drm: merge Linux master into HEAD
[linux-2.6/linux-loongson.git] / drivers / gpu / drm / i915 / i915_gem.c
blobe5d2bdf2cc9b664b91d085c2db1d3358848df4ea
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_get_pages(struct drm_gem_object *obj);
47 static void i915_gem_object_put_pages(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
52 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
53 static int i915_gem_evict_something(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
58 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
59 unsigned long end)
61 drm_i915_private_t *dev_priv = dev->dev_private;
63 if (start >= end ||
64 (start & (PAGE_SIZE - 1)) != 0 ||
65 (end & (PAGE_SIZE - 1)) != 0) {
66 return -EINVAL;
69 drm_mm_init(&dev_priv->mm.gtt_space, start,
70 end - start);
72 dev->gtt_total = (uint32_t) (end - start);
74 return 0;
77 int
78 i915_gem_init_ioctl(struct drm_device *dev, void *data,
79 struct drm_file *file_priv)
81 struct drm_i915_gem_init *args = data;
82 int ret;
84 mutex_lock(&dev->struct_mutex);
85 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
86 mutex_unlock(&dev->struct_mutex);
88 return ret;
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
95 struct drm_i915_gem_get_aperture *args = data;
97 if (!(dev->driver->driver_features & DRIVER_GEM))
98 return -ENODEV;
100 args->aper_size = dev->gtt_total;
101 args->aper_available_size = (args->aper_size -
102 atomic_read(&dev->pin_memory));
104 return 0;
109 * Creates a new mm object and returns a handle to it.
112 i915_gem_create_ioctl(struct drm_device *dev, void *data,
113 struct drm_file *file_priv)
115 struct drm_i915_gem_create *args = data;
116 struct drm_gem_object *obj;
117 int handle, ret;
119 args->size = roundup(args->size, PAGE_SIZE);
121 /* Allocate the new object */
122 obj = drm_gem_object_alloc(dev, args->size);
123 if (obj == NULL)
124 return -ENOMEM;
126 ret = drm_gem_handle_create(file_priv, obj, &handle);
127 mutex_lock(&dev->struct_mutex);
128 drm_gem_object_handle_unreference(obj);
129 mutex_unlock(&dev->struct_mutex);
131 if (ret)
132 return ret;
134 args->handle = handle;
136 return 0;
139 static inline int
140 fast_shmem_read(struct page **pages,
141 loff_t page_base, int page_offset,
142 char __user *data,
143 int length)
145 char __iomem *vaddr;
146 int ret;
148 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
149 if (vaddr == NULL)
150 return -ENOMEM;
151 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
152 kunmap_atomic(vaddr, KM_USER0);
154 return ret;
157 static inline int
158 slow_shmem_copy(struct page *dst_page,
159 int dst_offset,
160 struct page *src_page,
161 int src_offset,
162 int length)
164 char *dst_vaddr, *src_vaddr;
166 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
167 if (dst_vaddr == NULL)
168 return -ENOMEM;
170 src_vaddr = kmap_atomic(src_page, KM_USER1);
171 if (src_vaddr == NULL) {
172 kunmap_atomic(dst_vaddr, KM_USER0);
173 return -ENOMEM;
176 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
178 kunmap_atomic(src_vaddr, KM_USER1);
179 kunmap_atomic(dst_vaddr, KM_USER0);
181 return 0;
185 * This is the fast shmem pread path, which attempts to copy_from_user directly
186 * from the backing pages of the object to the user's address space. On a
187 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
189 static int
190 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
191 struct drm_i915_gem_pread *args,
192 struct drm_file *file_priv)
194 struct drm_i915_gem_object *obj_priv = obj->driver_private;
195 ssize_t remain;
196 loff_t offset, page_base;
197 char __user *user_data;
198 int page_offset, page_length;
199 int ret;
201 user_data = (char __user *) (uintptr_t) args->data_ptr;
202 remain = args->size;
204 mutex_lock(&dev->struct_mutex);
206 ret = i915_gem_object_get_pages(obj);
207 if (ret != 0)
208 goto fail_unlock;
210 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
211 args->size);
212 if (ret != 0)
213 goto fail_put_pages;
215 obj_priv = obj->driver_private;
216 offset = args->offset;
218 while (remain > 0) {
219 /* Operation in this page
221 * page_base = page offset within aperture
222 * page_offset = offset within page
223 * page_length = bytes to copy for this page
225 page_base = (offset & ~(PAGE_SIZE-1));
226 page_offset = offset & (PAGE_SIZE-1);
227 page_length = remain;
228 if ((page_offset + remain) > PAGE_SIZE)
229 page_length = PAGE_SIZE - page_offset;
231 ret = fast_shmem_read(obj_priv->pages,
232 page_base, page_offset,
233 user_data, page_length);
234 if (ret)
235 goto fail_put_pages;
237 remain -= page_length;
238 user_data += page_length;
239 offset += page_length;
242 fail_put_pages:
243 i915_gem_object_put_pages(obj);
244 fail_unlock:
245 mutex_unlock(&dev->struct_mutex);
247 return ret;
251 * This is the fallback shmem pread path, which allocates temporary storage
252 * in kernel space to copy_to_user into outside of the struct_mutex, so we
253 * can copy out of the object's backing pages while holding the struct mutex
254 * and not take page faults.
256 static int
257 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 struct mm_struct *mm = current->mm;
263 struct page **user_pages;
264 ssize_t remain;
265 loff_t offset, pinned_pages, i;
266 loff_t first_data_page, last_data_page, num_pages;
267 int shmem_page_index, shmem_page_offset;
268 int data_page_index, data_page_offset;
269 int page_length;
270 int ret;
271 uint64_t data_ptr = args->data_ptr;
273 remain = args->size;
275 /* Pin the user pages containing the data. We can't fault while
276 * holding the struct mutex, yet we want to hold it while
277 * dereferencing the user data.
279 first_data_page = data_ptr / PAGE_SIZE;
280 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
281 num_pages = last_data_page - first_data_page + 1;
283 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
284 if (user_pages == NULL)
285 return -ENOMEM;
287 down_read(&mm->mmap_sem);
288 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
289 num_pages, 0, 0, user_pages, NULL);
290 up_read(&mm->mmap_sem);
291 if (pinned_pages < num_pages) {
292 ret = -EFAULT;
293 goto fail_put_user_pages;
296 mutex_lock(&dev->struct_mutex);
298 ret = i915_gem_object_get_pages(obj);
299 if (ret != 0)
300 goto fail_unlock;
302 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
303 args->size);
304 if (ret != 0)
305 goto fail_put_pages;
307 obj_priv = obj->driver_private;
308 offset = args->offset;
310 while (remain > 0) {
311 /* Operation in this page
313 * shmem_page_index = page number within shmem file
314 * shmem_page_offset = offset within page in shmem file
315 * data_page_index = page number in get_user_pages return
316 * data_page_offset = offset with data_page_index page.
317 * page_length = bytes to copy for this page
319 shmem_page_index = offset / PAGE_SIZE;
320 shmem_page_offset = offset & ~PAGE_MASK;
321 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
322 data_page_offset = data_ptr & ~PAGE_MASK;
324 page_length = remain;
325 if ((shmem_page_offset + page_length) > PAGE_SIZE)
326 page_length = PAGE_SIZE - shmem_page_offset;
327 if ((data_page_offset + page_length) > PAGE_SIZE)
328 page_length = PAGE_SIZE - data_page_offset;
330 ret = slow_shmem_copy(user_pages[data_page_index],
331 data_page_offset,
332 obj_priv->pages[shmem_page_index],
333 shmem_page_offset,
334 page_length);
335 if (ret)
336 goto fail_put_pages;
338 remain -= page_length;
339 data_ptr += page_length;
340 offset += page_length;
343 fail_put_pages:
344 i915_gem_object_put_pages(obj);
345 fail_unlock:
346 mutex_unlock(&dev->struct_mutex);
347 fail_put_user_pages:
348 for (i = 0; i < pinned_pages; i++) {
349 SetPageDirty(user_pages[i]);
350 page_cache_release(user_pages[i]);
352 kfree(user_pages);
354 return ret;
358 * Reads data from the object referenced by handle.
360 * On error, the contents of *data are undefined.
363 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
366 struct drm_i915_gem_pread *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
369 int ret;
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
376 /* Bounds check source.
378 * XXX: This could use review for overflow issues...
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
386 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
387 if (ret != 0)
388 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
390 drm_gem_object_unreference(obj);
392 return ret;
395 /* This is the fast write path which cannot handle
396 * page faults in the source data
399 static inline int
400 fast_user_write(struct io_mapping *mapping,
401 loff_t page_base, int page_offset,
402 char __user *user_data,
403 int length)
405 char *vaddr_atomic;
406 unsigned long unwritten;
408 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
409 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
410 user_data, length);
411 io_mapping_unmap_atomic(vaddr_atomic);
412 if (unwritten)
413 return -EFAULT;
414 return 0;
417 /* Here's the write path which can sleep for
418 * page faults
421 static inline int
422 slow_kernel_write(struct io_mapping *mapping,
423 loff_t gtt_base, int gtt_offset,
424 struct page *user_page, int user_offset,
425 int length)
427 char *src_vaddr, *dst_vaddr;
428 unsigned long unwritten;
430 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
431 src_vaddr = kmap_atomic(user_page, KM_USER1);
432 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
433 src_vaddr + user_offset,
434 length);
435 kunmap_atomic(src_vaddr, KM_USER1);
436 io_mapping_unmap_atomic(dst_vaddr);
437 if (unwritten)
438 return -EFAULT;
439 return 0;
442 static inline int
443 fast_shmem_write(struct page **pages,
444 loff_t page_base, int page_offset,
445 char __user *data,
446 int length)
448 char __iomem *vaddr;
450 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
451 if (vaddr == NULL)
452 return -ENOMEM;
453 __copy_from_user_inatomic(vaddr + page_offset, data, length);
454 kunmap_atomic(vaddr, KM_USER0);
456 return 0;
460 * This is the fast pwrite path, where we copy the data directly from the
461 * user into the GTT, uncached.
463 static int
464 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
465 struct drm_i915_gem_pwrite *args,
466 struct drm_file *file_priv)
468 struct drm_i915_gem_object *obj_priv = obj->driver_private;
469 drm_i915_private_t *dev_priv = dev->dev_private;
470 ssize_t remain;
471 loff_t offset, page_base;
472 char __user *user_data;
473 int page_offset, page_length;
474 int ret;
476 user_data = (char __user *) (uintptr_t) args->data_ptr;
477 remain = args->size;
478 if (!access_ok(VERIFY_READ, user_data, remain))
479 return -EFAULT;
482 mutex_lock(&dev->struct_mutex);
483 ret = i915_gem_object_pin(obj, 0);
484 if (ret) {
485 mutex_unlock(&dev->struct_mutex);
486 return ret;
488 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
489 if (ret)
490 goto fail;
492 obj_priv = obj->driver_private;
493 offset = obj_priv->gtt_offset + args->offset;
495 while (remain > 0) {
496 /* Operation in this page
498 * page_base = page offset within aperture
499 * page_offset = offset within page
500 * page_length = bytes to copy for this page
502 page_base = (offset & ~(PAGE_SIZE-1));
503 page_offset = offset & (PAGE_SIZE-1);
504 page_length = remain;
505 if ((page_offset + remain) > PAGE_SIZE)
506 page_length = PAGE_SIZE - page_offset;
508 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
509 page_offset, user_data, page_length);
511 /* If we get a fault while copying data, then (presumably) our
512 * source page isn't available. Return the error and we'll
513 * retry in the slow path.
515 if (ret)
516 goto fail;
518 remain -= page_length;
519 user_data += page_length;
520 offset += page_length;
523 fail:
524 i915_gem_object_unpin(obj);
525 mutex_unlock(&dev->struct_mutex);
527 return ret;
531 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
532 * the memory and maps it using kmap_atomic for copying.
534 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
535 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
537 static int
538 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
539 struct drm_i915_gem_pwrite *args,
540 struct drm_file *file_priv)
542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
543 drm_i915_private_t *dev_priv = dev->dev_private;
544 ssize_t remain;
545 loff_t gtt_page_base, offset;
546 loff_t first_data_page, last_data_page, num_pages;
547 loff_t pinned_pages, i;
548 struct page **user_pages;
549 struct mm_struct *mm = current->mm;
550 int gtt_page_offset, data_page_offset, data_page_index, page_length;
551 int ret;
552 uint64_t data_ptr = args->data_ptr;
554 remain = args->size;
556 /* Pin the user pages containing the data. We can't fault while
557 * holding the struct mutex, and all of the pwrite implementations
558 * want to hold it while dereferencing the user data.
560 first_data_page = data_ptr / PAGE_SIZE;
561 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
562 num_pages = last_data_page - first_data_page + 1;
564 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
565 if (user_pages == NULL)
566 return -ENOMEM;
568 down_read(&mm->mmap_sem);
569 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
570 num_pages, 0, 0, user_pages, NULL);
571 up_read(&mm->mmap_sem);
572 if (pinned_pages < num_pages) {
573 ret = -EFAULT;
574 goto out_unpin_pages;
577 mutex_lock(&dev->struct_mutex);
578 ret = i915_gem_object_pin(obj, 0);
579 if (ret)
580 goto out_unlock;
582 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
583 if (ret)
584 goto out_unpin_object;
586 obj_priv = obj->driver_private;
587 offset = obj_priv->gtt_offset + args->offset;
589 while (remain > 0) {
590 /* Operation in this page
592 * gtt_page_base = page offset within aperture
593 * gtt_page_offset = offset within page in aperture
594 * data_page_index = page number in get_user_pages return
595 * data_page_offset = offset with data_page_index page.
596 * page_length = bytes to copy for this page
598 gtt_page_base = offset & PAGE_MASK;
599 gtt_page_offset = offset & ~PAGE_MASK;
600 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
601 data_page_offset = data_ptr & ~PAGE_MASK;
603 page_length = remain;
604 if ((gtt_page_offset + page_length) > PAGE_SIZE)
605 page_length = PAGE_SIZE - gtt_page_offset;
606 if ((data_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - data_page_offset;
609 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
610 gtt_page_base, gtt_page_offset,
611 user_pages[data_page_index],
612 data_page_offset,
613 page_length);
615 /* If we get a fault while copying data, then (presumably) our
616 * source page isn't available. Return the error and we'll
617 * retry in the slow path.
619 if (ret)
620 goto out_unpin_object;
622 remain -= page_length;
623 offset += page_length;
624 data_ptr += page_length;
627 out_unpin_object:
628 i915_gem_object_unpin(obj);
629 out_unlock:
630 mutex_unlock(&dev->struct_mutex);
631 out_unpin_pages:
632 for (i = 0; i < pinned_pages; i++)
633 page_cache_release(user_pages[i]);
634 kfree(user_pages);
636 return ret;
640 * This is the fast shmem pwrite path, which attempts to directly
641 * copy_from_user into the kmapped pages backing the object.
643 static int
644 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
648 struct drm_i915_gem_object *obj_priv = obj->driver_private;
649 ssize_t remain;
650 loff_t offset, page_base;
651 char __user *user_data;
652 int page_offset, page_length;
653 int ret;
655 user_data = (char __user *) (uintptr_t) args->data_ptr;
656 remain = args->size;
658 mutex_lock(&dev->struct_mutex);
660 ret = i915_gem_object_get_pages(obj);
661 if (ret != 0)
662 goto fail_unlock;
664 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
665 if (ret != 0)
666 goto fail_put_pages;
668 obj_priv = obj->driver_private;
669 offset = args->offset;
670 obj_priv->dirty = 1;
672 while (remain > 0) {
673 /* Operation in this page
675 * page_base = page offset within aperture
676 * page_offset = offset within page
677 * page_length = bytes to copy for this page
679 page_base = (offset & ~(PAGE_SIZE-1));
680 page_offset = offset & (PAGE_SIZE-1);
681 page_length = remain;
682 if ((page_offset + remain) > PAGE_SIZE)
683 page_length = PAGE_SIZE - page_offset;
685 ret = fast_shmem_write(obj_priv->pages,
686 page_base, page_offset,
687 user_data, page_length);
688 if (ret)
689 goto fail_put_pages;
691 remain -= page_length;
692 user_data += page_length;
693 offset += page_length;
696 fail_put_pages:
697 i915_gem_object_put_pages(obj);
698 fail_unlock:
699 mutex_unlock(&dev->struct_mutex);
701 return ret;
705 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
706 * the memory and maps it using kmap_atomic for copying.
708 * This avoids taking mmap_sem for faulting on the user's address while the
709 * struct_mutex is held.
711 static int
712 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
713 struct drm_i915_gem_pwrite *args,
714 struct drm_file *file_priv)
716 struct drm_i915_gem_object *obj_priv = obj->driver_private;
717 struct mm_struct *mm = current->mm;
718 struct page **user_pages;
719 ssize_t remain;
720 loff_t offset, pinned_pages, i;
721 loff_t first_data_page, last_data_page, num_pages;
722 int shmem_page_index, shmem_page_offset;
723 int data_page_index, data_page_offset;
724 int page_length;
725 int ret;
726 uint64_t data_ptr = args->data_ptr;
728 remain = args->size;
730 /* Pin the user pages containing the data. We can't fault while
731 * holding the struct mutex, and all of the pwrite implementations
732 * want to hold it while dereferencing the user data.
734 first_data_page = data_ptr / PAGE_SIZE;
735 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
736 num_pages = last_data_page - first_data_page + 1;
738 user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
739 if (user_pages == NULL)
740 return -ENOMEM;
742 down_read(&mm->mmap_sem);
743 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
744 num_pages, 0, 0, user_pages, NULL);
745 up_read(&mm->mmap_sem);
746 if (pinned_pages < num_pages) {
747 ret = -EFAULT;
748 goto fail_put_user_pages;
751 mutex_lock(&dev->struct_mutex);
753 ret = i915_gem_object_get_pages(obj);
754 if (ret != 0)
755 goto fail_unlock;
757 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
758 if (ret != 0)
759 goto fail_put_pages;
761 obj_priv = obj->driver_private;
762 offset = args->offset;
763 obj_priv->dirty = 1;
765 while (remain > 0) {
766 /* Operation in this page
768 * shmem_page_index = page number within shmem file
769 * shmem_page_offset = offset within page in shmem file
770 * data_page_index = page number in get_user_pages return
771 * data_page_offset = offset with data_page_index page.
772 * page_length = bytes to copy for this page
774 shmem_page_index = offset / PAGE_SIZE;
775 shmem_page_offset = offset & ~PAGE_MASK;
776 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
777 data_page_offset = data_ptr & ~PAGE_MASK;
779 page_length = remain;
780 if ((shmem_page_offset + page_length) > PAGE_SIZE)
781 page_length = PAGE_SIZE - shmem_page_offset;
782 if ((data_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - data_page_offset;
785 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
786 shmem_page_offset,
787 user_pages[data_page_index],
788 data_page_offset,
789 page_length);
790 if (ret)
791 goto fail_put_pages;
793 remain -= page_length;
794 data_ptr += page_length;
795 offset += page_length;
798 fail_put_pages:
799 i915_gem_object_put_pages(obj);
800 fail_unlock:
801 mutex_unlock(&dev->struct_mutex);
802 fail_put_user_pages:
803 for (i = 0; i < pinned_pages; i++)
804 page_cache_release(user_pages[i]);
805 kfree(user_pages);
807 return ret;
811 * Writes data to the object referenced by handle.
813 * On error, the contents of the buffer that were to be modified are undefined.
816 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
817 struct drm_file *file_priv)
819 struct drm_i915_gem_pwrite *args = data;
820 struct drm_gem_object *obj;
821 struct drm_i915_gem_object *obj_priv;
822 int ret = 0;
824 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
825 if (obj == NULL)
826 return -EBADF;
827 obj_priv = obj->driver_private;
829 /* Bounds check destination.
831 * XXX: This could use review for overflow issues...
833 if (args->offset > obj->size || args->size > obj->size ||
834 args->offset + args->size > obj->size) {
835 drm_gem_object_unreference(obj);
836 return -EINVAL;
839 /* We can only do the GTT pwrite on untiled buffers, as otherwise
840 * it would end up going through the fenced access, and we'll get
841 * different detiling behavior between reading and writing.
842 * pread/pwrite currently are reading and writing from the CPU
843 * perspective, requiring manual detiling by the client.
845 if (obj_priv->phys_obj)
846 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
847 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
848 dev->gtt_total != 0) {
849 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
850 if (ret == -EFAULT) {
851 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
852 file_priv);
854 } else {
855 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
856 if (ret == -EFAULT) {
857 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
858 file_priv);
862 #if WATCH_PWRITE
863 if (ret)
864 DRM_INFO("pwrite failed %d\n", ret);
865 #endif
867 drm_gem_object_unreference(obj);
869 return ret;
873 * Called when user space prepares to use an object with the CPU, either
874 * through the mmap ioctl's mapping or a GTT mapping.
877 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
878 struct drm_file *file_priv)
880 struct drm_i915_gem_set_domain *args = data;
881 struct drm_gem_object *obj;
882 uint32_t read_domains = args->read_domains;
883 uint32_t write_domain = args->write_domain;
884 int ret;
886 if (!(dev->driver->driver_features & DRIVER_GEM))
887 return -ENODEV;
889 /* Only handle setting domains to types used by the CPU. */
890 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
891 return -EINVAL;
893 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
894 return -EINVAL;
896 /* Having something in the write domain implies it's in the read
897 * domain, and only that read domain. Enforce that in the request.
899 if (write_domain != 0 && read_domains != write_domain)
900 return -EINVAL;
902 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
903 if (obj == NULL)
904 return -EBADF;
906 mutex_lock(&dev->struct_mutex);
907 #if WATCH_BUF
908 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
909 obj, obj->size, read_domains, write_domain);
910 #endif
911 if (read_domains & I915_GEM_DOMAIN_GTT) {
912 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
914 /* Silently promote "you're not bound, there was nothing to do"
915 * to success, since the client was just asking us to
916 * make sure everything was done.
918 if (ret == -EINVAL)
919 ret = 0;
920 } else {
921 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
924 drm_gem_object_unreference(obj);
925 mutex_unlock(&dev->struct_mutex);
926 return ret;
930 * Called when user space has done writes to this buffer
933 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
934 struct drm_file *file_priv)
936 struct drm_i915_gem_sw_finish *args = data;
937 struct drm_gem_object *obj;
938 struct drm_i915_gem_object *obj_priv;
939 int ret = 0;
941 if (!(dev->driver->driver_features & DRIVER_GEM))
942 return -ENODEV;
944 mutex_lock(&dev->struct_mutex);
945 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
946 if (obj == NULL) {
947 mutex_unlock(&dev->struct_mutex);
948 return -EBADF;
951 #if WATCH_BUF
952 DRM_INFO("%s: sw_finish %d (%p %d)\n",
953 __func__, args->handle, obj, obj->size);
954 #endif
955 obj_priv = obj->driver_private;
957 /* Pinned buffers may be scanout, so flush the cache */
958 if (obj_priv->pin_count)
959 i915_gem_object_flush_cpu_write_domain(obj);
961 drm_gem_object_unreference(obj);
962 mutex_unlock(&dev->struct_mutex);
963 return ret;
967 * Maps the contents of an object, returning the address it is mapped
968 * into.
970 * While the mapping holds a reference on the contents of the object, it doesn't
971 * imply a ref on the object itself.
974 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
975 struct drm_file *file_priv)
977 struct drm_i915_gem_mmap *args = data;
978 struct drm_gem_object *obj;
979 loff_t offset;
980 unsigned long addr;
982 if (!(dev->driver->driver_features & DRIVER_GEM))
983 return -ENODEV;
985 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
986 if (obj == NULL)
987 return -EBADF;
989 offset = args->offset;
991 down_write(&current->mm->mmap_sem);
992 addr = do_mmap(obj->filp, 0, args->size,
993 PROT_READ | PROT_WRITE, MAP_SHARED,
994 args->offset);
995 up_write(&current->mm->mmap_sem);
996 mutex_lock(&dev->struct_mutex);
997 drm_gem_object_unreference(obj);
998 mutex_unlock(&dev->struct_mutex);
999 if (IS_ERR((void *)addr))
1000 return addr;
1002 args->addr_ptr = (uint64_t) addr;
1004 return 0;
1008 * i915_gem_fault - fault a page into the GTT
1009 * vma: VMA in question
1010 * vmf: fault info
1012 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1013 * from userspace. The fault handler takes care of binding the object to
1014 * the GTT (if needed), allocating and programming a fence register (again,
1015 * only if needed based on whether the old reg is still valid or the object
1016 * is tiled) and inserting a new PTE into the faulting process.
1018 * Note that the faulting process may involve evicting existing objects
1019 * from the GTT and/or fence registers to make room. So performance may
1020 * suffer if the GTT working set is large or there are few fence registers
1021 * left.
1023 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1025 struct drm_gem_object *obj = vma->vm_private_data;
1026 struct drm_device *dev = obj->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1028 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1029 pgoff_t page_offset;
1030 unsigned long pfn;
1031 int ret = 0;
1032 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1034 /* We don't use vmf->pgoff since that has the fake offset */
1035 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1036 PAGE_SHIFT;
1038 /* Now bind it into the GTT if needed */
1039 mutex_lock(&dev->struct_mutex);
1040 if (!obj_priv->gtt_space) {
1041 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1042 if (ret) {
1043 mutex_unlock(&dev->struct_mutex);
1044 return VM_FAULT_SIGBUS;
1046 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1049 /* Need a new fence register? */
1050 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1051 obj_priv->tiling_mode != I915_TILING_NONE) {
1052 ret = i915_gem_object_get_fence_reg(obj, write);
1053 if (ret) {
1054 mutex_unlock(&dev->struct_mutex);
1055 return VM_FAULT_SIGBUS;
1059 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1060 page_offset;
1062 /* Finally, remap it using the new GTT offset */
1063 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1065 mutex_unlock(&dev->struct_mutex);
1067 switch (ret) {
1068 case -ENOMEM:
1069 case -EAGAIN:
1070 return VM_FAULT_OOM;
1071 case -EFAULT:
1072 return VM_FAULT_SIGBUS;
1073 default:
1074 return VM_FAULT_NOPAGE;
1079 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1080 * @obj: obj in question
1082 * GEM memory mapping works by handing back to userspace a fake mmap offset
1083 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1084 * up the object based on the offset and sets up the various memory mapping
1085 * structures.
1087 * This routine allocates and attaches a fake offset for @obj.
1089 static int
1090 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1092 struct drm_device *dev = obj->dev;
1093 struct drm_gem_mm *mm = dev->mm_private;
1094 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1095 struct drm_map_list *list;
1096 struct drm_local_map *map;
1097 int ret = 0;
1099 /* Set the object up for mmap'ing */
1100 list = &obj->map_list;
1101 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1102 DRM_MEM_DRIVER);
1103 if (!list->map)
1104 return -ENOMEM;
1106 map = list->map;
1107 map->type = _DRM_GEM;
1108 map->size = obj->size;
1109 map->handle = obj;
1111 /* Get a DRM GEM mmap offset allocated... */
1112 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1113 obj->size / PAGE_SIZE, 0, 0);
1114 if (!list->file_offset_node) {
1115 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1116 ret = -ENOMEM;
1117 goto out_free_list;
1120 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1121 obj->size / PAGE_SIZE, 0);
1122 if (!list->file_offset_node) {
1123 ret = -ENOMEM;
1124 goto out_free_list;
1127 list->hash.key = list->file_offset_node->start;
1128 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1129 DRM_ERROR("failed to add to map hash\n");
1130 goto out_free_mm;
1133 /* By now we should be all set, any drm_mmap request on the offset
1134 * below will get to our mmap & fault handler */
1135 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1137 return 0;
1139 out_free_mm:
1140 drm_mm_put_block(list->file_offset_node);
1141 out_free_list:
1142 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1144 return ret;
1147 static void
1148 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1150 struct drm_device *dev = obj->dev;
1151 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1152 struct drm_gem_mm *mm = dev->mm_private;
1153 struct drm_map_list *list;
1155 list = &obj->map_list;
1156 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1158 if (list->file_offset_node) {
1159 drm_mm_put_block(list->file_offset_node);
1160 list->file_offset_node = NULL;
1163 if (list->map) {
1164 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1165 list->map = NULL;
1168 obj_priv->mmap_offset = 0;
1172 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1173 * @obj: object to check
1175 * Return the required GTT alignment for an object, taking into account
1176 * potential fence register mapping if needed.
1178 static uint32_t
1179 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1181 struct drm_device *dev = obj->dev;
1182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1183 int start, i;
1186 * Minimum alignment is 4k (GTT page size), but might be greater
1187 * if a fence register is needed for the object.
1189 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1190 return 4096;
1193 * Previous chips need to be aligned to the size of the smallest
1194 * fence register that can contain the object.
1196 if (IS_I9XX(dev))
1197 start = 1024*1024;
1198 else
1199 start = 512*1024;
1201 for (i = start; i < obj->size; i <<= 1)
1204 return i;
1208 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1209 * @dev: DRM device
1210 * @data: GTT mapping ioctl data
1211 * @file_priv: GEM object info
1213 * Simply returns the fake offset to userspace so it can mmap it.
1214 * The mmap call will end up in drm_gem_mmap(), which will set things
1215 * up so we can get faults in the handler above.
1217 * The fault handler will take care of binding the object into the GTT
1218 * (since it may have been evicted to make room for something), allocating
1219 * a fence register, and mapping the appropriate aperture address into
1220 * userspace.
1223 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1224 struct drm_file *file_priv)
1226 struct drm_i915_gem_mmap_gtt *args = data;
1227 struct drm_i915_private *dev_priv = dev->dev_private;
1228 struct drm_gem_object *obj;
1229 struct drm_i915_gem_object *obj_priv;
1230 int ret;
1232 if (!(dev->driver->driver_features & DRIVER_GEM))
1233 return -ENODEV;
1235 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1236 if (obj == NULL)
1237 return -EBADF;
1239 mutex_lock(&dev->struct_mutex);
1241 obj_priv = obj->driver_private;
1243 if (!obj_priv->mmap_offset) {
1244 ret = i915_gem_create_mmap_offset(obj);
1245 if (ret) {
1246 drm_gem_object_unreference(obj);
1247 mutex_unlock(&dev->struct_mutex);
1248 return ret;
1252 args->offset = obj_priv->mmap_offset;
1254 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1256 /* Make sure the alignment is correct for fence regs etc */
1257 if (obj_priv->agp_mem &&
1258 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1259 drm_gem_object_unreference(obj);
1260 mutex_unlock(&dev->struct_mutex);
1261 return -EINVAL;
1265 * Pull it into the GTT so that we have a page list (makes the
1266 * initial fault faster and any subsequent flushing possible).
1268 if (!obj_priv->agp_mem) {
1269 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1270 if (ret) {
1271 drm_gem_object_unreference(obj);
1272 mutex_unlock(&dev->struct_mutex);
1273 return ret;
1275 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
1278 drm_gem_object_unreference(obj);
1279 mutex_unlock(&dev->struct_mutex);
1281 return 0;
1284 static void
1285 i915_gem_object_put_pages(struct drm_gem_object *obj)
1287 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288 int page_count = obj->size / PAGE_SIZE;
1289 int i;
1291 BUG_ON(obj_priv->pages_refcount == 0);
1293 if (--obj_priv->pages_refcount != 0)
1294 return;
1296 for (i = 0; i < page_count; i++)
1297 if (obj_priv->pages[i] != NULL) {
1298 if (obj_priv->dirty)
1299 set_page_dirty(obj_priv->pages[i]);
1300 mark_page_accessed(obj_priv->pages[i]);
1301 page_cache_release(obj_priv->pages[i]);
1303 obj_priv->dirty = 0;
1305 drm_free(obj_priv->pages,
1306 page_count * sizeof(struct page *),
1307 DRM_MEM_DRIVER);
1308 obj_priv->pages = NULL;
1311 static void
1312 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1314 struct drm_device *dev = obj->dev;
1315 drm_i915_private_t *dev_priv = dev->dev_private;
1316 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1318 /* Add a reference if we're newly entering the active list. */
1319 if (!obj_priv->active) {
1320 drm_gem_object_reference(obj);
1321 obj_priv->active = 1;
1323 /* Move from whatever list we were on to the tail of execution. */
1324 list_move_tail(&obj_priv->list,
1325 &dev_priv->mm.active_list);
1326 obj_priv->last_rendering_seqno = seqno;
1329 static void
1330 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1332 struct drm_device *dev = obj->dev;
1333 drm_i915_private_t *dev_priv = dev->dev_private;
1334 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1336 BUG_ON(!obj_priv->active);
1337 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1338 obj_priv->last_rendering_seqno = 0;
1341 static void
1342 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1344 struct drm_device *dev = obj->dev;
1345 drm_i915_private_t *dev_priv = dev->dev_private;
1346 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1348 i915_verify_inactive(dev, __FILE__, __LINE__);
1349 if (obj_priv->pin_count != 0)
1350 list_del_init(&obj_priv->list);
1351 else
1352 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1354 obj_priv->last_rendering_seqno = 0;
1355 if (obj_priv->active) {
1356 obj_priv->active = 0;
1357 drm_gem_object_unreference(obj);
1359 i915_verify_inactive(dev, __FILE__, __LINE__);
1363 * Creates a new sequence number, emitting a write of it to the status page
1364 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1366 * Must be called with struct_lock held.
1368 * Returned sequence numbers are nonzero on success.
1370 static uint32_t
1371 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1373 drm_i915_private_t *dev_priv = dev->dev_private;
1374 struct drm_i915_gem_request *request;
1375 uint32_t seqno;
1376 int was_empty;
1377 RING_LOCALS;
1379 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1380 if (request == NULL)
1381 return 0;
1383 /* Grab the seqno we're going to make this request be, and bump the
1384 * next (skipping 0 so it can be the reserved no-seqno value).
1386 seqno = dev_priv->mm.next_gem_seqno;
1387 dev_priv->mm.next_gem_seqno++;
1388 if (dev_priv->mm.next_gem_seqno == 0)
1389 dev_priv->mm.next_gem_seqno++;
1391 BEGIN_LP_RING(4);
1392 OUT_RING(MI_STORE_DWORD_INDEX);
1393 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1394 OUT_RING(seqno);
1396 OUT_RING(MI_USER_INTERRUPT);
1397 ADVANCE_LP_RING();
1399 DRM_DEBUG("%d\n", seqno);
1401 request->seqno = seqno;
1402 request->emitted_jiffies = jiffies;
1403 was_empty = list_empty(&dev_priv->mm.request_list);
1404 list_add_tail(&request->list, &dev_priv->mm.request_list);
1406 /* Associate any objects on the flushing list matching the write
1407 * domain we're flushing with our flush.
1409 if (flush_domains != 0) {
1410 struct drm_i915_gem_object *obj_priv, *next;
1412 list_for_each_entry_safe(obj_priv, next,
1413 &dev_priv->mm.flushing_list, list) {
1414 struct drm_gem_object *obj = obj_priv->obj;
1416 if ((obj->write_domain & flush_domains) ==
1417 obj->write_domain) {
1418 obj->write_domain = 0;
1419 i915_gem_object_move_to_active(obj, seqno);
1425 if (was_empty && !dev_priv->mm.suspended)
1426 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1427 return seqno;
1431 * Command execution barrier
1433 * Ensures that all commands in the ring are finished
1434 * before signalling the CPU
1436 static uint32_t
1437 i915_retire_commands(struct drm_device *dev)
1439 drm_i915_private_t *dev_priv = dev->dev_private;
1440 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1441 uint32_t flush_domains = 0;
1442 RING_LOCALS;
1444 /* The sampler always gets flushed on i965 (sigh) */
1445 if (IS_I965G(dev))
1446 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1447 BEGIN_LP_RING(2);
1448 OUT_RING(cmd);
1449 OUT_RING(0); /* noop */
1450 ADVANCE_LP_RING();
1451 return flush_domains;
1455 * Moves buffers associated only with the given active seqno from the active
1456 * to inactive list, potentially freeing them.
1458 static void
1459 i915_gem_retire_request(struct drm_device *dev,
1460 struct drm_i915_gem_request *request)
1462 drm_i915_private_t *dev_priv = dev->dev_private;
1464 /* Move any buffers on the active list that are no longer referenced
1465 * by the ringbuffer to the flushing/inactive lists as appropriate.
1467 while (!list_empty(&dev_priv->mm.active_list)) {
1468 struct drm_gem_object *obj;
1469 struct drm_i915_gem_object *obj_priv;
1471 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1472 struct drm_i915_gem_object,
1473 list);
1474 obj = obj_priv->obj;
1476 /* If the seqno being retired doesn't match the oldest in the
1477 * list, then the oldest in the list must still be newer than
1478 * this seqno.
1480 if (obj_priv->last_rendering_seqno != request->seqno)
1481 return;
1483 #if WATCH_LRU
1484 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1485 __func__, request->seqno, obj);
1486 #endif
1488 if (obj->write_domain != 0)
1489 i915_gem_object_move_to_flushing(obj);
1490 else
1491 i915_gem_object_move_to_inactive(obj);
1496 * Returns true if seq1 is later than seq2.
1498 static int
1499 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1501 return (int32_t)(seq1 - seq2) >= 0;
1504 uint32_t
1505 i915_get_gem_seqno(struct drm_device *dev)
1507 drm_i915_private_t *dev_priv = dev->dev_private;
1509 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1513 * This function clears the request list as sequence numbers are passed.
1515 void
1516 i915_gem_retire_requests(struct drm_device *dev)
1518 drm_i915_private_t *dev_priv = dev->dev_private;
1519 uint32_t seqno;
1521 if (!dev_priv->hw_status_page)
1522 return;
1524 seqno = i915_get_gem_seqno(dev);
1526 while (!list_empty(&dev_priv->mm.request_list)) {
1527 struct drm_i915_gem_request *request;
1528 uint32_t retiring_seqno;
1530 request = list_first_entry(&dev_priv->mm.request_list,
1531 struct drm_i915_gem_request,
1532 list);
1533 retiring_seqno = request->seqno;
1535 if (i915_seqno_passed(seqno, retiring_seqno) ||
1536 dev_priv->mm.wedged) {
1537 i915_gem_retire_request(dev, request);
1539 list_del(&request->list);
1540 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1541 } else
1542 break;
1546 void
1547 i915_gem_retire_work_handler(struct work_struct *work)
1549 drm_i915_private_t *dev_priv;
1550 struct drm_device *dev;
1552 dev_priv = container_of(work, drm_i915_private_t,
1553 mm.retire_work.work);
1554 dev = dev_priv->dev;
1556 mutex_lock(&dev->struct_mutex);
1557 i915_gem_retire_requests(dev);
1558 if (!dev_priv->mm.suspended &&
1559 !list_empty(&dev_priv->mm.request_list))
1560 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1561 mutex_unlock(&dev->struct_mutex);
1565 * Waits for a sequence number to be signaled, and cleans up the
1566 * request and object lists appropriately for that event.
1568 static int
1569 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1571 drm_i915_private_t *dev_priv = dev->dev_private;
1572 int ret = 0;
1574 BUG_ON(seqno == 0);
1576 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1577 dev_priv->mm.waiting_gem_seqno = seqno;
1578 i915_user_irq_get(dev);
1579 ret = wait_event_interruptible(dev_priv->irq_queue,
1580 i915_seqno_passed(i915_get_gem_seqno(dev),
1581 seqno) ||
1582 dev_priv->mm.wedged);
1583 i915_user_irq_put(dev);
1584 dev_priv->mm.waiting_gem_seqno = 0;
1586 if (dev_priv->mm.wedged)
1587 ret = -EIO;
1589 if (ret && ret != -ERESTARTSYS)
1590 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1591 __func__, ret, seqno, i915_get_gem_seqno(dev));
1593 /* Directly dispatch request retiring. While we have the work queue
1594 * to handle this, the waiter on a request often wants an associated
1595 * buffer to have made it to the inactive list, and we would need
1596 * a separate wait queue to handle that.
1598 if (ret == 0)
1599 i915_gem_retire_requests(dev);
1601 return ret;
1604 static void
1605 i915_gem_flush(struct drm_device *dev,
1606 uint32_t invalidate_domains,
1607 uint32_t flush_domains)
1609 drm_i915_private_t *dev_priv = dev->dev_private;
1610 uint32_t cmd;
1611 RING_LOCALS;
1613 #if WATCH_EXEC
1614 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1615 invalidate_domains, flush_domains);
1616 #endif
1618 if (flush_domains & I915_GEM_DOMAIN_CPU)
1619 drm_agp_chipset_flush(dev);
1621 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1622 I915_GEM_DOMAIN_GTT)) {
1624 * read/write caches:
1626 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1627 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1628 * also flushed at 2d versus 3d pipeline switches.
1630 * read-only caches:
1632 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1633 * MI_READ_FLUSH is set, and is always flushed on 965.
1635 * I915_GEM_DOMAIN_COMMAND may not exist?
1637 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1638 * invalidated when MI_EXE_FLUSH is set.
1640 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1641 * invalidated with every MI_FLUSH.
1643 * TLBs:
1645 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1646 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1647 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1648 * are flushed at any MI_FLUSH.
1651 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1652 if ((invalidate_domains|flush_domains) &
1653 I915_GEM_DOMAIN_RENDER)
1654 cmd &= ~MI_NO_WRITE_FLUSH;
1655 if (!IS_I965G(dev)) {
1657 * On the 965, the sampler cache always gets flushed
1658 * and this bit is reserved.
1660 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1661 cmd |= MI_READ_FLUSH;
1663 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1664 cmd |= MI_EXE_FLUSH;
1666 #if WATCH_EXEC
1667 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1668 #endif
1669 BEGIN_LP_RING(2);
1670 OUT_RING(cmd);
1671 OUT_RING(0); /* noop */
1672 ADVANCE_LP_RING();
1677 * Ensures that all rendering to the object has completed and the object is
1678 * safe to unbind from the GTT or access from the CPU.
1680 static int
1681 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1683 struct drm_device *dev = obj->dev;
1684 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1685 int ret;
1687 /* This function only exists to support waiting for existing rendering,
1688 * not for emitting required flushes.
1690 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1692 /* If there is rendering queued on the buffer being evicted, wait for
1693 * it.
1695 if (obj_priv->active) {
1696 #if WATCH_BUF
1697 DRM_INFO("%s: object %p wait for seqno %08x\n",
1698 __func__, obj, obj_priv->last_rendering_seqno);
1699 #endif
1700 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1701 if (ret != 0)
1702 return ret;
1705 return 0;
1709 * Unbinds an object from the GTT aperture.
1712 i915_gem_object_unbind(struct drm_gem_object *obj)
1714 struct drm_device *dev = obj->dev;
1715 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1716 loff_t offset;
1717 int ret = 0;
1719 #if WATCH_BUF
1720 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1721 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1722 #endif
1723 if (obj_priv->gtt_space == NULL)
1724 return 0;
1726 if (obj_priv->pin_count != 0) {
1727 DRM_ERROR("Attempting to unbind pinned buffer\n");
1728 return -EINVAL;
1731 /* Move the object to the CPU domain to ensure that
1732 * any possible CPU writes while it's not in the GTT
1733 * are flushed when we go to remap it. This will
1734 * also ensure that all pending GPU writes are finished
1735 * before we unbind.
1737 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1738 if (ret) {
1739 if (ret != -ERESTARTSYS)
1740 DRM_ERROR("set_domain failed: %d\n", ret);
1741 return ret;
1744 if (obj_priv->agp_mem != NULL) {
1745 drm_unbind_agp(obj_priv->agp_mem);
1746 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1747 obj_priv->agp_mem = NULL;
1750 BUG_ON(obj_priv->active);
1752 /* blow away mappings if mapped through GTT */
1753 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1754 if (dev->dev_mapping)
1755 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1757 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1758 i915_gem_clear_fence_reg(obj);
1760 i915_gem_object_put_pages(obj);
1762 if (obj_priv->gtt_space) {
1763 atomic_dec(&dev->gtt_count);
1764 atomic_sub(obj->size, &dev->gtt_memory);
1766 drm_mm_put_block(obj_priv->gtt_space);
1767 obj_priv->gtt_space = NULL;
1770 /* Remove ourselves from the LRU list if present. */
1771 if (!list_empty(&obj_priv->list))
1772 list_del_init(&obj_priv->list);
1774 return 0;
1777 static int
1778 i915_gem_evict_something(struct drm_device *dev)
1780 drm_i915_private_t *dev_priv = dev->dev_private;
1781 struct drm_gem_object *obj;
1782 struct drm_i915_gem_object *obj_priv;
1783 int ret = 0;
1785 for (;;) {
1786 /* If there's an inactive buffer available now, grab it
1787 * and be done.
1789 if (!list_empty(&dev_priv->mm.inactive_list)) {
1790 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1791 struct drm_i915_gem_object,
1792 list);
1793 obj = obj_priv->obj;
1794 BUG_ON(obj_priv->pin_count != 0);
1795 #if WATCH_LRU
1796 DRM_INFO("%s: evicting %p\n", __func__, obj);
1797 #endif
1798 BUG_ON(obj_priv->active);
1800 /* Wait on the rendering and unbind the buffer. */
1801 ret = i915_gem_object_unbind(obj);
1802 break;
1805 /* If we didn't get anything, but the ring is still processing
1806 * things, wait for one of those things to finish and hopefully
1807 * leave us a buffer to evict.
1809 if (!list_empty(&dev_priv->mm.request_list)) {
1810 struct drm_i915_gem_request *request;
1812 request = list_first_entry(&dev_priv->mm.request_list,
1813 struct drm_i915_gem_request,
1814 list);
1816 ret = i915_wait_request(dev, request->seqno);
1817 if (ret)
1818 break;
1820 /* if waiting caused an object to become inactive,
1821 * then loop around and wait for it. Otherwise, we
1822 * assume that waiting freed and unbound something,
1823 * so there should now be some space in the GTT
1825 if (!list_empty(&dev_priv->mm.inactive_list))
1826 continue;
1827 break;
1830 /* If we didn't have anything on the request list but there
1831 * are buffers awaiting a flush, emit one and try again.
1832 * When we wait on it, those buffers waiting for that flush
1833 * will get moved to inactive.
1835 if (!list_empty(&dev_priv->mm.flushing_list)) {
1836 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1837 struct drm_i915_gem_object,
1838 list);
1839 obj = obj_priv->obj;
1841 i915_gem_flush(dev,
1842 obj->write_domain,
1843 obj->write_domain);
1844 i915_add_request(dev, obj->write_domain);
1846 obj = NULL;
1847 continue;
1850 DRM_ERROR("inactive empty %d request empty %d "
1851 "flushing empty %d\n",
1852 list_empty(&dev_priv->mm.inactive_list),
1853 list_empty(&dev_priv->mm.request_list),
1854 list_empty(&dev_priv->mm.flushing_list));
1855 /* If we didn't do any of the above, there's nothing to be done
1856 * and we just can't fit it in.
1858 return -ENOMEM;
1860 return ret;
1863 static int
1864 i915_gem_evict_everything(struct drm_device *dev)
1866 int ret;
1868 for (;;) {
1869 ret = i915_gem_evict_something(dev);
1870 if (ret != 0)
1871 break;
1873 if (ret == -ENOMEM)
1874 return 0;
1875 return ret;
1878 static int
1879 i915_gem_object_get_pages(struct drm_gem_object *obj)
1881 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1882 int page_count, i;
1883 struct address_space *mapping;
1884 struct inode *inode;
1885 struct page *page;
1886 int ret;
1888 if (obj_priv->pages_refcount++ != 0)
1889 return 0;
1891 /* Get the list of pages out of our struct file. They'll be pinned
1892 * at this point until we release them.
1894 page_count = obj->size / PAGE_SIZE;
1895 BUG_ON(obj_priv->pages != NULL);
1896 obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
1897 DRM_MEM_DRIVER);
1898 if (obj_priv->pages == NULL) {
1899 DRM_ERROR("Faled to allocate page list\n");
1900 obj_priv->pages_refcount--;
1901 return -ENOMEM;
1904 inode = obj->filp->f_path.dentry->d_inode;
1905 mapping = inode->i_mapping;
1906 for (i = 0; i < page_count; i++) {
1907 page = read_mapping_page(mapping, i, NULL);
1908 if (IS_ERR(page)) {
1909 ret = PTR_ERR(page);
1910 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1911 i915_gem_object_put_pages(obj);
1912 return ret;
1914 obj_priv->pages[i] = page;
1916 return 0;
1919 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1921 struct drm_gem_object *obj = reg->obj;
1922 struct drm_device *dev = obj->dev;
1923 drm_i915_private_t *dev_priv = dev->dev_private;
1924 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1925 int regnum = obj_priv->fence_reg;
1926 uint64_t val;
1928 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1929 0xfffff000) << 32;
1930 val |= obj_priv->gtt_offset & 0xfffff000;
1931 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1932 if (obj_priv->tiling_mode == I915_TILING_Y)
1933 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1934 val |= I965_FENCE_REG_VALID;
1936 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1939 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1941 struct drm_gem_object *obj = reg->obj;
1942 struct drm_device *dev = obj->dev;
1943 drm_i915_private_t *dev_priv = dev->dev_private;
1944 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1945 int regnum = obj_priv->fence_reg;
1946 int tile_width;
1947 uint32_t fence_reg, val;
1948 uint32_t pitch_val;
1950 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1951 (obj_priv->gtt_offset & (obj->size - 1))) {
1952 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
1953 __func__, obj_priv->gtt_offset, obj->size);
1954 return;
1957 if (obj_priv->tiling_mode == I915_TILING_Y &&
1958 HAS_128_BYTE_Y_TILING(dev))
1959 tile_width = 128;
1960 else
1961 tile_width = 512;
1963 /* Note: pitch better be a power of two tile widths */
1964 pitch_val = obj_priv->stride / tile_width;
1965 pitch_val = ffs(pitch_val) - 1;
1967 val = obj_priv->gtt_offset;
1968 if (obj_priv->tiling_mode == I915_TILING_Y)
1969 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1970 val |= I915_FENCE_SIZE_BITS(obj->size);
1971 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1972 val |= I830_FENCE_REG_VALID;
1974 if (regnum < 8)
1975 fence_reg = FENCE_REG_830_0 + (regnum * 4);
1976 else
1977 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
1978 I915_WRITE(fence_reg, val);
1981 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1983 struct drm_gem_object *obj = reg->obj;
1984 struct drm_device *dev = obj->dev;
1985 drm_i915_private_t *dev_priv = dev->dev_private;
1986 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1987 int regnum = obj_priv->fence_reg;
1988 uint32_t val;
1989 uint32_t pitch_val;
1991 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1992 (obj_priv->gtt_offset & (obj->size - 1))) {
1993 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1994 __func__, obj_priv->gtt_offset);
1995 return;
1998 pitch_val = (obj_priv->stride / 128) - 1;
2000 val = obj_priv->gtt_offset;
2001 if (obj_priv->tiling_mode == I915_TILING_Y)
2002 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2003 val |= I830_FENCE_SIZE_BITS(obj->size);
2004 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2005 val |= I830_FENCE_REG_VALID;
2007 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2012 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2013 * @obj: object to map through a fence reg
2014 * @write: object is about to be written
2016 * When mapping objects through the GTT, userspace wants to be able to write
2017 * to them without having to worry about swizzling if the object is tiled.
2019 * This function walks the fence regs looking for a free one for @obj,
2020 * stealing one if it can't find any.
2022 * It then sets up the reg based on the object's properties: address, pitch
2023 * and tiling format.
2025 static int
2026 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2028 struct drm_device *dev = obj->dev;
2029 struct drm_i915_private *dev_priv = dev->dev_private;
2030 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2031 struct drm_i915_fence_reg *reg = NULL;
2032 struct drm_i915_gem_object *old_obj_priv = NULL;
2033 int i, ret, avail;
2035 switch (obj_priv->tiling_mode) {
2036 case I915_TILING_NONE:
2037 WARN(1, "allocating a fence for non-tiled object?\n");
2038 break;
2039 case I915_TILING_X:
2040 if (!obj_priv->stride)
2041 return -EINVAL;
2042 WARN((obj_priv->stride & (512 - 1)),
2043 "object 0x%08x is X tiled but has non-512B pitch\n",
2044 obj_priv->gtt_offset);
2045 break;
2046 case I915_TILING_Y:
2047 if (!obj_priv->stride)
2048 return -EINVAL;
2049 WARN((obj_priv->stride & (128 - 1)),
2050 "object 0x%08x is Y tiled but has non-128B pitch\n",
2051 obj_priv->gtt_offset);
2052 break;
2055 /* First try to find a free reg */
2056 try_again:
2057 avail = 0;
2058 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2059 reg = &dev_priv->fence_regs[i];
2060 if (!reg->obj)
2061 break;
2063 old_obj_priv = reg->obj->driver_private;
2064 if (!old_obj_priv->pin_count)
2065 avail++;
2068 /* None available, try to steal one or wait for a user to finish */
2069 if (i == dev_priv->num_fence_regs) {
2070 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2071 loff_t offset;
2073 if (avail == 0)
2074 return -ENOMEM;
2076 for (i = dev_priv->fence_reg_start;
2077 i < dev_priv->num_fence_regs; i++) {
2078 uint32_t this_seqno;
2080 reg = &dev_priv->fence_regs[i];
2081 old_obj_priv = reg->obj->driver_private;
2083 if (old_obj_priv->pin_count)
2084 continue;
2086 /* i915 uses fences for GPU access to tiled buffers */
2087 if (IS_I965G(dev) || !old_obj_priv->active)
2088 break;
2090 /* find the seqno of the first available fence */
2091 this_seqno = old_obj_priv->last_rendering_seqno;
2092 if (this_seqno != 0 &&
2093 reg->obj->write_domain == 0 &&
2094 i915_seqno_passed(seqno, this_seqno))
2095 seqno = this_seqno;
2099 * Now things get ugly... we have to wait for one of the
2100 * objects to finish before trying again.
2102 if (i == dev_priv->num_fence_regs) {
2103 if (seqno == dev_priv->mm.next_gem_seqno) {
2104 i915_gem_flush(dev,
2105 I915_GEM_GPU_DOMAINS,
2106 I915_GEM_GPU_DOMAINS);
2107 seqno = i915_add_request(dev,
2108 I915_GEM_GPU_DOMAINS);
2109 if (seqno == 0)
2110 return -ENOMEM;
2113 ret = i915_wait_request(dev, seqno);
2114 if (ret)
2115 return ret;
2116 goto try_again;
2119 BUG_ON(old_obj_priv->active ||
2120 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2123 * Zap this virtual mapping so we can set up a fence again
2124 * for this object next time we need it.
2126 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2127 if (dev->dev_mapping)
2128 unmap_mapping_range(dev->dev_mapping, offset,
2129 reg->obj->size, 1);
2130 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2133 obj_priv->fence_reg = i;
2134 reg->obj = obj;
2136 if (IS_I965G(dev))
2137 i965_write_fence_reg(reg);
2138 else if (IS_I9XX(dev))
2139 i915_write_fence_reg(reg);
2140 else
2141 i830_write_fence_reg(reg);
2143 return 0;
2147 * i915_gem_clear_fence_reg - clear out fence register info
2148 * @obj: object to clear
2150 * Zeroes out the fence register itself and clears out the associated
2151 * data structures in dev_priv and obj_priv.
2153 static void
2154 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2156 struct drm_device *dev = obj->dev;
2157 drm_i915_private_t *dev_priv = dev->dev_private;
2158 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2160 if (IS_I965G(dev))
2161 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2162 else {
2163 uint32_t fence_reg;
2165 if (obj_priv->fence_reg < 8)
2166 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2167 else
2168 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2169 8) * 4;
2171 I915_WRITE(fence_reg, 0);
2174 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2175 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2179 * Finds free space in the GTT aperture and binds the object there.
2181 static int
2182 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2184 struct drm_device *dev = obj->dev;
2185 drm_i915_private_t *dev_priv = dev->dev_private;
2186 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2187 struct drm_mm_node *free_space;
2188 int page_count, ret;
2190 if (dev_priv->mm.suspended)
2191 return -EBUSY;
2192 if (alignment == 0)
2193 alignment = i915_gem_get_gtt_alignment(obj);
2194 if (alignment & (PAGE_SIZE - 1)) {
2195 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2196 return -EINVAL;
2199 search_free:
2200 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2201 obj->size, alignment, 0);
2202 if (free_space != NULL) {
2203 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2204 alignment);
2205 if (obj_priv->gtt_space != NULL) {
2206 obj_priv->gtt_space->private = obj;
2207 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2210 if (obj_priv->gtt_space == NULL) {
2211 /* If the gtt is empty and we're still having trouble
2212 * fitting our object in, we're out of memory.
2214 #if WATCH_LRU
2215 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2216 #endif
2217 if (list_empty(&dev_priv->mm.inactive_list) &&
2218 list_empty(&dev_priv->mm.flushing_list) &&
2219 list_empty(&dev_priv->mm.active_list)) {
2220 DRM_ERROR("GTT full, but LRU list empty\n");
2221 return -ENOMEM;
2224 ret = i915_gem_evict_something(dev);
2225 if (ret != 0) {
2226 if (ret != -ERESTARTSYS)
2227 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2228 return ret;
2230 goto search_free;
2233 #if WATCH_BUF
2234 DRM_INFO("Binding object of size %d at 0x%08x\n",
2235 obj->size, obj_priv->gtt_offset);
2236 #endif
2237 ret = i915_gem_object_get_pages(obj);
2238 if (ret) {
2239 drm_mm_put_block(obj_priv->gtt_space);
2240 obj_priv->gtt_space = NULL;
2241 return ret;
2244 page_count = obj->size / PAGE_SIZE;
2245 /* Create an AGP memory structure pointing at our pages, and bind it
2246 * into the GTT.
2248 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2249 obj_priv->pages,
2250 page_count,
2251 obj_priv->gtt_offset,
2252 obj_priv->agp_type);
2253 if (obj_priv->agp_mem == NULL) {
2254 i915_gem_object_put_pages(obj);
2255 drm_mm_put_block(obj_priv->gtt_space);
2256 obj_priv->gtt_space = NULL;
2257 return -ENOMEM;
2259 atomic_inc(&dev->gtt_count);
2260 atomic_add(obj->size, &dev->gtt_memory);
2262 /* Assert that the object is not currently in any GPU domain. As it
2263 * wasn't in the GTT, there shouldn't be any way it could have been in
2264 * a GPU cache
2266 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2267 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2269 return 0;
2272 void
2273 i915_gem_clflush_object(struct drm_gem_object *obj)
2275 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2277 /* If we don't have a page list set up, then we're not pinned
2278 * to GPU, and we can ignore the cache flush because it'll happen
2279 * again at bind time.
2281 if (obj_priv->pages == NULL)
2282 return;
2284 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2287 /** Flushes any GPU write domain for the object if it's dirty. */
2288 static void
2289 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2291 struct drm_device *dev = obj->dev;
2292 uint32_t seqno;
2294 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2295 return;
2297 /* Queue the GPU write cache flushing we need. */
2298 i915_gem_flush(dev, 0, obj->write_domain);
2299 seqno = i915_add_request(dev, obj->write_domain);
2300 obj->write_domain = 0;
2301 i915_gem_object_move_to_active(obj, seqno);
2304 /** Flushes the GTT write domain for the object if it's dirty. */
2305 static void
2306 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2308 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2309 return;
2311 /* No actual flushing is required for the GTT write domain. Writes
2312 * to it immediately go to main memory as far as we know, so there's
2313 * no chipset flush. It also doesn't land in render cache.
2315 obj->write_domain = 0;
2318 /** Flushes the CPU write domain for the object if it's dirty. */
2319 static void
2320 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2322 struct drm_device *dev = obj->dev;
2324 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2325 return;
2327 i915_gem_clflush_object(obj);
2328 drm_agp_chipset_flush(dev);
2329 obj->write_domain = 0;
2333 * Moves a single object to the GTT read, and possibly write domain.
2335 * This function returns when the move is complete, including waiting on
2336 * flushes to occur.
2339 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342 int ret;
2344 /* Not valid to be called on unbound objects. */
2345 if (obj_priv->gtt_space == NULL)
2346 return -EINVAL;
2348 i915_gem_object_flush_gpu_write_domain(obj);
2349 /* Wait on any GPU rendering and flushing to occur. */
2350 ret = i915_gem_object_wait_rendering(obj);
2351 if (ret != 0)
2352 return ret;
2354 /* If we're writing through the GTT domain, then CPU and GPU caches
2355 * will need to be invalidated at next use.
2357 if (write)
2358 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2360 i915_gem_object_flush_cpu_write_domain(obj);
2362 /* It should now be out of any other write domains, and we can update
2363 * the domain values for our changes.
2365 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2366 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2367 if (write) {
2368 obj->write_domain = I915_GEM_DOMAIN_GTT;
2369 obj_priv->dirty = 1;
2372 return 0;
2376 * Moves a single object to the CPU read, and possibly write domain.
2378 * This function returns when the move is complete, including waiting on
2379 * flushes to occur.
2381 static int
2382 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2384 int ret;
2386 i915_gem_object_flush_gpu_write_domain(obj);
2387 /* Wait on any GPU rendering and flushing to occur. */
2388 ret = i915_gem_object_wait_rendering(obj);
2389 if (ret != 0)
2390 return ret;
2392 i915_gem_object_flush_gtt_write_domain(obj);
2394 /* If we have a partially-valid cache of the object in the CPU,
2395 * finish invalidating it and free the per-page flags.
2397 i915_gem_object_set_to_full_cpu_read_domain(obj);
2399 /* Flush the CPU cache if it's still invalid. */
2400 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2401 i915_gem_clflush_object(obj);
2403 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2406 /* It should now be out of any other write domains, and we can update
2407 * the domain values for our changes.
2409 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2411 /* If we're writing through the CPU, then the GPU read domains will
2412 * need to be invalidated at next use.
2414 if (write) {
2415 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2416 obj->write_domain = I915_GEM_DOMAIN_CPU;
2419 return 0;
2423 * Set the next domain for the specified object. This
2424 * may not actually perform the necessary flushing/invaliding though,
2425 * as that may want to be batched with other set_domain operations
2427 * This is (we hope) the only really tricky part of gem. The goal
2428 * is fairly simple -- track which caches hold bits of the object
2429 * and make sure they remain coherent. A few concrete examples may
2430 * help to explain how it works. For shorthand, we use the notation
2431 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2432 * a pair of read and write domain masks.
2434 * Case 1: the batch buffer
2436 * 1. Allocated
2437 * 2. Written by CPU
2438 * 3. Mapped to GTT
2439 * 4. Read by GPU
2440 * 5. Unmapped from GTT
2441 * 6. Freed
2443 * Let's take these a step at a time
2445 * 1. Allocated
2446 * Pages allocated from the kernel may still have
2447 * cache contents, so we set them to (CPU, CPU) always.
2448 * 2. Written by CPU (using pwrite)
2449 * The pwrite function calls set_domain (CPU, CPU) and
2450 * this function does nothing (as nothing changes)
2451 * 3. Mapped by GTT
2452 * This function asserts that the object is not
2453 * currently in any GPU-based read or write domains
2454 * 4. Read by GPU
2455 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2456 * As write_domain is zero, this function adds in the
2457 * current read domains (CPU+COMMAND, 0).
2458 * flush_domains is set to CPU.
2459 * invalidate_domains is set to COMMAND
2460 * clflush is run to get data out of the CPU caches
2461 * then i915_dev_set_domain calls i915_gem_flush to
2462 * emit an MI_FLUSH and drm_agp_chipset_flush
2463 * 5. Unmapped from GTT
2464 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2465 * flush_domains and invalidate_domains end up both zero
2466 * so no flushing/invalidating happens
2467 * 6. Freed
2468 * yay, done
2470 * Case 2: The shared render buffer
2472 * 1. Allocated
2473 * 2. Mapped to GTT
2474 * 3. Read/written by GPU
2475 * 4. set_domain to (CPU,CPU)
2476 * 5. Read/written by CPU
2477 * 6. Read/written by GPU
2479 * 1. Allocated
2480 * Same as last example, (CPU, CPU)
2481 * 2. Mapped to GTT
2482 * Nothing changes (assertions find that it is not in the GPU)
2483 * 3. Read/written by GPU
2484 * execbuffer calls set_domain (RENDER, RENDER)
2485 * flush_domains gets CPU
2486 * invalidate_domains gets GPU
2487 * clflush (obj)
2488 * MI_FLUSH and drm_agp_chipset_flush
2489 * 4. set_domain (CPU, CPU)
2490 * flush_domains gets GPU
2491 * invalidate_domains gets CPU
2492 * wait_rendering (obj) to make sure all drawing is complete.
2493 * This will include an MI_FLUSH to get the data from GPU
2494 * to memory
2495 * clflush (obj) to invalidate the CPU cache
2496 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2497 * 5. Read/written by CPU
2498 * cache lines are loaded and dirtied
2499 * 6. Read written by GPU
2500 * Same as last GPU access
2502 * Case 3: The constant buffer
2504 * 1. Allocated
2505 * 2. Written by CPU
2506 * 3. Read by GPU
2507 * 4. Updated (written) by CPU again
2508 * 5. Read by GPU
2510 * 1. Allocated
2511 * (CPU, CPU)
2512 * 2. Written by CPU
2513 * (CPU, CPU)
2514 * 3. Read by GPU
2515 * (CPU+RENDER, 0)
2516 * flush_domains = CPU
2517 * invalidate_domains = RENDER
2518 * clflush (obj)
2519 * MI_FLUSH
2520 * drm_agp_chipset_flush
2521 * 4. Updated (written) by CPU again
2522 * (CPU, CPU)
2523 * flush_domains = 0 (no previous write domain)
2524 * invalidate_domains = 0 (no new read domains)
2525 * 5. Read by GPU
2526 * (CPU+RENDER, 0)
2527 * flush_domains = CPU
2528 * invalidate_domains = RENDER
2529 * clflush (obj)
2530 * MI_FLUSH
2531 * drm_agp_chipset_flush
2533 static void
2534 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2536 struct drm_device *dev = obj->dev;
2537 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2538 uint32_t invalidate_domains = 0;
2539 uint32_t flush_domains = 0;
2541 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2542 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2544 #if WATCH_BUF
2545 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2546 __func__, obj,
2547 obj->read_domains, obj->pending_read_domains,
2548 obj->write_domain, obj->pending_write_domain);
2549 #endif
2551 * If the object isn't moving to a new write domain,
2552 * let the object stay in multiple read domains
2554 if (obj->pending_write_domain == 0)
2555 obj->pending_read_domains |= obj->read_domains;
2556 else
2557 obj_priv->dirty = 1;
2560 * Flush the current write domain if
2561 * the new read domains don't match. Invalidate
2562 * any read domains which differ from the old
2563 * write domain
2565 if (obj->write_domain &&
2566 obj->write_domain != obj->pending_read_domains) {
2567 flush_domains |= obj->write_domain;
2568 invalidate_domains |=
2569 obj->pending_read_domains & ~obj->write_domain;
2572 * Invalidate any read caches which may have
2573 * stale data. That is, any new read domains.
2575 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2576 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2577 #if WATCH_BUF
2578 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2579 __func__, flush_domains, invalidate_domains);
2580 #endif
2581 i915_gem_clflush_object(obj);
2584 /* The actual obj->write_domain will be updated with
2585 * pending_write_domain after we emit the accumulated flush for all
2586 * of our domain changes in execbuffers (which clears objects'
2587 * write_domains). So if we have a current write domain that we
2588 * aren't changing, set pending_write_domain to that.
2590 if (flush_domains == 0 && obj->pending_write_domain == 0)
2591 obj->pending_write_domain = obj->write_domain;
2592 obj->read_domains = obj->pending_read_domains;
2594 dev->invalidate_domains |= invalidate_domains;
2595 dev->flush_domains |= flush_domains;
2596 #if WATCH_BUF
2597 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2598 __func__,
2599 obj->read_domains, obj->write_domain,
2600 dev->invalidate_domains, dev->flush_domains);
2601 #endif
2605 * Moves the object from a partially CPU read to a full one.
2607 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2608 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2610 static void
2611 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2613 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2615 if (!obj_priv->page_cpu_valid)
2616 return;
2618 /* If we're partially in the CPU read domain, finish moving it in.
2620 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2621 int i;
2623 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2624 if (obj_priv->page_cpu_valid[i])
2625 continue;
2626 drm_clflush_pages(obj_priv->pages + i, 1);
2630 /* Free the page_cpu_valid mappings which are now stale, whether
2631 * or not we've got I915_GEM_DOMAIN_CPU.
2633 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2634 DRM_MEM_DRIVER);
2635 obj_priv->page_cpu_valid = NULL;
2639 * Set the CPU read domain on a range of the object.
2641 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2642 * not entirely valid. The page_cpu_valid member of the object flags which
2643 * pages have been flushed, and will be respected by
2644 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2645 * of the whole object.
2647 * This function returns when the move is complete, including waiting on
2648 * flushes to occur.
2650 static int
2651 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2652 uint64_t offset, uint64_t size)
2654 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2655 int i, ret;
2657 if (offset == 0 && size == obj->size)
2658 return i915_gem_object_set_to_cpu_domain(obj, 0);
2660 i915_gem_object_flush_gpu_write_domain(obj);
2661 /* Wait on any GPU rendering and flushing to occur. */
2662 ret = i915_gem_object_wait_rendering(obj);
2663 if (ret != 0)
2664 return ret;
2665 i915_gem_object_flush_gtt_write_domain(obj);
2667 /* If we're already fully in the CPU read domain, we're done. */
2668 if (obj_priv->page_cpu_valid == NULL &&
2669 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2670 return 0;
2672 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2673 * newly adding I915_GEM_DOMAIN_CPU
2675 if (obj_priv->page_cpu_valid == NULL) {
2676 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2677 DRM_MEM_DRIVER);
2678 if (obj_priv->page_cpu_valid == NULL)
2679 return -ENOMEM;
2680 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2681 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2683 /* Flush the cache on any pages that are still invalid from the CPU's
2684 * perspective.
2686 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2687 i++) {
2688 if (obj_priv->page_cpu_valid[i])
2689 continue;
2691 drm_clflush_pages(obj_priv->pages + i, 1);
2693 obj_priv->page_cpu_valid[i] = 1;
2696 /* It should now be out of any other write domains, and we can update
2697 * the domain values for our changes.
2699 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2701 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2703 return 0;
2707 * Pin an object to the GTT and evaluate the relocations landing in it.
2709 static int
2710 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2711 struct drm_file *file_priv,
2712 struct drm_i915_gem_exec_object *entry,
2713 struct drm_i915_gem_relocation_entry *relocs)
2715 struct drm_device *dev = obj->dev;
2716 drm_i915_private_t *dev_priv = dev->dev_private;
2717 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2718 int i, ret;
2719 void __iomem *reloc_page;
2721 /* Choose the GTT offset for our buffer and put it there. */
2722 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2723 if (ret)
2724 return ret;
2726 entry->offset = obj_priv->gtt_offset;
2728 /* Apply the relocations, using the GTT aperture to avoid cache
2729 * flushing requirements.
2731 for (i = 0; i < entry->relocation_count; i++) {
2732 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2733 struct drm_gem_object *target_obj;
2734 struct drm_i915_gem_object *target_obj_priv;
2735 uint32_t reloc_val, reloc_offset;
2736 uint32_t __iomem *reloc_entry;
2738 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2739 reloc->target_handle);
2740 if (target_obj == NULL) {
2741 i915_gem_object_unpin(obj);
2742 return -EBADF;
2744 target_obj_priv = target_obj->driver_private;
2746 /* The target buffer should have appeared before us in the
2747 * exec_object list, so it should have a GTT space bound by now.
2749 if (target_obj_priv->gtt_space == NULL) {
2750 DRM_ERROR("No GTT space found for object %d\n",
2751 reloc->target_handle);
2752 drm_gem_object_unreference(target_obj);
2753 i915_gem_object_unpin(obj);
2754 return -EINVAL;
2757 if (reloc->offset > obj->size - 4) {
2758 DRM_ERROR("Relocation beyond object bounds: "
2759 "obj %p target %d offset %d size %d.\n",
2760 obj, reloc->target_handle,
2761 (int) reloc->offset, (int) obj->size);
2762 drm_gem_object_unreference(target_obj);
2763 i915_gem_object_unpin(obj);
2764 return -EINVAL;
2766 if (reloc->offset & 3) {
2767 DRM_ERROR("Relocation not 4-byte aligned: "
2768 "obj %p target %d offset %d.\n",
2769 obj, reloc->target_handle,
2770 (int) reloc->offset);
2771 drm_gem_object_unreference(target_obj);
2772 i915_gem_object_unpin(obj);
2773 return -EINVAL;
2776 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2777 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2778 DRM_ERROR("reloc with read/write CPU domains: "
2779 "obj %p target %d offset %d "
2780 "read %08x write %08x",
2781 obj, reloc->target_handle,
2782 (int) reloc->offset,
2783 reloc->read_domains,
2784 reloc->write_domain);
2785 drm_gem_object_unreference(target_obj);
2786 i915_gem_object_unpin(obj);
2787 return -EINVAL;
2790 if (reloc->write_domain && target_obj->pending_write_domain &&
2791 reloc->write_domain != target_obj->pending_write_domain) {
2792 DRM_ERROR("Write domain conflict: "
2793 "obj %p target %d offset %d "
2794 "new %08x old %08x\n",
2795 obj, reloc->target_handle,
2796 (int) reloc->offset,
2797 reloc->write_domain,
2798 target_obj->pending_write_domain);
2799 drm_gem_object_unreference(target_obj);
2800 i915_gem_object_unpin(obj);
2801 return -EINVAL;
2804 #if WATCH_RELOC
2805 DRM_INFO("%s: obj %p offset %08x target %d "
2806 "read %08x write %08x gtt %08x "
2807 "presumed %08x delta %08x\n",
2808 __func__,
2809 obj,
2810 (int) reloc->offset,
2811 (int) reloc->target_handle,
2812 (int) reloc->read_domains,
2813 (int) reloc->write_domain,
2814 (int) target_obj_priv->gtt_offset,
2815 (int) reloc->presumed_offset,
2816 reloc->delta);
2817 #endif
2819 target_obj->pending_read_domains |= reloc->read_domains;
2820 target_obj->pending_write_domain |= reloc->write_domain;
2822 /* If the relocation already has the right value in it, no
2823 * more work needs to be done.
2825 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2826 drm_gem_object_unreference(target_obj);
2827 continue;
2830 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2831 if (ret != 0) {
2832 drm_gem_object_unreference(target_obj);
2833 i915_gem_object_unpin(obj);
2834 return -EINVAL;
2837 /* Map the page containing the relocation we're going to
2838 * perform.
2840 reloc_offset = obj_priv->gtt_offset + reloc->offset;
2841 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2842 (reloc_offset &
2843 ~(PAGE_SIZE - 1)));
2844 reloc_entry = (uint32_t __iomem *)(reloc_page +
2845 (reloc_offset & (PAGE_SIZE - 1)));
2846 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
2848 #if WATCH_BUF
2849 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2850 obj, (unsigned int) reloc->offset,
2851 readl(reloc_entry), reloc_val);
2852 #endif
2853 writel(reloc_val, reloc_entry);
2854 io_mapping_unmap_atomic(reloc_page);
2856 /* The updated presumed offset for this entry will be
2857 * copied back out to the user.
2859 reloc->presumed_offset = target_obj_priv->gtt_offset;
2861 drm_gem_object_unreference(target_obj);
2864 #if WATCH_BUF
2865 if (0)
2866 i915_gem_dump_object(obj, 128, __func__, ~0);
2867 #endif
2868 return 0;
2871 /** Dispatch a batchbuffer to the ring
2873 static int
2874 i915_dispatch_gem_execbuffer(struct drm_device *dev,
2875 struct drm_i915_gem_execbuffer *exec,
2876 struct drm_clip_rect *cliprects,
2877 uint64_t exec_offset)
2879 drm_i915_private_t *dev_priv = dev->dev_private;
2880 int nbox = exec->num_cliprects;
2881 int i = 0, count;
2882 uint32_t exec_start, exec_len;
2883 RING_LOCALS;
2885 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2886 exec_len = (uint32_t) exec->batch_len;
2888 if ((exec_start | exec_len) & 0x7) {
2889 DRM_ERROR("alignment\n");
2890 return -EINVAL;
2893 if (!exec_start)
2894 return -EINVAL;
2896 count = nbox ? nbox : 1;
2898 for (i = 0; i < count; i++) {
2899 if (i < nbox) {
2900 int ret = i915_emit_box(dev, cliprects, i,
2901 exec->DR1, exec->DR4);
2902 if (ret)
2903 return ret;
2906 if (IS_I830(dev) || IS_845G(dev)) {
2907 BEGIN_LP_RING(4);
2908 OUT_RING(MI_BATCH_BUFFER);
2909 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2910 OUT_RING(exec_start + exec_len - 4);
2911 OUT_RING(0);
2912 ADVANCE_LP_RING();
2913 } else {
2914 BEGIN_LP_RING(2);
2915 if (IS_I965G(dev)) {
2916 OUT_RING(MI_BATCH_BUFFER_START |
2917 (2 << 6) |
2918 MI_BATCH_NON_SECURE_I965);
2919 OUT_RING(exec_start);
2920 } else {
2921 OUT_RING(MI_BATCH_BUFFER_START |
2922 (2 << 6));
2923 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2925 ADVANCE_LP_RING();
2929 /* XXX breadcrumb */
2930 return 0;
2933 /* Throttle our rendering by waiting until the ring has completed our requests
2934 * emitted over 20 msec ago.
2936 * This should get us reasonable parallelism between CPU and GPU but also
2937 * relatively low latency when blocking on a particular request to finish.
2939 static int
2940 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2942 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2943 int ret = 0;
2944 uint32_t seqno;
2946 mutex_lock(&dev->struct_mutex);
2947 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2948 i915_file_priv->mm.last_gem_throttle_seqno =
2949 i915_file_priv->mm.last_gem_seqno;
2950 if (seqno)
2951 ret = i915_wait_request(dev, seqno);
2952 mutex_unlock(&dev->struct_mutex);
2953 return ret;
2956 static int
2957 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
2958 uint32_t buffer_count,
2959 struct drm_i915_gem_relocation_entry **relocs)
2961 uint32_t reloc_count = 0, reloc_index = 0, i;
2962 int ret;
2964 *relocs = NULL;
2965 for (i = 0; i < buffer_count; i++) {
2966 if (reloc_count + exec_list[i].relocation_count < reloc_count)
2967 return -EINVAL;
2968 reloc_count += exec_list[i].relocation_count;
2971 *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
2972 if (*relocs == NULL)
2973 return -ENOMEM;
2975 for (i = 0; i < buffer_count; i++) {
2976 struct drm_i915_gem_relocation_entry __user *user_relocs;
2978 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
2980 ret = copy_from_user(&(*relocs)[reloc_index],
2981 user_relocs,
2982 exec_list[i].relocation_count *
2983 sizeof(**relocs));
2984 if (ret != 0) {
2985 drm_free(*relocs, reloc_count * sizeof(**relocs),
2986 DRM_MEM_DRIVER);
2987 *relocs = NULL;
2988 return ret;
2991 reloc_index += exec_list[i].relocation_count;
2994 return ret;
2997 static int
2998 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
2999 uint32_t buffer_count,
3000 struct drm_i915_gem_relocation_entry *relocs)
3002 uint32_t reloc_count = 0, i;
3003 int ret;
3005 for (i = 0; i < buffer_count; i++) {
3006 struct drm_i915_gem_relocation_entry __user *user_relocs;
3008 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3010 if (ret == 0) {
3011 ret = copy_to_user(user_relocs,
3012 &relocs[reloc_count],
3013 exec_list[i].relocation_count *
3014 sizeof(*relocs));
3017 reloc_count += exec_list[i].relocation_count;
3020 drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
3022 return ret;
3026 i915_gem_execbuffer(struct drm_device *dev, void *data,
3027 struct drm_file *file_priv)
3029 drm_i915_private_t *dev_priv = dev->dev_private;
3030 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3031 struct drm_i915_gem_execbuffer *args = data;
3032 struct drm_i915_gem_exec_object *exec_list = NULL;
3033 struct drm_gem_object **object_list = NULL;
3034 struct drm_gem_object *batch_obj;
3035 struct drm_i915_gem_object *obj_priv;
3036 struct drm_clip_rect *cliprects = NULL;
3037 struct drm_i915_gem_relocation_entry *relocs;
3038 int ret, ret2, i, pinned = 0;
3039 uint64_t exec_offset;
3040 uint32_t seqno, flush_domains, reloc_index;
3041 int pin_tries;
3043 #if WATCH_EXEC
3044 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3045 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3046 #endif
3048 if (args->buffer_count < 1) {
3049 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3050 return -EINVAL;
3052 /* Copy in the exec list from userland */
3053 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
3054 DRM_MEM_DRIVER);
3055 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
3056 DRM_MEM_DRIVER);
3057 if (exec_list == NULL || object_list == NULL) {
3058 DRM_ERROR("Failed to allocate exec or object list "
3059 "for %d buffers\n",
3060 args->buffer_count);
3061 ret = -ENOMEM;
3062 goto pre_mutex_err;
3064 ret = copy_from_user(exec_list,
3065 (struct drm_i915_relocation_entry __user *)
3066 (uintptr_t) args->buffers_ptr,
3067 sizeof(*exec_list) * args->buffer_count);
3068 if (ret != 0) {
3069 DRM_ERROR("copy %d exec entries failed %d\n",
3070 args->buffer_count, ret);
3071 goto pre_mutex_err;
3074 if (args->num_cliprects != 0) {
3075 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3076 DRM_MEM_DRIVER);
3077 if (cliprects == NULL)
3078 goto pre_mutex_err;
3080 ret = copy_from_user(cliprects,
3081 (struct drm_clip_rect __user *)
3082 (uintptr_t) args->cliprects_ptr,
3083 sizeof(*cliprects) * args->num_cliprects);
3084 if (ret != 0) {
3085 DRM_ERROR("copy %d cliprects failed: %d\n",
3086 args->num_cliprects, ret);
3087 goto pre_mutex_err;
3091 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3092 &relocs);
3093 if (ret != 0)
3094 goto pre_mutex_err;
3096 mutex_lock(&dev->struct_mutex);
3098 i915_verify_inactive(dev, __FILE__, __LINE__);
3100 if (dev_priv->mm.wedged) {
3101 DRM_ERROR("Execbuf while wedged\n");
3102 mutex_unlock(&dev->struct_mutex);
3103 ret = -EIO;
3104 goto pre_mutex_err;
3107 if (dev_priv->mm.suspended) {
3108 DRM_ERROR("Execbuf while VT-switched.\n");
3109 mutex_unlock(&dev->struct_mutex);
3110 ret = -EBUSY;
3111 goto pre_mutex_err;
3114 /* Look up object handles */
3115 for (i = 0; i < args->buffer_count; i++) {
3116 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3117 exec_list[i].handle);
3118 if (object_list[i] == NULL) {
3119 DRM_ERROR("Invalid object handle %d at index %d\n",
3120 exec_list[i].handle, i);
3121 ret = -EBADF;
3122 goto err;
3125 obj_priv = object_list[i]->driver_private;
3126 if (obj_priv->in_execbuffer) {
3127 DRM_ERROR("Object %p appears more than once in object list\n",
3128 object_list[i]);
3129 ret = -EBADF;
3130 goto err;
3132 obj_priv->in_execbuffer = true;
3135 /* Pin and relocate */
3136 for (pin_tries = 0; ; pin_tries++) {
3137 ret = 0;
3138 reloc_index = 0;
3140 for (i = 0; i < args->buffer_count; i++) {
3141 object_list[i]->pending_read_domains = 0;
3142 object_list[i]->pending_write_domain = 0;
3143 ret = i915_gem_object_pin_and_relocate(object_list[i],
3144 file_priv,
3145 &exec_list[i],
3146 &relocs[reloc_index]);
3147 if (ret)
3148 break;
3149 pinned = i + 1;
3150 reloc_index += exec_list[i].relocation_count;
3152 /* success */
3153 if (ret == 0)
3154 break;
3156 /* error other than GTT full, or we've already tried again */
3157 if (ret != -ENOMEM || pin_tries >= 1) {
3158 if (ret != -ERESTARTSYS)
3159 DRM_ERROR("Failed to pin buffers %d\n", ret);
3160 goto err;
3163 /* unpin all of our buffers */
3164 for (i = 0; i < pinned; i++)
3165 i915_gem_object_unpin(object_list[i]);
3166 pinned = 0;
3168 /* evict everyone we can from the aperture */
3169 ret = i915_gem_evict_everything(dev);
3170 if (ret)
3171 goto err;
3174 /* Set the pending read domains for the batch buffer to COMMAND */
3175 batch_obj = object_list[args->buffer_count-1];
3176 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3177 batch_obj->pending_write_domain = 0;
3179 i915_verify_inactive(dev, __FILE__, __LINE__);
3181 /* Zero the global flush/invalidate flags. These
3182 * will be modified as new domains are computed
3183 * for each object
3185 dev->invalidate_domains = 0;
3186 dev->flush_domains = 0;
3188 for (i = 0; i < args->buffer_count; i++) {
3189 struct drm_gem_object *obj = object_list[i];
3191 /* Compute new gpu domains and update invalidate/flush */
3192 i915_gem_object_set_to_gpu_domain(obj);
3195 i915_verify_inactive(dev, __FILE__, __LINE__);
3197 if (dev->invalidate_domains | dev->flush_domains) {
3198 #if WATCH_EXEC
3199 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3200 __func__,
3201 dev->invalidate_domains,
3202 dev->flush_domains);
3203 #endif
3204 i915_gem_flush(dev,
3205 dev->invalidate_domains,
3206 dev->flush_domains);
3207 if (dev->flush_domains)
3208 (void)i915_add_request(dev, dev->flush_domains);
3211 for (i = 0; i < args->buffer_count; i++) {
3212 struct drm_gem_object *obj = object_list[i];
3214 obj->write_domain = obj->pending_write_domain;
3217 i915_verify_inactive(dev, __FILE__, __LINE__);
3219 #if WATCH_COHERENCY
3220 for (i = 0; i < args->buffer_count; i++) {
3221 i915_gem_object_check_coherency(object_list[i],
3222 exec_list[i].handle);
3224 #endif
3226 exec_offset = exec_list[args->buffer_count - 1].offset;
3228 #if WATCH_EXEC
3229 i915_gem_dump_object(object_list[args->buffer_count - 1],
3230 args->batch_len,
3231 __func__,
3232 ~0);
3233 #endif
3235 /* Exec the batchbuffer */
3236 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3237 if (ret) {
3238 DRM_ERROR("dispatch failed %d\n", ret);
3239 goto err;
3243 * Ensure that the commands in the batch buffer are
3244 * finished before the interrupt fires
3246 flush_domains = i915_retire_commands(dev);
3248 i915_verify_inactive(dev, __FILE__, __LINE__);
3251 * Get a seqno representing the execution of the current buffer,
3252 * which we can wait on. We would like to mitigate these interrupts,
3253 * likely by only creating seqnos occasionally (so that we have
3254 * *some* interrupts representing completion of buffers that we can
3255 * wait on when trying to clear up gtt space).
3257 seqno = i915_add_request(dev, flush_domains);
3258 BUG_ON(seqno == 0);
3259 i915_file_priv->mm.last_gem_seqno = seqno;
3260 for (i = 0; i < args->buffer_count; i++) {
3261 struct drm_gem_object *obj = object_list[i];
3263 i915_gem_object_move_to_active(obj, seqno);
3264 #if WATCH_LRU
3265 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3266 #endif
3268 #if WATCH_LRU
3269 i915_dump_lru(dev, __func__);
3270 #endif
3272 i915_verify_inactive(dev, __FILE__, __LINE__);
3274 err:
3275 for (i = 0; i < pinned; i++)
3276 i915_gem_object_unpin(object_list[i]);
3278 for (i = 0; i < args->buffer_count; i++) {
3279 if (object_list[i]) {
3280 obj_priv = object_list[i]->driver_private;
3281 obj_priv->in_execbuffer = false;
3283 drm_gem_object_unreference(object_list[i]);
3286 mutex_unlock(&dev->struct_mutex);
3288 if (!ret) {
3289 /* Copy the new buffer offsets back to the user's exec list. */
3290 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3291 (uintptr_t) args->buffers_ptr,
3292 exec_list,
3293 sizeof(*exec_list) * args->buffer_count);
3294 if (ret)
3295 DRM_ERROR("failed to copy %d exec entries "
3296 "back to user (%d)\n",
3297 args->buffer_count, ret);
3300 /* Copy the updated relocations out regardless of current error
3301 * state. Failure to update the relocs would mean that the next
3302 * time userland calls execbuf, it would do so with presumed offset
3303 * state that didn't match the actual object state.
3305 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3306 relocs);
3307 if (ret2 != 0) {
3308 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3310 if (ret == 0)
3311 ret = ret2;
3314 pre_mutex_err:
3315 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
3316 DRM_MEM_DRIVER);
3317 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
3318 DRM_MEM_DRIVER);
3319 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3320 DRM_MEM_DRIVER);
3322 return ret;
3326 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3328 struct drm_device *dev = obj->dev;
3329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3330 int ret;
3332 i915_verify_inactive(dev, __FILE__, __LINE__);
3333 if (obj_priv->gtt_space == NULL) {
3334 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3335 if (ret != 0) {
3336 if (ret != -EBUSY && ret != -ERESTARTSYS)
3337 DRM_ERROR("Failure to bind: %d\n", ret);
3338 return ret;
3342 * Pre-965 chips need a fence register set up in order to
3343 * properly handle tiled surfaces.
3345 if (!IS_I965G(dev) &&
3346 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3347 obj_priv->tiling_mode != I915_TILING_NONE) {
3348 ret = i915_gem_object_get_fence_reg(obj, true);
3349 if (ret != 0) {
3350 if (ret != -EBUSY && ret != -ERESTARTSYS)
3351 DRM_ERROR("Failure to install fence: %d\n",
3352 ret);
3353 return ret;
3356 obj_priv->pin_count++;
3358 /* If the object is not active and not pending a flush,
3359 * remove it from the inactive list
3361 if (obj_priv->pin_count == 1) {
3362 atomic_inc(&dev->pin_count);
3363 atomic_add(obj->size, &dev->pin_memory);
3364 if (!obj_priv->active &&
3365 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3366 I915_GEM_DOMAIN_GTT)) == 0 &&
3367 !list_empty(&obj_priv->list))
3368 list_del_init(&obj_priv->list);
3370 i915_verify_inactive(dev, __FILE__, __LINE__);
3372 return 0;
3375 void
3376 i915_gem_object_unpin(struct drm_gem_object *obj)
3378 struct drm_device *dev = obj->dev;
3379 drm_i915_private_t *dev_priv = dev->dev_private;
3380 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3382 i915_verify_inactive(dev, __FILE__, __LINE__);
3383 obj_priv->pin_count--;
3384 BUG_ON(obj_priv->pin_count < 0);
3385 BUG_ON(obj_priv->gtt_space == NULL);
3387 /* If the object is no longer pinned, and is
3388 * neither active nor being flushed, then stick it on
3389 * the inactive list
3391 if (obj_priv->pin_count == 0) {
3392 if (!obj_priv->active &&
3393 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3394 I915_GEM_DOMAIN_GTT)) == 0)
3395 list_move_tail(&obj_priv->list,
3396 &dev_priv->mm.inactive_list);
3397 atomic_dec(&dev->pin_count);
3398 atomic_sub(obj->size, &dev->pin_memory);
3400 i915_verify_inactive(dev, __FILE__, __LINE__);
3404 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file_priv)
3407 struct drm_i915_gem_pin *args = data;
3408 struct drm_gem_object *obj;
3409 struct drm_i915_gem_object *obj_priv;
3410 int ret;
3412 mutex_lock(&dev->struct_mutex);
3414 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3415 if (obj == NULL) {
3416 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3417 args->handle);
3418 mutex_unlock(&dev->struct_mutex);
3419 return -EBADF;
3421 obj_priv = obj->driver_private;
3423 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3424 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3425 args->handle);
3426 drm_gem_object_unreference(obj);
3427 mutex_unlock(&dev->struct_mutex);
3428 return -EINVAL;
3431 obj_priv->user_pin_count++;
3432 obj_priv->pin_filp = file_priv;
3433 if (obj_priv->user_pin_count == 1) {
3434 ret = i915_gem_object_pin(obj, args->alignment);
3435 if (ret != 0) {
3436 drm_gem_object_unreference(obj);
3437 mutex_unlock(&dev->struct_mutex);
3438 return ret;
3442 /* XXX - flush the CPU caches for pinned objects
3443 * as the X server doesn't manage domains yet
3445 i915_gem_object_flush_cpu_write_domain(obj);
3446 args->offset = obj_priv->gtt_offset;
3447 drm_gem_object_unreference(obj);
3448 mutex_unlock(&dev->struct_mutex);
3450 return 0;
3454 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3455 struct drm_file *file_priv)
3457 struct drm_i915_gem_pin *args = data;
3458 struct drm_gem_object *obj;
3459 struct drm_i915_gem_object *obj_priv;
3461 mutex_lock(&dev->struct_mutex);
3463 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3464 if (obj == NULL) {
3465 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3466 args->handle);
3467 mutex_unlock(&dev->struct_mutex);
3468 return -EBADF;
3471 obj_priv = obj->driver_private;
3472 if (obj_priv->pin_filp != file_priv) {
3473 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3474 args->handle);
3475 drm_gem_object_unreference(obj);
3476 mutex_unlock(&dev->struct_mutex);
3477 return -EINVAL;
3479 obj_priv->user_pin_count--;
3480 if (obj_priv->user_pin_count == 0) {
3481 obj_priv->pin_filp = NULL;
3482 i915_gem_object_unpin(obj);
3485 drm_gem_object_unreference(obj);
3486 mutex_unlock(&dev->struct_mutex);
3487 return 0;
3491 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3492 struct drm_file *file_priv)
3494 struct drm_i915_gem_busy *args = data;
3495 struct drm_gem_object *obj;
3496 struct drm_i915_gem_object *obj_priv;
3498 mutex_lock(&dev->struct_mutex);
3499 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3500 if (obj == NULL) {
3501 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3502 args->handle);
3503 mutex_unlock(&dev->struct_mutex);
3504 return -EBADF;
3507 /* Update the active list for the hardware's current position.
3508 * Otherwise this only updates on a delayed timer or when irqs are
3509 * actually unmasked, and our working set ends up being larger than
3510 * required.
3512 i915_gem_retire_requests(dev);
3514 obj_priv = obj->driver_private;
3515 /* Don't count being on the flushing list against the object being
3516 * done. Otherwise, a buffer left on the flushing list but not getting
3517 * flushed (because nobody's flushing that domain) won't ever return
3518 * unbusy and get reused by libdrm's bo cache. The other expected
3519 * consumer of this interface, OpenGL's occlusion queries, also specs
3520 * that the objects get unbusy "eventually" without any interference.
3522 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3524 drm_gem_object_unreference(obj);
3525 mutex_unlock(&dev->struct_mutex);
3526 return 0;
3530 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3531 struct drm_file *file_priv)
3533 return i915_gem_ring_throttle(dev, file_priv);
3536 int i915_gem_init_object(struct drm_gem_object *obj)
3538 struct drm_i915_gem_object *obj_priv;
3540 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3541 if (obj_priv == NULL)
3542 return -ENOMEM;
3545 * We've just allocated pages from the kernel,
3546 * so they've just been written by the CPU with
3547 * zeros. They'll need to be clflushed before we
3548 * use them with the GPU.
3550 obj->write_domain = I915_GEM_DOMAIN_CPU;
3551 obj->read_domains = I915_GEM_DOMAIN_CPU;
3553 obj_priv->agp_type = AGP_USER_MEMORY;
3555 obj->driver_private = obj_priv;
3556 obj_priv->obj = obj;
3557 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3558 INIT_LIST_HEAD(&obj_priv->list);
3560 return 0;
3563 void i915_gem_free_object(struct drm_gem_object *obj)
3565 struct drm_device *dev = obj->dev;
3566 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3568 while (obj_priv->pin_count > 0)
3569 i915_gem_object_unpin(obj);
3571 if (obj_priv->phys_obj)
3572 i915_gem_detach_phys_object(dev, obj);
3574 i915_gem_object_unbind(obj);
3576 i915_gem_free_mmap_offset(obj);
3578 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3579 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3582 /** Unbinds all objects that are on the given buffer list. */
3583 static int
3584 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3586 struct drm_gem_object *obj;
3587 struct drm_i915_gem_object *obj_priv;
3588 int ret;
3590 while (!list_empty(head)) {
3591 obj_priv = list_first_entry(head,
3592 struct drm_i915_gem_object,
3593 list);
3594 obj = obj_priv->obj;
3596 if (obj_priv->pin_count != 0) {
3597 DRM_ERROR("Pinned object in unbind list\n");
3598 mutex_unlock(&dev->struct_mutex);
3599 return -EINVAL;
3602 ret = i915_gem_object_unbind(obj);
3603 if (ret != 0) {
3604 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3605 ret);
3606 mutex_unlock(&dev->struct_mutex);
3607 return ret;
3612 return 0;
3616 i915_gem_idle(struct drm_device *dev)
3618 drm_i915_private_t *dev_priv = dev->dev_private;
3619 uint32_t seqno, cur_seqno, last_seqno;
3620 int stuck, ret;
3622 mutex_lock(&dev->struct_mutex);
3624 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3625 mutex_unlock(&dev->struct_mutex);
3626 return 0;
3629 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3630 * We need to replace this with a semaphore, or something.
3632 dev_priv->mm.suspended = 1;
3634 /* Cancel the retire work handler, wait for it to finish if running
3636 mutex_unlock(&dev->struct_mutex);
3637 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3638 mutex_lock(&dev->struct_mutex);
3640 i915_kernel_lost_context(dev);
3642 /* Flush the GPU along with all non-CPU write domains
3644 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3645 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3646 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3648 if (seqno == 0) {
3649 mutex_unlock(&dev->struct_mutex);
3650 return -ENOMEM;
3653 dev_priv->mm.waiting_gem_seqno = seqno;
3654 last_seqno = 0;
3655 stuck = 0;
3656 for (;;) {
3657 cur_seqno = i915_get_gem_seqno(dev);
3658 if (i915_seqno_passed(cur_seqno, seqno))
3659 break;
3660 if (last_seqno == cur_seqno) {
3661 if (stuck++ > 100) {
3662 DRM_ERROR("hardware wedged\n");
3663 dev_priv->mm.wedged = 1;
3664 DRM_WAKEUP(&dev_priv->irq_queue);
3665 break;
3668 msleep(10);
3669 last_seqno = cur_seqno;
3671 dev_priv->mm.waiting_gem_seqno = 0;
3673 i915_gem_retire_requests(dev);
3675 if (!dev_priv->mm.wedged) {
3676 /* Active and flushing should now be empty as we've
3677 * waited for a sequence higher than any pending execbuffer
3679 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3680 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3681 /* Request should now be empty as we've also waited
3682 * for the last request in the list
3684 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3687 /* Empty the active and flushing lists to inactive. If there's
3688 * anything left at this point, it means that we're wedged and
3689 * nothing good's going to happen by leaving them there. So strip
3690 * the GPU domains and just stuff them onto inactive.
3692 while (!list_empty(&dev_priv->mm.active_list)) {
3693 struct drm_i915_gem_object *obj_priv;
3695 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3696 struct drm_i915_gem_object,
3697 list);
3698 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3699 i915_gem_object_move_to_inactive(obj_priv->obj);
3702 while (!list_empty(&dev_priv->mm.flushing_list)) {
3703 struct drm_i915_gem_object *obj_priv;
3705 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3706 struct drm_i915_gem_object,
3707 list);
3708 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3709 i915_gem_object_move_to_inactive(obj_priv->obj);
3713 /* Move all inactive buffers out of the GTT. */
3714 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3715 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3716 if (ret) {
3717 mutex_unlock(&dev->struct_mutex);
3718 return ret;
3721 i915_gem_cleanup_ringbuffer(dev);
3722 mutex_unlock(&dev->struct_mutex);
3724 return 0;
3727 static int
3728 i915_gem_init_hws(struct drm_device *dev)
3730 drm_i915_private_t *dev_priv = dev->dev_private;
3731 struct drm_gem_object *obj;
3732 struct drm_i915_gem_object *obj_priv;
3733 int ret;
3735 /* If we need a physical address for the status page, it's already
3736 * initialized at driver load time.
3738 if (!I915_NEED_GFX_HWS(dev))
3739 return 0;
3741 obj = drm_gem_object_alloc(dev, 4096);
3742 if (obj == NULL) {
3743 DRM_ERROR("Failed to allocate status page\n");
3744 return -ENOMEM;
3746 obj_priv = obj->driver_private;
3747 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3749 ret = i915_gem_object_pin(obj, 4096);
3750 if (ret != 0) {
3751 drm_gem_object_unreference(obj);
3752 return ret;
3755 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3757 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3758 if (dev_priv->hw_status_page == NULL) {
3759 DRM_ERROR("Failed to map status page.\n");
3760 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3761 i915_gem_object_unpin(obj);
3762 drm_gem_object_unreference(obj);
3763 return -EINVAL;
3765 dev_priv->hws_obj = obj;
3766 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3767 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3768 I915_READ(HWS_PGA); /* posting read */
3769 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3771 return 0;
3774 static void
3775 i915_gem_cleanup_hws(struct drm_device *dev)
3777 drm_i915_private_t *dev_priv = dev->dev_private;
3778 struct drm_gem_object *obj;
3779 struct drm_i915_gem_object *obj_priv;
3781 if (dev_priv->hws_obj == NULL)
3782 return;
3784 obj = dev_priv->hws_obj;
3785 obj_priv = obj->driver_private;
3787 kunmap(obj_priv->pages[0]);
3788 i915_gem_object_unpin(obj);
3789 drm_gem_object_unreference(obj);
3790 dev_priv->hws_obj = NULL;
3792 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3793 dev_priv->hw_status_page = NULL;
3795 /* Write high address into HWS_PGA when disabling. */
3796 I915_WRITE(HWS_PGA, 0x1ffff000);
3800 i915_gem_init_ringbuffer(struct drm_device *dev)
3802 drm_i915_private_t *dev_priv = dev->dev_private;
3803 struct drm_gem_object *obj;
3804 struct drm_i915_gem_object *obj_priv;
3805 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3806 int ret;
3807 u32 head;
3809 ret = i915_gem_init_hws(dev);
3810 if (ret != 0)
3811 return ret;
3813 obj = drm_gem_object_alloc(dev, 128 * 1024);
3814 if (obj == NULL) {
3815 DRM_ERROR("Failed to allocate ringbuffer\n");
3816 i915_gem_cleanup_hws(dev);
3817 return -ENOMEM;
3819 obj_priv = obj->driver_private;
3821 ret = i915_gem_object_pin(obj, 4096);
3822 if (ret != 0) {
3823 drm_gem_object_unreference(obj);
3824 i915_gem_cleanup_hws(dev);
3825 return ret;
3828 /* Set up the kernel mapping for the ring. */
3829 ring->Size = obj->size;
3830 ring->tail_mask = obj->size - 1;
3832 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3833 ring->map.size = obj->size;
3834 ring->map.type = 0;
3835 ring->map.flags = 0;
3836 ring->map.mtrr = 0;
3838 drm_core_ioremap_wc(&ring->map, dev);
3839 if (ring->map.handle == NULL) {
3840 DRM_ERROR("Failed to map ringbuffer.\n");
3841 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3842 i915_gem_object_unpin(obj);
3843 drm_gem_object_unreference(obj);
3844 i915_gem_cleanup_hws(dev);
3845 return -EINVAL;
3847 ring->ring_obj = obj;
3848 ring->virtual_start = ring->map.handle;
3850 /* Stop the ring if it's running. */
3851 I915_WRITE(PRB0_CTL, 0);
3852 I915_WRITE(PRB0_TAIL, 0);
3853 I915_WRITE(PRB0_HEAD, 0);
3855 /* Initialize the ring. */
3856 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
3857 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3859 /* G45 ring initialization fails to reset head to zero */
3860 if (head != 0) {
3861 DRM_ERROR("Ring head not reset to zero "
3862 "ctl %08x head %08x tail %08x start %08x\n",
3863 I915_READ(PRB0_CTL),
3864 I915_READ(PRB0_HEAD),
3865 I915_READ(PRB0_TAIL),
3866 I915_READ(PRB0_START));
3867 I915_WRITE(PRB0_HEAD, 0);
3869 DRM_ERROR("Ring head forced to zero "
3870 "ctl %08x head %08x tail %08x start %08x\n",
3871 I915_READ(PRB0_CTL),
3872 I915_READ(PRB0_HEAD),
3873 I915_READ(PRB0_TAIL),
3874 I915_READ(PRB0_START));
3877 I915_WRITE(PRB0_CTL,
3878 ((obj->size - 4096) & RING_NR_PAGES) |
3879 RING_NO_REPORT |
3880 RING_VALID);
3882 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3884 /* If the head is still not zero, the ring is dead */
3885 if (head != 0) {
3886 DRM_ERROR("Ring initialization failed "
3887 "ctl %08x head %08x tail %08x start %08x\n",
3888 I915_READ(PRB0_CTL),
3889 I915_READ(PRB0_HEAD),
3890 I915_READ(PRB0_TAIL),
3891 I915_READ(PRB0_START));
3892 return -EIO;
3895 /* Update our cache of the ring state */
3896 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3897 i915_kernel_lost_context(dev);
3898 else {
3899 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3900 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3901 ring->space = ring->head - (ring->tail + 8);
3902 if (ring->space < 0)
3903 ring->space += ring->Size;
3906 return 0;
3909 void
3910 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3912 drm_i915_private_t *dev_priv = dev->dev_private;
3914 if (dev_priv->ring.ring_obj == NULL)
3915 return;
3917 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3919 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3920 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3921 dev_priv->ring.ring_obj = NULL;
3922 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3924 i915_gem_cleanup_hws(dev);
3928 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3929 struct drm_file *file_priv)
3931 drm_i915_private_t *dev_priv = dev->dev_private;
3932 int ret;
3934 if (drm_core_check_feature(dev, DRIVER_MODESET))
3935 return 0;
3937 if (dev_priv->mm.wedged) {
3938 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3939 dev_priv->mm.wedged = 0;
3942 mutex_lock(&dev->struct_mutex);
3943 dev_priv->mm.suspended = 0;
3945 ret = i915_gem_init_ringbuffer(dev);
3946 if (ret != 0)
3947 return ret;
3949 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3950 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3951 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3952 BUG_ON(!list_empty(&dev_priv->mm.request_list));
3953 mutex_unlock(&dev->struct_mutex);
3955 drm_irq_install(dev);
3957 return 0;
3961 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3962 struct drm_file *file_priv)
3964 int ret;
3966 if (drm_core_check_feature(dev, DRIVER_MODESET))
3967 return 0;
3969 ret = i915_gem_idle(dev);
3970 drm_irq_uninstall(dev);
3972 return ret;
3975 void
3976 i915_gem_lastclose(struct drm_device *dev)
3978 int ret;
3980 if (drm_core_check_feature(dev, DRIVER_MODESET))
3981 return;
3983 ret = i915_gem_idle(dev);
3984 if (ret)
3985 DRM_ERROR("failed to idle hardware: %d\n", ret);
3988 void
3989 i915_gem_load(struct drm_device *dev)
3991 drm_i915_private_t *dev_priv = dev->dev_private;
3993 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3994 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3995 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3996 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3997 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3998 i915_gem_retire_work_handler);
3999 dev_priv->mm.next_gem_seqno = 1;
4001 /* Old X drivers will take 0-2 for front, back, depth buffers */
4002 dev_priv->fence_reg_start = 3;
4004 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4005 dev_priv->num_fence_regs = 16;
4006 else
4007 dev_priv->num_fence_regs = 8;
4009 i915_gem_detect_bit_6_swizzle(dev);
4013 * Create a physically contiguous memory object for this object
4014 * e.g. for cursor + overlay regs
4016 int i915_gem_init_phys_object(struct drm_device *dev,
4017 int id, int size)
4019 drm_i915_private_t *dev_priv = dev->dev_private;
4020 struct drm_i915_gem_phys_object *phys_obj;
4021 int ret;
4023 if (dev_priv->mm.phys_objs[id - 1] || !size)
4024 return 0;
4026 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4027 if (!phys_obj)
4028 return -ENOMEM;
4030 phys_obj->id = id;
4032 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4033 if (!phys_obj->handle) {
4034 ret = -ENOMEM;
4035 goto kfree_obj;
4037 #ifdef CONFIG_X86
4038 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4039 #endif
4041 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4043 return 0;
4044 kfree_obj:
4045 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4046 return ret;
4049 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4051 drm_i915_private_t *dev_priv = dev->dev_private;
4052 struct drm_i915_gem_phys_object *phys_obj;
4054 if (!dev_priv->mm.phys_objs[id - 1])
4055 return;
4057 phys_obj = dev_priv->mm.phys_objs[id - 1];
4058 if (phys_obj->cur_obj) {
4059 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4062 #ifdef CONFIG_X86
4063 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4064 #endif
4065 drm_pci_free(dev, phys_obj->handle);
4066 kfree(phys_obj);
4067 dev_priv->mm.phys_objs[id - 1] = NULL;
4070 void i915_gem_free_all_phys_object(struct drm_device *dev)
4072 int i;
4074 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4075 i915_gem_free_phys_object(dev, i);
4078 void i915_gem_detach_phys_object(struct drm_device *dev,
4079 struct drm_gem_object *obj)
4081 struct drm_i915_gem_object *obj_priv;
4082 int i;
4083 int ret;
4084 int page_count;
4086 obj_priv = obj->driver_private;
4087 if (!obj_priv->phys_obj)
4088 return;
4090 ret = i915_gem_object_get_pages(obj);
4091 if (ret)
4092 goto out;
4094 page_count = obj->size / PAGE_SIZE;
4096 for (i = 0; i < page_count; i++) {
4097 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4098 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4100 memcpy(dst, src, PAGE_SIZE);
4101 kunmap_atomic(dst, KM_USER0);
4103 drm_clflush_pages(obj_priv->pages, page_count);
4104 drm_agp_chipset_flush(dev);
4105 out:
4106 obj_priv->phys_obj->cur_obj = NULL;
4107 obj_priv->phys_obj = NULL;
4111 i915_gem_attach_phys_object(struct drm_device *dev,
4112 struct drm_gem_object *obj, int id)
4114 drm_i915_private_t *dev_priv = dev->dev_private;
4115 struct drm_i915_gem_object *obj_priv;
4116 int ret = 0;
4117 int page_count;
4118 int i;
4120 if (id > I915_MAX_PHYS_OBJECT)
4121 return -EINVAL;
4123 obj_priv = obj->driver_private;
4125 if (obj_priv->phys_obj) {
4126 if (obj_priv->phys_obj->id == id)
4127 return 0;
4128 i915_gem_detach_phys_object(dev, obj);
4132 /* create a new object */
4133 if (!dev_priv->mm.phys_objs[id - 1]) {
4134 ret = i915_gem_init_phys_object(dev, id,
4135 obj->size);
4136 if (ret) {
4137 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4138 goto out;
4142 /* bind to the object */
4143 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4144 obj_priv->phys_obj->cur_obj = obj;
4146 ret = i915_gem_object_get_pages(obj);
4147 if (ret) {
4148 DRM_ERROR("failed to get page list\n");
4149 goto out;
4152 page_count = obj->size / PAGE_SIZE;
4154 for (i = 0; i < page_count; i++) {
4155 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4156 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4158 memcpy(dst, src, PAGE_SIZE);
4159 kunmap_atomic(src, KM_USER0);
4162 return 0;
4163 out:
4164 return ret;
4167 static int
4168 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4169 struct drm_i915_gem_pwrite *args,
4170 struct drm_file *file_priv)
4172 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4173 void *obj_addr;
4174 int ret;
4175 char __user *user_data;
4177 user_data = (char __user *) (uintptr_t) args->data_ptr;
4178 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4180 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4181 ret = copy_from_user(obj_addr, user_data, args->size);
4182 if (ret)
4183 return -EFAULT;
4185 drm_agp_chipset_flush(dev);
4186 return 0;