2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per block device queue structure
77 struct request_queue
*queue
;
80 * rr list of queues with requests and the count of them
82 struct cfq_rb_root service_tree
;
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
89 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
91 unsigned int busy_queues
;
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
96 unsigned int busy_rt_queues
;
102 * queue-depth detection
107 int rq_in_driver_peak
;
110 * idle window management
112 struct timer_list idle_slice_timer
;
113 struct work_struct unplug_work
;
115 struct cfq_queue
*active_queue
;
116 struct cfq_io_context
*active_cic
;
119 * async queue for each priority case
121 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
122 struct cfq_queue
*async_idle_cfqq
;
124 sector_t last_position
;
125 unsigned long last_end_request
;
128 * tunables, see top of file
130 unsigned int cfq_quantum
;
131 unsigned int cfq_fifo_expire
[2];
132 unsigned int cfq_back_penalty
;
133 unsigned int cfq_back_max
;
134 unsigned int cfq_slice
[2];
135 unsigned int cfq_slice_async_rq
;
136 unsigned int cfq_slice_idle
;
138 struct list_head cic_list
;
142 * Per process-grouping structure
145 /* reference count */
147 /* various state flags, see below */
149 /* parent cfq_data */
150 struct cfq_data
*cfqd
;
151 /* service_tree member */
152 struct rb_node rb_node
;
153 /* service_tree key */
154 unsigned long rb_key
;
155 /* prio tree member */
156 struct rb_node p_node
;
157 /* prio tree root we belong to, if any */
158 struct rb_root
*p_root
;
159 /* sorted list of pending requests */
160 struct rb_root sort_list
;
161 /* if fifo isn't expired, next request to serve */
162 struct request
*next_rq
;
163 /* requests queued in sort_list */
165 /* currently allocated requests */
167 /* fifo list of requests in sort_list */
168 struct list_head fifo
;
170 unsigned long slice_end
;
172 unsigned int slice_dispatch
;
174 /* pending metadata requests */
176 /* number of requests that are on the dispatch list or inside driver */
179 /* io prio of this group */
180 unsigned short ioprio
, org_ioprio
;
181 unsigned short ioprio_class
, org_ioprio_class
;
186 enum cfqq_state_flags
{
187 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
188 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
189 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
190 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
191 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
192 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
193 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
194 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
195 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
196 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
197 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
200 #define CFQ_CFQQ_FNS(name) \
201 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
205 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
209 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
215 CFQ_CFQQ_FNS(wait_request
);
216 CFQ_CFQQ_FNS(must_dispatch
);
217 CFQ_CFQQ_FNS(must_alloc
);
218 CFQ_CFQQ_FNS(must_alloc_slice
);
219 CFQ_CFQQ_FNS(fifo_expire
);
220 CFQ_CFQQ_FNS(idle_window
);
221 CFQ_CFQQ_FNS(prio_changed
);
222 CFQ_CFQQ_FNS(slice_new
);
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
232 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
233 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
234 struct io_context
*, gfp_t
);
235 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
236 struct io_context
*);
238 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
241 return cic
->cfqq
[!!is_sync
];
244 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
245 struct cfq_queue
*cfqq
, int is_sync
)
247 cic
->cfqq
[!!is_sync
] = cfqq
;
251 * We regard a request as SYNC, if it's either a read or has the SYNC bit
252 * set (in which case it could also be direct WRITE).
254 static inline int cfq_bio_sync(struct bio
*bio
)
256 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
263 * scheduler run of queue, if there are requests pending and no one in the
264 * driver that will restart queueing
266 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
268 if (cfqd
->busy_queues
) {
269 cfq_log(cfqd
, "schedule dispatch");
270 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
274 static int cfq_queue_empty(struct request_queue
*q
)
276 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
278 return !cfqd
->busy_queues
;
282 * Scale schedule slice based on io priority. Use the sync time slice only
283 * if a queue is marked sync and has sync io queued. A sync queue with async
284 * io only, should not get full sync slice length.
286 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
289 const int base_slice
= cfqd
->cfq_slice
[sync
];
291 WARN_ON(prio
>= IOPRIO_BE_NR
);
293 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
297 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
299 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
303 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
305 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
306 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
310 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
311 * isn't valid until the first request from the dispatch is activated
312 * and the slice time set.
314 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
316 if (cfq_cfqq_slice_new(cfqq
))
318 if (time_before(jiffies
, cfqq
->slice_end
))
325 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
326 * We choose the request that is closest to the head right now. Distance
327 * behind the head is penalized and only allowed to a certain extent.
329 static struct request
*
330 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
332 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
333 unsigned long back_max
;
334 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
335 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
336 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
338 if (rq1
== NULL
|| rq1
== rq2
)
343 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
345 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
347 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
349 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
355 last
= cfqd
->last_position
;
358 * by definition, 1KiB is 2 sectors
360 back_max
= cfqd
->cfq_back_max
* 2;
363 * Strict one way elevator _except_ in the case where we allow
364 * short backward seeks which are biased as twice the cost of a
365 * similar forward seek.
369 else if (s1
+ back_max
>= last
)
370 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
372 wrap
|= CFQ_RQ1_WRAP
;
376 else if (s2
+ back_max
>= last
)
377 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
379 wrap
|= CFQ_RQ2_WRAP
;
381 /* Found required data */
384 * By doing switch() on the bit mask "wrap" we avoid having to
385 * check two variables for all permutations: --> faster!
388 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
404 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
407 * Since both rqs are wrapped,
408 * start with the one that's further behind head
409 * (--> only *one* back seek required),
410 * since back seek takes more time than forward.
420 * The below is leftmost cache rbtree addon
422 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
425 root
->left
= rb_first(&root
->rb
);
428 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
433 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
439 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
443 rb_erase_init(n
, &root
->rb
);
447 * would be nice to take fifo expire time into account as well
449 static struct request
*
450 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
451 struct request
*last
)
453 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
454 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
455 struct request
*next
= NULL
, *prev
= NULL
;
457 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
460 prev
= rb_entry_rq(rbprev
);
463 next
= rb_entry_rq(rbnext
);
465 rbnext
= rb_first(&cfqq
->sort_list
);
466 if (rbnext
&& rbnext
!= &last
->rb_node
)
467 next
= rb_entry_rq(rbnext
);
470 return cfq_choose_req(cfqd
, next
, prev
);
473 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
474 struct cfq_queue
*cfqq
)
477 * just an approximation, should be ok.
479 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
480 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
484 * The cfqd->service_tree holds all pending cfq_queue's that have
485 * requests waiting to be processed. It is sorted in the order that
486 * we will service the queues.
488 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
491 struct rb_node
**p
, *parent
;
492 struct cfq_queue
*__cfqq
;
493 unsigned long rb_key
;
496 if (cfq_class_idle(cfqq
)) {
497 rb_key
= CFQ_IDLE_DELAY
;
498 parent
= rb_last(&cfqd
->service_tree
.rb
);
499 if (parent
&& parent
!= &cfqq
->rb_node
) {
500 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
501 rb_key
+= __cfqq
->rb_key
;
504 } else if (!add_front
) {
505 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
506 rb_key
+= cfqq
->slice_resid
;
507 cfqq
->slice_resid
= 0;
511 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
513 * same position, nothing more to do
515 if (rb_key
== cfqq
->rb_key
)
518 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
523 p
= &cfqd
->service_tree
.rb
.rb_node
;
528 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
531 * sort RT queues first, we always want to give
532 * preference to them. IDLE queues goes to the back.
533 * after that, sort on the next service time.
535 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
537 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
539 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
541 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
543 else if (rb_key
< __cfqq
->rb_key
)
548 if (n
== &(*p
)->rb_right
)
555 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
557 cfqq
->rb_key
= rb_key
;
558 rb_link_node(&cfqq
->rb_node
, parent
, p
);
559 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
562 static struct cfq_queue
*
563 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
564 sector_t sector
, struct rb_node
**ret_parent
,
565 struct rb_node
***rb_link
)
567 struct rb_node
**p
, *parent
;
568 struct cfq_queue
*cfqq
= NULL
;
576 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
579 * Sort strictly based on sector. Smallest to the left,
580 * largest to the right.
582 if (sector
> cfqq
->next_rq
->sector
)
584 else if (sector
< cfqq
->next_rq
->sector
)
592 *ret_parent
= parent
;
598 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
600 struct rb_node
**p
, *parent
;
601 struct cfq_queue
*__cfqq
;
604 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
608 if (cfq_class_idle(cfqq
))
613 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
614 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
, cfqq
->next_rq
->sector
,
617 rb_link_node(&cfqq
->p_node
, parent
, p
);
618 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
624 * Update cfqq's position in the service tree.
626 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
629 * Resorting requires the cfqq to be on the RR list already.
631 if (cfq_cfqq_on_rr(cfqq
)) {
632 cfq_service_tree_add(cfqd
, cfqq
, 0);
633 cfq_prio_tree_add(cfqd
, cfqq
);
638 * add to busy list of queues for service, trying to be fair in ordering
639 * the pending list according to last request service
641 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
643 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
644 BUG_ON(cfq_cfqq_on_rr(cfqq
));
645 cfq_mark_cfqq_on_rr(cfqq
);
647 if (cfq_class_rt(cfqq
))
648 cfqd
->busy_rt_queues
++;
650 cfq_resort_rr_list(cfqd
, cfqq
);
654 * Called when the cfqq no longer has requests pending, remove it from
657 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
659 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
660 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
661 cfq_clear_cfqq_on_rr(cfqq
);
663 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
664 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
666 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
670 BUG_ON(!cfqd
->busy_queues
);
672 if (cfq_class_rt(cfqq
))
673 cfqd
->busy_rt_queues
--;
677 * rb tree support functions
679 static void cfq_del_rq_rb(struct request
*rq
)
681 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
682 struct cfq_data
*cfqd
= cfqq
->cfqd
;
683 const int sync
= rq_is_sync(rq
);
685 BUG_ON(!cfqq
->queued
[sync
]);
686 cfqq
->queued
[sync
]--;
688 elv_rb_del(&cfqq
->sort_list
, rq
);
690 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
691 cfq_del_cfqq_rr(cfqd
, cfqq
);
694 static void cfq_add_rq_rb(struct request
*rq
)
696 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
697 struct cfq_data
*cfqd
= cfqq
->cfqd
;
698 struct request
*__alias
, *prev
;
700 cfqq
->queued
[rq_is_sync(rq
)]++;
703 * looks a little odd, but the first insert might return an alias.
704 * if that happens, put the alias on the dispatch list
706 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
707 cfq_dispatch_insert(cfqd
->queue
, __alias
);
709 if (!cfq_cfqq_on_rr(cfqq
))
710 cfq_add_cfqq_rr(cfqd
, cfqq
);
713 * check if this request is a better next-serve candidate
715 prev
= cfqq
->next_rq
;
716 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
719 * adjust priority tree position, if ->next_rq changes
721 if (prev
!= cfqq
->next_rq
)
722 cfq_prio_tree_add(cfqd
, cfqq
);
724 BUG_ON(!cfqq
->next_rq
);
727 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
729 elv_rb_del(&cfqq
->sort_list
, rq
);
730 cfqq
->queued
[rq_is_sync(rq
)]--;
734 static struct request
*
735 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
737 struct task_struct
*tsk
= current
;
738 struct cfq_io_context
*cic
;
739 struct cfq_queue
*cfqq
;
741 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
745 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
747 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
749 return elv_rb_find(&cfqq
->sort_list
, sector
);
755 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
757 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
759 cfqd
->rq_in_driver
++;
760 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
763 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
766 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
768 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
770 WARN_ON(!cfqd
->rq_in_driver
);
771 cfqd
->rq_in_driver
--;
772 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
776 static void cfq_remove_request(struct request
*rq
)
778 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
780 if (cfqq
->next_rq
== rq
)
781 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
783 list_del_init(&rq
->queuelist
);
786 cfqq
->cfqd
->rq_queued
--;
787 if (rq_is_meta(rq
)) {
788 WARN_ON(!cfqq
->meta_pending
);
789 cfqq
->meta_pending
--;
793 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
796 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
797 struct request
*__rq
;
799 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
800 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
802 return ELEVATOR_FRONT_MERGE
;
805 return ELEVATOR_NO_MERGE
;
808 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
811 if (type
== ELEVATOR_FRONT_MERGE
) {
812 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
814 cfq_reposition_rq_rb(cfqq
, req
);
819 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
820 struct request
*next
)
823 * reposition in fifo if next is older than rq
825 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
826 time_before(next
->start_time
, rq
->start_time
))
827 list_move(&rq
->queuelist
, &next
->queuelist
);
829 cfq_remove_request(next
);
832 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
835 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
836 struct cfq_io_context
*cic
;
837 struct cfq_queue
*cfqq
;
840 * Disallow merge of a sync bio into an async request.
842 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
846 * Lookup the cfqq that this bio will be queued with. Allow
847 * merge only if rq is queued there.
849 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
853 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
854 if (cfqq
== RQ_CFQQ(rq
))
860 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
861 struct cfq_queue
*cfqq
)
864 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
866 cfqq
->slice_dispatch
= 0;
868 cfq_clear_cfqq_wait_request(cfqq
);
869 cfq_clear_cfqq_must_dispatch(cfqq
);
870 cfq_clear_cfqq_must_alloc_slice(cfqq
);
871 cfq_clear_cfqq_fifo_expire(cfqq
);
872 cfq_mark_cfqq_slice_new(cfqq
);
874 del_timer(&cfqd
->idle_slice_timer
);
877 cfqd
->active_queue
= cfqq
;
881 * current cfqq expired its slice (or was too idle), select new one
884 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
887 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
889 if (cfq_cfqq_wait_request(cfqq
))
890 del_timer(&cfqd
->idle_slice_timer
);
892 cfq_clear_cfqq_wait_request(cfqq
);
895 * store what was left of this slice, if the queue idled/timed out
897 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
898 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
899 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
902 cfq_resort_rr_list(cfqd
, cfqq
);
904 if (cfqq
== cfqd
->active_queue
)
905 cfqd
->active_queue
= NULL
;
907 if (cfqd
->active_cic
) {
908 put_io_context(cfqd
->active_cic
->ioc
);
909 cfqd
->active_cic
= NULL
;
913 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
915 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
918 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
922 * Get next queue for service. Unless we have a queue preemption,
923 * we'll simply select the first cfqq in the service tree.
925 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
927 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
930 return cfq_rb_first(&cfqd
->service_tree
);
934 * Get and set a new active queue for service.
936 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
937 struct cfq_queue
*cfqq
)
940 cfqq
= cfq_get_next_queue(cfqd
);
942 cfq_clear_cfqq_coop(cfqq
);
945 __cfq_set_active_queue(cfqd
, cfqq
);
949 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
952 if (rq
->sector
>= cfqd
->last_position
)
953 return rq
->sector
- cfqd
->last_position
;
955 return cfqd
->last_position
- rq
->sector
;
958 #define CIC_SEEK_THR 8 * 1024
959 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
961 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
963 struct cfq_io_context
*cic
= cfqd
->active_cic
;
964 sector_t sdist
= cic
->seek_mean
;
966 if (!sample_valid(cic
->seek_samples
))
967 sdist
= CIC_SEEK_THR
;
969 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
972 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
973 struct cfq_queue
*cur_cfqq
)
975 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
976 struct rb_node
*parent
, *node
;
977 struct cfq_queue
*__cfqq
;
978 sector_t sector
= cfqd
->last_position
;
980 if (RB_EMPTY_ROOT(root
))
984 * First, if we find a request starting at the end of the last
985 * request, choose it.
987 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
992 * If the exact sector wasn't found, the parent of the NULL leaf
993 * will contain the closest sector.
995 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
996 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
999 if (__cfqq
->next_rq
->sector
< sector
)
1000 node
= rb_next(&__cfqq
->p_node
);
1002 node
= rb_prev(&__cfqq
->p_node
);
1006 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1007 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1015 * cur_cfqq - passed in so that we don't decide that the current queue is
1016 * closely cooperating with itself.
1018 * So, basically we're assuming that that cur_cfqq has dispatched at least
1019 * one request, and that cfqd->last_position reflects a position on the disk
1020 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1023 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1024 struct cfq_queue
*cur_cfqq
,
1027 struct cfq_queue
*cfqq
;
1030 * A valid cfq_io_context is necessary to compare requests against
1031 * the seek_mean of the current cfqq.
1033 if (!cfqd
->active_cic
)
1037 * We should notice if some of the queues are cooperating, eg
1038 * working closely on the same area of the disk. In that case,
1039 * we can group them together and don't waste time idling.
1041 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1045 if (cfq_cfqq_coop(cfqq
))
1049 cfq_mark_cfqq_coop(cfqq
);
1053 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1055 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1056 struct cfq_io_context
*cic
;
1060 * SSD device without seek penalty, disable idling. But only do so
1061 * for devices that support queuing, otherwise we still have a problem
1062 * with sync vs async workloads.
1064 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1067 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1068 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1071 * idle is disabled, either manually or by past process history
1073 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1077 * still requests with the driver, don't idle
1079 if (cfqd
->rq_in_driver
)
1083 * task has exited, don't wait
1085 cic
= cfqd
->active_cic
;
1086 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1089 cfq_mark_cfqq_wait_request(cfqq
);
1092 * we don't want to idle for seeks, but we do want to allow
1093 * fair distribution of slice time for a process doing back-to-back
1094 * seeks. so allow a little bit of time for him to submit a new rq
1096 sl
= cfqd
->cfq_slice_idle
;
1097 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1098 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1100 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1101 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1105 * Move request from internal lists to the request queue dispatch list.
1107 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1109 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1110 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1112 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1114 cfq_remove_request(rq
);
1116 elv_dispatch_sort(q
, rq
);
1118 if (cfq_cfqq_sync(cfqq
))
1119 cfqd
->sync_flight
++;
1123 * return expired entry, or NULL to just start from scratch in rbtree
1125 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1127 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1131 if (cfq_cfqq_fifo_expire(cfqq
))
1134 cfq_mark_cfqq_fifo_expire(cfqq
);
1136 if (list_empty(&cfqq
->fifo
))
1139 fifo
= cfq_cfqq_sync(cfqq
);
1140 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1142 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
1145 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
1150 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1152 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1154 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1156 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1160 * Select a queue for service. If we have a current active queue,
1161 * check whether to continue servicing it, or retrieve and set a new one.
1163 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1165 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1167 cfqq
= cfqd
->active_queue
;
1172 * The active queue has run out of time, expire it and select new.
1174 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1178 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1181 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1183 * We simulate this as cfqq timed out so that it gets to bank
1184 * the remaining of its time slice.
1186 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1187 cfq_slice_expired(cfqd
, 1);
1192 * The active queue has requests and isn't expired, allow it to
1195 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1199 * If another queue has a request waiting within our mean seek
1200 * distance, let it run. The expire code will check for close
1201 * cooperators and put the close queue at the front of the service
1204 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1209 * No requests pending. If the active queue still has requests in
1210 * flight or is idling for a new request, allow either of these
1211 * conditions to happen (or time out) before selecting a new queue.
1213 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1214 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1220 cfq_slice_expired(cfqd
, 0);
1222 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1227 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1231 while (cfqq
->next_rq
) {
1232 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1236 BUG_ON(!list_empty(&cfqq
->fifo
));
1241 * Drain our current requests. Used for barriers and when switching
1242 * io schedulers on-the-fly.
1244 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1246 struct cfq_queue
*cfqq
;
1249 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1250 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1252 cfq_slice_expired(cfqd
, 0);
1254 BUG_ON(cfqd
->busy_queues
);
1256 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1261 * Dispatch a request from cfqq, moving them to the request queue
1264 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1268 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1271 * follow expired path, else get first next available
1273 rq
= cfq_check_fifo(cfqq
);
1278 * insert request into driver dispatch list
1280 cfq_dispatch_insert(cfqd
->queue
, rq
);
1282 if (!cfqd
->active_cic
) {
1283 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1285 atomic_inc(&cic
->ioc
->refcount
);
1286 cfqd
->active_cic
= cic
;
1291 * Find the cfqq that we need to service and move a request from that to the
1294 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1296 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1297 struct cfq_queue
*cfqq
;
1298 unsigned int max_dispatch
;
1300 if (!cfqd
->busy_queues
)
1303 if (unlikely(force
))
1304 return cfq_forced_dispatch(cfqd
);
1306 cfqq
= cfq_select_queue(cfqd
);
1311 * If this is an async queue and we have sync IO in flight, let it wait
1313 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1316 max_dispatch
= cfqd
->cfq_quantum
;
1317 if (cfq_class_idle(cfqq
))
1321 * Does this cfqq already have too much IO in flight?
1323 if (cfqq
->dispatched
>= max_dispatch
) {
1325 * idle queue must always only have a single IO in flight
1327 if (cfq_class_idle(cfqq
))
1331 * We have other queues, don't allow more IO from this one
1333 if (cfqd
->busy_queues
> 1)
1337 * we are the only queue, allow up to 4 times of 'quantum'
1339 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1344 * Dispatch a request from this cfqq
1346 cfq_dispatch_request(cfqd
, cfqq
);
1347 cfqq
->slice_dispatch
++;
1348 cfq_clear_cfqq_must_dispatch(cfqq
);
1351 * expire an async queue immediately if it has used up its slice. idle
1352 * queue always expire after 1 dispatch round.
1354 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1355 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1356 cfq_class_idle(cfqq
))) {
1357 cfqq
->slice_end
= jiffies
+ 1;
1358 cfq_slice_expired(cfqd
, 0);
1361 cfq_log(cfqd
, "dispatched a request");
1366 * task holds one reference to the queue, dropped when task exits. each rq
1367 * in-flight on this queue also holds a reference, dropped when rq is freed.
1369 * queue lock must be held here.
1371 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1373 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1375 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1377 if (!atomic_dec_and_test(&cfqq
->ref
))
1380 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1381 BUG_ON(rb_first(&cfqq
->sort_list
));
1382 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1383 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1385 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1386 __cfq_slice_expired(cfqd
, cfqq
, 0);
1387 cfq_schedule_dispatch(cfqd
);
1390 kmem_cache_free(cfq_pool
, cfqq
);
1394 * Must always be called with the rcu_read_lock() held
1397 __call_for_each_cic(struct io_context
*ioc
,
1398 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1400 struct cfq_io_context
*cic
;
1401 struct hlist_node
*n
;
1403 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1408 * Call func for each cic attached to this ioc.
1411 call_for_each_cic(struct io_context
*ioc
,
1412 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1415 __call_for_each_cic(ioc
, func
);
1419 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1421 struct cfq_io_context
*cic
;
1423 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1425 kmem_cache_free(cfq_ioc_pool
, cic
);
1426 elv_ioc_count_dec(ioc_count
);
1430 * CFQ scheduler is exiting, grab exit lock and check
1431 * the pending io context count. If it hits zero,
1432 * complete ioc_gone and set it back to NULL
1434 spin_lock(&ioc_gone_lock
);
1435 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1439 spin_unlock(&ioc_gone_lock
);
1443 static void cfq_cic_free(struct cfq_io_context
*cic
)
1445 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1448 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1450 unsigned long flags
;
1452 BUG_ON(!cic
->dead_key
);
1454 spin_lock_irqsave(&ioc
->lock
, flags
);
1455 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1456 hlist_del_rcu(&cic
->cic_list
);
1457 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1465 * and ->trim() which is called with the task lock held
1467 static void cfq_free_io_context(struct io_context
*ioc
)
1470 * ioc->refcount is zero here, or we are called from elv_unregister(),
1471 * so no more cic's are allowed to be linked into this ioc. So it
1472 * should be ok to iterate over the known list, we will see all cic's
1473 * since no new ones are added.
1475 __call_for_each_cic(ioc
, cic_free_func
);
1478 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1480 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1481 __cfq_slice_expired(cfqd
, cfqq
, 0);
1482 cfq_schedule_dispatch(cfqd
);
1485 cfq_put_queue(cfqq
);
1488 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1489 struct cfq_io_context
*cic
)
1491 struct io_context
*ioc
= cic
->ioc
;
1493 list_del_init(&cic
->queue_list
);
1496 * Make sure key == NULL is seen for dead queues
1499 cic
->dead_key
= (unsigned long) cic
->key
;
1502 if (ioc
->ioc_data
== cic
)
1503 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1505 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1506 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1507 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1510 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1511 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1512 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1516 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1517 struct cfq_io_context
*cic
)
1519 struct cfq_data
*cfqd
= cic
->key
;
1522 struct request_queue
*q
= cfqd
->queue
;
1523 unsigned long flags
;
1525 spin_lock_irqsave(q
->queue_lock
, flags
);
1528 * Ensure we get a fresh copy of the ->key to prevent
1529 * race between exiting task and queue
1531 smp_read_barrier_depends();
1533 __cfq_exit_single_io_context(cfqd
, cic
);
1535 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1540 * The process that ioc belongs to has exited, we need to clean up
1541 * and put the internal structures we have that belongs to that process.
1543 static void cfq_exit_io_context(struct io_context
*ioc
)
1545 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1548 static struct cfq_io_context
*
1549 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1551 struct cfq_io_context
*cic
;
1553 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1556 cic
->last_end_request
= jiffies
;
1557 INIT_LIST_HEAD(&cic
->queue_list
);
1558 INIT_HLIST_NODE(&cic
->cic_list
);
1559 cic
->dtor
= cfq_free_io_context
;
1560 cic
->exit
= cfq_exit_io_context
;
1561 elv_ioc_count_inc(ioc_count
);
1567 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1569 struct task_struct
*tsk
= current
;
1572 if (!cfq_cfqq_prio_changed(cfqq
))
1575 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1576 switch (ioprio_class
) {
1578 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1579 case IOPRIO_CLASS_NONE
:
1581 * no prio set, inherit CPU scheduling settings
1583 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1584 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1586 case IOPRIO_CLASS_RT
:
1587 cfqq
->ioprio
= task_ioprio(ioc
);
1588 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1590 case IOPRIO_CLASS_BE
:
1591 cfqq
->ioprio
= task_ioprio(ioc
);
1592 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1594 case IOPRIO_CLASS_IDLE
:
1595 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1597 cfq_clear_cfqq_idle_window(cfqq
);
1602 * keep track of original prio settings in case we have to temporarily
1603 * elevate the priority of this queue
1605 cfqq
->org_ioprio
= cfqq
->ioprio
;
1606 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1607 cfq_clear_cfqq_prio_changed(cfqq
);
1610 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1612 struct cfq_data
*cfqd
= cic
->key
;
1613 struct cfq_queue
*cfqq
;
1614 unsigned long flags
;
1616 if (unlikely(!cfqd
))
1619 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1621 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1623 struct cfq_queue
*new_cfqq
;
1624 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1627 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1628 cfq_put_queue(cfqq
);
1632 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1634 cfq_mark_cfqq_prio_changed(cfqq
);
1636 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1639 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1641 call_for_each_cic(ioc
, changed_ioprio
);
1642 ioc
->ioprio_changed
= 0;
1645 static struct cfq_queue
*
1646 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1647 struct io_context
*ioc
, gfp_t gfp_mask
)
1649 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1650 struct cfq_io_context
*cic
;
1653 cic
= cfq_cic_lookup(cfqd
, ioc
);
1654 /* cic always exists here */
1655 cfqq
= cic_to_cfqq(cic
, is_sync
);
1661 } else if (gfp_mask
& __GFP_WAIT
) {
1663 * Inform the allocator of the fact that we will
1664 * just repeat this allocation if it fails, to allow
1665 * the allocator to do whatever it needs to attempt to
1668 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1669 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1670 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1672 spin_lock_irq(cfqd
->queue
->queue_lock
);
1675 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1676 gfp_mask
| __GFP_ZERO
,
1682 RB_CLEAR_NODE(&cfqq
->rb_node
);
1683 RB_CLEAR_NODE(&cfqq
->p_node
);
1684 INIT_LIST_HEAD(&cfqq
->fifo
);
1686 atomic_set(&cfqq
->ref
, 0);
1689 cfq_mark_cfqq_prio_changed(cfqq
);
1691 cfq_init_prio_data(cfqq
, ioc
);
1694 if (!cfq_class_idle(cfqq
))
1695 cfq_mark_cfqq_idle_window(cfqq
);
1696 cfq_mark_cfqq_sync(cfqq
);
1698 cfqq
->pid
= current
->pid
;
1699 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1703 kmem_cache_free(cfq_pool
, new_cfqq
);
1706 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1710 static struct cfq_queue
**
1711 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1713 switch (ioprio_class
) {
1714 case IOPRIO_CLASS_RT
:
1715 return &cfqd
->async_cfqq
[0][ioprio
];
1716 case IOPRIO_CLASS_BE
:
1717 return &cfqd
->async_cfqq
[1][ioprio
];
1718 case IOPRIO_CLASS_IDLE
:
1719 return &cfqd
->async_idle_cfqq
;
1725 static struct cfq_queue
*
1726 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1729 const int ioprio
= task_ioprio(ioc
);
1730 const int ioprio_class
= task_ioprio_class(ioc
);
1731 struct cfq_queue
**async_cfqq
= NULL
;
1732 struct cfq_queue
*cfqq
= NULL
;
1735 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1740 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1746 * pin the queue now that it's allocated, scheduler exit will prune it
1748 if (!is_sync
&& !(*async_cfqq
)) {
1749 atomic_inc(&cfqq
->ref
);
1753 atomic_inc(&cfqq
->ref
);
1758 * We drop cfq io contexts lazily, so we may find a dead one.
1761 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1762 struct cfq_io_context
*cic
)
1764 unsigned long flags
;
1766 WARN_ON(!list_empty(&cic
->queue_list
));
1768 spin_lock_irqsave(&ioc
->lock
, flags
);
1770 BUG_ON(ioc
->ioc_data
== cic
);
1772 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1773 hlist_del_rcu(&cic
->cic_list
);
1774 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1779 static struct cfq_io_context
*
1780 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1782 struct cfq_io_context
*cic
;
1783 unsigned long flags
;
1792 * we maintain a last-hit cache, to avoid browsing over the tree
1794 cic
= rcu_dereference(ioc
->ioc_data
);
1795 if (cic
&& cic
->key
== cfqd
) {
1801 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1805 /* ->key must be copied to avoid race with cfq_exit_queue() */
1808 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1813 spin_lock_irqsave(&ioc
->lock
, flags
);
1814 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1815 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1823 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1824 * the process specific cfq io context when entered from the block layer.
1825 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1827 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1828 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1830 unsigned long flags
;
1833 ret
= radix_tree_preload(gfp_mask
);
1838 spin_lock_irqsave(&ioc
->lock
, flags
);
1839 ret
= radix_tree_insert(&ioc
->radix_root
,
1840 (unsigned long) cfqd
, cic
);
1842 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1843 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1845 radix_tree_preload_end();
1848 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1849 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1850 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1855 printk(KERN_ERR
"cfq: cic link failed!\n");
1861 * Setup general io context and cfq io context. There can be several cfq
1862 * io contexts per general io context, if this process is doing io to more
1863 * than one device managed by cfq.
1865 static struct cfq_io_context
*
1866 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1868 struct io_context
*ioc
= NULL
;
1869 struct cfq_io_context
*cic
;
1871 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1873 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1877 cic
= cfq_cic_lookup(cfqd
, ioc
);
1881 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1885 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1889 smp_read_barrier_depends();
1890 if (unlikely(ioc
->ioprio_changed
))
1891 cfq_ioc_set_ioprio(ioc
);
1897 put_io_context(ioc
);
1902 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1904 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1905 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1907 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1908 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1909 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1913 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1919 if (!cic
->last_request_pos
)
1921 else if (cic
->last_request_pos
< rq
->sector
)
1922 sdist
= rq
->sector
- cic
->last_request_pos
;
1924 sdist
= cic
->last_request_pos
- rq
->sector
;
1927 * Don't allow the seek distance to get too large from the
1928 * odd fragment, pagein, etc
1930 if (cic
->seek_samples
<= 60) /* second&third seek */
1931 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1933 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1935 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1936 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1937 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1938 do_div(total
, cic
->seek_samples
);
1939 cic
->seek_mean
= (sector_t
)total
;
1943 * Disable idle window if the process thinks too long or seeks so much that
1947 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1948 struct cfq_io_context
*cic
)
1950 int old_idle
, enable_idle
;
1953 * Don't idle for async or idle io prio class
1955 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1958 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1960 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1961 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1963 else if (sample_valid(cic
->ttime_samples
)) {
1964 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1970 if (old_idle
!= enable_idle
) {
1971 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1973 cfq_mark_cfqq_idle_window(cfqq
);
1975 cfq_clear_cfqq_idle_window(cfqq
);
1980 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1981 * no or if we aren't sure, a 1 will cause a preempt.
1984 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1987 struct cfq_queue
*cfqq
;
1989 cfqq
= cfqd
->active_queue
;
1993 if (cfq_slice_used(cfqq
))
1996 if (cfq_class_idle(new_cfqq
))
1999 if (cfq_class_idle(cfqq
))
2003 * if the new request is sync, but the currently running queue is
2004 * not, let the sync request have priority.
2006 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2010 * So both queues are sync. Let the new request get disk time if
2011 * it's a metadata request and the current queue is doing regular IO.
2013 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2017 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2019 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2022 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2026 * if this request is as-good as one we would expect from the
2027 * current cfqq, let it preempt
2029 if (cfq_rq_close(cfqd
, rq
))
2036 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2037 * let it have half of its nominal slice.
2039 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2041 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2042 cfq_slice_expired(cfqd
, 1);
2045 * Put the new queue at the front of the of the current list,
2046 * so we know that it will be selected next.
2048 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2050 cfq_service_tree_add(cfqd
, cfqq
, 1);
2052 cfqq
->slice_end
= 0;
2053 cfq_mark_cfqq_slice_new(cfqq
);
2057 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2058 * something we should do about it
2061 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2064 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2068 cfqq
->meta_pending
++;
2070 cfq_update_io_thinktime(cfqd
, cic
);
2071 cfq_update_io_seektime(cfqd
, cic
, rq
);
2072 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2074 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
2076 if (cfqq
== cfqd
->active_queue
) {
2078 * Remember that we saw a request from this process, but
2079 * don't start queuing just yet. Otherwise we risk seeing lots
2080 * of tiny requests, because we disrupt the normal plugging
2081 * and merging. If the request is already larger than a single
2082 * page, let it rip immediately. For that case we assume that
2083 * merging is already done. Ditto for a busy system that
2084 * has other work pending, don't risk delaying until the
2085 * idle timer unplug to continue working.
2087 if (cfq_cfqq_wait_request(cfqq
)) {
2088 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2089 cfqd
->busy_queues
> 1) {
2090 del_timer(&cfqd
->idle_slice_timer
);
2091 blk_start_queueing(cfqd
->queue
);
2093 cfq_mark_cfqq_must_dispatch(cfqq
);
2095 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2097 * not the active queue - expire current slice if it is
2098 * idle and has expired it's mean thinktime or this new queue
2099 * has some old slice time left and is of higher priority or
2100 * this new queue is RT and the current one is BE
2102 cfq_preempt_queue(cfqd
, cfqq
);
2103 blk_start_queueing(cfqd
->queue
);
2107 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2109 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2110 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2112 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2113 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2117 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2119 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2123 * Update hw_tag based on peak queue depth over 50 samples under
2126 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2128 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
2129 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
2131 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2132 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
2135 if (cfqd
->hw_tag_samples
++ < 50)
2138 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2143 cfqd
->hw_tag_samples
= 0;
2144 cfqd
->rq_in_driver_peak
= 0;
2147 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2149 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2150 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2151 const int sync
= rq_is_sync(rq
);
2155 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2157 cfq_update_hw_tag(cfqd
);
2159 WARN_ON(!cfqd
->rq_in_driver
);
2160 WARN_ON(!cfqq
->dispatched
);
2161 cfqd
->rq_in_driver
--;
2164 if (cfq_cfqq_sync(cfqq
))
2165 cfqd
->sync_flight
--;
2167 if (!cfq_class_idle(cfqq
))
2168 cfqd
->last_end_request
= now
;
2171 RQ_CIC(rq
)->last_end_request
= now
;
2174 * If this is the active queue, check if it needs to be expired,
2175 * or if we want to idle in case it has no pending requests.
2177 if (cfqd
->active_queue
== cfqq
) {
2178 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2180 if (cfq_cfqq_slice_new(cfqq
)) {
2181 cfq_set_prio_slice(cfqd
, cfqq
);
2182 cfq_clear_cfqq_slice_new(cfqq
);
2185 * If there are no requests waiting in this queue, and
2186 * there are other queues ready to issue requests, AND
2187 * those other queues are issuing requests within our
2188 * mean seek distance, give them a chance to run instead
2191 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2192 cfq_slice_expired(cfqd
, 1);
2193 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2194 sync
&& !rq_noidle(rq
))
2195 cfq_arm_slice_timer(cfqd
);
2198 if (!cfqd
->rq_in_driver
)
2199 cfq_schedule_dispatch(cfqd
);
2203 * we temporarily boost lower priority queues if they are holding fs exclusive
2204 * resources. they are boosted to normal prio (CLASS_BE/4)
2206 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2208 if (has_fs_excl()) {
2210 * boost idle prio on transactions that would lock out other
2211 * users of the filesystem
2213 if (cfq_class_idle(cfqq
))
2214 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2215 if (cfqq
->ioprio
> IOPRIO_NORM
)
2216 cfqq
->ioprio
= IOPRIO_NORM
;
2219 * check if we need to unboost the queue
2221 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2222 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2223 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2224 cfqq
->ioprio
= cfqq
->org_ioprio
;
2228 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2230 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2231 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2232 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2233 return ELV_MQUEUE_MUST
;
2236 return ELV_MQUEUE_MAY
;
2239 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2241 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2242 struct task_struct
*tsk
= current
;
2243 struct cfq_io_context
*cic
;
2244 struct cfq_queue
*cfqq
;
2247 * don't force setup of a queue from here, as a call to may_queue
2248 * does not necessarily imply that a request actually will be queued.
2249 * so just lookup a possibly existing queue, or return 'may queue'
2252 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2254 return ELV_MQUEUE_MAY
;
2256 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2258 cfq_init_prio_data(cfqq
, cic
->ioc
);
2259 cfq_prio_boost(cfqq
);
2261 return __cfq_may_queue(cfqq
);
2264 return ELV_MQUEUE_MAY
;
2268 * queue lock held here
2270 static void cfq_put_request(struct request
*rq
)
2272 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2275 const int rw
= rq_data_dir(rq
);
2277 BUG_ON(!cfqq
->allocated
[rw
]);
2278 cfqq
->allocated
[rw
]--;
2280 put_io_context(RQ_CIC(rq
)->ioc
);
2282 rq
->elevator_private
= NULL
;
2283 rq
->elevator_private2
= NULL
;
2285 cfq_put_queue(cfqq
);
2290 * Allocate cfq data structures associated with this request.
2293 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2295 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2296 struct cfq_io_context
*cic
;
2297 const int rw
= rq_data_dir(rq
);
2298 const int is_sync
= rq_is_sync(rq
);
2299 struct cfq_queue
*cfqq
;
2300 unsigned long flags
;
2302 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2304 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2306 spin_lock_irqsave(q
->queue_lock
, flags
);
2311 cfqq
= cic_to_cfqq(cic
, is_sync
);
2313 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2318 cic_set_cfqq(cic
, cfqq
, is_sync
);
2321 cfqq
->allocated
[rw
]++;
2322 cfq_clear_cfqq_must_alloc(cfqq
);
2323 atomic_inc(&cfqq
->ref
);
2325 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2327 rq
->elevator_private
= cic
;
2328 rq
->elevator_private2
= cfqq
;
2333 put_io_context(cic
->ioc
);
2335 cfq_schedule_dispatch(cfqd
);
2336 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2337 cfq_log(cfqd
, "set_request fail");
2341 static void cfq_kick_queue(struct work_struct
*work
)
2343 struct cfq_data
*cfqd
=
2344 container_of(work
, struct cfq_data
, unplug_work
);
2345 struct request_queue
*q
= cfqd
->queue
;
2347 spin_lock_irq(q
->queue_lock
);
2348 blk_start_queueing(q
);
2349 spin_unlock_irq(q
->queue_lock
);
2353 * Timer running if the active_queue is currently idling inside its time slice
2355 static void cfq_idle_slice_timer(unsigned long data
)
2357 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2358 struct cfq_queue
*cfqq
;
2359 unsigned long flags
;
2362 cfq_log(cfqd
, "idle timer fired");
2364 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2366 cfqq
= cfqd
->active_queue
;
2371 * We saw a request before the queue expired, let it through
2373 if (cfq_cfqq_must_dispatch(cfqq
))
2379 if (cfq_slice_used(cfqq
))
2383 * only expire and reinvoke request handler, if there are
2384 * other queues with pending requests
2386 if (!cfqd
->busy_queues
)
2390 * not expired and it has a request pending, let it dispatch
2392 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2396 cfq_slice_expired(cfqd
, timed_out
);
2398 cfq_schedule_dispatch(cfqd
);
2400 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2403 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2405 del_timer_sync(&cfqd
->idle_slice_timer
);
2406 cancel_work_sync(&cfqd
->unplug_work
);
2409 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2413 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2414 if (cfqd
->async_cfqq
[0][i
])
2415 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2416 if (cfqd
->async_cfqq
[1][i
])
2417 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2420 if (cfqd
->async_idle_cfqq
)
2421 cfq_put_queue(cfqd
->async_idle_cfqq
);
2424 static void cfq_exit_queue(struct elevator_queue
*e
)
2426 struct cfq_data
*cfqd
= e
->elevator_data
;
2427 struct request_queue
*q
= cfqd
->queue
;
2429 cfq_shutdown_timer_wq(cfqd
);
2431 spin_lock_irq(q
->queue_lock
);
2433 if (cfqd
->active_queue
)
2434 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2436 while (!list_empty(&cfqd
->cic_list
)) {
2437 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2438 struct cfq_io_context
,
2441 __cfq_exit_single_io_context(cfqd
, cic
);
2444 cfq_put_async_queues(cfqd
);
2446 spin_unlock_irq(q
->queue_lock
);
2448 cfq_shutdown_timer_wq(cfqd
);
2453 static void *cfq_init_queue(struct request_queue
*q
)
2455 struct cfq_data
*cfqd
;
2458 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2462 cfqd
->service_tree
= CFQ_RB_ROOT
;
2465 * Not strictly needed (since RB_ROOT just clears the node and we
2466 * zeroed cfqd on alloc), but better be safe in case someone decides
2467 * to add magic to the rb code
2469 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2470 cfqd
->prio_trees
[i
] = RB_ROOT
;
2472 INIT_LIST_HEAD(&cfqd
->cic_list
);
2476 init_timer(&cfqd
->idle_slice_timer
);
2477 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2478 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2480 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2482 cfqd
->last_end_request
= jiffies
;
2483 cfqd
->cfq_quantum
= cfq_quantum
;
2484 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2485 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2486 cfqd
->cfq_back_max
= cfq_back_max
;
2487 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2488 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2489 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2490 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2491 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2497 static void cfq_slab_kill(void)
2500 * Caller already ensured that pending RCU callbacks are completed,
2501 * so we should have no busy allocations at this point.
2504 kmem_cache_destroy(cfq_pool
);
2506 kmem_cache_destroy(cfq_ioc_pool
);
2509 static int __init
cfq_slab_setup(void)
2511 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2515 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2526 * sysfs parts below -->
2529 cfq_var_show(unsigned int var
, char *page
)
2531 return sprintf(page
, "%d\n", var
);
2535 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2537 char *p
= (char *) page
;
2539 *var
= simple_strtoul(p
, &p
, 10);
2543 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2544 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2546 struct cfq_data *cfqd = e->elevator_data; \
2547 unsigned int __data = __VAR; \
2549 __data = jiffies_to_msecs(__data); \
2550 return cfq_var_show(__data, (page)); \
2552 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2553 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2554 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2555 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2556 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2557 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2558 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2559 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2560 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2561 #undef SHOW_FUNCTION
2563 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2564 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2566 struct cfq_data *cfqd = e->elevator_data; \
2567 unsigned int __data; \
2568 int ret = cfq_var_store(&__data, (page), count); \
2569 if (__data < (MIN)) \
2571 else if (__data > (MAX)) \
2574 *(__PTR) = msecs_to_jiffies(__data); \
2576 *(__PTR) = __data; \
2579 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2580 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2582 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2584 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2585 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2587 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2588 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2589 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2590 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2592 #undef STORE_FUNCTION
2594 #define CFQ_ATTR(name) \
2595 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2597 static struct elv_fs_entry cfq_attrs
[] = {
2599 CFQ_ATTR(fifo_expire_sync
),
2600 CFQ_ATTR(fifo_expire_async
),
2601 CFQ_ATTR(back_seek_max
),
2602 CFQ_ATTR(back_seek_penalty
),
2603 CFQ_ATTR(slice_sync
),
2604 CFQ_ATTR(slice_async
),
2605 CFQ_ATTR(slice_async_rq
),
2606 CFQ_ATTR(slice_idle
),
2610 static struct elevator_type iosched_cfq
= {
2612 .elevator_merge_fn
= cfq_merge
,
2613 .elevator_merged_fn
= cfq_merged_request
,
2614 .elevator_merge_req_fn
= cfq_merged_requests
,
2615 .elevator_allow_merge_fn
= cfq_allow_merge
,
2616 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2617 .elevator_add_req_fn
= cfq_insert_request
,
2618 .elevator_activate_req_fn
= cfq_activate_request
,
2619 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2620 .elevator_queue_empty_fn
= cfq_queue_empty
,
2621 .elevator_completed_req_fn
= cfq_completed_request
,
2622 .elevator_former_req_fn
= elv_rb_former_request
,
2623 .elevator_latter_req_fn
= elv_rb_latter_request
,
2624 .elevator_set_req_fn
= cfq_set_request
,
2625 .elevator_put_req_fn
= cfq_put_request
,
2626 .elevator_may_queue_fn
= cfq_may_queue
,
2627 .elevator_init_fn
= cfq_init_queue
,
2628 .elevator_exit_fn
= cfq_exit_queue
,
2629 .trim
= cfq_free_io_context
,
2631 .elevator_attrs
= cfq_attrs
,
2632 .elevator_name
= "cfq",
2633 .elevator_owner
= THIS_MODULE
,
2636 static int __init
cfq_init(void)
2639 * could be 0 on HZ < 1000 setups
2641 if (!cfq_slice_async
)
2642 cfq_slice_async
= 1;
2643 if (!cfq_slice_idle
)
2646 if (cfq_slab_setup())
2649 elv_register(&iosched_cfq
);
2654 static void __exit
cfq_exit(void)
2656 DECLARE_COMPLETION_ONSTACK(all_gone
);
2657 elv_unregister(&iosched_cfq
);
2658 ioc_gone
= &all_gone
;
2659 /* ioc_gone's update must be visible before reading ioc_count */
2663 * this also protects us from entering cfq_slab_kill() with
2664 * pending RCU callbacks
2666 if (elv_ioc_count_read(ioc_count
))
2667 wait_for_completion(&all_gone
);
2671 module_init(cfq_init
);
2672 module_exit(cfq_exit
);
2674 MODULE_AUTHOR("Jens Axboe");
2675 MODULE_LICENSE("GPL");
2676 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");