MIPS: handle write_combine in pci_mmap_page_range
[linux-2.6/linux-loongson.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
blob0f08773328c6b8f182936fbb9dc2e95f58401226
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
60 u32 reg;
62 mutex_lock(&rt2x00dev->csr_mutex);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
78 mutex_unlock(&rt2x00dev->csr_mutex);
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
84 u32 reg;
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, &reg);
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
115 u32 reg;
117 mutex_lock(&rt2x00dev->csr_mutex);
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131 rt2x00_rf_write(rt2x00dev, word, value);
134 mutex_unlock(&rt2x00dev->csr_mutex);
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 struct rt2x00_dev *rt2x00dev = eeprom->data;
140 u32 reg;
142 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146 eeprom->reg_data_clock =
147 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148 eeprom->reg_chip_select =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 struct rt2x00_dev *rt2x00dev = eeprom->data;
155 u32 reg = 0;
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160 !!eeprom->reg_data_clock);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162 !!eeprom->reg_chip_select);
164 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169 .owner = THIS_MODULE,
170 .csr = {
171 .read = rt2x00pci_register_read,
172 .write = rt2x00pci_register_write,
173 .flags = RT2X00DEBUGFS_OFFSET,
174 .word_base = CSR_REG_BASE,
175 .word_size = sizeof(u32),
176 .word_count = CSR_REG_SIZE / sizeof(u32),
178 .eeprom = {
179 .read = rt2x00_eeprom_read,
180 .write = rt2x00_eeprom_write,
181 .word_base = EEPROM_BASE,
182 .word_size = sizeof(u16),
183 .word_count = EEPROM_SIZE / sizeof(u16),
185 .bbp = {
186 .read = rt2400pci_bbp_read,
187 .write = rt2400pci_bbp_write,
188 .word_base = BBP_BASE,
189 .word_size = sizeof(u8),
190 .word_count = BBP_SIZE / sizeof(u8),
192 .rf = {
193 .read = rt2x00_rf_read,
194 .write = rt2400pci_rf_write,
195 .word_base = RF_BASE,
196 .word_size = sizeof(u32),
197 .word_count = RF_SIZE / sizeof(u32),
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 #ifdef CONFIG_RT2X00_LIB_RFKILL
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 u32 reg;
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
210 #else
211 #define rt2400pci_rfkill_poll NULL
212 #endif /* CONFIG_RT2X00_LIB_RFKILL */
214 #ifdef CONFIG_RT2X00_LIB_LEDS
215 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
216 enum led_brightness brightness)
218 struct rt2x00_led *led =
219 container_of(led_cdev, struct rt2x00_led, led_dev);
220 unsigned int enabled = brightness != LED_OFF;
221 u32 reg;
223 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
225 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
226 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
227 else if (led->type == LED_TYPE_ACTIVITY)
228 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
230 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
233 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
234 unsigned long *delay_on,
235 unsigned long *delay_off)
237 struct rt2x00_led *led =
238 container_of(led_cdev, struct rt2x00_led, led_dev);
239 u32 reg;
241 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
242 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
243 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
244 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
246 return 0;
249 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_led *led,
251 enum led_type type)
253 led->rt2x00dev = rt2x00dev;
254 led->type = type;
255 led->led_dev.brightness_set = rt2400pci_brightness_set;
256 led->led_dev.blink_set = rt2400pci_blink_set;
257 led->flags = LED_INITIALIZED;
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
262 * Configuration handlers.
264 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
265 const unsigned int filter_flags)
267 u32 reg;
270 * Start configuration steps.
271 * Note that the version error will always be dropped
272 * since there is no filter for it at this time.
274 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
275 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
276 !(filter_flags & FIF_FCSFAIL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
278 !(filter_flags & FIF_PLCPFAIL));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
280 !(filter_flags & FIF_CONTROL));
281 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
282 !(filter_flags & FIF_PROMISC_IN_BSS));
283 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
284 !(filter_flags & FIF_PROMISC_IN_BSS) &&
285 !rt2x00dev->intf_ap_count);
286 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
287 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
290 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
291 struct rt2x00_intf *intf,
292 struct rt2x00intf_conf *conf,
293 const unsigned int flags)
295 unsigned int bcn_preload;
296 u32 reg;
298 if (flags & CONFIG_UPDATE_TYPE) {
300 * Enable beacon config
302 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
303 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
304 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
305 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
308 * Enable synchronisation.
310 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
311 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
312 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
313 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
314 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
317 if (flags & CONFIG_UPDATE_MAC)
318 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
319 conf->mac, sizeof(conf->mac));
321 if (flags & CONFIG_UPDATE_BSSID)
322 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
323 conf->bssid, sizeof(conf->bssid));
326 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
327 struct rt2x00lib_erp *erp)
329 int preamble_mask;
330 u32 reg;
333 * When short preamble is enabled, we should set bit 0x08
335 preamble_mask = erp->short_preamble << 3;
337 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
338 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
339 erp->ack_timeout);
340 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
341 erp->ack_consume_time);
342 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
344 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
345 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
346 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
347 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
348 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
350 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
351 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
354 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
356 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
357 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
358 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
359 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
360 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
362 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
363 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
364 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
365 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
366 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
368 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
370 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
371 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
372 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
374 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
375 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
376 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
377 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
379 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
380 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
381 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
382 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
385 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
386 struct antenna_setup *ant)
388 u8 r1;
389 u8 r4;
392 * We should never come here because rt2x00lib is supposed
393 * to catch this and send us the correct antenna explicitely.
395 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
396 ant->tx == ANTENNA_SW_DIVERSITY);
398 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
399 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
402 * Configure the TX antenna.
404 switch (ant->tx) {
405 case ANTENNA_HW_DIVERSITY:
406 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
407 break;
408 case ANTENNA_A:
409 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
410 break;
411 case ANTENNA_B:
412 default:
413 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
414 break;
418 * Configure the RX antenna.
420 switch (ant->rx) {
421 case ANTENNA_HW_DIVERSITY:
422 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
423 break;
424 case ANTENNA_A:
425 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
426 break;
427 case ANTENNA_B:
428 default:
429 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
430 break;
433 rt2400pci_bbp_write(rt2x00dev, 4, r4);
434 rt2400pci_bbp_write(rt2x00dev, 1, r1);
437 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
438 struct rf_channel *rf)
441 * Switch on tuning bits.
443 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
444 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
446 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
447 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
448 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451 * RF2420 chipset don't need any additional actions.
453 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
454 return;
457 * For the RT2421 chipsets we need to write an invalid
458 * reference clock rate to activate auto_tune.
459 * After that we set the value back to the correct channel.
461 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
462 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
463 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465 msleep(1);
467 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
468 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
469 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
471 msleep(1);
474 * Switch off tuning bits.
476 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
477 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
479 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
480 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483 * Clear false CRC during channel switch.
485 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
488 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
490 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
493 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
494 struct rt2x00lib_conf *libconf)
496 u32 reg;
498 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
499 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
500 libconf->conf->long_frame_max_tx_count);
501 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
502 libconf->conf->short_frame_max_tx_count);
503 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
506 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
507 struct rt2x00lib_conf *libconf)
509 u32 reg;
511 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
512 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
513 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
514 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
516 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
517 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
518 libconf->conf->beacon_int * 16);
519 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
520 libconf->conf->beacon_int * 16);
521 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
524 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
525 struct rt2x00lib_conf *libconf)
527 enum dev_state state =
528 (libconf->conf->flags & IEEE80211_CONF_PS) ?
529 STATE_SLEEP : STATE_AWAKE;
530 u32 reg;
532 if (state == STATE_SLEEP) {
533 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
534 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
535 (libconf->conf->beacon_int - 20) * 16);
536 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
537 libconf->conf->listen_interval - 1);
539 /* We must first disable autowake before it can be enabled */
540 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
541 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
543 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
544 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
547 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
551 struct rt2x00lib_conf *libconf,
552 const unsigned int flags)
554 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
555 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
556 if (flags & IEEE80211_CONF_CHANGE_POWER)
557 rt2400pci_config_txpower(rt2x00dev,
558 libconf->conf->power_level);
559 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
560 rt2400pci_config_retry_limit(rt2x00dev, libconf);
561 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
562 rt2400pci_config_duration(rt2x00dev, libconf);
563 if (flags & IEEE80211_CONF_CHANGE_PS)
564 rt2400pci_config_ps(rt2x00dev, libconf);
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568 const int cw_min, const int cw_max)
570 u32 reg;
572 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
573 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
579 * Link tuning
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual)
584 u32 reg;
585 u8 bbp;
588 * Update FCS error count from register.
590 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
591 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
594 * Update False CCA count from register.
596 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
597 qual->false_cca = bbp;
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601 struct link_qual *qual, u8 vgc_level)
603 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
604 qual->vgc_level = vgc_level;
605 qual->vgc_level_reg = vgc_level;
608 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
609 struct link_qual *qual)
611 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
615 struct link_qual *qual, const u32 count)
618 * The link tuner should not run longer then 60 seconds,
619 * and should run once every 2 seconds.
621 if (count > 60 || !(count & 1))
622 return;
625 * Base r13 link tuning on the false cca count.
627 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
628 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
629 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
630 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
634 * Initialization functions.
636 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
638 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
639 u32 word;
641 if (entry->queue->qid == QID_RX) {
642 rt2x00_desc_read(entry_priv->desc, 0, &word);
644 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
645 } else {
646 rt2x00_desc_read(entry_priv->desc, 0, &word);
648 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
649 rt2x00_get_field32(word, TXD_W0_VALID));
653 static void rt2400pci_clear_entry(struct queue_entry *entry)
655 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
656 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
657 u32 word;
659 if (entry->queue->qid == QID_RX) {
660 rt2x00_desc_read(entry_priv->desc, 2, &word);
661 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
662 rt2x00_desc_write(entry_priv->desc, 2, word);
664 rt2x00_desc_read(entry_priv->desc, 1, &word);
665 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
666 rt2x00_desc_write(entry_priv->desc, 1, word);
668 rt2x00_desc_read(entry_priv->desc, 0, &word);
669 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
670 rt2x00_desc_write(entry_priv->desc, 0, word);
671 } else {
672 rt2x00_desc_read(entry_priv->desc, 0, &word);
673 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
674 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
675 rt2x00_desc_write(entry_priv->desc, 0, word);
679 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
681 struct queue_entry_priv_pci *entry_priv;
682 u32 reg;
685 * Initialize registers.
687 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
688 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
689 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
690 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
691 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
692 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
694 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
695 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
696 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
697 entry_priv->desc_dma);
698 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
700 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
701 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
702 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
703 entry_priv->desc_dma);
704 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
706 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
707 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
708 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
709 entry_priv->desc_dma);
710 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
712 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
713 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
714 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
715 entry_priv->desc_dma);
716 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
718 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
719 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
720 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
721 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
723 entry_priv = rt2x00dev->rx->entries[0].priv_data;
724 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
725 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
726 entry_priv->desc_dma);
727 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
729 return 0;
732 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
734 u32 reg;
736 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
737 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
738 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
739 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
741 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
742 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
743 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
744 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
745 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
747 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
748 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
749 (rt2x00dev->rx->data_size / 128));
750 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
752 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
753 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
754 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
755 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
756 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
757 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
758 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
759 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
760 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
761 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
763 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
765 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
766 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
767 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
768 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
769 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
770 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
772 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
773 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
774 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
775 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
776 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
777 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
778 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
779 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
781 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
783 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
784 return -EBUSY;
786 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
787 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
789 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
790 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
791 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
793 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
794 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
795 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
796 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
797 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
798 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
800 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
801 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
802 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
803 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
804 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
806 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
807 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
808 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
809 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
812 * We must clear the FCS and FIFO error count.
813 * These registers are cleared on read,
814 * so we may pass a useless variable to store the value.
816 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
817 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
819 return 0;
822 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
824 unsigned int i;
825 u8 value;
827 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
828 rt2400pci_bbp_read(rt2x00dev, 0, &value);
829 if ((value != 0xff) && (value != 0x00))
830 return 0;
831 udelay(REGISTER_BUSY_DELAY);
834 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
835 return -EACCES;
838 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
840 unsigned int i;
841 u16 eeprom;
842 u8 reg_id;
843 u8 value;
845 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
846 return -EACCES;
848 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
849 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
850 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
851 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
852 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
853 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
854 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
855 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
856 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
857 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
858 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
859 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
860 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
861 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
863 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
864 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
866 if (eeprom != 0xffff && eeprom != 0x0000) {
867 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
868 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
869 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
873 return 0;
877 * Device state switch handlers.
879 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
880 enum dev_state state)
882 u32 reg;
884 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
885 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
886 (state == STATE_RADIO_RX_OFF) ||
887 (state == STATE_RADIO_RX_OFF_LINK));
888 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
891 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
892 enum dev_state state)
894 int mask = (state == STATE_RADIO_IRQ_OFF);
895 u32 reg;
898 * When interrupts are being enabled, the interrupt registers
899 * should clear the register to assure a clean state.
901 if (state == STATE_RADIO_IRQ_ON) {
902 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
903 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
907 * Only toggle the interrupts bits we are going to use.
908 * Non-checked interrupt bits are disabled by default.
910 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
911 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
912 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
913 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
914 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
915 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
916 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
919 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
922 * Initialize all registers.
924 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
925 rt2400pci_init_registers(rt2x00dev) ||
926 rt2400pci_init_bbp(rt2x00dev)))
927 return -EIO;
929 return 0;
932 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
935 * Disable power
937 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
940 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
941 enum dev_state state)
943 u32 reg;
944 unsigned int i;
945 char put_to_sleep;
946 char bbp_state;
947 char rf_state;
949 put_to_sleep = (state != STATE_AWAKE);
951 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
952 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
953 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
954 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
955 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
956 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
959 * Device is not guaranteed to be in the requested state yet.
960 * We must wait until the register indicates that the
961 * device has entered the correct state.
963 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
964 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
965 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
966 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
967 if (bbp_state == state && rf_state == state)
968 return 0;
969 msleep(10);
972 return -EBUSY;
975 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
976 enum dev_state state)
978 int retval = 0;
980 switch (state) {
981 case STATE_RADIO_ON:
982 retval = rt2400pci_enable_radio(rt2x00dev);
983 break;
984 case STATE_RADIO_OFF:
985 rt2400pci_disable_radio(rt2x00dev);
986 break;
987 case STATE_RADIO_RX_ON:
988 case STATE_RADIO_RX_ON_LINK:
989 case STATE_RADIO_RX_OFF:
990 case STATE_RADIO_RX_OFF_LINK:
991 rt2400pci_toggle_rx(rt2x00dev, state);
992 break;
993 case STATE_RADIO_IRQ_ON:
994 case STATE_RADIO_IRQ_OFF:
995 rt2400pci_toggle_irq(rt2x00dev, state);
996 break;
997 case STATE_DEEP_SLEEP:
998 case STATE_SLEEP:
999 case STATE_STANDBY:
1000 case STATE_AWAKE:
1001 retval = rt2400pci_set_state(rt2x00dev, state);
1002 break;
1003 default:
1004 retval = -ENOTSUPP;
1005 break;
1008 if (unlikely(retval))
1009 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1010 state, retval);
1012 return retval;
1016 * TX descriptor initialization
1018 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1019 struct sk_buff *skb,
1020 struct txentry_desc *txdesc)
1022 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1023 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1024 __le32 *txd = skbdesc->desc;
1025 u32 word;
1028 * Start writing the descriptor words.
1030 rt2x00_desc_read(entry_priv->desc, 1, &word);
1031 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1032 rt2x00_desc_write(entry_priv->desc, 1, word);
1034 rt2x00_desc_read(txd, 2, &word);
1035 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1036 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1037 rt2x00_desc_write(txd, 2, word);
1039 rt2x00_desc_read(txd, 3, &word);
1040 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1041 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1042 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1043 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1044 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1045 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1046 rt2x00_desc_write(txd, 3, word);
1048 rt2x00_desc_read(txd, 4, &word);
1049 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1050 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1051 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1052 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1053 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1054 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1055 rt2x00_desc_write(txd, 4, word);
1057 rt2x00_desc_read(txd, 0, &word);
1058 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1059 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1060 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1061 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1062 rt2x00_set_field32(&word, TXD_W0_ACK,
1063 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1064 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1065 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1066 rt2x00_set_field32(&word, TXD_W0_RTS,
1067 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1068 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1069 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1070 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1071 rt2x00_desc_write(txd, 0, word);
1075 * TX data initialization
1077 static void rt2400pci_write_beacon(struct queue_entry *entry)
1079 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1080 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1081 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1082 u32 word;
1083 u32 reg;
1086 * Disable beaconing while we are reloading the beacon data,
1087 * otherwise we might be sending out invalid data.
1089 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1090 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1091 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1092 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1093 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1096 * Replace rt2x00lib allocated descriptor with the
1097 * pointer to the _real_ hardware descriptor.
1098 * After that, map the beacon to DMA and update the
1099 * descriptor.
1101 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1102 skbdesc->desc = entry_priv->desc;
1104 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1106 rt2x00_desc_read(entry_priv->desc, 1, &word);
1107 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1108 rt2x00_desc_write(entry_priv->desc, 1, word);
1111 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1112 const enum data_queue_qid queue)
1114 u32 reg;
1116 if (queue == QID_BEACON) {
1117 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1118 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1119 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1120 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1121 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1122 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1124 return;
1127 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1128 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1129 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1130 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1131 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1134 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1135 const enum data_queue_qid qid)
1137 u32 reg;
1139 if (qid == QID_BEACON) {
1140 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1141 } else {
1142 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1143 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1144 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1149 * RX control handlers
1151 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1152 struct rxdone_entry_desc *rxdesc)
1154 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1155 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1156 u32 word0;
1157 u32 word2;
1158 u32 word3;
1159 u32 word4;
1160 u64 tsf;
1161 u32 rx_low;
1162 u32 rx_high;
1164 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1165 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1166 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1167 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1169 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1170 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1171 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1172 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1175 * We only get the lower 32bits from the timestamp,
1176 * to get the full 64bits we must complement it with
1177 * the timestamp from get_tsf().
1178 * Note that when a wraparound of the lower 32bits
1179 * has occurred between the frame arrival and the get_tsf()
1180 * call, we must decrease the higher 32bits with 1 to get
1181 * to correct value.
1183 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1184 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1185 rx_high = upper_32_bits(tsf);
1187 if ((u32)tsf <= rx_low)
1188 rx_high--;
1191 * Obtain the status about this packet.
1192 * The signal is the PLCP value, and needs to be stripped
1193 * of the preamble bit (0x08).
1195 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1196 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1197 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1198 entry->queue->rt2x00dev->rssi_offset;
1199 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1201 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1202 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1203 rxdesc->dev_flags |= RXDONE_MY_BSS;
1207 * Interrupt functions.
1209 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1210 const enum data_queue_qid queue_idx)
1212 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1213 struct queue_entry_priv_pci *entry_priv;
1214 struct queue_entry *entry;
1215 struct txdone_entry_desc txdesc;
1216 u32 word;
1218 while (!rt2x00queue_empty(queue)) {
1219 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1220 entry_priv = entry->priv_data;
1221 rt2x00_desc_read(entry_priv->desc, 0, &word);
1223 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1224 !rt2x00_get_field32(word, TXD_W0_VALID))
1225 break;
1228 * Obtain the status about this packet.
1230 txdesc.flags = 0;
1231 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1232 case 0: /* Success */
1233 case 1: /* Success with retry */
1234 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1235 break;
1236 case 2: /* Failure, excessive retries */
1237 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1238 /* Don't break, this is a failed frame! */
1239 default: /* Failure */
1240 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1242 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1244 rt2x00lib_txdone(entry, &txdesc);
1248 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1250 struct rt2x00_dev *rt2x00dev = dev_instance;
1251 u32 reg;
1254 * Get the interrupt sources & saved to local variable.
1255 * Write register value back to clear pending interrupts.
1257 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1258 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1260 if (!reg)
1261 return IRQ_NONE;
1263 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1264 return IRQ_HANDLED;
1267 * Handle interrupts, walk through all bits
1268 * and run the tasks, the bits are checked in order of
1269 * priority.
1273 * 1 - Beacon timer expired interrupt.
1275 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1276 rt2x00lib_beacondone(rt2x00dev);
1279 * 2 - Rx ring done interrupt.
1281 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1282 rt2x00pci_rxdone(rt2x00dev);
1285 * 3 - Atim ring transmit done interrupt.
1287 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1288 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1291 * 4 - Priority ring transmit done interrupt.
1293 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1294 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1297 * 5 - Tx ring transmit done interrupt.
1299 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1300 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1302 return IRQ_HANDLED;
1306 * Device probe functions.
1308 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1310 struct eeprom_93cx6 eeprom;
1311 u32 reg;
1312 u16 word;
1313 u8 *mac;
1315 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1317 eeprom.data = rt2x00dev;
1318 eeprom.register_read = rt2400pci_eepromregister_read;
1319 eeprom.register_write = rt2400pci_eepromregister_write;
1320 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1321 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1322 eeprom.reg_data_in = 0;
1323 eeprom.reg_data_out = 0;
1324 eeprom.reg_data_clock = 0;
1325 eeprom.reg_chip_select = 0;
1327 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1328 EEPROM_SIZE / sizeof(u16));
1331 * Start validation of the data that has been read.
1333 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1334 if (!is_valid_ether_addr(mac)) {
1335 random_ether_addr(mac);
1336 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1339 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1340 if (word == 0xffff) {
1341 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1342 return -EINVAL;
1345 return 0;
1348 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1350 u32 reg;
1351 u16 value;
1352 u16 eeprom;
1355 * Read EEPROM word for configuration.
1357 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1360 * Identify RF chipset.
1362 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1363 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1364 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1366 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1367 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1368 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1369 return -ENODEV;
1373 * Identify default antenna configuration.
1375 rt2x00dev->default_ant.tx =
1376 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1377 rt2x00dev->default_ant.rx =
1378 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1381 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1382 * I am not 100% sure about this, but the legacy drivers do not
1383 * indicate antenna swapping in software is required when
1384 * diversity is enabled.
1386 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1387 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1388 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1389 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1392 * Store led mode, for correct led behaviour.
1394 #ifdef CONFIG_RT2X00_LIB_LEDS
1395 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1397 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1398 if (value == LED_MODE_TXRX_ACTIVITY ||
1399 value == LED_MODE_DEFAULT ||
1400 value == LED_MODE_ASUS)
1401 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1402 LED_TYPE_ACTIVITY);
1403 #endif /* CONFIG_RT2X00_LIB_LEDS */
1406 * Detect if this device has an hardware controlled radio.
1408 #ifdef CONFIG_RT2X00_LIB_RFKILL
1409 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1410 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1411 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1414 * Check if the BBP tuning should be enabled.
1416 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1417 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1419 return 0;
1423 * RF value list for RF2420 & RF2421
1424 * Supports: 2.4 GHz
1426 static const struct rf_channel rf_vals_b[] = {
1427 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1428 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1429 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1430 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1431 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1432 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1433 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1434 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1435 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1436 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1437 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1438 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1439 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1440 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1443 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1445 struct hw_mode_spec *spec = &rt2x00dev->spec;
1446 struct channel_info *info;
1447 char *tx_power;
1448 unsigned int i;
1451 * Initialize all hw fields.
1453 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1454 IEEE80211_HW_SIGNAL_DBM |
1455 IEEE80211_HW_SUPPORTS_PS |
1456 IEEE80211_HW_PS_NULLFUNC_STACK;
1457 rt2x00dev->hw->extra_tx_headroom = 0;
1459 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1460 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1461 rt2x00_eeprom_addr(rt2x00dev,
1462 EEPROM_MAC_ADDR_0));
1465 * Initialize hw_mode information.
1467 spec->supported_bands = SUPPORT_BAND_2GHZ;
1468 spec->supported_rates = SUPPORT_RATE_CCK;
1470 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1471 spec->channels = rf_vals_b;
1474 * Create channel information array
1476 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1477 if (!info)
1478 return -ENOMEM;
1480 spec->channels_info = info;
1482 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1483 for (i = 0; i < 14; i++)
1484 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1486 return 0;
1489 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1491 int retval;
1494 * Allocate eeprom data.
1496 retval = rt2400pci_validate_eeprom(rt2x00dev);
1497 if (retval)
1498 return retval;
1500 retval = rt2400pci_init_eeprom(rt2x00dev);
1501 if (retval)
1502 return retval;
1505 * Initialize hw specifications.
1507 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1508 if (retval)
1509 return retval;
1512 * This device requires the atim queue and DMA-mapped skbs.
1514 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1515 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1518 * Set the rssi offset.
1520 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1522 return 0;
1526 * IEEE80211 stack callback functions.
1528 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1529 const struct ieee80211_tx_queue_params *params)
1531 struct rt2x00_dev *rt2x00dev = hw->priv;
1534 * We don't support variating cw_min and cw_max variables
1535 * per queue. So by default we only configure the TX queue,
1536 * and ignore all other configurations.
1538 if (queue != 0)
1539 return -EINVAL;
1541 if (rt2x00mac_conf_tx(hw, queue, params))
1542 return -EINVAL;
1545 * Write configuration to register.
1547 rt2400pci_config_cw(rt2x00dev,
1548 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1550 return 0;
1553 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1555 struct rt2x00_dev *rt2x00dev = hw->priv;
1556 u64 tsf;
1557 u32 reg;
1559 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1560 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1561 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1562 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1564 return tsf;
1567 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1569 struct rt2x00_dev *rt2x00dev = hw->priv;
1570 u32 reg;
1572 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1573 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1576 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1577 .tx = rt2x00mac_tx,
1578 .start = rt2x00mac_start,
1579 .stop = rt2x00mac_stop,
1580 .add_interface = rt2x00mac_add_interface,
1581 .remove_interface = rt2x00mac_remove_interface,
1582 .config = rt2x00mac_config,
1583 .config_interface = rt2x00mac_config_interface,
1584 .configure_filter = rt2x00mac_configure_filter,
1585 .get_stats = rt2x00mac_get_stats,
1586 .bss_info_changed = rt2x00mac_bss_info_changed,
1587 .conf_tx = rt2400pci_conf_tx,
1588 .get_tx_stats = rt2x00mac_get_tx_stats,
1589 .get_tsf = rt2400pci_get_tsf,
1590 .tx_last_beacon = rt2400pci_tx_last_beacon,
1593 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1594 .irq_handler = rt2400pci_interrupt,
1595 .probe_hw = rt2400pci_probe_hw,
1596 .initialize = rt2x00pci_initialize,
1597 .uninitialize = rt2x00pci_uninitialize,
1598 .get_entry_state = rt2400pci_get_entry_state,
1599 .clear_entry = rt2400pci_clear_entry,
1600 .set_device_state = rt2400pci_set_device_state,
1601 .rfkill_poll = rt2400pci_rfkill_poll,
1602 .link_stats = rt2400pci_link_stats,
1603 .reset_tuner = rt2400pci_reset_tuner,
1604 .link_tuner = rt2400pci_link_tuner,
1605 .write_tx_desc = rt2400pci_write_tx_desc,
1606 .write_tx_data = rt2x00pci_write_tx_data,
1607 .write_beacon = rt2400pci_write_beacon,
1608 .kick_tx_queue = rt2400pci_kick_tx_queue,
1609 .kill_tx_queue = rt2400pci_kill_tx_queue,
1610 .fill_rxdone = rt2400pci_fill_rxdone,
1611 .config_filter = rt2400pci_config_filter,
1612 .config_intf = rt2400pci_config_intf,
1613 .config_erp = rt2400pci_config_erp,
1614 .config_ant = rt2400pci_config_ant,
1615 .config = rt2400pci_config,
1618 static const struct data_queue_desc rt2400pci_queue_rx = {
1619 .entry_num = RX_ENTRIES,
1620 .data_size = DATA_FRAME_SIZE,
1621 .desc_size = RXD_DESC_SIZE,
1622 .priv_size = sizeof(struct queue_entry_priv_pci),
1625 static const struct data_queue_desc rt2400pci_queue_tx = {
1626 .entry_num = TX_ENTRIES,
1627 .data_size = DATA_FRAME_SIZE,
1628 .desc_size = TXD_DESC_SIZE,
1629 .priv_size = sizeof(struct queue_entry_priv_pci),
1632 static const struct data_queue_desc rt2400pci_queue_bcn = {
1633 .entry_num = BEACON_ENTRIES,
1634 .data_size = MGMT_FRAME_SIZE,
1635 .desc_size = TXD_DESC_SIZE,
1636 .priv_size = sizeof(struct queue_entry_priv_pci),
1639 static const struct data_queue_desc rt2400pci_queue_atim = {
1640 .entry_num = ATIM_ENTRIES,
1641 .data_size = DATA_FRAME_SIZE,
1642 .desc_size = TXD_DESC_SIZE,
1643 .priv_size = sizeof(struct queue_entry_priv_pci),
1646 static const struct rt2x00_ops rt2400pci_ops = {
1647 .name = KBUILD_MODNAME,
1648 .max_sta_intf = 1,
1649 .max_ap_intf = 1,
1650 .eeprom_size = EEPROM_SIZE,
1651 .rf_size = RF_SIZE,
1652 .tx_queues = NUM_TX_QUEUES,
1653 .rx = &rt2400pci_queue_rx,
1654 .tx = &rt2400pci_queue_tx,
1655 .bcn = &rt2400pci_queue_bcn,
1656 .atim = &rt2400pci_queue_atim,
1657 .lib = &rt2400pci_rt2x00_ops,
1658 .hw = &rt2400pci_mac80211_ops,
1659 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1660 .debugfs = &rt2400pci_rt2x00debug,
1661 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1665 * RT2400pci module information.
1667 static struct pci_device_id rt2400pci_device_table[] = {
1668 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1669 { 0, }
1672 MODULE_AUTHOR(DRV_PROJECT);
1673 MODULE_VERSION(DRV_VERSION);
1674 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1675 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1676 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1677 MODULE_LICENSE("GPL");
1679 static struct pci_driver rt2400pci_driver = {
1680 .name = KBUILD_MODNAME,
1681 .id_table = rt2400pci_device_table,
1682 .probe = rt2x00pci_probe,
1683 .remove = __devexit_p(rt2x00pci_remove),
1684 .suspend = rt2x00pci_suspend,
1685 .resume = rt2x00pci_resume,
1688 static int __init rt2400pci_init(void)
1690 return pci_register_driver(&rt2400pci_driver);
1693 static void __exit rt2400pci_exit(void)
1695 pci_unregister_driver(&rt2400pci_driver);
1698 module_init(rt2400pci_init);
1699 module_exit(rt2400pci_exit);