[PATCH] USB: add LD devices to hid blacklist
[linux-2.6/linux-loongson.git] / drivers / net / skge.c
blob5cacc7ad9e79a9f8505b7dbb34a59604293b4601
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/config.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <asm/irq.h>
42 #include "skge.h"
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "0.7"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define MAX_RX_RING_SIZE 4096
52 #define RX_COPY_THRESHOLD 128
53 #define RX_BUF_SIZE 1536
54 #define PHY_RETRIES 1000
55 #define ETH_JUMBO_MTU 9000
56 #define TX_WATCHDOG (5 * HZ)
57 #define NAPI_WEIGHT 64
58 #define BLINK_HZ (HZ/4)
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION);
65 static const u32 default_msg
66 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
67 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
69 static int debug = -1; /* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
73 static const struct pci_device_id skge_id_table[] = {
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
75 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
76 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
79 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
80 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
82 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
83 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
85 { 0 }
87 MODULE_DEVICE_TABLE(pci, skge_id_table);
89 static int skge_up(struct net_device *dev);
90 static int skge_down(struct net_device *dev);
91 static void skge_tx_clean(struct skge_port *skge);
92 static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
93 static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
94 static void genesis_get_stats(struct skge_port *skge, u64 *data);
95 static void yukon_get_stats(struct skge_port *skge, u64 *data);
96 static void yukon_init(struct skge_hw *hw, int port);
97 static void yukon_reset(struct skge_hw *hw, int port);
98 static void genesis_mac_init(struct skge_hw *hw, int port);
99 static void genesis_reset(struct skge_hw *hw, int port);
100 static void genesis_link_up(struct skge_port *skge);
102 /* Avoid conditionals by using array */
103 static const int txqaddr[] = { Q_XA1, Q_XA2 };
104 static const int rxqaddr[] = { Q_R1, Q_R2 };
105 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
106 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
107 static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
109 /* Don't need to look at whole 16K.
110 * last interesting register is descriptor poll timer.
112 #define SKGE_REGS_LEN (29*128)
114 static int skge_get_regs_len(struct net_device *dev)
116 return SKGE_REGS_LEN;
120 * Returns copy of control register region
121 * I/O region is divided into banks and certain regions are unreadable
123 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
124 void *p)
126 const struct skge_port *skge = netdev_priv(dev);
127 unsigned long offs;
128 const void __iomem *io = skge->hw->regs;
129 static const unsigned long bankmap
130 = (1<<0) | (1<<2) | (1<<8) | (1<<9)
131 | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
132 | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
133 | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
135 regs->version = 1;
136 for (offs = 0; offs < regs->len; offs += 128) {
137 u32 len = min_t(u32, 128, regs->len - offs);
139 if (bankmap & (1<<(offs/128)))
140 memcpy_fromio(p + offs, io + offs, len);
141 else
142 memset(p + offs, 0, len);
146 /* Wake on Lan only supported on Yukon chps with rev 1 or above */
147 static int wol_supported(const struct skge_hw *hw)
149 return !((hw->chip_id == CHIP_ID_GENESIS ||
150 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
153 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
155 struct skge_port *skge = netdev_priv(dev);
157 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
158 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
161 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
163 struct skge_port *skge = netdev_priv(dev);
164 struct skge_hw *hw = skge->hw;
166 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
167 return -EOPNOTSUPP;
169 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
170 return -EOPNOTSUPP;
172 skge->wol = wol->wolopts == WAKE_MAGIC;
174 if (skge->wol) {
175 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
177 skge_write16(hw, WOL_CTRL_STAT,
178 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
179 WOL_CTL_ENA_MAGIC_PKT_UNIT);
180 } else
181 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
183 return 0;
186 /* Determine supported/adverised modes based on hardware.
187 * Note: ethtoool ADVERTISED_xxx == SUPPORTED_xxx
189 static u32 skge_supported_modes(const struct skge_hw *hw)
191 u32 supported;
193 if (iscopper(hw)) {
194 supported = SUPPORTED_10baseT_Half
195 | SUPPORTED_10baseT_Full
196 | SUPPORTED_100baseT_Half
197 | SUPPORTED_100baseT_Full
198 | SUPPORTED_1000baseT_Half
199 | SUPPORTED_1000baseT_Full
200 | SUPPORTED_Autoneg| SUPPORTED_TP;
202 if (hw->chip_id == CHIP_ID_GENESIS)
203 supported &= ~(SUPPORTED_10baseT_Half
204 | SUPPORTED_10baseT_Full
205 | SUPPORTED_100baseT_Half
206 | SUPPORTED_100baseT_Full);
208 else if (hw->chip_id == CHIP_ID_YUKON)
209 supported &= ~SUPPORTED_1000baseT_Half;
210 } else
211 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
212 | SUPPORTED_Autoneg;
214 return supported;
217 static int skge_get_settings(struct net_device *dev,
218 struct ethtool_cmd *ecmd)
220 struct skge_port *skge = netdev_priv(dev);
221 struct skge_hw *hw = skge->hw;
223 ecmd->transceiver = XCVR_INTERNAL;
224 ecmd->supported = skge_supported_modes(hw);
226 if (iscopper(hw)) {
227 ecmd->port = PORT_TP;
228 ecmd->phy_address = hw->phy_addr;
229 } else
230 ecmd->port = PORT_FIBRE;
232 ecmd->advertising = skge->advertising;
233 ecmd->autoneg = skge->autoneg;
234 ecmd->speed = skge->speed;
235 ecmd->duplex = skge->duplex;
236 return 0;
239 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
241 struct skge_port *skge = netdev_priv(dev);
242 const struct skge_hw *hw = skge->hw;
243 u32 supported = skge_supported_modes(hw);
245 if (ecmd->autoneg == AUTONEG_ENABLE) {
246 ecmd->advertising = supported;
247 skge->duplex = -1;
248 skge->speed = -1;
249 } else {
250 u32 setting;
252 switch(ecmd->speed) {
253 case SPEED_1000:
254 if (ecmd->duplex == DUPLEX_FULL)
255 setting = SUPPORTED_1000baseT_Full;
256 else if (ecmd->duplex == DUPLEX_HALF)
257 setting = SUPPORTED_1000baseT_Half;
258 else
259 return -EINVAL;
260 break;
261 case SPEED_100:
262 if (ecmd->duplex == DUPLEX_FULL)
263 setting = SUPPORTED_100baseT_Full;
264 else if (ecmd->duplex == DUPLEX_HALF)
265 setting = SUPPORTED_100baseT_Half;
266 else
267 return -EINVAL;
268 break;
270 case SPEED_10:
271 if (ecmd->duplex == DUPLEX_FULL)
272 setting = SUPPORTED_10baseT_Full;
273 else if (ecmd->duplex == DUPLEX_HALF)
274 setting = SUPPORTED_10baseT_Half;
275 else
276 return -EINVAL;
277 break;
278 default:
279 return -EINVAL;
282 if ((setting & supported) == 0)
283 return -EINVAL;
285 skge->speed = ecmd->speed;
286 skge->duplex = ecmd->duplex;
289 skge->autoneg = ecmd->autoneg;
290 skge->advertising = ecmd->advertising;
292 if (netif_running(dev)) {
293 skge_down(dev);
294 skge_up(dev);
296 return (0);
299 static void skge_get_drvinfo(struct net_device *dev,
300 struct ethtool_drvinfo *info)
302 struct skge_port *skge = netdev_priv(dev);
304 strcpy(info->driver, DRV_NAME);
305 strcpy(info->version, DRV_VERSION);
306 strcpy(info->fw_version, "N/A");
307 strcpy(info->bus_info, pci_name(skge->hw->pdev));
310 static const struct skge_stat {
311 char name[ETH_GSTRING_LEN];
312 u16 xmac_offset;
313 u16 gma_offset;
314 } skge_stats[] = {
315 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
316 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
318 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
319 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
320 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
321 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
322 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
323 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
324 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
325 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
327 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
328 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
329 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
330 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
331 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
332 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
334 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
335 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
336 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
337 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
338 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
341 static int skge_get_stats_count(struct net_device *dev)
343 return ARRAY_SIZE(skge_stats);
346 static void skge_get_ethtool_stats(struct net_device *dev,
347 struct ethtool_stats *stats, u64 *data)
349 struct skge_port *skge = netdev_priv(dev);
351 if (skge->hw->chip_id == CHIP_ID_GENESIS)
352 genesis_get_stats(skge, data);
353 else
354 yukon_get_stats(skge, data);
357 /* Use hardware MIB variables for critical path statistics and
358 * transmit feedback not reported at interrupt.
359 * Other errors are accounted for in interrupt handler.
361 static struct net_device_stats *skge_get_stats(struct net_device *dev)
363 struct skge_port *skge = netdev_priv(dev);
364 u64 data[ARRAY_SIZE(skge_stats)];
366 if (skge->hw->chip_id == CHIP_ID_GENESIS)
367 genesis_get_stats(skge, data);
368 else
369 yukon_get_stats(skge, data);
371 skge->net_stats.tx_bytes = data[0];
372 skge->net_stats.rx_bytes = data[1];
373 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
374 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
375 skge->net_stats.multicast = data[5] + data[7];
376 skge->net_stats.collisions = data[10];
377 skge->net_stats.tx_aborted_errors = data[12];
379 return &skge->net_stats;
382 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
384 int i;
386 switch (stringset) {
387 case ETH_SS_STATS:
388 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
389 memcpy(data + i * ETH_GSTRING_LEN,
390 skge_stats[i].name, ETH_GSTRING_LEN);
391 break;
395 static void skge_get_ring_param(struct net_device *dev,
396 struct ethtool_ringparam *p)
398 struct skge_port *skge = netdev_priv(dev);
400 p->rx_max_pending = MAX_RX_RING_SIZE;
401 p->tx_max_pending = MAX_TX_RING_SIZE;
402 p->rx_mini_max_pending = 0;
403 p->rx_jumbo_max_pending = 0;
405 p->rx_pending = skge->rx_ring.count;
406 p->tx_pending = skge->tx_ring.count;
407 p->rx_mini_pending = 0;
408 p->rx_jumbo_pending = 0;
411 static int skge_set_ring_param(struct net_device *dev,
412 struct ethtool_ringparam *p)
414 struct skge_port *skge = netdev_priv(dev);
416 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
417 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
418 return -EINVAL;
420 skge->rx_ring.count = p->rx_pending;
421 skge->tx_ring.count = p->tx_pending;
423 if (netif_running(dev)) {
424 skge_down(dev);
425 skge_up(dev);
428 return 0;
431 static u32 skge_get_msglevel(struct net_device *netdev)
433 struct skge_port *skge = netdev_priv(netdev);
434 return skge->msg_enable;
437 static void skge_set_msglevel(struct net_device *netdev, u32 value)
439 struct skge_port *skge = netdev_priv(netdev);
440 skge->msg_enable = value;
443 static int skge_nway_reset(struct net_device *dev)
445 struct skge_port *skge = netdev_priv(dev);
446 struct skge_hw *hw = skge->hw;
447 int port = skge->port;
449 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
450 return -EINVAL;
452 spin_lock_bh(&hw->phy_lock);
453 if (hw->chip_id == CHIP_ID_GENESIS) {
454 genesis_reset(hw, port);
455 genesis_mac_init(hw, port);
456 } else {
457 yukon_reset(hw, port);
458 yukon_init(hw, port);
460 spin_unlock_bh(&hw->phy_lock);
461 return 0;
464 static int skge_set_sg(struct net_device *dev, u32 data)
466 struct skge_port *skge = netdev_priv(dev);
467 struct skge_hw *hw = skge->hw;
469 if (hw->chip_id == CHIP_ID_GENESIS && data)
470 return -EOPNOTSUPP;
471 return ethtool_op_set_sg(dev, data);
474 static int skge_set_tx_csum(struct net_device *dev, u32 data)
476 struct skge_port *skge = netdev_priv(dev);
477 struct skge_hw *hw = skge->hw;
479 if (hw->chip_id == CHIP_ID_GENESIS && data)
480 return -EOPNOTSUPP;
482 return ethtool_op_set_tx_csum(dev, data);
485 static u32 skge_get_rx_csum(struct net_device *dev)
487 struct skge_port *skge = netdev_priv(dev);
489 return skge->rx_csum;
492 /* Only Yukon supports checksum offload. */
493 static int skge_set_rx_csum(struct net_device *dev, u32 data)
495 struct skge_port *skge = netdev_priv(dev);
497 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
498 return -EOPNOTSUPP;
500 skge->rx_csum = data;
501 return 0;
504 static void skge_get_pauseparam(struct net_device *dev,
505 struct ethtool_pauseparam *ecmd)
507 struct skge_port *skge = netdev_priv(dev);
509 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
510 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
511 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
512 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
514 ecmd->autoneg = skge->autoneg;
517 static int skge_set_pauseparam(struct net_device *dev,
518 struct ethtool_pauseparam *ecmd)
520 struct skge_port *skge = netdev_priv(dev);
522 skge->autoneg = ecmd->autoneg;
523 if (ecmd->rx_pause && ecmd->tx_pause)
524 skge->flow_control = FLOW_MODE_SYMMETRIC;
525 else if (ecmd->rx_pause && !ecmd->tx_pause)
526 skge->flow_control = FLOW_MODE_REM_SEND;
527 else if (!ecmd->rx_pause && ecmd->tx_pause)
528 skge->flow_control = FLOW_MODE_LOC_SEND;
529 else
530 skge->flow_control = FLOW_MODE_NONE;
532 if (netif_running(dev)) {
533 skge_down(dev);
534 skge_up(dev);
536 return 0;
539 /* Chip internal frequency for clock calculations */
540 static inline u32 hwkhz(const struct skge_hw *hw)
542 if (hw->chip_id == CHIP_ID_GENESIS)
543 return 53215; /* or: 53.125 MHz */
544 else
545 return 78215; /* or: 78.125 MHz */
548 /* Chip hz to microseconds */
549 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
551 return (ticks * 1000) / hwkhz(hw);
554 /* Microseconds to chip hz */
555 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
557 return hwkhz(hw) * usec / 1000;
560 static int skge_get_coalesce(struct net_device *dev,
561 struct ethtool_coalesce *ecmd)
563 struct skge_port *skge = netdev_priv(dev);
564 struct skge_hw *hw = skge->hw;
565 int port = skge->port;
567 ecmd->rx_coalesce_usecs = 0;
568 ecmd->tx_coalesce_usecs = 0;
570 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
571 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
572 u32 msk = skge_read32(hw, B2_IRQM_MSK);
574 if (msk & rxirqmask[port])
575 ecmd->rx_coalesce_usecs = delay;
576 if (msk & txirqmask[port])
577 ecmd->tx_coalesce_usecs = delay;
580 return 0;
583 /* Note: interrupt timer is per board, but can turn on/off per port */
584 static int skge_set_coalesce(struct net_device *dev,
585 struct ethtool_coalesce *ecmd)
587 struct skge_port *skge = netdev_priv(dev);
588 struct skge_hw *hw = skge->hw;
589 int port = skge->port;
590 u32 msk = skge_read32(hw, B2_IRQM_MSK);
591 u32 delay = 25;
593 if (ecmd->rx_coalesce_usecs == 0)
594 msk &= ~rxirqmask[port];
595 else if (ecmd->rx_coalesce_usecs < 25 ||
596 ecmd->rx_coalesce_usecs > 33333)
597 return -EINVAL;
598 else {
599 msk |= rxirqmask[port];
600 delay = ecmd->rx_coalesce_usecs;
603 if (ecmd->tx_coalesce_usecs == 0)
604 msk &= ~txirqmask[port];
605 else if (ecmd->tx_coalesce_usecs < 25 ||
606 ecmd->tx_coalesce_usecs > 33333)
607 return -EINVAL;
608 else {
609 msk |= txirqmask[port];
610 delay = min(delay, ecmd->rx_coalesce_usecs);
613 skge_write32(hw, B2_IRQM_MSK, msk);
614 if (msk == 0)
615 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
616 else {
617 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
618 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
620 return 0;
623 static void skge_led_on(struct skge_hw *hw, int port)
625 if (hw->chip_id == CHIP_ID_GENESIS) {
626 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
627 skge_write8(hw, B0_LED, LED_STAT_ON);
629 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
630 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
631 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
633 /* For Broadcom Phy only */
634 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
635 } else {
636 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
637 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
638 PHY_M_LED_MO_DUP(MO_LED_ON) |
639 PHY_M_LED_MO_10(MO_LED_ON) |
640 PHY_M_LED_MO_100(MO_LED_ON) |
641 PHY_M_LED_MO_1000(MO_LED_ON) |
642 PHY_M_LED_MO_RX(MO_LED_ON));
646 static void skge_led_off(struct skge_hw *hw, int port)
648 if (hw->chip_id == CHIP_ID_GENESIS) {
649 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
650 skge_write8(hw, B0_LED, LED_STAT_OFF);
652 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
653 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
655 /* Broadcom only */
656 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
657 } else {
658 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
659 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
660 PHY_M_LED_MO_DUP(MO_LED_OFF) |
661 PHY_M_LED_MO_10(MO_LED_OFF) |
662 PHY_M_LED_MO_100(MO_LED_OFF) |
663 PHY_M_LED_MO_1000(MO_LED_OFF) |
664 PHY_M_LED_MO_RX(MO_LED_OFF));
668 static void skge_blink_timer(unsigned long data)
670 struct skge_port *skge = (struct skge_port *) data;
671 struct skge_hw *hw = skge->hw;
672 unsigned long flags;
674 spin_lock_irqsave(&hw->phy_lock, flags);
675 if (skge->blink_on)
676 skge_led_on(hw, skge->port);
677 else
678 skge_led_off(hw, skge->port);
679 spin_unlock_irqrestore(&hw->phy_lock, flags);
681 skge->blink_on = !skge->blink_on;
682 mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
685 /* blink LED's for finding board */
686 static int skge_phys_id(struct net_device *dev, u32 data)
688 struct skge_port *skge = netdev_priv(dev);
690 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
691 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
693 /* start blinking */
694 skge->blink_on = 1;
695 mod_timer(&skge->led_blink, jiffies+1);
697 msleep_interruptible(data * 1000);
698 del_timer_sync(&skge->led_blink);
700 skge_led_off(skge->hw, skge->port);
702 return 0;
705 static struct ethtool_ops skge_ethtool_ops = {
706 .get_settings = skge_get_settings,
707 .set_settings = skge_set_settings,
708 .get_drvinfo = skge_get_drvinfo,
709 .get_regs_len = skge_get_regs_len,
710 .get_regs = skge_get_regs,
711 .get_wol = skge_get_wol,
712 .set_wol = skge_set_wol,
713 .get_msglevel = skge_get_msglevel,
714 .set_msglevel = skge_set_msglevel,
715 .nway_reset = skge_nway_reset,
716 .get_link = ethtool_op_get_link,
717 .get_ringparam = skge_get_ring_param,
718 .set_ringparam = skge_set_ring_param,
719 .get_pauseparam = skge_get_pauseparam,
720 .set_pauseparam = skge_set_pauseparam,
721 .get_coalesce = skge_get_coalesce,
722 .set_coalesce = skge_set_coalesce,
723 .get_sg = ethtool_op_get_sg,
724 .set_sg = skge_set_sg,
725 .get_tx_csum = ethtool_op_get_tx_csum,
726 .set_tx_csum = skge_set_tx_csum,
727 .get_rx_csum = skge_get_rx_csum,
728 .set_rx_csum = skge_set_rx_csum,
729 .get_strings = skge_get_strings,
730 .phys_id = skge_phys_id,
731 .get_stats_count = skge_get_stats_count,
732 .get_ethtool_stats = skge_get_ethtool_stats,
736 * Allocate ring elements and chain them together
737 * One-to-one association of board descriptors with ring elements
739 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
741 struct skge_tx_desc *d;
742 struct skge_element *e;
743 int i;
745 ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
746 if (!ring->start)
747 return -ENOMEM;
749 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
750 e->desc = d;
751 e->skb = NULL;
752 if (i == ring->count - 1) {
753 e->next = ring->start;
754 d->next_offset = base;
755 } else {
756 e->next = e + 1;
757 d->next_offset = base + (i+1) * sizeof(*d);
760 ring->to_use = ring->to_clean = ring->start;
762 return 0;
765 static struct sk_buff *skge_rx_alloc(struct net_device *dev, unsigned int size)
767 struct sk_buff *skb = dev_alloc_skb(size);
769 if (likely(skb)) {
770 skb->dev = dev;
771 skb_reserve(skb, NET_IP_ALIGN);
773 return skb;
776 /* Allocate and setup a new buffer for receiving */
777 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
778 struct sk_buff *skb, unsigned int bufsize)
780 struct skge_rx_desc *rd = e->desc;
781 u64 map;
783 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
784 PCI_DMA_FROMDEVICE);
786 rd->dma_lo = map;
787 rd->dma_hi = map >> 32;
788 e->skb = skb;
789 rd->csum1_start = ETH_HLEN;
790 rd->csum2_start = ETH_HLEN;
791 rd->csum1 = 0;
792 rd->csum2 = 0;
794 wmb();
796 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
797 pci_unmap_addr_set(e, mapaddr, map);
798 pci_unmap_len_set(e, maplen, bufsize);
801 /* Resume receiving using existing skb,
802 * Note: DMA address is not changed by chip.
803 * MTU not changed while receiver active.
805 static void skge_rx_reuse(struct skge_element *e, unsigned int size)
807 struct skge_rx_desc *rd = e->desc;
809 rd->csum2 = 0;
810 rd->csum2_start = ETH_HLEN;
812 wmb();
814 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
818 /* Free all buffers in receive ring, assumes receiver stopped */
819 static void skge_rx_clean(struct skge_port *skge)
821 struct skge_hw *hw = skge->hw;
822 struct skge_ring *ring = &skge->rx_ring;
823 struct skge_element *e;
825 e = ring->start;
826 do {
827 struct skge_rx_desc *rd = e->desc;
828 rd->control = 0;
829 if (e->skb) {
830 pci_unmap_single(hw->pdev,
831 pci_unmap_addr(e, mapaddr),
832 pci_unmap_len(e, maplen),
833 PCI_DMA_FROMDEVICE);
834 dev_kfree_skb(e->skb);
835 e->skb = NULL;
837 } while ((e = e->next) != ring->start);
841 /* Allocate buffers for receive ring
842 * For receive: to_clean is next received frame.
844 static int skge_rx_fill(struct skge_port *skge)
846 struct skge_ring *ring = &skge->rx_ring;
847 struct skge_element *e;
848 unsigned int bufsize = skge->rx_buf_size;
850 e = ring->start;
851 do {
852 struct sk_buff *skb = skge_rx_alloc(skge->netdev, bufsize);
854 if (!skb)
855 return -ENOMEM;
857 skge_rx_setup(skge, e, skb, bufsize);
858 } while ( (e = e->next) != ring->start);
860 ring->to_clean = ring->start;
861 return 0;
864 static void skge_link_up(struct skge_port *skge)
866 netif_carrier_on(skge->netdev);
867 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
868 netif_wake_queue(skge->netdev);
870 if (netif_msg_link(skge))
871 printk(KERN_INFO PFX
872 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
873 skge->netdev->name, skge->speed,
874 skge->duplex == DUPLEX_FULL ? "full" : "half",
875 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
876 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
877 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
878 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
879 "unknown");
882 static void skge_link_down(struct skge_port *skge)
884 netif_carrier_off(skge->netdev);
885 netif_stop_queue(skge->netdev);
887 if (netif_msg_link(skge))
888 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
891 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
893 int i;
894 u16 v;
896 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
897 v = xm_read16(hw, port, XM_PHY_DATA);
899 /* Need to wait for external PHY */
900 for (i = 0; i < PHY_RETRIES; i++) {
901 udelay(1);
902 if (xm_read16(hw, port, XM_MMU_CMD)
903 & XM_MMU_PHY_RDY)
904 goto ready;
907 printk(KERN_WARNING PFX "%s: phy read timed out\n",
908 hw->dev[port]->name);
909 return 0;
910 ready:
911 v = xm_read16(hw, port, XM_PHY_DATA);
913 return v;
916 static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
918 int i;
920 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
921 for (i = 0; i < PHY_RETRIES; i++) {
922 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
923 goto ready;
924 udelay(1);
926 printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
927 hw->dev[port]->name);
930 ready:
931 xm_write16(hw, port, XM_PHY_DATA, val);
932 for (i = 0; i < PHY_RETRIES; i++) {
933 udelay(1);
934 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
935 return;
937 printk(KERN_WARNING PFX "%s: phy write timed out\n",
938 hw->dev[port]->name);
941 static void genesis_init(struct skge_hw *hw)
943 /* set blink source counter */
944 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
945 skge_write8(hw, B2_BSC_CTRL, BSC_START);
947 /* configure mac arbiter */
948 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
950 /* configure mac arbiter timeout values */
951 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
952 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
953 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
954 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
956 skge_write8(hw, B3_MA_RCINI_RX1, 0);
957 skge_write8(hw, B3_MA_RCINI_RX2, 0);
958 skge_write8(hw, B3_MA_RCINI_TX1, 0);
959 skge_write8(hw, B3_MA_RCINI_TX2, 0);
961 /* configure packet arbiter timeout */
962 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
963 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
964 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
965 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
966 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
969 static void genesis_reset(struct skge_hw *hw, int port)
971 const u8 zero[8] = { 0 };
973 /* reset the statistics module */
974 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
975 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
976 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
977 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
978 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
980 /* disable Broadcom PHY IRQ */
981 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
983 xm_outhash(hw, port, XM_HSM, zero);
987 /* Convert mode to MII values */
988 static const u16 phy_pause_map[] = {
989 [FLOW_MODE_NONE] = 0,
990 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
991 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
992 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
996 /* Check status of Broadcom phy link */
997 static void bcom_check_link(struct skge_hw *hw, int port)
999 struct net_device *dev = hw->dev[port];
1000 struct skge_port *skge = netdev_priv(dev);
1001 u16 status;
1003 /* read twice because of latch */
1004 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1005 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1007 pr_debug("bcom_check_link status=0x%x\n", status);
1009 if ((status & PHY_ST_LSYNC) == 0) {
1010 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
1011 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1012 xm_write16(hw, port, XM_MMU_CMD, cmd);
1013 /* dummy read to ensure writing */
1014 (void) xm_read16(hw, port, XM_MMU_CMD);
1016 if (netif_carrier_ok(dev))
1017 skge_link_down(skge);
1018 } else {
1019 if (skge->autoneg == AUTONEG_ENABLE &&
1020 (status & PHY_ST_AN_OVER)) {
1021 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1022 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1024 if (lpa & PHY_B_AN_RF) {
1025 printk(KERN_NOTICE PFX "%s: remote fault\n",
1026 dev->name);
1027 return;
1030 /* Check Duplex mismatch */
1031 switch(aux & PHY_B_AS_AN_RES_MSK) {
1032 case PHY_B_RES_1000FD:
1033 skge->duplex = DUPLEX_FULL;
1034 break;
1035 case PHY_B_RES_1000HD:
1036 skge->duplex = DUPLEX_HALF;
1037 break;
1038 default:
1039 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1040 dev->name);
1041 return;
1045 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1046 switch (aux & PHY_B_AS_PAUSE_MSK) {
1047 case PHY_B_AS_PAUSE_MSK:
1048 skge->flow_control = FLOW_MODE_SYMMETRIC;
1049 break;
1050 case PHY_B_AS_PRR:
1051 skge->flow_control = FLOW_MODE_REM_SEND;
1052 break;
1053 case PHY_B_AS_PRT:
1054 skge->flow_control = FLOW_MODE_LOC_SEND;
1055 break;
1056 default:
1057 skge->flow_control = FLOW_MODE_NONE;
1060 skge->speed = SPEED_1000;
1063 if (!netif_carrier_ok(dev))
1064 genesis_link_up(skge);
1068 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1069 * Phy on for 100 or 10Mbit operation
1071 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1073 struct skge_hw *hw = skge->hw;
1074 int port = skge->port;
1075 int i;
1076 u16 id1, r, ext, ctl;
1078 /* magic workaround patterns for Broadcom */
1079 static const struct {
1080 u16 reg;
1081 u16 val;
1082 } A1hack[] = {
1083 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1084 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1085 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1086 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1087 }, C0hack[] = {
1088 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1089 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1092 pr_debug("bcom_phy_init\n");
1094 /* read Id from external PHY (all have the same address) */
1095 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1097 /* Optimize MDIO transfer by suppressing preamble. */
1098 r = xm_read16(hw, port, XM_MMU_CMD);
1099 r |= XM_MMU_NO_PRE;
1100 xm_write16(hw, port, XM_MMU_CMD,r);
1102 switch(id1) {
1103 case PHY_BCOM_ID1_C0:
1105 * Workaround BCOM Errata for the C0 type.
1106 * Write magic patterns to reserved registers.
1108 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1109 xm_phy_write(hw, port,
1110 C0hack[i].reg, C0hack[i].val);
1112 break;
1113 case PHY_BCOM_ID1_A1:
1115 * Workaround BCOM Errata for the A1 type.
1116 * Write magic patterns to reserved registers.
1118 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1119 xm_phy_write(hw, port,
1120 A1hack[i].reg, A1hack[i].val);
1121 break;
1125 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1126 * Disable Power Management after reset.
1128 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1129 r |= PHY_B_AC_DIS_PM;
1130 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1132 /* Dummy read */
1133 xm_read16(hw, port, XM_ISRC);
1135 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1136 ctl = PHY_CT_SP1000; /* always 1000mbit */
1138 if (skge->autoneg == AUTONEG_ENABLE) {
1140 * Workaround BCOM Errata #1 for the C5 type.
1141 * 1000Base-T Link Acquisition Failure in Slave Mode
1142 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1144 u16 adv = PHY_B_1000C_RD;
1145 if (skge->advertising & ADVERTISED_1000baseT_Half)
1146 adv |= PHY_B_1000C_AHD;
1147 if (skge->advertising & ADVERTISED_1000baseT_Full)
1148 adv |= PHY_B_1000C_AFD;
1149 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1151 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1152 } else {
1153 if (skge->duplex == DUPLEX_FULL)
1154 ctl |= PHY_CT_DUP_MD;
1155 /* Force to slave */
1156 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1159 /* Set autonegotiation pause parameters */
1160 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1161 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1163 /* Handle Jumbo frames */
1164 if (jumbo) {
1165 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1166 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1168 ext |= PHY_B_PEC_HIGH_LA;
1172 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1173 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1175 /* Use link status change interrrupt */
1176 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1178 bcom_check_link(hw, port);
1181 static void genesis_mac_init(struct skge_hw *hw, int port)
1183 struct net_device *dev = hw->dev[port];
1184 struct skge_port *skge = netdev_priv(dev);
1185 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1186 int i;
1187 u32 r;
1188 const u8 zero[6] = { 0 };
1190 /* Clear MIB counters */
1191 xm_write16(hw, port, XM_STAT_CMD,
1192 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1193 /* Clear two times according to Errata #3 */
1194 xm_write16(hw, port, XM_STAT_CMD,
1195 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1197 /* initialize Rx, Tx and Link LED */
1198 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
1199 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
1201 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
1202 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
1204 /* Unreset the XMAC. */
1205 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1208 * Perform additional initialization for external PHYs,
1209 * namely for the 1000baseTX cards that use the XMAC's
1210 * GMII mode.
1212 spin_lock_bh(&hw->phy_lock);
1213 /* Take external Phy out of reset */
1214 r = skge_read32(hw, B2_GP_IO);
1215 if (port == 0)
1216 r |= GP_DIR_0|GP_IO_0;
1217 else
1218 r |= GP_DIR_2|GP_IO_2;
1220 skge_write32(hw, B2_GP_IO, r);
1221 skge_read32(hw, B2_GP_IO);
1222 spin_unlock_bh(&hw->phy_lock);
1224 /* Enable GMII interfac */
1225 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1227 bcom_phy_init(skge, jumbo);
1229 /* Set Station Address */
1230 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1232 /* We don't use match addresses so clear */
1233 for (i = 1; i < 16; i++)
1234 xm_outaddr(hw, port, XM_EXM(i), zero);
1236 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1237 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1239 /* We don't need the FCS appended to the packet. */
1240 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1241 if (jumbo)
1242 r |= XM_RX_BIG_PK_OK;
1244 if (skge->duplex == DUPLEX_HALF) {
1246 * If in manual half duplex mode the other side might be in
1247 * full duplex mode, so ignore if a carrier extension is not seen
1248 * on frames received
1250 r |= XM_RX_DIS_CEXT;
1252 xm_write16(hw, port, XM_RX_CMD, r);
1255 /* We want short frames padded to 60 bytes. */
1256 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1259 * Bump up the transmit threshold. This helps hold off transmit
1260 * underruns when we're blasting traffic from both ports at once.
1262 xm_write16(hw, port, XM_TX_THR, 512);
1265 * Enable the reception of all error frames. This is is
1266 * a necessary evil due to the design of the XMAC. The
1267 * XMAC's receive FIFO is only 8K in size, however jumbo
1268 * frames can be up to 9000 bytes in length. When bad
1269 * frame filtering is enabled, the XMAC's RX FIFO operates
1270 * in 'store and forward' mode. For this to work, the
1271 * entire frame has to fit into the FIFO, but that means
1272 * that jumbo frames larger than 8192 bytes will be
1273 * truncated. Disabling all bad frame filtering causes
1274 * the RX FIFO to operate in streaming mode, in which
1275 * case the XMAC will start transfering frames out of the
1276 * RX FIFO as soon as the FIFO threshold is reached.
1278 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1282 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1283 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1284 * and 'Octets Rx OK Hi Cnt Ov'.
1286 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1289 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1290 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1291 * and 'Octets Tx OK Hi Cnt Ov'.
1293 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1295 /* Configure MAC arbiter */
1296 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1298 /* configure timeout values */
1299 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1300 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1301 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1302 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1304 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1305 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1306 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1307 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1309 /* Configure Rx MAC FIFO */
1310 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1311 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1312 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1314 /* Configure Tx MAC FIFO */
1315 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1316 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1317 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1319 if (jumbo) {
1320 /* Enable frame flushing if jumbo frames used */
1321 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1322 } else {
1323 /* enable timeout timers if normal frames */
1324 skge_write16(hw, B3_PA_CTRL,
1325 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1329 static void genesis_stop(struct skge_port *skge)
1331 struct skge_hw *hw = skge->hw;
1332 int port = skge->port;
1333 u32 reg;
1335 /* Clear Tx packet arbiter timeout IRQ */
1336 skge_write16(hw, B3_PA_CTRL,
1337 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1340 * If the transfer stucks at the MAC the STOP command will not
1341 * terminate if we don't flush the XMAC's transmit FIFO !
1343 xm_write32(hw, port, XM_MODE,
1344 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1347 /* Reset the MAC */
1348 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1350 /* For external PHYs there must be special handling */
1351 reg = skge_read32(hw, B2_GP_IO);
1352 if (port == 0) {
1353 reg |= GP_DIR_0;
1354 reg &= ~GP_IO_0;
1355 } else {
1356 reg |= GP_DIR_2;
1357 reg &= ~GP_IO_2;
1359 skge_write32(hw, B2_GP_IO, reg);
1360 skge_read32(hw, B2_GP_IO);
1362 xm_write16(hw, port, XM_MMU_CMD,
1363 xm_read16(hw, port, XM_MMU_CMD)
1364 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1366 xm_read16(hw, port, XM_MMU_CMD);
1370 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1372 struct skge_hw *hw = skge->hw;
1373 int port = skge->port;
1374 int i;
1375 unsigned long timeout = jiffies + HZ;
1377 xm_write16(hw, port,
1378 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1380 /* wait for update to complete */
1381 while (xm_read16(hw, port, XM_STAT_CMD)
1382 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1383 if (time_after(jiffies, timeout))
1384 break;
1385 udelay(10);
1388 /* special case for 64 bit octet counter */
1389 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1390 | xm_read32(hw, port, XM_TXO_OK_LO);
1391 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1392 | xm_read32(hw, port, XM_RXO_OK_LO);
1394 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1395 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1398 static void genesis_mac_intr(struct skge_hw *hw, int port)
1400 struct skge_port *skge = netdev_priv(hw->dev[port]);
1401 u16 status = xm_read16(hw, port, XM_ISRC);
1403 if (netif_msg_intr(skge))
1404 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1405 skge->netdev->name, status);
1407 if (status & XM_IS_TXF_UR) {
1408 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1409 ++skge->net_stats.tx_fifo_errors;
1411 if (status & XM_IS_RXF_OV) {
1412 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1413 ++skge->net_stats.rx_fifo_errors;
1417 static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1419 int i;
1421 gma_write16(hw, port, GM_SMI_DATA, val);
1422 gma_write16(hw, port, GM_SMI_CTRL,
1423 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1424 for (i = 0; i < PHY_RETRIES; i++) {
1425 udelay(1);
1427 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1428 break;
1432 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1434 int i;
1436 gma_write16(hw, port, GM_SMI_CTRL,
1437 GM_SMI_CT_PHY_AD(hw->phy_addr)
1438 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1440 for (i = 0; i < PHY_RETRIES; i++) {
1441 udelay(1);
1442 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1443 goto ready;
1446 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1447 hw->dev[port]->name);
1448 return 0;
1449 ready:
1450 return gma_read16(hw, port, GM_SMI_DATA);
1453 static void genesis_link_up(struct skge_port *skge)
1455 struct skge_hw *hw = skge->hw;
1456 int port = skge->port;
1457 u16 cmd;
1458 u32 mode, msk;
1460 pr_debug("genesis_link_up\n");
1461 cmd = xm_read16(hw, port, XM_MMU_CMD);
1464 * enabling pause frame reception is required for 1000BT
1465 * because the XMAC is not reset if the link is going down
1467 if (skge->flow_control == FLOW_MODE_NONE ||
1468 skge->flow_control == FLOW_MODE_LOC_SEND)
1469 /* Disable Pause Frame Reception */
1470 cmd |= XM_MMU_IGN_PF;
1471 else
1472 /* Enable Pause Frame Reception */
1473 cmd &= ~XM_MMU_IGN_PF;
1475 xm_write16(hw, port, XM_MMU_CMD, cmd);
1477 mode = xm_read32(hw, port, XM_MODE);
1478 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1479 skge->flow_control == FLOW_MODE_LOC_SEND) {
1481 * Configure Pause Frame Generation
1482 * Use internal and external Pause Frame Generation.
1483 * Sending pause frames is edge triggered.
1484 * Send a Pause frame with the maximum pause time if
1485 * internal oder external FIFO full condition occurs.
1486 * Send a zero pause time frame to re-start transmission.
1488 /* XM_PAUSE_DA = '010000C28001' (default) */
1489 /* XM_MAC_PTIME = 0xffff (maximum) */
1490 /* remember this value is defined in big endian (!) */
1491 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1493 mode |= XM_PAUSE_MODE;
1494 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1495 } else {
1497 * disable pause frame generation is required for 1000BT
1498 * because the XMAC is not reset if the link is going down
1500 /* Disable Pause Mode in Mode Register */
1501 mode &= ~XM_PAUSE_MODE;
1503 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1506 xm_write32(hw, port, XM_MODE, mode);
1508 msk = XM_DEF_MSK;
1509 /* disable GP0 interrupt bit for external Phy */
1510 msk |= XM_IS_INP_ASS;
1512 xm_write16(hw, port, XM_IMSK, msk);
1513 xm_read16(hw, port, XM_ISRC);
1515 /* get MMU Command Reg. */
1516 cmd = xm_read16(hw, port, XM_MMU_CMD);
1517 if (skge->duplex == DUPLEX_FULL)
1518 cmd |= XM_MMU_GMII_FD;
1521 * Workaround BCOM Errata (#10523) for all BCom Phys
1522 * Enable Power Management after link up
1524 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1525 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1526 & ~PHY_B_AC_DIS_PM);
1527 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1529 /* enable Rx/Tx */
1530 xm_write16(hw, port, XM_MMU_CMD,
1531 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1532 skge_link_up(skge);
1536 static inline void bcom_phy_intr(struct skge_port *skge)
1538 struct skge_hw *hw = skge->hw;
1539 int port = skge->port;
1540 u16 isrc;
1542 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1543 if (netif_msg_intr(skge))
1544 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1545 skge->netdev->name, isrc);
1547 if (isrc & PHY_B_IS_PSE)
1548 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1549 hw->dev[port]->name);
1551 /* Workaround BCom Errata:
1552 * enable and disable loopback mode if "NO HCD" occurs.
1554 if (isrc & PHY_B_IS_NO_HDCL) {
1555 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1556 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1557 ctrl | PHY_CT_LOOP);
1558 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1559 ctrl & ~PHY_CT_LOOP);
1562 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1563 bcom_check_link(hw, port);
1567 /* Marvell Phy Initailization */
1568 static void yukon_init(struct skge_hw *hw, int port)
1570 struct skge_port *skge = netdev_priv(hw->dev[port]);
1571 u16 ctrl, ct1000, adv;
1572 u16 ledctrl, ledover;
1574 pr_debug("yukon_init\n");
1575 if (skge->autoneg == AUTONEG_ENABLE) {
1576 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1578 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1579 PHY_M_EC_MAC_S_MSK);
1580 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1582 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1584 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1587 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1588 if (skge->autoneg == AUTONEG_DISABLE)
1589 ctrl &= ~PHY_CT_ANE;
1591 ctrl |= PHY_CT_RESET;
1592 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1594 ctrl = 0;
1595 ct1000 = 0;
1596 adv = PHY_AN_CSMA;
1598 if (skge->autoneg == AUTONEG_ENABLE) {
1599 if (iscopper(hw)) {
1600 if (skge->advertising & ADVERTISED_1000baseT_Full)
1601 ct1000 |= PHY_M_1000C_AFD;
1602 if (skge->advertising & ADVERTISED_1000baseT_Half)
1603 ct1000 |= PHY_M_1000C_AHD;
1604 if (skge->advertising & ADVERTISED_100baseT_Full)
1605 adv |= PHY_M_AN_100_FD;
1606 if (skge->advertising & ADVERTISED_100baseT_Half)
1607 adv |= PHY_M_AN_100_HD;
1608 if (skge->advertising & ADVERTISED_10baseT_Full)
1609 adv |= PHY_M_AN_10_FD;
1610 if (skge->advertising & ADVERTISED_10baseT_Half)
1611 adv |= PHY_M_AN_10_HD;
1612 } else /* special defines for FIBER (88E1011S only) */
1613 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1615 /* Set Flow-control capabilities */
1616 adv |= phy_pause_map[skge->flow_control];
1618 /* Restart Auto-negotiation */
1619 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1620 } else {
1621 /* forced speed/duplex settings */
1622 ct1000 = PHY_M_1000C_MSE;
1624 if (skge->duplex == DUPLEX_FULL)
1625 ctrl |= PHY_CT_DUP_MD;
1627 switch (skge->speed) {
1628 case SPEED_1000:
1629 ctrl |= PHY_CT_SP1000;
1630 break;
1631 case SPEED_100:
1632 ctrl |= PHY_CT_SP100;
1633 break;
1636 ctrl |= PHY_CT_RESET;
1639 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1641 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1642 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1644 /* Setup Phy LED's */
1645 ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
1646 ledover = 0;
1648 ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
1650 /* turn off the Rx LED (LED_RX) */
1651 ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
1653 /* disable blink mode (LED_DUPLEX) on collisions */
1654 ctrl |= PHY_M_LEDC_DP_CTRL;
1655 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
1657 if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
1658 /* turn on 100 Mbps LED (LED_LINK100) */
1659 ledover |= PHY_M_LED_MO_100(MO_LED_ON);
1662 if (ledover)
1663 gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
1665 /* Enable phy interrupt on autonegotiation complete (or link up) */
1666 if (skge->autoneg == AUTONEG_ENABLE)
1667 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
1668 else
1669 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1672 static void yukon_reset(struct skge_hw *hw, int port)
1674 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1675 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1676 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1677 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1678 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1680 gma_write16(hw, port, GM_RX_CTRL,
1681 gma_read16(hw, port, GM_RX_CTRL)
1682 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1685 static void yukon_mac_init(struct skge_hw *hw, int port)
1687 struct skge_port *skge = netdev_priv(hw->dev[port]);
1688 int i;
1689 u32 reg;
1690 const u8 *addr = hw->dev[port]->dev_addr;
1692 /* WA code for COMA mode -- set PHY reset */
1693 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1694 hw->chip_rev == CHIP_REV_YU_LITE_A3)
1695 skge_write32(hw, B2_GP_IO,
1696 (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
1698 /* hard reset */
1699 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1700 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1702 /* WA code for COMA mode -- clear PHY reset */
1703 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1704 hw->chip_rev == CHIP_REV_YU_LITE_A3)
1705 skge_write32(hw, B2_GP_IO,
1706 (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
1707 & ~GP_IO_9);
1709 /* Set hardware config mode */
1710 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1711 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1712 reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1714 /* Clear GMC reset */
1715 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1716 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1717 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1718 if (skge->autoneg == AUTONEG_DISABLE) {
1719 reg = GM_GPCR_AU_ALL_DIS;
1720 gma_write16(hw, port, GM_GP_CTRL,
1721 gma_read16(hw, port, GM_GP_CTRL) | reg);
1723 switch (skge->speed) {
1724 case SPEED_1000:
1725 reg |= GM_GPCR_SPEED_1000;
1726 /* fallthru */
1727 case SPEED_100:
1728 reg |= GM_GPCR_SPEED_100;
1731 if (skge->duplex == DUPLEX_FULL)
1732 reg |= GM_GPCR_DUP_FULL;
1733 } else
1734 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1735 switch (skge->flow_control) {
1736 case FLOW_MODE_NONE:
1737 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1738 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1739 break;
1740 case FLOW_MODE_LOC_SEND:
1741 /* disable Rx flow-control */
1742 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1745 gma_write16(hw, port, GM_GP_CTRL, reg);
1746 skge_read16(hw, GMAC_IRQ_SRC);
1748 spin_lock_bh(&hw->phy_lock);
1749 yukon_init(hw, port);
1750 spin_unlock_bh(&hw->phy_lock);
1752 /* MIB clear */
1753 reg = gma_read16(hw, port, GM_PHY_ADDR);
1754 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1756 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1757 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1758 gma_write16(hw, port, GM_PHY_ADDR, reg);
1760 /* transmit control */
1761 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1763 /* receive control reg: unicast + multicast + no FCS */
1764 gma_write16(hw, port, GM_RX_CTRL,
1765 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1767 /* transmit flow control */
1768 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1770 /* transmit parameter */
1771 gma_write16(hw, port, GM_TX_PARAM,
1772 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1773 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1774 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1776 /* serial mode register */
1777 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1778 if (hw->dev[port]->mtu > 1500)
1779 reg |= GM_SMOD_JUMBO_ENA;
1781 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1783 /* physical address: used for pause frames */
1784 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1785 /* virtual address for data */
1786 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1788 /* enable interrupt mask for counter overflows */
1789 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1790 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1791 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1793 /* Initialize Mac Fifo */
1795 /* Configure Rx MAC FIFO */
1796 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1797 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1798 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1799 hw->chip_rev == CHIP_REV_YU_LITE_A3)
1800 reg &= ~GMF_RX_F_FL_ON;
1801 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1802 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1803 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
1805 /* Configure Tx MAC FIFO */
1806 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1807 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1810 static void yukon_stop(struct skge_port *skge)
1812 struct skge_hw *hw = skge->hw;
1813 int port = skge->port;
1815 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1816 hw->chip_rev == CHIP_REV_YU_LITE_A3) {
1817 skge_write32(hw, B2_GP_IO,
1818 skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
1821 gma_write16(hw, port, GM_GP_CTRL,
1822 gma_read16(hw, port, GM_GP_CTRL)
1823 & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
1824 gma_read16(hw, port, GM_GP_CTRL);
1826 /* set GPHY Control reset */
1827 gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
1828 gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
1831 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1833 struct skge_hw *hw = skge->hw;
1834 int port = skge->port;
1835 int i;
1837 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1838 | gma_read32(hw, port, GM_TXO_OK_LO);
1839 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1840 | gma_read32(hw, port, GM_RXO_OK_LO);
1842 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1843 data[i] = gma_read32(hw, port,
1844 skge_stats[i].gma_offset);
1847 static void yukon_mac_intr(struct skge_hw *hw, int port)
1849 struct net_device *dev = hw->dev[port];
1850 struct skge_port *skge = netdev_priv(dev);
1851 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1853 if (netif_msg_intr(skge))
1854 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1855 dev->name, status);
1857 if (status & GM_IS_RX_FF_OR) {
1858 ++skge->net_stats.rx_fifo_errors;
1859 gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
1861 if (status & GM_IS_TX_FF_UR) {
1862 ++skge->net_stats.tx_fifo_errors;
1863 gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
1868 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1870 switch (aux & PHY_M_PS_SPEED_MSK) {
1871 case PHY_M_PS_SPEED_1000:
1872 return SPEED_1000;
1873 case PHY_M_PS_SPEED_100:
1874 return SPEED_100;
1875 default:
1876 return SPEED_10;
1880 static void yukon_link_up(struct skge_port *skge)
1882 struct skge_hw *hw = skge->hw;
1883 int port = skge->port;
1884 u16 reg;
1886 pr_debug("yukon_link_up\n");
1888 /* Enable Transmit FIFO Underrun */
1889 skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
1891 reg = gma_read16(hw, port, GM_GP_CTRL);
1892 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1893 reg |= GM_GPCR_DUP_FULL;
1895 /* enable Rx/Tx */
1896 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1897 gma_write16(hw, port, GM_GP_CTRL, reg);
1899 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1900 skge_link_up(skge);
1903 static void yukon_link_down(struct skge_port *skge)
1905 struct skge_hw *hw = skge->hw;
1906 int port = skge->port;
1908 pr_debug("yukon_link_down\n");
1909 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1910 gm_phy_write(hw, port, GM_GP_CTRL,
1911 gm_phy_read(hw, port, GM_GP_CTRL)
1912 & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
1914 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1915 /* restore Asymmetric Pause bit */
1916 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1917 gm_phy_read(hw, port,
1918 PHY_MARV_AUNE_ADV)
1919 | PHY_M_AN_ASP);
1923 yukon_reset(hw, port);
1924 skge_link_down(skge);
1926 yukon_init(hw, port);
1929 static void yukon_phy_intr(struct skge_port *skge)
1931 struct skge_hw *hw = skge->hw;
1932 int port = skge->port;
1933 const char *reason = NULL;
1934 u16 istatus, phystat;
1936 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1937 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1939 if (netif_msg_intr(skge))
1940 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1941 skge->netdev->name, istatus, phystat);
1943 if (istatus & PHY_M_IS_AN_COMPL) {
1944 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1945 & PHY_M_AN_RF) {
1946 reason = "remote fault";
1947 goto failed;
1950 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1951 reason = "master/slave fault";
1952 goto failed;
1955 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1956 reason = "speed/duplex";
1957 goto failed;
1960 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1961 ? DUPLEX_FULL : DUPLEX_HALF;
1962 skge->speed = yukon_speed(hw, phystat);
1964 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1965 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1966 case PHY_M_PS_PAUSE_MSK:
1967 skge->flow_control = FLOW_MODE_SYMMETRIC;
1968 break;
1969 case PHY_M_PS_RX_P_EN:
1970 skge->flow_control = FLOW_MODE_REM_SEND;
1971 break;
1972 case PHY_M_PS_TX_P_EN:
1973 skge->flow_control = FLOW_MODE_LOC_SEND;
1974 break;
1975 default:
1976 skge->flow_control = FLOW_MODE_NONE;
1979 if (skge->flow_control == FLOW_MODE_NONE ||
1980 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
1981 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1982 else
1983 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
1984 yukon_link_up(skge);
1985 return;
1988 if (istatus & PHY_M_IS_LSP_CHANGE)
1989 skge->speed = yukon_speed(hw, phystat);
1991 if (istatus & PHY_M_IS_DUP_CHANGE)
1992 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
1993 if (istatus & PHY_M_IS_LST_CHANGE) {
1994 if (phystat & PHY_M_PS_LINK_UP)
1995 yukon_link_up(skge);
1996 else
1997 yukon_link_down(skge);
1999 return;
2000 failed:
2001 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2002 skge->netdev->name, reason);
2004 /* XXX restart autonegotiation? */
2007 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2009 u32 end;
2011 start /= 8;
2012 len /= 8;
2013 end = start + len - 1;
2015 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2016 skge_write32(hw, RB_ADDR(q, RB_START), start);
2017 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2018 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2019 skge_write32(hw, RB_ADDR(q, RB_END), end);
2021 if (q == Q_R1 || q == Q_R2) {
2022 /* Set thresholds on receive queue's */
2023 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2024 start + (2*len)/3);
2025 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2026 start + (len/3));
2027 } else {
2028 /* Enable store & forward on Tx queue's because
2029 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2031 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2034 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2037 /* Setup Bus Memory Interface */
2038 static void skge_qset(struct skge_port *skge, u16 q,
2039 const struct skge_element *e)
2041 struct skge_hw *hw = skge->hw;
2042 u32 watermark = 0x600;
2043 u64 base = skge->dma + (e->desc - skge->mem);
2045 /* optimization to reduce window on 32bit/33mhz */
2046 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2047 watermark /= 2;
2049 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2050 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2051 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2052 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2055 static int skge_up(struct net_device *dev)
2057 struct skge_port *skge = netdev_priv(dev);
2058 struct skge_hw *hw = skge->hw;
2059 int port = skge->port;
2060 u32 chunk, ram_addr;
2061 size_t rx_size, tx_size;
2062 int err;
2064 if (netif_msg_ifup(skge))
2065 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2067 if (dev->mtu > RX_BUF_SIZE)
2068 skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
2069 else
2070 skge->rx_buf_size = RX_BUF_SIZE;
2073 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2074 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2075 skge->mem_size = tx_size + rx_size;
2076 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2077 if (!skge->mem)
2078 return -ENOMEM;
2080 memset(skge->mem, 0, skge->mem_size);
2082 if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
2083 goto free_pci_mem;
2085 err = skge_rx_fill(skge);
2086 if (err)
2087 goto free_rx_ring;
2089 if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2090 skge->dma + rx_size)))
2091 goto free_rx_ring;
2093 skge->tx_avail = skge->tx_ring.count - 1;
2095 /* Enable IRQ from port */
2096 hw->intr_mask |= portirqmask[port];
2097 skge_write32(hw, B0_IMSK, hw->intr_mask);
2099 /* Initialze MAC */
2100 if (hw->chip_id == CHIP_ID_GENESIS)
2101 genesis_mac_init(hw, port);
2102 else
2103 yukon_mac_init(hw, port);
2105 /* Configure RAMbuffers */
2106 chunk = hw->ram_size / ((hw->ports + 1)*2);
2107 ram_addr = hw->ram_offset + 2 * chunk * port;
2109 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2110 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2112 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2113 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2114 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2116 /* Start receiver BMU */
2117 wmb();
2118 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2120 pr_debug("skge_up completed\n");
2121 return 0;
2123 free_rx_ring:
2124 skge_rx_clean(skge);
2125 kfree(skge->rx_ring.start);
2126 free_pci_mem:
2127 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2129 return err;
2132 static int skge_down(struct net_device *dev)
2134 struct skge_port *skge = netdev_priv(dev);
2135 struct skge_hw *hw = skge->hw;
2136 int port = skge->port;
2138 if (netif_msg_ifdown(skge))
2139 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2141 netif_stop_queue(dev);
2143 del_timer_sync(&skge->led_blink);
2145 /* Stop transmitter */
2146 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2147 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2148 RB_RST_SET|RB_DIS_OP_MD);
2150 if (hw->chip_id == CHIP_ID_GENESIS)
2151 genesis_stop(skge);
2152 else
2153 yukon_stop(skge);
2155 /* Disable Force Sync bit and Enable Alloc bit */
2156 skge_write8(hw, SK_REG(port, TXA_CTRL),
2157 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2159 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2160 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2161 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2163 /* Reset PCI FIFO */
2164 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2165 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2167 /* Reset the RAM Buffer async Tx queue */
2168 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2169 /* stop receiver */
2170 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2171 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2172 RB_RST_SET|RB_DIS_OP_MD);
2173 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2175 if (hw->chip_id == CHIP_ID_GENESIS) {
2176 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2177 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2178 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
2179 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
2180 } else {
2181 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2182 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2185 /* turn off led's */
2186 skge_write16(hw, B0_LED, LED_STAT_OFF);
2188 skge_tx_clean(skge);
2189 skge_rx_clean(skge);
2191 kfree(skge->rx_ring.start);
2192 kfree(skge->tx_ring.start);
2193 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2194 return 0;
2197 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2199 struct skge_port *skge = netdev_priv(dev);
2200 struct skge_hw *hw = skge->hw;
2201 struct skge_ring *ring = &skge->tx_ring;
2202 struct skge_element *e;
2203 struct skge_tx_desc *td;
2204 int i;
2205 u32 control, len;
2206 u64 map;
2207 unsigned long flags;
2209 skb = skb_padto(skb, ETH_ZLEN);
2210 if (!skb)
2211 return NETDEV_TX_OK;
2213 local_irq_save(flags);
2214 if (!spin_trylock(&skge->tx_lock)) {
2215 /* Collision - tell upper layer to requeue */
2216 local_irq_restore(flags);
2217 return NETDEV_TX_LOCKED;
2220 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
2221 netif_stop_queue(dev);
2222 spin_unlock_irqrestore(&skge->tx_lock, flags);
2224 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2225 dev->name);
2226 return NETDEV_TX_BUSY;
2229 e = ring->to_use;
2230 td = e->desc;
2231 e->skb = skb;
2232 len = skb_headlen(skb);
2233 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2234 pci_unmap_addr_set(e, mapaddr, map);
2235 pci_unmap_len_set(e, maplen, len);
2237 td->dma_lo = map;
2238 td->dma_hi = map >> 32;
2240 if (skb->ip_summed == CHECKSUM_HW) {
2241 const struct iphdr *ip
2242 = (const struct iphdr *) (skb->data + ETH_HLEN);
2243 int offset = skb->h.raw - skb->data;
2245 /* This seems backwards, but it is what the sk98lin
2246 * does. Looks like hardware is wrong?
2248 if (ip->protocol == IPPROTO_UDP
2249 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2250 control = BMU_TCP_CHECK;
2251 else
2252 control = BMU_UDP_CHECK;
2254 td->csum_offs = 0;
2255 td->csum_start = offset;
2256 td->csum_write = offset + skb->csum;
2257 } else
2258 control = BMU_CHECK;
2260 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2261 control |= BMU_EOF| BMU_IRQ_EOF;
2262 else {
2263 struct skge_tx_desc *tf = td;
2265 control |= BMU_STFWD;
2266 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2267 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2269 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2270 frag->size, PCI_DMA_TODEVICE);
2272 e = e->next;
2273 e->skb = NULL;
2274 tf = e->desc;
2275 tf->dma_lo = map;
2276 tf->dma_hi = (u64) map >> 32;
2277 pci_unmap_addr_set(e, mapaddr, map);
2278 pci_unmap_len_set(e, maplen, frag->size);
2280 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2282 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2284 /* Make sure all the descriptors written */
2285 wmb();
2286 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2287 wmb();
2289 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2291 if (netif_msg_tx_queued(skge))
2292 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2293 dev->name, e - ring->start, skb->len);
2295 ring->to_use = e->next;
2296 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
2297 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
2298 pr_debug("%s: transmit queue full\n", dev->name);
2299 netif_stop_queue(dev);
2302 dev->trans_start = jiffies;
2303 spin_unlock_irqrestore(&skge->tx_lock, flags);
2305 return NETDEV_TX_OK;
2308 static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
2310 /* This ring element can be skb or fragment */
2311 if (e->skb) {
2312 pci_unmap_single(hw->pdev,
2313 pci_unmap_addr(e, mapaddr),
2314 pci_unmap_len(e, maplen),
2315 PCI_DMA_TODEVICE);
2316 dev_kfree_skb_any(e->skb);
2317 e->skb = NULL;
2318 } else {
2319 pci_unmap_page(hw->pdev,
2320 pci_unmap_addr(e, mapaddr),
2321 pci_unmap_len(e, maplen),
2322 PCI_DMA_TODEVICE);
2326 static void skge_tx_clean(struct skge_port *skge)
2328 struct skge_ring *ring = &skge->tx_ring;
2329 struct skge_element *e;
2330 unsigned long flags;
2332 spin_lock_irqsave(&skge->tx_lock, flags);
2333 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2334 ++skge->tx_avail;
2335 skge_tx_free(skge->hw, e);
2337 ring->to_clean = e;
2338 spin_unlock_irqrestore(&skge->tx_lock, flags);
2341 static void skge_tx_timeout(struct net_device *dev)
2343 struct skge_port *skge = netdev_priv(dev);
2345 if (netif_msg_timer(skge))
2346 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2348 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2349 skge_tx_clean(skge);
2352 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2354 int err = 0;
2355 int running = netif_running(dev);
2357 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2358 return -EINVAL;
2361 if (running)
2362 skge_down(dev);
2363 dev->mtu = new_mtu;
2364 if (running)
2365 skge_up(dev);
2367 return err;
2370 static void genesis_set_multicast(struct net_device *dev)
2372 struct skge_port *skge = netdev_priv(dev);
2373 struct skge_hw *hw = skge->hw;
2374 int port = skge->port;
2375 int i, count = dev->mc_count;
2376 struct dev_mc_list *list = dev->mc_list;
2377 u32 mode;
2378 u8 filter[8];
2380 pr_debug("genesis_set_multicast flags=%x count=%d\n", dev->flags, dev->mc_count);
2382 mode = xm_read32(hw, port, XM_MODE);
2383 mode |= XM_MD_ENA_HASH;
2384 if (dev->flags & IFF_PROMISC)
2385 mode |= XM_MD_ENA_PROM;
2386 else
2387 mode &= ~XM_MD_ENA_PROM;
2389 if (dev->flags & IFF_ALLMULTI)
2390 memset(filter, 0xff, sizeof(filter));
2391 else {
2392 memset(filter, 0, sizeof(filter));
2393 for (i = 0; list && i < count; i++, list = list->next) {
2394 u32 crc, bit;
2395 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2396 bit = ~crc & 0x3f;
2397 filter[bit/8] |= 1 << (bit%8);
2401 xm_write32(hw, port, XM_MODE, mode);
2402 xm_outhash(hw, port, XM_HSM, filter);
2405 static void yukon_set_multicast(struct net_device *dev)
2407 struct skge_port *skge = netdev_priv(dev);
2408 struct skge_hw *hw = skge->hw;
2409 int port = skge->port;
2410 struct dev_mc_list *list = dev->mc_list;
2411 u16 reg;
2412 u8 filter[8];
2414 memset(filter, 0, sizeof(filter));
2416 reg = gma_read16(hw, port, GM_RX_CTRL);
2417 reg |= GM_RXCR_UCF_ENA;
2419 if (dev->flags & IFF_PROMISC) /* promiscious */
2420 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2421 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2422 memset(filter, 0xff, sizeof(filter));
2423 else if (dev->mc_count == 0) /* no multicast */
2424 reg &= ~GM_RXCR_MCF_ENA;
2425 else {
2426 int i;
2427 reg |= GM_RXCR_MCF_ENA;
2429 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2430 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2431 filter[bit/8] |= 1 << (bit%8);
2436 gma_write16(hw, port, GM_MC_ADDR_H1,
2437 (u16)filter[0] | ((u16)filter[1] << 8));
2438 gma_write16(hw, port, GM_MC_ADDR_H2,
2439 (u16)filter[2] | ((u16)filter[3] << 8));
2440 gma_write16(hw, port, GM_MC_ADDR_H3,
2441 (u16)filter[4] | ((u16)filter[5] << 8));
2442 gma_write16(hw, port, GM_MC_ADDR_H4,
2443 (u16)filter[6] | ((u16)filter[7] << 8));
2445 gma_write16(hw, port, GM_RX_CTRL, reg);
2448 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2450 if (hw->chip_id == CHIP_ID_GENESIS)
2451 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2452 else
2453 return (status & GMR_FS_ANY_ERR) ||
2454 (status & GMR_FS_RX_OK) == 0;
2457 static void skge_rx_error(struct skge_port *skge, int slot,
2458 u32 control, u32 status)
2460 if (netif_msg_rx_err(skge))
2461 printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
2462 skge->netdev->name, slot, control, status);
2464 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2465 skge->net_stats.rx_length_errors++;
2466 else if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2467 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2468 skge->net_stats.rx_length_errors++;
2469 if (status & XMR_FS_FRA_ERR)
2470 skge->net_stats.rx_frame_errors++;
2471 if (status & XMR_FS_FCS_ERR)
2472 skge->net_stats.rx_crc_errors++;
2473 } else {
2474 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2475 skge->net_stats.rx_length_errors++;
2476 if (status & GMR_FS_FRAGMENT)
2477 skge->net_stats.rx_frame_errors++;
2478 if (status & GMR_FS_CRC_ERR)
2479 skge->net_stats.rx_crc_errors++;
2483 /* Get receive buffer from descriptor.
2484 * Handles copy of small buffers and reallocation failures
2486 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2487 struct skge_element *e,
2488 unsigned int len)
2490 struct sk_buff *nskb, *skb;
2492 if (len < RX_COPY_THRESHOLD) {
2493 nskb = skge_rx_alloc(skge->netdev, len + NET_IP_ALIGN);
2494 if (unlikely(!nskb))
2495 return NULL;
2497 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2498 pci_unmap_addr(e, mapaddr),
2499 len, PCI_DMA_FROMDEVICE);
2500 memcpy(nskb->data, e->skb->data, len);
2501 pci_dma_sync_single_for_device(skge->hw->pdev,
2502 pci_unmap_addr(e, mapaddr),
2503 len, PCI_DMA_FROMDEVICE);
2505 if (skge->rx_csum) {
2506 struct skge_rx_desc *rd = e->desc;
2507 nskb->csum = le16_to_cpu(rd->csum2);
2508 nskb->ip_summed = CHECKSUM_HW;
2510 skge_rx_reuse(e, skge->rx_buf_size);
2511 return nskb;
2512 } else {
2513 nskb = skge_rx_alloc(skge->netdev, skge->rx_buf_size);
2514 if (unlikely(!nskb))
2515 return NULL;
2517 pci_unmap_single(skge->hw->pdev,
2518 pci_unmap_addr(e, mapaddr),
2519 pci_unmap_len(e, maplen),
2520 PCI_DMA_FROMDEVICE);
2521 skb = e->skb;
2522 if (skge->rx_csum) {
2523 struct skge_rx_desc *rd = e->desc;
2524 skb->csum = le16_to_cpu(rd->csum2);
2525 skb->ip_summed = CHECKSUM_HW;
2528 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2529 return skb;
2534 static int skge_poll(struct net_device *dev, int *budget)
2536 struct skge_port *skge = netdev_priv(dev);
2537 struct skge_hw *hw = skge->hw;
2538 struct skge_ring *ring = &skge->rx_ring;
2539 struct skge_element *e;
2540 unsigned int to_do = min(dev->quota, *budget);
2541 unsigned int work_done = 0;
2543 pr_debug("skge_poll\n");
2545 for (e = ring->to_clean; work_done < to_do; e = e->next) {
2546 struct skge_rx_desc *rd = e->desc;
2547 struct sk_buff *skb;
2548 u32 control, len, status;
2550 rmb();
2551 control = rd->control;
2552 if (control & BMU_OWN)
2553 break;
2555 len = control & BMU_BBC;
2556 status = rd->status;
2558 if (unlikely((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
2559 || bad_phy_status(hw, status))) {
2560 skge_rx_error(skge, e - ring->start, control, status);
2561 skge_rx_reuse(e, skge->rx_buf_size);
2562 continue;
2565 if (netif_msg_rx_status(skge))
2566 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2567 dev->name, e - ring->start, rd->status, len);
2569 skb = skge_rx_get(skge, e, len);
2570 if (likely(skb)) {
2571 skb_put(skb, len);
2572 skb->protocol = eth_type_trans(skb, dev);
2574 dev->last_rx = jiffies;
2575 netif_receive_skb(skb);
2577 ++work_done;
2578 } else
2579 skge_rx_reuse(e, skge->rx_buf_size);
2581 ring->to_clean = e;
2583 /* restart receiver */
2584 wmb();
2585 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
2586 CSR_START | CSR_IRQ_CL_F);
2588 *budget -= work_done;
2589 dev->quota -= work_done;
2591 if (work_done >= to_do)
2592 return 1; /* not done */
2594 local_irq_disable();
2595 __netif_rx_complete(dev);
2596 hw->intr_mask |= portirqmask[skge->port];
2597 skge_write32(hw, B0_IMSK, hw->intr_mask);
2598 local_irq_enable();
2599 return 0;
2602 static inline void skge_tx_intr(struct net_device *dev)
2604 struct skge_port *skge = netdev_priv(dev);
2605 struct skge_hw *hw = skge->hw;
2606 struct skge_ring *ring = &skge->tx_ring;
2607 struct skge_element *e;
2609 spin_lock(&skge->tx_lock);
2610 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2611 struct skge_tx_desc *td = e->desc;
2612 u32 control;
2614 rmb();
2615 control = td->control;
2616 if (control & BMU_OWN)
2617 break;
2619 if (unlikely(netif_msg_tx_done(skge)))
2620 printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
2621 dev->name, e - ring->start, td->status);
2623 skge_tx_free(hw, e);
2624 e->skb = NULL;
2625 ++skge->tx_avail;
2627 ring->to_clean = e;
2628 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2630 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
2631 netif_wake_queue(dev);
2633 spin_unlock(&skge->tx_lock);
2636 static void skge_mac_parity(struct skge_hw *hw, int port)
2638 printk(KERN_ERR PFX "%s: mac data parity error\n",
2639 hw->dev[port] ? hw->dev[port]->name
2640 : (port == 0 ? "(port A)": "(port B"));
2642 if (hw->chip_id == CHIP_ID_GENESIS)
2643 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2644 MFF_CLR_PERR);
2645 else
2646 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2647 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2648 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2649 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2652 static void skge_pci_clear(struct skge_hw *hw)
2654 u16 status;
2656 pci_read_config_word(hw->pdev, PCI_STATUS, &status);
2657 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2658 pci_write_config_word(hw->pdev, PCI_STATUS,
2659 status | PCI_STATUS_ERROR_BITS);
2660 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2663 static void skge_mac_intr(struct skge_hw *hw, int port)
2665 if (hw->chip_id == CHIP_ID_GENESIS)
2666 genesis_mac_intr(hw, port);
2667 else
2668 yukon_mac_intr(hw, port);
2671 /* Handle device specific framing and timeout interrupts */
2672 static void skge_error_irq(struct skge_hw *hw)
2674 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2676 if (hw->chip_id == CHIP_ID_GENESIS) {
2677 /* clear xmac errors */
2678 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2679 skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
2680 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2681 skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
2682 } else {
2683 /* Timestamp (unused) overflow */
2684 if (hwstatus & IS_IRQ_TIST_OV)
2685 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2687 if (hwstatus & IS_IRQ_SENSOR) {
2688 /* no sensors on 32-bit Yukon */
2689 if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
2690 printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
2691 skge_write32(hw, B0_HWE_IMSK,
2692 IS_ERR_MSK & ~IS_IRQ_SENSOR);
2693 } else
2694 printk(KERN_WARNING PFX "sensor interrupt\n");
2700 if (hwstatus & IS_RAM_RD_PAR) {
2701 printk(KERN_ERR PFX "Ram read data parity error\n");
2702 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2705 if (hwstatus & IS_RAM_WR_PAR) {
2706 printk(KERN_ERR PFX "Ram write data parity error\n");
2707 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2710 if (hwstatus & IS_M1_PAR_ERR)
2711 skge_mac_parity(hw, 0);
2713 if (hwstatus & IS_M2_PAR_ERR)
2714 skge_mac_parity(hw, 1);
2716 if (hwstatus & IS_R1_PAR_ERR)
2717 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2719 if (hwstatus & IS_R2_PAR_ERR)
2720 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2722 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2723 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
2724 hwstatus);
2726 skge_pci_clear(hw);
2728 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2729 if (hwstatus & IS_IRQ_STAT) {
2730 printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
2731 hwstatus);
2732 hw->intr_mask &= ~IS_HW_ERR;
2738 * Interrrupt from PHY are handled in tasklet (soft irq)
2739 * because accessing phy registers requires spin wait which might
2740 * cause excess interrupt latency.
2742 static void skge_extirq(unsigned long data)
2744 struct skge_hw *hw = (struct skge_hw *) data;
2745 int port;
2747 spin_lock(&hw->phy_lock);
2748 for (port = 0; port < 2; port++) {
2749 struct net_device *dev = hw->dev[port];
2751 if (dev && netif_running(dev)) {
2752 struct skge_port *skge = netdev_priv(dev);
2754 if (hw->chip_id != CHIP_ID_GENESIS)
2755 yukon_phy_intr(skge);
2756 else
2757 bcom_phy_intr(skge);
2760 spin_unlock(&hw->phy_lock);
2762 local_irq_disable();
2763 hw->intr_mask |= IS_EXT_REG;
2764 skge_write32(hw, B0_IMSK, hw->intr_mask);
2765 local_irq_enable();
2768 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2770 struct skge_hw *hw = dev_id;
2771 u32 status = skge_read32(hw, B0_SP_ISRC);
2773 if (status == 0 || status == ~0) /* hotplug or shared irq */
2774 return IRQ_NONE;
2776 status &= hw->intr_mask;
2777 if (status & IS_R1_F) {
2778 hw->intr_mask &= ~IS_R1_F;
2779 netif_rx_schedule(hw->dev[0]);
2782 if (status & IS_R2_F) {
2783 hw->intr_mask &= ~IS_R2_F;
2784 netif_rx_schedule(hw->dev[1]);
2787 if (status & IS_XA1_F)
2788 skge_tx_intr(hw->dev[0]);
2790 if (status & IS_XA2_F)
2791 skge_tx_intr(hw->dev[1]);
2793 if (status & IS_PA_TO_RX1) {
2794 struct skge_port *skge = netdev_priv(hw->dev[0]);
2795 ++skge->net_stats.rx_over_errors;
2796 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2799 if (status & IS_PA_TO_RX2) {
2800 struct skge_port *skge = netdev_priv(hw->dev[1]);
2801 ++skge->net_stats.rx_over_errors;
2802 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2805 if (status & IS_PA_TO_TX1)
2806 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2808 if (status & IS_PA_TO_TX2)
2809 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2811 if (status & IS_MAC1)
2812 skge_mac_intr(hw, 0);
2814 if (status & IS_MAC2)
2815 skge_mac_intr(hw, 1);
2817 if (status & IS_HW_ERR)
2818 skge_error_irq(hw);
2820 if (status & IS_EXT_REG) {
2821 hw->intr_mask &= ~IS_EXT_REG;
2822 tasklet_schedule(&hw->ext_tasklet);
2825 skge_write32(hw, B0_IMSK, hw->intr_mask);
2827 return IRQ_HANDLED;
2830 #ifdef CONFIG_NET_POLL_CONTROLLER
2831 static void skge_netpoll(struct net_device *dev)
2833 struct skge_port *skge = netdev_priv(dev);
2835 disable_irq(dev->irq);
2836 skge_intr(dev->irq, skge->hw, NULL);
2837 enable_irq(dev->irq);
2839 #endif
2841 static int skge_set_mac_address(struct net_device *dev, void *p)
2843 struct skge_port *skge = netdev_priv(dev);
2844 struct sockaddr *addr = p;
2845 int err = 0;
2847 if (!is_valid_ether_addr(addr->sa_data))
2848 return -EADDRNOTAVAIL;
2850 skge_down(dev);
2851 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2852 memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
2853 dev->dev_addr, ETH_ALEN);
2854 memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
2855 dev->dev_addr, ETH_ALEN);
2856 if (dev->flags & IFF_UP)
2857 err = skge_up(dev);
2858 return err;
2861 static const struct {
2862 u8 id;
2863 const char *name;
2864 } skge_chips[] = {
2865 { CHIP_ID_GENESIS, "Genesis" },
2866 { CHIP_ID_YUKON, "Yukon" },
2867 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2868 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2871 static const char *skge_board_name(const struct skge_hw *hw)
2873 int i;
2874 static char buf[16];
2876 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2877 if (skge_chips[i].id == hw->chip_id)
2878 return skge_chips[i].name;
2880 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2881 return buf;
2886 * Setup the board data structure, but don't bring up
2887 * the port(s)
2889 static int skge_reset(struct skge_hw *hw)
2891 u16 ctst;
2892 u8 t8, mac_cfg;
2893 int i;
2895 ctst = skge_read16(hw, B0_CTST);
2897 /* do a SW reset */
2898 skge_write8(hw, B0_CTST, CS_RST_SET);
2899 skge_write8(hw, B0_CTST, CS_RST_CLR);
2901 /* clear PCI errors, if any */
2902 skge_pci_clear(hw);
2904 skge_write8(hw, B0_CTST, CS_MRST_CLR);
2906 /* restore CLK_RUN bits (for Yukon-Lite) */
2907 skge_write16(hw, B0_CTST,
2908 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
2910 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
2911 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
2912 hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
2914 switch (hw->chip_id) {
2915 case CHIP_ID_GENESIS:
2916 switch (hw->phy_type) {
2917 case SK_PHY_BCOM:
2918 hw->phy_addr = PHY_ADDR_BCOM;
2919 break;
2920 default:
2921 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
2922 pci_name(hw->pdev), hw->phy_type);
2923 return -EOPNOTSUPP;
2925 break;
2927 case CHIP_ID_YUKON:
2928 case CHIP_ID_YUKON_LITE:
2929 case CHIP_ID_YUKON_LP:
2930 if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
2931 hw->phy_type = SK_PHY_MARV_COPPER;
2933 hw->phy_addr = PHY_ADDR_MARV;
2934 if (!iscopper(hw))
2935 hw->phy_type = SK_PHY_MARV_FIBER;
2937 break;
2939 default:
2940 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
2941 pci_name(hw->pdev), hw->chip_id);
2942 return -EOPNOTSUPP;
2945 mac_cfg = skge_read8(hw, B2_MAC_CFG);
2946 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
2947 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
2949 /* read the adapters RAM size */
2950 t8 = skge_read8(hw, B2_E_0);
2951 if (hw->chip_id == CHIP_ID_GENESIS) {
2952 if (t8 == 3) {
2953 /* special case: 4 x 64k x 36, offset = 0x80000 */
2954 hw->ram_size = 0x100000;
2955 hw->ram_offset = 0x80000;
2956 } else
2957 hw->ram_size = t8 * 512;
2959 else if (t8 == 0)
2960 hw->ram_size = 0x20000;
2961 else
2962 hw->ram_size = t8 * 4096;
2964 if (hw->chip_id == CHIP_ID_GENESIS)
2965 genesis_init(hw);
2966 else {
2967 /* switch power to VCC (WA for VAUX problem) */
2968 skge_write8(hw, B0_POWER_CTRL,
2969 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
2970 for (i = 0; i < hw->ports; i++) {
2971 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
2972 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
2976 /* turn off hardware timer (unused) */
2977 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
2978 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
2979 skge_write8(hw, B0_LED, LED_STAT_ON);
2981 /* enable the Tx Arbiters */
2982 for (i = 0; i < hw->ports; i++)
2983 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
2985 /* Initialize ram interface */
2986 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
2988 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
2989 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
2990 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
2991 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
2992 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
2993 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
2994 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
2995 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
2996 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
2997 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
2998 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
2999 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3001 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3003 /* Set interrupt moderation for Transmit only
3004 * Receive interrupts avoided by NAPI
3006 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3007 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3008 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3010 hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
3011 skge_write32(hw, B0_IMSK, hw->intr_mask);
3013 if (hw->chip_id != CHIP_ID_GENESIS)
3014 skge_write8(hw, GMAC_IRQ_MSK, 0);
3016 spin_lock_bh(&hw->phy_lock);
3017 for (i = 0; i < hw->ports; i++) {
3018 if (hw->chip_id == CHIP_ID_GENESIS)
3019 genesis_reset(hw, i);
3020 else
3021 yukon_reset(hw, i);
3023 spin_unlock_bh(&hw->phy_lock);
3025 return 0;
3028 /* Initialize network device */
3029 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3030 int highmem)
3032 struct skge_port *skge;
3033 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3035 if (!dev) {
3036 printk(KERN_ERR "skge etherdev alloc failed");
3037 return NULL;
3040 SET_MODULE_OWNER(dev);
3041 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3042 dev->open = skge_up;
3043 dev->stop = skge_down;
3044 dev->hard_start_xmit = skge_xmit_frame;
3045 dev->get_stats = skge_get_stats;
3046 if (hw->chip_id == CHIP_ID_GENESIS)
3047 dev->set_multicast_list = genesis_set_multicast;
3048 else
3049 dev->set_multicast_list = yukon_set_multicast;
3051 dev->set_mac_address = skge_set_mac_address;
3052 dev->change_mtu = skge_change_mtu;
3053 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3054 dev->tx_timeout = skge_tx_timeout;
3055 dev->watchdog_timeo = TX_WATCHDOG;
3056 dev->poll = skge_poll;
3057 dev->weight = NAPI_WEIGHT;
3058 #ifdef CONFIG_NET_POLL_CONTROLLER
3059 dev->poll_controller = skge_netpoll;
3060 #endif
3061 dev->irq = hw->pdev->irq;
3062 dev->features = NETIF_F_LLTX;
3063 if (highmem)
3064 dev->features |= NETIF_F_HIGHDMA;
3066 skge = netdev_priv(dev);
3067 skge->netdev = dev;
3068 skge->hw = hw;
3069 skge->msg_enable = netif_msg_init(debug, default_msg);
3070 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3071 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3073 /* Auto speed and flow control */
3074 skge->autoneg = AUTONEG_ENABLE;
3075 skge->flow_control = FLOW_MODE_SYMMETRIC;
3076 skge->duplex = -1;
3077 skge->speed = -1;
3078 skge->advertising = skge_supported_modes(hw);
3080 hw->dev[port] = dev;
3082 skge->port = port;
3084 spin_lock_init(&skge->tx_lock);
3086 init_timer(&skge->led_blink);
3087 skge->led_blink.function = skge_blink_timer;
3088 skge->led_blink.data = (unsigned long) skge;
3090 if (hw->chip_id != CHIP_ID_GENESIS) {
3091 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3092 skge->rx_csum = 1;
3095 /* read the mac address */
3096 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3098 /* device is off until link detection */
3099 netif_carrier_off(dev);
3100 netif_stop_queue(dev);
3102 return dev;
3105 static void __devinit skge_show_addr(struct net_device *dev)
3107 const struct skge_port *skge = netdev_priv(dev);
3109 if (netif_msg_probe(skge))
3110 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3111 dev->name,
3112 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3113 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3116 static int __devinit skge_probe(struct pci_dev *pdev,
3117 const struct pci_device_id *ent)
3119 struct net_device *dev, *dev1;
3120 struct skge_hw *hw;
3121 int err, using_dac = 0;
3123 if ((err = pci_enable_device(pdev))) {
3124 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3125 pci_name(pdev));
3126 goto err_out;
3129 if ((err = pci_request_regions(pdev, DRV_NAME))) {
3130 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3131 pci_name(pdev));
3132 goto err_out_disable_pdev;
3135 pci_set_master(pdev);
3137 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
3138 using_dac = 1;
3139 else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3140 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3141 pci_name(pdev));
3142 goto err_out_free_regions;
3145 #ifdef __BIG_ENDIAN
3146 /* byte swap decriptors in hardware */
3148 u32 reg;
3150 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3151 reg |= PCI_REV_DESC;
3152 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3154 #endif
3156 err = -ENOMEM;
3157 hw = kmalloc(sizeof(*hw), GFP_KERNEL);
3158 if (!hw) {
3159 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3160 pci_name(pdev));
3161 goto err_out_free_regions;
3164 memset(hw, 0, sizeof(*hw));
3165 hw->pdev = pdev;
3166 spin_lock_init(&hw->phy_lock);
3167 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
3169 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3170 if (!hw->regs) {
3171 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3172 pci_name(pdev));
3173 goto err_out_free_hw;
3176 if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
3177 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3178 pci_name(pdev), pdev->irq);
3179 goto err_out_iounmap;
3181 pci_set_drvdata(pdev, hw);
3183 err = skge_reset(hw);
3184 if (err)
3185 goto err_out_free_irq;
3187 printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
3188 pci_resource_start(pdev, 0), pdev->irq,
3189 skge_board_name(hw), hw->chip_rev);
3191 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3192 goto err_out_led_off;
3194 if ((err = register_netdev(dev))) {
3195 printk(KERN_ERR PFX "%s: cannot register net device\n",
3196 pci_name(pdev));
3197 goto err_out_free_netdev;
3200 skge_show_addr(dev);
3202 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3203 if (register_netdev(dev1) == 0)
3204 skge_show_addr(dev1);
3205 else {
3206 /* Failure to register second port need not be fatal */
3207 printk(KERN_WARNING PFX "register of second port failed\n");
3208 hw->dev[1] = NULL;
3209 free_netdev(dev1);
3213 return 0;
3215 err_out_free_netdev:
3216 free_netdev(dev);
3217 err_out_led_off:
3218 skge_write16(hw, B0_LED, LED_STAT_OFF);
3219 err_out_free_irq:
3220 free_irq(pdev->irq, hw);
3221 err_out_iounmap:
3222 iounmap(hw->regs);
3223 err_out_free_hw:
3224 kfree(hw);
3225 err_out_free_regions:
3226 pci_release_regions(pdev);
3227 err_out_disable_pdev:
3228 pci_disable_device(pdev);
3229 pci_set_drvdata(pdev, NULL);
3230 err_out:
3231 return err;
3234 static void __devexit skge_remove(struct pci_dev *pdev)
3236 struct skge_hw *hw = pci_get_drvdata(pdev);
3237 struct net_device *dev0, *dev1;
3239 if (!hw)
3240 return;
3242 if ((dev1 = hw->dev[1]))
3243 unregister_netdev(dev1);
3244 dev0 = hw->dev[0];
3245 unregister_netdev(dev0);
3247 tasklet_kill(&hw->ext_tasklet);
3249 free_irq(pdev->irq, hw);
3250 pci_release_regions(pdev);
3251 pci_disable_device(pdev);
3252 if (dev1)
3253 free_netdev(dev1);
3254 free_netdev(dev0);
3255 skge_write16(hw, B0_LED, LED_STAT_OFF);
3256 iounmap(hw->regs);
3257 kfree(hw);
3258 pci_set_drvdata(pdev, NULL);
3261 #ifdef CONFIG_PM
3262 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3264 struct skge_hw *hw = pci_get_drvdata(pdev);
3265 int i, wol = 0;
3267 for (i = 0; i < 2; i++) {
3268 struct net_device *dev = hw->dev[i];
3270 if (dev) {
3271 struct skge_port *skge = netdev_priv(dev);
3272 if (netif_running(dev)) {
3273 netif_carrier_off(dev);
3274 skge_down(dev);
3276 netif_device_detach(dev);
3277 wol |= skge->wol;
3281 pci_save_state(pdev);
3282 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3283 pci_disable_device(pdev);
3284 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3286 return 0;
3289 static int skge_resume(struct pci_dev *pdev)
3291 struct skge_hw *hw = pci_get_drvdata(pdev);
3292 int i;
3294 pci_set_power_state(pdev, PCI_D0);
3295 pci_restore_state(pdev);
3296 pci_enable_wake(pdev, PCI_D0, 0);
3298 skge_reset(hw);
3300 for (i = 0; i < 2; i++) {
3301 struct net_device *dev = hw->dev[i];
3302 if (dev) {
3303 netif_device_attach(dev);
3304 if (netif_running(dev))
3305 skge_up(dev);
3308 return 0;
3310 #endif
3312 static struct pci_driver skge_driver = {
3313 .name = DRV_NAME,
3314 .id_table = skge_id_table,
3315 .probe = skge_probe,
3316 .remove = __devexit_p(skge_remove),
3317 #ifdef CONFIG_PM
3318 .suspend = skge_suspend,
3319 .resume = skge_resume,
3320 #endif
3323 static int __init skge_init_module(void)
3325 return pci_module_init(&skge_driver);
3328 static void __exit skge_cleanup_module(void)
3330 pci_unregister_driver(&skge_driver);
3333 module_init(skge_init_module);
3334 module_exit(skge_cleanup_module);