a handle on the URB used, you can't cancel
182 * the request.
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 void *data, int len, int *actual_length, int timeout)
187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 * @usb_dev: pointer to the usb device to send the message to
194 * @pipe: endpoint "pipe" to send the message to
195 * @data: pointer to the data to send
196 * @len: length in bytes of the data to send
197 * @actual_length: pointer to a location to put the actual length transferred
198 * in bytes
199 * @timeout: time in msecs to wait for the message to complete before
200 * timing out (if 0 the wait is forever)
202 * Context: !in_interrupt ()
204 * This function sends a simple bulk message to a specified endpoint
205 * and waits for the message to complete, or timeout.
207 * If successful, it returns 0, otherwise a negative error number. The number
208 * of actual bytes transferred will be stored in the actual_length paramater.
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
223 void *data, int len, int *actual_length, int timeout)
225 struct urb *urb;
226 struct usb_host_endpoint *ep;
228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
229 [usb_pipeendpoint(pipe)];
230 if (!ep || len < 0)
231 return -EINVAL;
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
247 return usb_start_wait_urb(urb, timeout, actual_length);
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 /*-------------------------------------------------------------------*/
253 static void sg_clean(struct usb_sg_request *io)
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
261 if (io->dev->dev.dma_mask != NULL)
262 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
263 io->sg, io->nents);
264 io->dev = NULL;
267 static void sg_complete(struct urb *urb)
269 struct usb_sg_request *io = urb->context;
270 int status = urb->status;
272 spin_lock(&io->lock);
274 /* In 2.5 we require hcds' endpoint queues not to progress after fault
275 * reports, until the completion callback (this!) returns. That lets
276 * device driver code (like this routine) unlink queued urbs first,
277 * if it needs to, since the HC won't work on them at all. So it's
278 * not possible for page N+1 to overwrite page N, and so on.
280 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
281 * complete before the HCD can get requests away from hardware,
282 * though never during cleanup after a hard fault.
284 if (io->status
285 && (io->status != -ECONNRESET
286 || status != -ECONNRESET)
287 && urb->actual_length) {
288 dev_err(io->dev->bus->controller,
289 "dev %s ep%d%s scatterlist error %d/%d\n",
290 io->dev->devpath,
291 usb_endpoint_num(&urb->ep->desc),
292 usb_urb_dir_in(urb) ? "in" : "out",
293 status, io->status);
294 /* BUG (); */
297 if (io->status == 0 && status && status != -ECONNRESET) {
298 int i, found, retval;
300 io->status = status;
302 /* the previous urbs, and this one, completed already.
303 * unlink pending urbs so they won't rx/tx bad data.
304 * careful: unlink can sometimes be synchronous...
306 spin_unlock(&io->lock);
307 for (i = 0, found = 0; i < io->entries; i++) {
308 if (!io->urbs [i] || !io->urbs [i]->dev)
309 continue;
310 if (found) {
311 retval = usb_unlink_urb(io->urbs [i]);
312 if (retval != -EINPROGRESS &&
313 retval != -ENODEV &&
314 retval != -EBUSY)
315 dev_err(&io->dev->dev,
316 "%s, unlink --> %d\n",
317 __func__, retval);
318 } else if (urb == io->urbs [i])
319 found = 1;
321 spin_lock(&io->lock);
323 urb->dev = NULL;
325 /* on the last completion, signal usb_sg_wait() */
326 io->bytes += urb->actual_length;
327 io->count--;
328 if (!io->count)
329 complete(&io->complete);
331 spin_unlock(&io->lock);
336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
337 * @io: request block being initialized. until usb_sg_wait() returns,
338 * treat this as a pointer to an opaque block of memory,
339 * @dev: the usb device that will send or receive the data
340 * @pipe: endpoint "pipe" used to transfer the data
341 * @period: polling rate for interrupt endpoints, in frames or
342 * (for high speed endpoints) microframes; ignored for bulk
343 * @sg: scatterlist entries
344 * @nents: how many entries in the scatterlist
345 * @length: how many bytes to send from the scatterlist, or zero to
346 * send every byte identified in the list.
347 * @mem_flags: SLAB_* flags affecting memory allocations in this call
349 * Returns zero for success, else a negative errno value. This initializes a
350 * scatter/gather request, allocating resources such as I/O mappings and urb
351 * memory (except maybe memory used by USB controller drivers).
353 * The request must be issued using usb_sg_wait(), which waits for the I/O to
354 * complete (or to be canceled) and then cleans up all resources allocated by
355 * usb_sg_init().
357 * The request may be canceled with usb_sg_cancel(), either before or after
358 * usb_sg_wait() is called.
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 unsigned pipe, unsigned period, struct scatterlist *sg,
362 int nents, size_t length, gfp_t mem_flags)
364 int i;
365 int urb_flags;
366 int dma;
368 if (!io || !dev || !sg
369 || usb_pipecontrol(pipe)
370 || usb_pipeisoc(pipe)
371 || nents <= 0)
372 return -EINVAL;
374 spin_lock_init(&io->lock);
375 io->dev = dev;
376 io->pipe = pipe;
377 io->sg = sg;
378 io->nents = nents;
380 /* not all host controllers use DMA (like the mainstream pci ones);
381 * they can use PIO (sl811) or be software over another transport.
383 dma = (dev->dev.dma_mask != NULL);
384 if (dma)
385 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
386 sg, nents);
387 else
388 io->entries = nents;
390 /* initialize all the urbs we'll use */
391 if (io->entries <= 0)
392 return io->entries;
394 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
395 if (!io->urbs)
396 goto nomem;
398 urb_flags = URB_NO_INTERRUPT;
399 if (dma)
400 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
401 if (usb_pipein(pipe))
402 urb_flags |= URB_SHORT_NOT_OK;
404 for_each_sg(sg, sg, io->entries, i) {
405 unsigned len;
407 io->urbs[i] = usb_alloc_urb(0, mem_flags);
408 if (!io->urbs[i]) {
409 io->entries = i;
410 goto nomem;
413 io->urbs[i]->dev = NULL;
414 io->urbs[i]->pipe = pipe;
415 io->urbs[i]->interval = period;
416 io->urbs[i]->transfer_flags = urb_flags;
418 io->urbs[i]->complete = sg_complete;
419 io->urbs[i]->context = io;
422 * Some systems need to revert to PIO when DMA is temporarily
423 * unavailable. For their sakes, both transfer_buffer and
424 * transfer_dma are set when possible. However this can only
425 * work on systems without:
427 * - HIGHMEM, since DMA buffers located in high memory are
428 * not directly addressable by the CPU for PIO;
430 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
431 * make virtually discontiguous buffers be "dma-contiguous"
432 * so that PIO and DMA need diferent numbers of URBs.
434 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
435 * to prevent stale pointers and to help spot bugs.
437 if (dma) {
438 io->urbs[i]->transfer_dma = sg_dma_address(sg);
439 len = sg_dma_len(sg);
440 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
441 io->urbs[i]->transfer_buffer = NULL;
442 #else
443 io->urbs[i]->transfer_buffer = sg_virt(sg);
444 #endif
445 } else {
446 /* hc may use _only_ transfer_buffer */
447 io->urbs[i]->transfer_buffer = sg_virt(sg);
448 len = sg->length;
451 if (length) {
452 len = min_t(unsigned, len, length);
453 length -= len;
454 if (length == 0)
455 io->entries = i + 1;
457 io->urbs[i]->transfer_buffer_length = len;
459 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
461 /* transaction state */
462 io->count = io->entries;
463 io->status = 0;
464 io->bytes = 0;
465 init_completion(&io->complete);
466 return 0;
468 nomem:
469 sg_clean(io);
470 return -ENOMEM;
472 EXPORT_SYMBOL_GPL(usb_sg_init);
475 * usb_sg_wait - synchronously execute scatter/gather request
476 * @io: request block handle, as initialized with usb_sg_init().
477 * some fields become accessible when this call returns.
478 * Context: !in_interrupt ()
480 * This function blocks until the specified I/O operation completes. It
481 * leverages the grouping of the related I/O requests to get good transfer
482 * rates, by queueing the requests. At higher speeds, such queuing can
483 * significantly improve USB throughput.
485 * There are three kinds of completion for this function.
486 * (1) success, where io->status is zero. The number of io->bytes
487 * transferred is as requested.
488 * (2) error, where io->status is a negative errno value. The number
489 * of io->bytes transferred before the error is usually less
490 * than requested, and can be nonzero.
491 * (3) cancellation, a type of error with status -ECONNRESET that
492 * is initiated by usb_sg_cancel().
494 * When this function returns, all memory allocated through usb_sg_init() or
495 * this call will have been freed. The request block parameter may still be
496 * passed to usb_sg_cancel(), or it may be freed. It could also be
497 * reinitialized and then reused.
499 * Data Transfer Rates:
501 * Bulk transfers are valid for full or high speed endpoints.
502 * The best full speed data rate is 19 packets of 64 bytes each
503 * per frame, or 1216 bytes per millisecond.
504 * The best high speed data rate is 13 packets of 512 bytes each
505 * per microframe, or 52 KBytes per millisecond.
507 * The reason to use interrupt transfers through this API would most likely
508 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
509 * could be transferred. That capability is less useful for low or full
510 * speed interrupt endpoints, which allow at most one packet per millisecond,
511 * of at most 8 or 64 bytes (respectively).
513 void usb_sg_wait(struct usb_sg_request *io)
515 int i;
516 int entries = io->entries;
518 /* queue the urbs. */
519 spin_lock_irq(&io->lock);
520 i = 0;
521 while (i < entries && !io->status) {
522 int retval;
524 io->urbs[i]->dev = io->dev;
525 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
527 /* after we submit, let completions or cancelations fire;
528 * we handshake using io->status.
530 spin_unlock_irq(&io->lock);
531 switch (retval) {
532 /* maybe we retrying will recover */
533 case -ENXIO: /* hc didn't queue this one */
534 case -EAGAIN:
535 case -ENOMEM:
536 io->urbs[i]->dev = NULL;
537 retval = 0;
538 yield();
539 break;
541 /* no error? continue immediately.
543 * NOTE: to work better with UHCI (4K I/O buffer may
544 * need 3K of TDs) it may be good to limit how many
545 * URBs are queued at once; N milliseconds?
547 case 0:
548 ++i;
549 cpu_relax();
550 break;
552 /* fail any uncompleted urbs */
553 default:
554 io->urbs[i]->dev = NULL;
555 io->urbs[i]->status = retval;
556 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
557 __func__, retval);
558 usb_sg_cancel(io);
560 spin_lock_irq(&io->lock);
561 if (retval && (io->status == 0 || io->status == -ECONNRESET))
562 io->status = retval;
564 io->count -= entries - i;
565 if (io->count == 0)
566 complete(&io->complete);
567 spin_unlock_irq(&io->lock);
569 /* OK, yes, this could be packaged as non-blocking.
570 * So could the submit loop above ... but it's easier to
571 * solve neither problem than to solve both!
573 wait_for_completion(&io->complete);
575 sg_clean(io);
577 EXPORT_SYMBOL_GPL(usb_sg_wait);
580 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
581 * @io: request block, initialized with usb_sg_init()
583 * This stops a request after it has been started by usb_sg_wait().
584 * It can also prevents one initialized by usb_sg_init() from starting,
585 * so that call just frees resources allocated to the request.
587 void usb_sg_cancel(struct usb_sg_request *io)
589 unsigned long flags;
591 spin_lock_irqsave(&io->lock, flags);
593 /* shut everything down, if it didn't already */
594 if (!io->status) {
595 int i;
597 io->status = -ECONNRESET;
598 spin_unlock(&io->lock);
599 for (i = 0; i < io->entries; i++) {
600 int retval;
602 if (!io->urbs [i]->dev)
603 continue;
604 retval = usb_unlink_urb(io->urbs [i]);
605 if (retval != -EINPROGRESS && retval != -EBUSY)
606 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
607 __func__, retval);
609 spin_lock(&io->lock);
611 spin_unlock_irqrestore(&io->lock, flags);
613 EXPORT_SYMBOL_GPL(usb_sg_cancel);
615 /*-------------------------------------------------------------------*/
618 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
619 * @dev: the device whose descriptor is being retrieved
620 * @type: the descriptor type (USB_DT_*)
621 * @index: the number of the descriptor
622 * @buf: where to put the descriptor
623 * @size: how big is "buf"?
624 * Context: !in_interrupt ()
626 * Gets a USB descriptor. Convenience functions exist to simplify
627 * getting some types of descriptors. Use
628 * usb_get_string() or usb_string() for USB_DT_STRING.
629 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
630 * are part of the device structure.
631 * In addition to a number of USB-standard descriptors, some
632 * devices also use class-specific or vendor-specific descriptors.
634 * This call is synchronous, and may not be used in an interrupt context.
636 * Returns the number of bytes received on success, or else the status code
637 * returned by the underlying usb_control_msg() call.
639 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
640 unsigned char index, void *buf, int size)
642 int i;
643 int result;
645 memset(buf, 0, size); /* Make sure we parse really received data */
647 for (i = 0; i < 3; ++i) {
648 /* retry on length 0 or error; some devices are flakey */
649 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
650 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
651 (type << 8) + index, 0, buf, size,
652 USB_CTRL_GET_TIMEOUT);
653 if (result <= 0 && result != -ETIMEDOUT)
654 continue;
655 if (result > 1 && ((u8 *)buf)[1] != type) {
656 result = -ENODATA;
657 continue;
659 break;
661 return result;
663 EXPORT_SYMBOL_GPL(usb_get_descriptor);
666 * usb_get_string - gets a string descriptor
667 * @dev: the device whose string descriptor is being retrieved
668 * @langid: code for language chosen (from string descriptor zero)
669 * @index: the number of the descriptor
670 * @buf: where to put the string
671 * @size: how big is "buf"?
672 * Context: !in_interrupt ()
674 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
675 * in little-endian byte order).
676 * The usb_string() function will often be a convenient way to turn
677 * these strings into kernel-printable form.
679 * Strings may be referenced in device, configuration, interface, or other
680 * descriptors, and could also be used in vendor-specific ways.
682 * This call is synchronous, and may not be used in an interrupt context.
684 * Returns the number of bytes received on success, or else the status code
685 * returned by the underlying usb_control_msg() call.
687 static int usb_get_string(struct usb_device *dev, unsigned short langid,
688 unsigned char index, void *buf, int size)
690 int i;
691 int result;
693 for (i = 0; i < 3; ++i) {
694 /* retry on length 0 or stall; some devices are flakey */
695 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
696 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
697 (USB_DT_STRING << 8) + index, langid, buf, size,
698 USB_CTRL_GET_TIMEOUT);
699 if (result == 0 || result == -EPIPE)
700 continue;
701 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
702 result = -ENODATA;
703 continue;
705 break;
707 return result;
710 static void usb_try_string_workarounds(unsigned char *buf, int *length)
712 int newlength, oldlength = *length;
714 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
715 if (!isprint(buf[newlength]) || buf[newlength + 1])
716 break;
718 if (newlength > 2) {
719 buf[0] = newlength;
720 *length = newlength;
724 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
725 unsigned int index, unsigned char *buf)
727 int rc;
729 /* Try to read the string descriptor by asking for the maximum
730 * possible number of bytes */
731 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
732 rc = -EIO;
733 else
734 rc = usb_get_string(dev, langid, index, buf, 255);
736 /* If that failed try to read the descriptor length, then
737 * ask for just that many bytes */
738 if (rc < 2) {
739 rc = usb_get_string(dev, langid, index, buf, 2);
740 if (rc == 2)
741 rc = usb_get_string(dev, langid, index, buf, buf[0]);
744 if (rc >= 2) {
745 if (!buf[0] && !buf[1])
746 usb_try_string_workarounds(buf, &rc);
748 /* There might be extra junk at the end of the descriptor */
749 if (buf[0] < rc)
750 rc = buf[0];
752 rc = rc - (rc & 1); /* force a multiple of two */
755 if (rc < 2)
756 rc = (rc < 0 ? rc : -EINVAL);
758 return rc;
762 * usb_string - returns ISO 8859-1 version of a string descriptor
763 * @dev: the device whose string descriptor is being retrieved
764 * @index: the number of the descriptor
765 * @buf: where to put the string
766 * @size: how big is "buf"?
767 * Context: !in_interrupt ()
769 * This converts the UTF-16LE encoded strings returned by devices, from
770 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
771 * that are more usable in most kernel contexts. Note that all characters
772 * in the chosen descriptor that can't be encoded using ISO-8859-1
773 * are converted to the question mark ("?") character, and this function
774 * chooses strings in the first language supported by the device.
776 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
777 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
778 * and is appropriate for use many uses of English and several other
779 * Western European languages. (But it doesn't include the "Euro" symbol.)
781 * This call is synchronous, and may not be used in an interrupt context.
783 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
785 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
787 unsigned char *tbuf;
788 int err;
789 unsigned int u, idx;
791 if (dev->state == USB_STATE_SUSPENDED)
792 return -EHOSTUNREACH;
793 if (size <= 0 || !buf || !index)
794 return -EINVAL;
795 buf[0] = 0;
796 tbuf = kmalloc(256, GFP_NOIO);
797 if (!tbuf)
798 return -ENOMEM;
800 /* get langid for strings if it's not yet known */
801 if (!dev->have_langid) {
802 err = usb_string_sub(dev, 0, 0, tbuf);
803 if (err < 0) {
804 dev_err(&dev->dev,
805 "string descriptor 0 read error: %d\n",
806 err);
807 } else if (err < 4) {
808 dev_err(&dev->dev, "string descriptor 0 too short\n");
809 } else {
810 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
811 /* always use the first langid listed */
812 dev_dbg(&dev->dev, "default language 0x%04x\n",
813 dev->string_langid);
816 dev->have_langid = 1;
819 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
820 if (err < 0)
821 goto errout;
823 size--; /* leave room for trailing NULL char in output buffer */
824 for (idx = 0, u = 2; u < err; u += 2) {
825 if (idx >= size)
826 break;
827 if (tbuf[u+1]) /* high byte */
828 buf[idx++] = '?'; /* non ISO-8859-1 character */
829 else
830 buf[idx++] = tbuf[u];
832 buf[idx] = 0;
833 err = idx;
835 if (tbuf[1] != USB_DT_STRING)
836 dev_dbg(&dev->dev,
837 "wrong descriptor type %02x for string %d (\"%s\")\n",
838 tbuf[1], index, buf);
840 errout:
841 kfree(tbuf);
842 return err;
844 EXPORT_SYMBOL_GPL(usb_string);
847 * usb_cache_string - read a string descriptor and cache it for later use
848 * @udev: the device whose string descriptor is being read
849 * @index: the descriptor index
851 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
852 * or NULL if the index is 0 or the string could not be read.
854 char *usb_cache_string(struct usb_device *udev, int index)
856 char *buf;
857 char *smallbuf = NULL;
858 int len;
860 if (index <= 0)
861 return NULL;
863 buf = kmalloc(256, GFP_KERNEL);
864 if (buf) {
865 len = usb_string(udev, index, buf, 256);
866 if (len > 0) {
867 smallbuf = kmalloc(++len, GFP_KERNEL);
868 if (!smallbuf)
869 return buf;
870 memcpy(smallbuf, buf, len);
872 kfree(buf);
874 return smallbuf;
878 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
879 * @dev: the device whose device descriptor is being updated
880 * @size: how much of the descriptor to read
881 * Context: !in_interrupt ()
883 * Updates the copy of the device descriptor stored in the device structure,
884 * which dedicates space for this purpose.
886 * Not exported, only for use by the core. If drivers really want to read
887 * the device descriptor directly, they can call usb_get_descriptor() with
888 * type = USB_DT_DEVICE and index = 0.
890 * This call is synchronous, and may not be used in an interrupt context.
892 * Returns the number of bytes received on success, or else the status code
893 * returned by the underlying usb_control_msg() call.
895 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
897 struct usb_device_descriptor *desc;
898 int ret;
900 if (size > sizeof(*desc))
901 return -EINVAL;
902 desc = kmalloc(sizeof(*desc), GFP_NOIO);
903 if (!desc)
904 return -ENOMEM;
906 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
907 if (ret >= 0)
908 memcpy(&dev->descriptor, desc, size);
909 kfree(desc);
910 return ret;
914 * usb_get_status - issues a GET_STATUS call
915 * @dev: the device whose status is being checked
916 * @type: USB_RECIP_*; for device, interface, or endpoint
917 * @target: zero (for device), else interface or endpoint number
918 * @data: pointer to two bytes of bitmap data
919 * Context: !in_interrupt ()
921 * Returns device, interface, or endpoint status. Normally only of
922 * interest to see if the device is self powered, or has enabled the
923 * remote wakeup facility; or whether a bulk or interrupt endpoint
924 * is halted ("stalled").
926 * Bits in these status bitmaps are set using the SET_FEATURE request,
927 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
928 * function should be used to clear halt ("stall") status.
930 * This call is synchronous, and may not be used in an interrupt context.
932 * Returns the number of bytes received on success, or else the status code
933 * returned by the underlying usb_control_msg() call.
935 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
937 int ret;
938 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
940 if (!status)
941 return -ENOMEM;
943 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
944 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
945 sizeof(*status), USB_CTRL_GET_TIMEOUT);
947 *(u16 *)data = *status;
948 kfree(status);
949 return ret;
951 EXPORT_SYMBOL_GPL(usb_get_status);
954 * usb_clear_halt - tells device to clear endpoint halt/stall condition
955 * @dev: device whose endpoint is halted
956 * @pipe: endpoint "pipe" being cleared
957 * Context: !in_interrupt ()
959 * This is used to clear halt conditions for bulk and interrupt endpoints,
960 * as reported by URB completion status. Endpoints that are halted are
961 * sometimes referred to as being "stalled". Such endpoints are unable
962 * to transmit or receive data until the halt status is cleared. Any URBs
963 * queued for such an endpoint should normally be unlinked by the driver
964 * before clearing the halt condition, as described in sections 5.7.5
965 * and 5.8.5 of the USB 2.0 spec.
967 * Note that control and isochronous endpoints don't halt, although control
968 * endpoints report "protocol stall" (for unsupported requests) using the
969 * same status code used to report a true stall.
971 * This call is synchronous, and may not be used in an interrupt context.
973 * Returns zero on success, or else the status code returned by the
974 * underlying usb_control_msg() call.
976 int usb_clear_halt(struct usb_device *dev, int pipe)
978 int result;
979 int endp = usb_pipeendpoint(pipe);
981 if (usb_pipein(pipe))
982 endp |= USB_DIR_IN;
984 /* we don't care if it wasn't halted first. in fact some devices
985 * (like some ibmcam model 1 units) seem to expect hosts to make
986 * this request for iso endpoints, which can't halt!
988 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
989 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
990 USB_ENDPOINT_HALT, endp, NULL, 0,
991 USB_CTRL_SET_TIMEOUT);
993 /* don't un-halt or force to DATA0 except on success */
994 if (result < 0)
995 return result;
997 /* NOTE: seems like Microsoft and Apple don't bother verifying
998 * the clear "took", so some devices could lock up if you check...
999 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1001 * NOTE: make sure the logic here doesn't diverge much from
1002 * the copy in usb-storage, for as long as we need two copies.
1005 usb_reset_endpoint(dev, endp);
1007 return 0;
1009 EXPORT_SYMBOL_GPL(usb_clear_halt);
1011 static int create_intf_ep_devs(struct usb_interface *intf)
1013 struct usb_device *udev = interface_to_usbdev(intf);
1014 struct usb_host_interface *alt = intf->cur_altsetting;
1015 int i;
1017 if (intf->ep_devs_created || intf->unregistering)
1018 return 0;
1020 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1021 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1022 intf->ep_devs_created = 1;
1023 return 0;
1026 static void remove_intf_ep_devs(struct usb_interface *intf)
1028 struct usb_host_interface *alt = intf->cur_altsetting;
1029 int i;
1031 if (!intf->ep_devs_created)
1032 return;
1034 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1035 usb_remove_ep_devs(&alt->endpoint[i]);
1036 intf->ep_devs_created = 0;
1040 * usb_disable_endpoint -- Disable an endpoint by address
1041 * @dev: the device whose endpoint is being disabled
1042 * @epaddr: the endpoint's address. Endpoint number for output,
1043 * endpoint number + USB_DIR_IN for input
1044 * @reset_hardware: flag to erase any endpoint state stored in the
1045 * controller hardware
1047 * Disables the endpoint for URB submission and nukes all pending URBs.
1048 * If @reset_hardware is set then also deallocates hcd/hardware state
1049 * for the endpoint.
1051 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1052 bool reset_hardware)
1054 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1055 struct usb_host_endpoint *ep;
1057 if (!dev)
1058 return;
1060 if (usb_endpoint_out(epaddr)) {
1061 ep = dev->ep_out[epnum];
1062 if (reset_hardware)
1063 dev->ep_out[epnum] = NULL;
1064 } else {
1065 ep = dev->ep_in[epnum];
1066 if (reset_hardware)
1067 dev->ep_in[epnum] = NULL;
1069 if (ep) {
1070 ep->enabled = 0;
1071 usb_hcd_flush_endpoint(dev, ep);
1072 if (reset_hardware)
1073 usb_hcd_disable_endpoint(dev, ep);
1078 * usb_reset_endpoint - Reset an endpoint's state.
1079 * @dev: the device whose endpoint is to be reset
1080 * @epaddr: the endpoint's address. Endpoint number for output,
1081 * endpoint number + USB_DIR_IN for input
1083 * Resets any host-side endpoint state such as the toggle bit,
1084 * sequence number or current window.
1086 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1088 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1089 struct usb_host_endpoint *ep;
1091 if (usb_endpoint_out(epaddr))
1092 ep = dev->ep_out[epnum];
1093 else
1094 ep = dev->ep_in[epnum];
1095 if (ep)
1096 usb_hcd_reset_endpoint(dev, ep);
1098 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1102 * usb_disable_interface -- Disable all endpoints for an interface
1103 * @dev: the device whose interface is being disabled
1104 * @intf: pointer to the interface descriptor
1105 * @reset_hardware: flag to erase any endpoint state stored in the
1106 * controller hardware
1108 * Disables all the endpoints for the interface's current altsetting.
1110 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1111 bool reset_hardware)
1113 struct usb_host_interface *alt = intf->cur_altsetting;
1114 int i;
1116 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1117 usb_disable_endpoint(dev,
1118 alt->endpoint[i].desc.bEndpointAddress,
1119 reset_hardware);
1124 * usb_disable_device - Disable all the endpoints for a USB device
1125 * @dev: the device whose endpoints are being disabled
1126 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1128 * Disables all the device's endpoints, potentially including endpoint 0.
1129 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1130 * pending urbs) and usbcore state for the interfaces, so that usbcore
1131 * must usb_set_configuration() before any interfaces could be used.
1133 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1135 int i;
1137 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1138 skip_ep0 ? "non-ep0" : "all");
1139 for (i = skip_ep0; i < 16; ++i) {
1140 usb_disable_endpoint(dev, i, true);
1141 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1144 /* getting rid of interfaces will disconnect
1145 * any drivers bound to them (a key side effect)
1147 if (dev->actconfig) {
1148 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1149 struct usb_interface *interface;
1151 /* remove this interface if it has been registered */
1152 interface = dev->actconfig->interface[i];
1153 if (!device_is_registered(&interface->dev))
1154 continue;
1155 dev_dbg(&dev->dev, "unregistering interface %s\n",
1156 dev_name(&interface->dev));
1157 interface->unregistering = 1;
1158 remove_intf_ep_devs(interface);
1159 device_del(&interface->dev);
1162 /* Now that the interfaces are unbound, nobody should
1163 * try to access them.
1165 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1166 put_device(&dev->actconfig->interface[i]->dev);
1167 dev->actconfig->interface[i] = NULL;
1169 dev->actconfig = NULL;
1170 if (dev->state == USB_STATE_CONFIGURED)
1171 usb_set_device_state(dev, USB_STATE_ADDRESS);
1176 * usb_enable_endpoint - Enable an endpoint for USB communications
1177 * @dev: the device whose interface is being enabled
1178 * @ep: the endpoint
1179 * @reset_ep: flag to reset the endpoint state
1181 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1182 * For control endpoints, both the input and output sides are handled.
1184 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1185 bool reset_ep)
1187 int epnum = usb_endpoint_num(&ep->desc);
1188 int is_out = usb_endpoint_dir_out(&ep->desc);
1189 int is_control = usb_endpoint_xfer_control(&ep->desc);
1191 if (reset_ep)
1192 usb_hcd_reset_endpoint(dev, ep);
1193 if (is_out || is_control)
1194 dev->ep_out[epnum] = ep;
1195 if (!is_out || is_control)
1196 dev->ep_in[epnum] = ep;
1197 ep->enabled = 1;
1201 * usb_enable_interface - Enable all the endpoints for an interface
1202 * @dev: the device whose interface is being enabled
1203 * @intf: pointer to the interface descriptor
1204 * @reset_eps: flag to reset the endpoints' state
1206 * Enables all the endpoints for the interface's current altsetting.
1208 void usb_enable_interface(struct usb_device *dev,
1209 struct usb_interface *intf, bool reset_eps)
1211 struct usb_host_interface *alt = intf->cur_altsetting;
1212 int i;
1214 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1215 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1219 * usb_set_interface - Makes a particular alternate setting be current
1220 * @dev: the device whose interface is being updated
1221 * @interface: the interface being updated
1222 * @alternate: the setting being chosen.
1223 * Context: !in_interrupt ()
1225 * This is used to enable data transfers on interfaces that may not
1226 * be enabled by default. Not all devices support such configurability.
1227 * Only the driver bound to an interface may change its setting.
1229 * Within any given configuration, each interface may have several
1230 * alternative settings. These are often used to control levels of
1231 * bandwidth consumption. For example, the default setting for a high
1232 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1233 * while interrupt transfers of up to 3KBytes per microframe are legal.
1234 * Also, isochronous endpoints may never be part of an
1235 * interface's default setting. To access such bandwidth, alternate
1236 * interface settings must be made current.
1238 * Note that in the Linux USB subsystem, bandwidth associated with
1239 * an endpoint in a given alternate setting is not reserved until an URB
1240 * is submitted that needs that bandwidth. Some other operating systems
1241 * allocate bandwidth early, when a configuration is chosen.
1243 * This call is synchronous, and may not be used in an interrupt context.
1244 * Also, drivers must not change altsettings while urbs are scheduled for
1245 * endpoints in that interface; all such urbs must first be completed
1246 * (perhaps forced by unlinking).
1248 * Returns zero on success, or else the status code returned by the
1249 * underlying usb_control_msg() call.
1251 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1253 struct usb_interface *iface;
1254 struct usb_host_interface *alt;
1255 int ret;
1256 int manual = 0;
1257 unsigned int epaddr;
1258 unsigned int pipe;
1260 if (dev->state == USB_STATE_SUSPENDED)
1261 return -EHOSTUNREACH;
1263 iface = usb_ifnum_to_if(dev, interface);
1264 if (!iface) {
1265 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1266 interface);
1267 return -EINVAL;
1270 alt = usb_altnum_to_altsetting(iface, alternate);
1271 if (!alt) {
1272 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1273 alternate);
1274 return -EINVAL;
1277 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1278 ret = -EPIPE;
1279 else
1280 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1281 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1282 alternate, interface, NULL, 0, 5000);
1284 /* 9.4.10 says devices don't need this and are free to STALL the
1285 * request if the interface only has one alternate setting.
1287 if (ret == -EPIPE && iface->num_altsetting == 1) {
1288 dev_dbg(&dev->dev,
1289 "manual set_interface for iface %d, alt %d\n",
1290 interface, alternate);
1291 manual = 1;
1292 } else if (ret < 0)
1293 return ret;
1295 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1296 * when they implement async or easily-killable versions of this or
1297 * other "should-be-internal" functions (like clear_halt).
1298 * should hcd+usbcore postprocess control requests?
1301 /* prevent submissions using previous endpoint settings */
1302 if (iface->cur_altsetting != alt) {
1303 remove_intf_ep_devs(iface);
1304 usb_remove_sysfs_intf_files(iface);
1306 usb_disable_interface(dev, iface, true);
1308 iface->cur_altsetting = alt;
1310 /* If the interface only has one altsetting and the device didn't
1311 * accept the request, we attempt to carry out the equivalent action
1312 * by manually clearing the HALT feature for each endpoint in the
1313 * new altsetting.
1315 if (manual) {
1316 int i;
1318 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1319 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1320 pipe = __create_pipe(dev,
1321 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1322 (usb_endpoint_out(epaddr) ?
1323 USB_DIR_OUT : USB_DIR_IN);
1325 usb_clear_halt(dev, pipe);
1329 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1331 * Note:
1332 * Despite EP0 is always present in all interfaces/AS, the list of
1333 * endpoints from the descriptor does not contain EP0. Due to its
1334 * omnipresence one might expect EP0 being considered "affected" by
1335 * any SetInterface request and hence assume toggles need to be reset.
1336 * However, EP0 toggles are re-synced for every individual transfer
1337 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1338 * (Likewise, EP0 never "halts" on well designed devices.)
1340 usb_enable_interface(dev, iface, true);
1341 if (device_is_registered(&iface->dev)) {
1342 usb_create_sysfs_intf_files(iface);
1343 create_intf_ep_devs(iface);
1345 return 0;
1347 EXPORT_SYMBOL_GPL(usb_set_interface);
1350 * usb_reset_configuration - lightweight device reset
1351 * @dev: the device whose configuration is being reset
1353 * This issues a standard SET_CONFIGURATION request to the device using
1354 * the current configuration. The effect is to reset most USB-related
1355 * state in the device, including interface altsettings (reset to zero),
1356 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1357 * endpoints). Other usbcore state is unchanged, including bindings of
1358 * usb device drivers to interfaces.
1360 * Because this affects multiple interfaces, avoid using this with composite
1361 * (multi-interface) devices. Instead, the driver for each interface may
1362 * use usb_set_interface() on the interfaces it claims. Be careful though;
1363 * some devices don't support the SET_INTERFACE request, and others won't
1364 * reset all the interface state (notably endpoint state). Resetting the whole
1365 * configuration would affect other drivers' interfaces.
1367 * The caller must own the device lock.
1369 * Returns zero on success, else a negative error code.
1371 int usb_reset_configuration(struct usb_device *dev)
1373 int i, retval;
1374 struct usb_host_config *config;
1376 if (dev->state == USB_STATE_SUSPENDED)
1377 return -EHOSTUNREACH;
1379 /* caller must have locked the device and must own
1380 * the usb bus readlock (so driver bindings are stable);
1381 * calls during probe() are fine
1384 for (i = 1; i < 16; ++i) {
1385 usb_disable_endpoint(dev, i, true);
1386 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1389 config = dev->actconfig;
1390 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1391 USB_REQ_SET_CONFIGURATION, 0,
1392 config->desc.bConfigurationValue, 0,
1393 NULL, 0, USB_CTRL_SET_TIMEOUT);
1394 if (retval < 0)
1395 return retval;
1397 /* re-init hc/hcd interface/endpoint state */
1398 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1399 struct usb_interface *intf = config->interface[i];
1400 struct usb_host_interface *alt;
1402 alt = usb_altnum_to_altsetting(intf, 0);
1404 /* No altsetting 0? We'll assume the first altsetting.
1405 * We could use a GetInterface call, but if a device is
1406 * so non-compliant that it doesn't have altsetting 0
1407 * then I wouldn't trust its reply anyway.
1409 if (!alt)
1410 alt = &intf->altsetting[0];
1412 if (alt != intf->cur_altsetting) {
1413 remove_intf_ep_devs(intf);
1414 usb_remove_sysfs_intf_files(intf);
1416 intf->cur_altsetting = alt;
1417 usb_enable_interface(dev, intf, true);
1418 if (device_is_registered(&intf->dev)) {
1419 usb_create_sysfs_intf_files(intf);
1420 create_intf_ep_devs(intf);
1423 return 0;
1425 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1427 static void usb_release_interface(struct device *dev)
1429 struct usb_interface *intf = to_usb_interface(dev);
1430 struct usb_interface_cache *intfc =
1431 altsetting_to_usb_interface_cache(intf->altsetting);
1433 kref_put(&intfc->ref, usb_release_interface_cache);
1434 kfree(intf);
1437 #ifdef CONFIG_HOTPLUG
1438 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1440 struct usb_device *usb_dev;
1441 struct usb_interface *intf;
1442 struct usb_host_interface *alt;
1444 intf = to_usb_interface(dev);
1445 usb_dev = interface_to_usbdev(intf);
1446 alt = intf->cur_altsetting;
1448 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1449 alt->desc.bInterfaceClass,
1450 alt->desc.bInterfaceSubClass,
1451 alt->desc.bInterfaceProtocol))
1452 return -ENOMEM;
1454 if (add_uevent_var(env,
1455 "MODALIAS=usb:"
1456 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1457 le16_to_cpu(usb_dev->descriptor.idVendor),
1458 le16_to_cpu(usb_dev->descriptor.idProduct),
1459 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1460 usb_dev->descriptor.bDeviceClass,
1461 usb_dev->descriptor.bDeviceSubClass,
1462 usb_dev->descriptor.bDeviceProtocol,
1463 alt->desc.bInterfaceClass,
1464 alt->desc.bInterfaceSubClass,
1465 alt->desc.bInterfaceProtocol))
1466 return -ENOMEM;
1468 return 0;
1471 #else
1473 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1475 return -ENODEV;
1477 #endif /* CONFIG_HOTPLUG */
1479 struct device_type usb_if_device_type = {
1480 .name = "usb_interface",
1481 .release = usb_release_interface,
1482 .uevent = usb_if_uevent,
1485 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1486 struct usb_host_config *config,
1487 u8 inum)
1489 struct usb_interface_assoc_descriptor *retval = NULL;
1490 struct usb_interface_assoc_descriptor *intf_assoc;
1491 int first_intf;
1492 int last_intf;
1493 int i;
1495 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1496 intf_assoc = config->intf_assoc[i];
1497 if (intf_assoc->bInterfaceCount == 0)
1498 continue;
1500 first_intf = intf_assoc->bFirstInterface;
1501 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1502 if (inum >= first_intf && inum <= last_intf) {
1503 if (!retval)
1504 retval = intf_assoc;
1505 else
1506 dev_err(&dev->dev, "Interface #%d referenced"
1507 " by multiple IADs\n", inum);
1511 return retval;
1516 * Internal function to queue a device reset
1518 * This is initialized into the workstruct in 'struct
1519 * usb_device->reset_ws' that is launched by
1520 * message.c:usb_set_configuration() when initializing each 'struct
1521 * usb_interface'.
1523 * It is safe to get the USB device without reference counts because
1524 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1525 * this function will be ran only if @iface is alive (and before
1526 * freeing it any scheduled instances of it will have been cancelled).
1528 * We need to set a flag (usb_dev->reset_running) because when we call
1529 * the reset, the interfaces might be unbound. The current interface
1530 * cannot try to remove the queued work as it would cause a deadlock
1531 * (you cannot remove your work from within your executing
1532 * workqueue). This flag lets it know, so that
1533 * usb_cancel_queued_reset() doesn't try to do it.
1535 * See usb_queue_reset_device() for more details
1537 void __usb_queue_reset_device(struct work_struct *ws)
1539 int rc;
1540 struct usb_interface *iface =
1541 container_of(ws, struct usb_interface, reset_ws);
1542 struct usb_device *udev = interface_to_usbdev(iface);
1544 rc = usb_lock_device_for_reset(udev, iface);
1545 if (rc >= 0) {
1546 iface->reset_running = 1;
1547 usb_reset_device(udev);
1548 iface->reset_running = 0;
1549 usb_unlock_device(udev);
1555 * usb_set_configuration - Makes a particular device setting be current
1556 * @dev: the device whose configuration is being updated
1557 * @configuration: the configuration being chosen.
1558 * Context: !in_interrupt(), caller owns the device lock
1560 * This is used to enable non-default device modes. Not all devices
1561 * use this kind of configurability; many devices only have one
1562 * configuration.
1564 * @configuration is the value of the configuration to be installed.
1565 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1566 * must be non-zero; a value of zero indicates that the device in
1567 * unconfigured. However some devices erroneously use 0 as one of their
1568 * configuration values. To help manage such devices, this routine will
1569 * accept @configuration = -1 as indicating the device should be put in
1570 * an unconfigured state.
1572 * USB device configurations may affect Linux interoperability,
1573 * power consumption and the functionality available. For example,
1574 * the default configuration is limited to using 100mA of bus power,
1575 * so that when certain device functionality requires more power,
1576 * and the device is bus powered, that functionality should be in some
1577 * non-default device configuration. Other device modes may also be
1578 * reflected as configuration options, such as whether two ISDN
1579 * channels are available independently; and choosing between open
1580 * standard device protocols (like CDC) or proprietary ones.
1582 * Note that a non-authorized device (dev->authorized == 0) will only
1583 * be put in unconfigured mode.
1585 * Note that USB has an additional level of device configurability,
1586 * associated with interfaces. That configurability is accessed using
1587 * usb_set_interface().
1589 * This call is synchronous. The calling context must be able to sleep,
1590 * must own the device lock, and must not hold the driver model's USB
1591 * bus mutex; usb interface driver probe() methods cannot use this routine.
1593 * Returns zero on success, or else the status code returned by the
1594 * underlying call that failed. On successful completion, each interface
1595 * in the original device configuration has been destroyed, and each one
1596 * in the new configuration has been probed by all relevant usb device
1597 * drivers currently known to the kernel.
1599 int usb_set_configuration(struct usb_device *dev, int configuration)
1601 int i, ret;
1602 struct usb_host_config *cp = NULL;
1603 struct usb_interface **new_interfaces = NULL;
1604 int n, nintf;
1606 if (dev->authorized == 0 || configuration == -1)
1607 configuration = 0;
1608 else {
1609 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1610 if (dev->config[i].desc.bConfigurationValue ==
1611 configuration) {
1612 cp = &dev->config[i];
1613 break;
1617 if ((!cp && configuration != 0))
1618 return -EINVAL;
1620 /* The USB spec says configuration 0 means unconfigured.
1621 * But if a device includes a configuration numbered 0,
1622 * we will accept it as a correctly configured state.
1623 * Use -1 if you really want to unconfigure the device.
1625 if (cp && configuration == 0)
1626 dev_warn(&dev->dev, "config 0 descriptor??\n");
1628 /* Allocate memory for new interfaces before doing anything else,
1629 * so that if we run out then nothing will have changed. */
1630 n = nintf = 0;
1631 if (cp) {
1632 nintf = cp->desc.bNumInterfaces;
1633 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1634 GFP_KERNEL);
1635 if (!new_interfaces) {
1636 dev_err(&dev->dev, "Out of memory\n");
1637 return -ENOMEM;
1640 for (; n < nintf; ++n) {
1641 new_interfaces[n] = kzalloc(
1642 sizeof(struct usb_interface),
1643 GFP_KERNEL);
1644 if (!new_interfaces[n]) {
1645 dev_err(&dev->dev, "Out of memory\n");
1646 ret = -ENOMEM;
1647 free_interfaces:
1648 while (--n >= 0)
1649 kfree(new_interfaces[n]);
1650 kfree(new_interfaces);
1651 return ret;
1655 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1656 if (i < 0)
1657 dev_warn(&dev->dev, "new config #%d exceeds power "
1658 "limit by %dmA\n",
1659 configuration, -i);
1662 /* Wake up the device so we can send it the Set-Config request */
1663 ret = usb_autoresume_device(dev);
1664 if (ret)
1665 goto free_interfaces;
1667 /* if it's already configured, clear out old state first.
1668 * getting rid of old interfaces means unbinding their drivers.
1670 if (dev->state != USB_STATE_ADDRESS)
1671 usb_disable_device(dev, 1); /* Skip ep0 */
1673 /* Get rid of pending async Set-Config requests for this device */
1674 cancel_async_set_config(dev);
1676 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1677 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1678 NULL, 0, USB_CTRL_SET_TIMEOUT);
1679 if (ret < 0) {
1680 /* All the old state is gone, so what else can we do?
1681 * The device is probably useless now anyway.
1683 cp = NULL;
1686 dev->actconfig = cp;
1687 if (!cp) {
1688 usb_set_device_state(dev, USB_STATE_ADDRESS);
1689 usb_autosuspend_device(dev);
1690 goto free_interfaces;
1692 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1694 /* Initialize the new interface structures and the
1695 * hc/hcd/usbcore interface/endpoint state.
1697 for (i = 0; i < nintf; ++i) {
1698 struct usb_interface_cache *intfc;
1699 struct usb_interface *intf;
1700 struct usb_host_interface *alt;
1702 cp->interface[i] = intf = new_interfaces[i];
1703 intfc = cp->intf_cache[i];
1704 intf->altsetting = intfc->altsetting;
1705 intf->num_altsetting = intfc->num_altsetting;
1706 intf->intf_assoc = find_iad(dev, cp, i);
1707 kref_get(&intfc->ref);
1709 alt = usb_altnum_to_altsetting(intf, 0);
1711 /* No altsetting 0? We'll assume the first altsetting.
1712 * We could use a GetInterface call, but if a device is
1713 * so non-compliant that it doesn't have altsetting 0
1714 * then I wouldn't trust its reply anyway.
1716 if (!alt)
1717 alt = &intf->altsetting[0];
1719 intf->cur_altsetting = alt;
1720 usb_enable_interface(dev, intf, true);
1721 intf->dev.parent = &dev->dev;
1722 intf->dev.driver = NULL;
1723 intf->dev.bus = &usb_bus_type;
1724 intf->dev.type = &usb_if_device_type;
1725 intf->dev.groups = usb_interface_groups;
1726 intf->dev.dma_mask = dev->dev.dma_mask;
1727 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1728 device_initialize(&intf->dev);
1729 mark_quiesced(intf);
1730 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1731 dev->bus->busnum, dev->devpath,
1732 configuration, alt->desc.bInterfaceNumber);
1734 kfree(new_interfaces);
1736 if (cp->string == NULL &&
1737 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1738 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1740 /* Now that all the interfaces are set up, register them
1741 * to trigger binding of drivers to interfaces. probe()
1742 * routines may install different altsettings and may
1743 * claim() any interfaces not yet bound. Many class drivers
1744 * need that: CDC, audio, video, etc.
1746 for (i = 0; i < nintf; ++i) {
1747 struct usb_interface *intf = cp->interface[i];
1749 dev_dbg(&dev->dev,
1750 "adding %s (config #%d, interface %d)\n",
1751 dev_name(&intf->dev), configuration,
1752 intf->cur_altsetting->desc.bInterfaceNumber);
1753 ret = device_add(&intf->dev);
1754 if (ret != 0) {
1755 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1756 dev_name(&intf->dev), ret);
1757 continue;
1759 create_intf_ep_devs(intf);
1762 usb_autosuspend_device(dev);
1763 return 0;
1766 static LIST_HEAD(set_config_list);
1767 static DEFINE_SPINLOCK(set_config_lock);
1769 struct set_config_request {
1770 struct usb_device *udev;
1771 int config;
1772 struct work_struct work;
1773 struct list_head node;
1776 /* Worker routine for usb_driver_set_configuration() */
1777 static void driver_set_config_work(struct work_struct *work)
1779 struct set_config_request *req =
1780 container_of(work, struct set_config_request, work);
1781 struct usb_device *udev = req->udev;
1783 usb_lock_device(udev);
1784 spin_lock(&set_config_lock);
1785 list_del(&req->node);
1786 spin_unlock(&set_config_lock);
1788 if (req->config >= -1) /* Is req still valid? */
1789 usb_set_configuration(udev, req->config);
1790 usb_unlock_device(udev);
1791 usb_put_dev(udev);
1792 kfree(req);
1795 /* Cancel pending Set-Config requests for a device whose configuration
1796 * was just changed
1798 static void cancel_async_set_config(struct usb_device *udev)
1800 struct set_config_request *req;
1802 spin_lock(&set_config_lock);
1803 list_for_each_entry(req, &set_config_list, node) {
1804 if (req->udev == udev)
1805 req->config = -999; /* Mark as cancelled */
1807 spin_unlock(&set_config_lock);
1811 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1812 * @udev: the device whose configuration is being updated
1813 * @config: the configuration being chosen.
1814 * Context: In process context, must be able to sleep
1816 * Device interface drivers are not allowed to change device configurations.
1817 * This is because changing configurations will destroy the interface the
1818 * driver is bound to and create new ones; it would be like a floppy-disk
1819 * driver telling the computer to replace the floppy-disk drive with a
1820 * tape drive!
1822 * Still, in certain specialized circumstances the need may arise. This
1823 * routine gets around the normal restrictions by using a work thread to
1824 * submit the change-config request.
1826 * Returns 0 if the request was succesfully queued, error code otherwise.
1827 * The caller has no way to know whether the queued request will eventually
1828 * succeed.
1830 int usb_driver_set_configuration(struct usb_device *udev, int config)
1832 struct set_config_request *req;
1834 req = kmalloc(sizeof(*req), GFP_KERNEL);
1835 if (!req)
1836 return -ENOMEM;
1837 req->udev = udev;
1838 req->config = config;
1839 INIT_WORK(&req->work, driver_set_config_work);
1841 spin_lock(&set_config_lock);
1842 list_add(&req->node, &set_config_list);
1843 spin_unlock(&set_config_lock);
1845 usb_get_dev(udev);
1846 schedule_work(&req->work);
1847 return 0;
1849 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);