[PATCH] libata: use FLUSH_EXT only when driver is larger than LBA28 limit
[linux-2.6/linux-loongson.git] / drivers / ata / libata-core.c
blobd94b8a02c34061b5a08a4fa8d28886d763847a18
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
108 * LOCKING:
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 * LOCKING:
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
207 * LOCKING:
208 * caller.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
239 return -1;
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
251 * LOCKING:
252 * None.
254 * RETURNS:
255 * Packed xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289 static const struct ata_xfer_ent {
290 int shift, bits;
291 u8 base;
292 } ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
306 * LOCKING:
307 * None.
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
329 * LOCKING:
330 * None.
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 const struct ata_xfer_ent *ent;
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
351 * LOCKING:
352 * None.
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 const struct ata_xfer_ent *ent;
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
374 * LOCKING:
375 * None.
377 * RETURNS:
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask)
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
389 "PIO5",
390 "PIO6",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "MWDMA3",
395 "MWDMA4",
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
405 int highbit;
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
410 return "<n/a>";
413 static const char *sata_spd_string(unsigned int spd)
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
425 void ata_dev_disable(struct ata_device *dev)
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
429 dev->class++;
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
447 * LOCKING:
448 * caller.
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
457 ap->ops->dev_select(ap, device);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
491 * LOCKING:
492 * caller.
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
501 ap->ops->dev_select(ap, device);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
530 * LOCKING:
531 * caller.
534 static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
550 * LOCKING:
551 * None.
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
596 * LOCKING:
597 * caller.
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
603 static unsigned int
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
610 ap->ops->dev_select(ap, device);
612 memset(&tf, 0, sizeof(tf));
614 ap->ops->tf_read(ap, &tf);
615 err = tf.feature;
616 if (r_err)
617 *r_err = err;
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
628 return ATA_DEV_NONE;
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
633 if (class == ATA_DEV_UNKNOWN)
634 return ATA_DEV_NONE;
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
636 return ATA_DEV_NONE;
637 return class;
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
651 * LOCKING:
652 * caller.
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
658 unsigned int c;
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
669 ofs++;
670 len -= 2;
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
685 * LOCKING:
686 * caller.
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
691 unsigned char *p;
693 WARN_ON(!(len & 1));
695 ata_id_string(id, s, ofs, len - 1);
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
703 static u64 ata_id_n_sectors(const u16 *id)
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
723 * This function performs no actual function.
725 * May be used as the dev_select() entry in ata_port_operations.
727 * LOCKING:
728 * caller.
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
744 * May be used as the dev_select() entry in ata_port_operations.
746 * LOCKING:
747 * caller.
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
752 u8 tmp;
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
764 ata_pause(ap); /* needed; also flushes, for mmio */
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
782 * LOCKING:
783 * caller.
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
793 if (wait)
794 ata_wait_idle(ap);
796 ap->ops->dev_select(ap, device);
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
812 * LOCKING:
813 * caller.
816 static inline void ata_dump_id(const u16 *id)
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
840 id[88],
841 id[93]);
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
851 * FIXME: pre IDE drive timing (do we care ?).
853 * LOCKING:
854 * None.
856 * RETURNS:
857 * Computed xfermask
859 static unsigned int ata_id_xfermask(const u16 *id)
861 unsigned int pio_mask, mwdma_mask, udma_mask;
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
876 else
877 pio_mask = 1;
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
889 if (ata_id_is_cfa(id)) {
891 * Process compact flash extended modes
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
896 if (pio)
897 pio_mask |= (1 << 5);
898 if (pio > 1)
899 pio_mask |= (1 << 6);
900 if (dma)
901 mwdma_mask |= (1 << 3);
902 if (dma > 1)
903 mwdma_mask |= (1 << 4);
906 udma_mask = 0;
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
927 * synchronization.
929 * LOCKING:
930 * Inherited from caller.
932 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 unsigned long delay)
935 int rc;
937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
938 return;
940 PREPARE_WORK(&ap->port_task, fn, data);
942 if (!delay)
943 rc = queue_work(ata_wq, &ap->port_task);
944 else
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
947 /* rc == 0 means that another user is using port task */
948 WARN_ON(rc == 0);
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
958 * LOCKING:
959 * Kernel thread context (may sleep)
961 void ata_port_flush_task(struct ata_port *ap)
963 unsigned long flags;
965 DPRINTK("ENTER\n");
967 spin_lock_irqsave(ap->lock, flags);
968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
969 spin_unlock_irqrestore(ap->lock, flags);
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
977 * Cancel and flush.
979 if (!cancel_delayed_work(&ap->port_task)) {
980 if (ata_msg_ctl(ap))
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
982 __FUNCTION__);
983 flush_workqueue(ata_wq);
986 spin_lock_irqsave(ap->lock, flags);
987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
988 spin_unlock_irqrestore(ap->lock, flags);
990 if (ata_msg_ctl(ap))
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
994 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
996 struct completion *waiting = qc->private_data;
998 complete(waiting);
1002 * ata_exec_internal - execute libata internal command
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
1005 * @cdb: CDB for packet command
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1016 * LOCKING:
1017 * None. Should be called with kernel context, might sleep.
1019 * RETURNS:
1020 * Zero on success, AC_ERR_* mask on failure
1022 unsigned ata_exec_internal(struct ata_device *dev,
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
1026 struct ata_port *ap = dev->ap;
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
1029 unsigned int tag, preempted_tag;
1030 u32 preempted_sactive, preempted_qc_active;
1031 DECLARE_COMPLETION_ONSTACK(wait);
1032 unsigned long flags;
1033 unsigned int err_mask;
1034 int rc;
1036 spin_lock_irqsave(ap->lock, flags);
1038 /* no internal command while frozen */
1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
1040 spin_unlock_irqrestore(ap->lock, flags);
1041 return AC_ERR_SYSTEM;
1044 /* initialize internal qc */
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1053 else
1054 tag = 0;
1056 if (test_and_set_bit(tag, &ap->qc_allocated))
1057 BUG();
1058 qc = __ata_qc_from_tag(ap, tag);
1060 qc->tag = tag;
1061 qc->scsicmd = NULL;
1062 qc->ap = ap;
1063 qc->dev = dev;
1064 ata_qc_reinit(qc);
1066 preempted_tag = ap->active_tag;
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
1069 ap->active_tag = ATA_TAG_POISON;
1070 ap->sactive = 0;
1071 ap->qc_active = 0;
1073 /* prepare & issue qc */
1074 qc->tf = *tf;
1075 if (cdb)
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1084 qc->private_data = &wait;
1085 qc->complete_fn = ata_qc_complete_internal;
1087 ata_qc_issue(qc);
1089 spin_unlock_irqrestore(ap->lock, flags);
1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1093 ata_port_flush_task(ap);
1095 if (!rc) {
1096 spin_lock_irqsave(ap->lock, flags);
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1108 else
1109 ata_qc_complete(qc);
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
1113 "qc timeout (cmd 0x%x)\n", command);
1116 spin_unlock_irqrestore(ap->lock, flags);
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1124 if (ata_msg_warn(ap))
1125 ata_dev_printk(dev, KERN_WARNING,
1126 "zero err_mask for failed "
1127 "internal command, assuming AC_ERR_OTHER\n");
1128 qc->err_mask |= AC_ERR_OTHER;
1131 /* finish up */
1132 spin_lock_irqsave(ap->lock, flags);
1134 *tf = qc->result_tf;
1135 err_mask = qc->err_mask;
1137 ata_qc_free(qc);
1138 ap->active_tag = preempted_tag;
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1145 * port.
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1151 * Kill the following code as soon as those drivers are fixed.
1153 if (ap->flags & ATA_FLAG_DISABLED) {
1154 err_mask |= AC_ERR_SYSTEM;
1155 ata_port_probe(ap);
1158 spin_unlock_irqrestore(ap->lock, flags);
1160 return err_mask;
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1171 * LOCKING:
1172 * Kernel thread context (may sleep).
1174 * RETURNS:
1175 * Zero on success, AC_ERR_* mask on failure
1177 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1179 struct ata_taskfile tf;
1181 ata_tf_init(dev, &tf);
1183 tf.command = cmd;
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1191 * ata_pio_need_iordy - check if iordy needed
1192 * @adev: ATA device
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1198 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1200 int pio;
1201 int speed = adev->pio_mode - XFER_PIO_0;
1203 if (speed < 2)
1204 return 0;
1205 if (speed > 2)
1206 return 1;
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1213 if (pio) {
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1216 return 1;
1217 return 0;
1220 return 0;
1224 * ata_dev_read_id - Read ID data from the specified device
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
1228 * @id: buffer to read IDENTIFY data into
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1235 * LOCKING:
1236 * Kernel thread context (may sleep)
1238 * RETURNS:
1239 * 0 on success, -errno otherwise.
1241 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1244 struct ata_port *ap = dev->ap;
1245 unsigned int class = *p_class;
1246 struct ata_taskfile tf;
1247 unsigned int err_mask = 0;
1248 const char *reason;
1249 int rc;
1251 if (ata_msg_ctl(ap))
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1257 retry:
1258 ata_tf_init(dev, &tf);
1260 switch (class) {
1261 case ATA_DEV_ATA:
1262 tf.command = ATA_CMD_ID_ATA;
1263 break;
1264 case ATA_DEV_ATAPI:
1265 tf.command = ATA_CMD_ID_ATAPI;
1266 break;
1267 default:
1268 rc = -ENODEV;
1269 reason = "unsupported class";
1270 goto err_out;
1273 tf.protocol = ATA_PROT_PIO;
1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1276 id, sizeof(id[0]) * ATA_ID_WORDS);
1277 if (err_mask) {
1278 rc = -EIO;
1279 reason = "I/O error";
1280 goto err_out;
1283 swap_buf_le16(id, ATA_ID_WORDS);
1285 /* sanity check */
1286 rc = -EINVAL;
1287 reason = "device reports illegal type";
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1291 goto err_out;
1292 } else {
1293 if (ata_id_is_ata(id))
1294 goto err_out;
1297 if (post_reset && class == ATA_DEV_ATA) {
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1300 * SRST RESET
1301 * IDENTIFY
1302 * INITIALIZE DEVICE PARAMETERS
1303 * anything else..
1304 * Some drives were very specific about that exact sequence.
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1308 if (err_mask) {
1309 rc = -EIO;
1310 reason = "INIT_DEV_PARAMS failed";
1311 goto err_out;
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1317 post_reset = 0;
1318 goto retry;
1322 *p_class = class;
1324 return 0;
1326 err_out:
1327 if (ata_msg_warn(ap))
1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
1330 return rc;
1333 static inline u8 ata_dev_knobble(struct ata_device *dev)
1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1338 static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1344 if (!ata_id_has_ncq(dev->id)) {
1345 desc[0] = '\0';
1346 return;
1348 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1349 snprintf(desc, desc_sz, "NCQ (not used)");
1350 return;
1352 if (ap->flags & ATA_FLAG_NCQ) {
1353 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1354 dev->flags |= ATA_DFLAG_NCQ;
1357 if (hdepth >= ddepth)
1358 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1359 else
1360 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1363 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1365 int i;
1367 if (ap->scsi_host) {
1368 unsigned int len = 0;
1370 for (i = 0; i < ATA_MAX_DEVICES; i++)
1371 len = max(len, ap->device[i].cdb_len);
1373 ap->scsi_host->max_cmd_len = len;
1378 * ata_dev_configure - Configure the specified ATA/ATAPI device
1379 * @dev: Target device to configure
1381 * Configure @dev according to @dev->id. Generic and low-level
1382 * driver specific fixups are also applied.
1384 * LOCKING:
1385 * Kernel thread context (may sleep)
1387 * RETURNS:
1388 * 0 on success, -errno otherwise
1390 int ata_dev_configure(struct ata_device *dev)
1392 struct ata_port *ap = dev->ap;
1393 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1394 const u16 *id = dev->id;
1395 unsigned int xfer_mask;
1396 char revbuf[7]; /* XYZ-99\0 */
1397 int rc;
1399 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1400 ata_dev_printk(dev, KERN_INFO,
1401 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1402 __FUNCTION__, ap->id, dev->devno);
1403 return 0;
1406 if (ata_msg_probe(ap))
1407 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1408 __FUNCTION__, ap->id, dev->devno);
1410 /* print device capabilities */
1411 if (ata_msg_probe(ap))
1412 ata_dev_printk(dev, KERN_DEBUG,
1413 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1414 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1415 __FUNCTION__,
1416 id[49], id[82], id[83], id[84],
1417 id[85], id[86], id[87], id[88]);
1419 /* initialize to-be-configured parameters */
1420 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1421 dev->max_sectors = 0;
1422 dev->cdb_len = 0;
1423 dev->n_sectors = 0;
1424 dev->cylinders = 0;
1425 dev->heads = 0;
1426 dev->sectors = 0;
1429 * common ATA, ATAPI feature tests
1432 /* find max transfer mode; for printk only */
1433 xfer_mask = ata_id_xfermask(id);
1435 if (ata_msg_probe(ap))
1436 ata_dump_id(id);
1438 /* ATA-specific feature tests */
1439 if (dev->class == ATA_DEV_ATA) {
1440 if (ata_id_is_cfa(id)) {
1441 if (id[162] & 1) /* CPRM may make this media unusable */
1442 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1443 ap->id, dev->devno);
1444 snprintf(revbuf, 7, "CFA");
1446 else
1447 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1449 dev->n_sectors = ata_id_n_sectors(id);
1451 if (ata_id_has_lba(id)) {
1452 const char *lba_desc;
1453 char ncq_desc[20];
1455 lba_desc = "LBA";
1456 dev->flags |= ATA_DFLAG_LBA;
1457 if (ata_id_has_lba48(id)) {
1458 dev->flags |= ATA_DFLAG_LBA48;
1459 lba_desc = "LBA48";
1461 if (dev->n_sectors >= (1UL << 28) &&
1462 ata_id_has_flush_ext(id))
1463 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1466 /* config NCQ */
1467 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1469 /* print device info to dmesg */
1470 if (ata_msg_drv(ap) && print_info)
1471 ata_dev_printk(dev, KERN_INFO, "%s, "
1472 "max %s, %Lu sectors: %s %s\n",
1473 revbuf,
1474 ata_mode_string(xfer_mask),
1475 (unsigned long long)dev->n_sectors,
1476 lba_desc, ncq_desc);
1477 } else {
1478 /* CHS */
1480 /* Default translation */
1481 dev->cylinders = id[1];
1482 dev->heads = id[3];
1483 dev->sectors = id[6];
1485 if (ata_id_current_chs_valid(id)) {
1486 /* Current CHS translation is valid. */
1487 dev->cylinders = id[54];
1488 dev->heads = id[55];
1489 dev->sectors = id[56];
1492 /* print device info to dmesg */
1493 if (ata_msg_drv(ap) && print_info)
1494 ata_dev_printk(dev, KERN_INFO, "%s, "
1495 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1496 revbuf,
1497 ata_mode_string(xfer_mask),
1498 (unsigned long long)dev->n_sectors,
1499 dev->cylinders, dev->heads,
1500 dev->sectors);
1503 if (dev->id[59] & 0x100) {
1504 dev->multi_count = dev->id[59] & 0xff;
1505 if (ata_msg_drv(ap) && print_info)
1506 ata_dev_printk(dev, KERN_INFO,
1507 "ata%u: dev %u multi count %u\n",
1508 ap->id, dev->devno, dev->multi_count);
1511 dev->cdb_len = 16;
1514 /* ATAPI-specific feature tests */
1515 else if (dev->class == ATA_DEV_ATAPI) {
1516 char *cdb_intr_string = "";
1518 rc = atapi_cdb_len(id);
1519 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1520 if (ata_msg_warn(ap))
1521 ata_dev_printk(dev, KERN_WARNING,
1522 "unsupported CDB len\n");
1523 rc = -EINVAL;
1524 goto err_out_nosup;
1526 dev->cdb_len = (unsigned int) rc;
1528 if (ata_id_cdb_intr(dev->id)) {
1529 dev->flags |= ATA_DFLAG_CDB_INTR;
1530 cdb_intr_string = ", CDB intr";
1533 /* print device info to dmesg */
1534 if (ata_msg_drv(ap) && print_info)
1535 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1536 ata_mode_string(xfer_mask),
1537 cdb_intr_string);
1540 /* determine max_sectors */
1541 dev->max_sectors = ATA_MAX_SECTORS;
1542 if (dev->flags & ATA_DFLAG_LBA48)
1543 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1545 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1546 /* Let the user know. We don't want to disallow opens for
1547 rescue purposes, or in case the vendor is just a blithering
1548 idiot */
1549 if (print_info) {
1550 ata_dev_printk(dev, KERN_WARNING,
1551 "Drive reports diagnostics failure. This may indicate a drive\n");
1552 ata_dev_printk(dev, KERN_WARNING,
1553 "fault or invalid emulation. Contact drive vendor for information.\n");
1557 ata_set_port_max_cmd_len(ap);
1559 /* limit bridge transfers to udma5, 200 sectors */
1560 if (ata_dev_knobble(dev)) {
1561 if (ata_msg_drv(ap) && print_info)
1562 ata_dev_printk(dev, KERN_INFO,
1563 "applying bridge limits\n");
1564 dev->udma_mask &= ATA_UDMA5;
1565 dev->max_sectors = ATA_MAX_SECTORS;
1568 if (ap->ops->dev_config)
1569 ap->ops->dev_config(ap, dev);
1571 if (ata_msg_probe(ap))
1572 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1573 __FUNCTION__, ata_chk_status(ap));
1574 return 0;
1576 err_out_nosup:
1577 if (ata_msg_probe(ap))
1578 ata_dev_printk(dev, KERN_DEBUG,
1579 "%s: EXIT, err\n", __FUNCTION__);
1580 return rc;
1584 * ata_bus_probe - Reset and probe ATA bus
1585 * @ap: Bus to probe
1587 * Master ATA bus probing function. Initiates a hardware-dependent
1588 * bus reset, then attempts to identify any devices found on
1589 * the bus.
1591 * LOCKING:
1592 * PCI/etc. bus probe sem.
1594 * RETURNS:
1595 * Zero on success, negative errno otherwise.
1598 int ata_bus_probe(struct ata_port *ap)
1600 unsigned int classes[ATA_MAX_DEVICES];
1601 int tries[ATA_MAX_DEVICES];
1602 int i, rc, down_xfermask;
1603 struct ata_device *dev;
1605 ata_port_probe(ap);
1607 for (i = 0; i < ATA_MAX_DEVICES; i++)
1608 tries[i] = ATA_PROBE_MAX_TRIES;
1610 retry:
1611 down_xfermask = 0;
1613 /* reset and determine device classes */
1614 ap->ops->phy_reset(ap);
1616 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1617 dev = &ap->device[i];
1619 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1620 dev->class != ATA_DEV_UNKNOWN)
1621 classes[dev->devno] = dev->class;
1622 else
1623 classes[dev->devno] = ATA_DEV_NONE;
1625 dev->class = ATA_DEV_UNKNOWN;
1628 ata_port_probe(ap);
1630 /* after the reset the device state is PIO 0 and the controller
1631 state is undefined. Record the mode */
1633 for (i = 0; i < ATA_MAX_DEVICES; i++)
1634 ap->device[i].pio_mode = XFER_PIO_0;
1636 /* read IDENTIFY page and configure devices */
1637 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1638 dev = &ap->device[i];
1640 if (tries[i])
1641 dev->class = classes[i];
1643 if (!ata_dev_enabled(dev))
1644 continue;
1646 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1647 if (rc)
1648 goto fail;
1650 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1651 rc = ata_dev_configure(dev);
1652 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1653 if (rc)
1654 goto fail;
1657 /* configure transfer mode */
1658 rc = ata_set_mode(ap, &dev);
1659 if (rc) {
1660 down_xfermask = 1;
1661 goto fail;
1664 for (i = 0; i < ATA_MAX_DEVICES; i++)
1665 if (ata_dev_enabled(&ap->device[i]))
1666 return 0;
1668 /* no device present, disable port */
1669 ata_port_disable(ap);
1670 ap->ops->port_disable(ap);
1671 return -ENODEV;
1673 fail:
1674 switch (rc) {
1675 case -EINVAL:
1676 case -ENODEV:
1677 tries[dev->devno] = 0;
1678 break;
1679 case -EIO:
1680 sata_down_spd_limit(ap);
1681 /* fall through */
1682 default:
1683 tries[dev->devno]--;
1684 if (down_xfermask &&
1685 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1686 tries[dev->devno] = 0;
1689 if (!tries[dev->devno]) {
1690 ata_down_xfermask_limit(dev, 1);
1691 ata_dev_disable(dev);
1694 goto retry;
1698 * ata_port_probe - Mark port as enabled
1699 * @ap: Port for which we indicate enablement
1701 * Modify @ap data structure such that the system
1702 * thinks that the entire port is enabled.
1704 * LOCKING: host lock, or some other form of
1705 * serialization.
1708 void ata_port_probe(struct ata_port *ap)
1710 ap->flags &= ~ATA_FLAG_DISABLED;
1714 * sata_print_link_status - Print SATA link status
1715 * @ap: SATA port to printk link status about
1717 * This function prints link speed and status of a SATA link.
1719 * LOCKING:
1720 * None.
1722 static void sata_print_link_status(struct ata_port *ap)
1724 u32 sstatus, scontrol, tmp;
1726 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1727 return;
1728 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1730 if (ata_port_online(ap)) {
1731 tmp = (sstatus >> 4) & 0xf;
1732 ata_port_printk(ap, KERN_INFO,
1733 "SATA link up %s (SStatus %X SControl %X)\n",
1734 sata_spd_string(tmp), sstatus, scontrol);
1735 } else {
1736 ata_port_printk(ap, KERN_INFO,
1737 "SATA link down (SStatus %X SControl %X)\n",
1738 sstatus, scontrol);
1743 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1744 * @ap: SATA port associated with target SATA PHY.
1746 * This function issues commands to standard SATA Sxxx
1747 * PHY registers, to wake up the phy (and device), and
1748 * clear any reset condition.
1750 * LOCKING:
1751 * PCI/etc. bus probe sem.
1754 void __sata_phy_reset(struct ata_port *ap)
1756 u32 sstatus;
1757 unsigned long timeout = jiffies + (HZ * 5);
1759 if (ap->flags & ATA_FLAG_SATA_RESET) {
1760 /* issue phy wake/reset */
1761 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1762 /* Couldn't find anything in SATA I/II specs, but
1763 * AHCI-1.1 10.4.2 says at least 1 ms. */
1764 mdelay(1);
1766 /* phy wake/clear reset */
1767 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1769 /* wait for phy to become ready, if necessary */
1770 do {
1771 msleep(200);
1772 sata_scr_read(ap, SCR_STATUS, &sstatus);
1773 if ((sstatus & 0xf) != 1)
1774 break;
1775 } while (time_before(jiffies, timeout));
1777 /* print link status */
1778 sata_print_link_status(ap);
1780 /* TODO: phy layer with polling, timeouts, etc. */
1781 if (!ata_port_offline(ap))
1782 ata_port_probe(ap);
1783 else
1784 ata_port_disable(ap);
1786 if (ap->flags & ATA_FLAG_DISABLED)
1787 return;
1789 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1790 ata_port_disable(ap);
1791 return;
1794 ap->cbl = ATA_CBL_SATA;
1798 * sata_phy_reset - Reset SATA bus.
1799 * @ap: SATA port associated with target SATA PHY.
1801 * This function resets the SATA bus, and then probes
1802 * the bus for devices.
1804 * LOCKING:
1805 * PCI/etc. bus probe sem.
1808 void sata_phy_reset(struct ata_port *ap)
1810 __sata_phy_reset(ap);
1811 if (ap->flags & ATA_FLAG_DISABLED)
1812 return;
1813 ata_bus_reset(ap);
1817 * ata_dev_pair - return other device on cable
1818 * @adev: device
1820 * Obtain the other device on the same cable, or if none is
1821 * present NULL is returned
1824 struct ata_device *ata_dev_pair(struct ata_device *adev)
1826 struct ata_port *ap = adev->ap;
1827 struct ata_device *pair = &ap->device[1 - adev->devno];
1828 if (!ata_dev_enabled(pair))
1829 return NULL;
1830 return pair;
1834 * ata_port_disable - Disable port.
1835 * @ap: Port to be disabled.
1837 * Modify @ap data structure such that the system
1838 * thinks that the entire port is disabled, and should
1839 * never attempt to probe or communicate with devices
1840 * on this port.
1842 * LOCKING: host lock, or some other form of
1843 * serialization.
1846 void ata_port_disable(struct ata_port *ap)
1848 ap->device[0].class = ATA_DEV_NONE;
1849 ap->device[1].class = ATA_DEV_NONE;
1850 ap->flags |= ATA_FLAG_DISABLED;
1854 * sata_down_spd_limit - adjust SATA spd limit downward
1855 * @ap: Port to adjust SATA spd limit for
1857 * Adjust SATA spd limit of @ap downward. Note that this
1858 * function only adjusts the limit. The change must be applied
1859 * using sata_set_spd().
1861 * LOCKING:
1862 * Inherited from caller.
1864 * RETURNS:
1865 * 0 on success, negative errno on failure
1867 int sata_down_spd_limit(struct ata_port *ap)
1869 u32 sstatus, spd, mask;
1870 int rc, highbit;
1872 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1873 if (rc)
1874 return rc;
1876 mask = ap->sata_spd_limit;
1877 if (mask <= 1)
1878 return -EINVAL;
1879 highbit = fls(mask) - 1;
1880 mask &= ~(1 << highbit);
1882 spd = (sstatus >> 4) & 0xf;
1883 if (spd <= 1)
1884 return -EINVAL;
1885 spd--;
1886 mask &= (1 << spd) - 1;
1887 if (!mask)
1888 return -EINVAL;
1890 ap->sata_spd_limit = mask;
1892 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1893 sata_spd_string(fls(mask)));
1895 return 0;
1898 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1900 u32 spd, limit;
1902 if (ap->sata_spd_limit == UINT_MAX)
1903 limit = 0;
1904 else
1905 limit = fls(ap->sata_spd_limit);
1907 spd = (*scontrol >> 4) & 0xf;
1908 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1910 return spd != limit;
1914 * sata_set_spd_needed - is SATA spd configuration needed
1915 * @ap: Port in question
1917 * Test whether the spd limit in SControl matches
1918 * @ap->sata_spd_limit. This function is used to determine
1919 * whether hardreset is necessary to apply SATA spd
1920 * configuration.
1922 * LOCKING:
1923 * Inherited from caller.
1925 * RETURNS:
1926 * 1 if SATA spd configuration is needed, 0 otherwise.
1928 int sata_set_spd_needed(struct ata_port *ap)
1930 u32 scontrol;
1932 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1933 return 0;
1935 return __sata_set_spd_needed(ap, &scontrol);
1939 * sata_set_spd - set SATA spd according to spd limit
1940 * @ap: Port to set SATA spd for
1942 * Set SATA spd of @ap according to sata_spd_limit.
1944 * LOCKING:
1945 * Inherited from caller.
1947 * RETURNS:
1948 * 0 if spd doesn't need to be changed, 1 if spd has been
1949 * changed. Negative errno if SCR registers are inaccessible.
1951 int sata_set_spd(struct ata_port *ap)
1953 u32 scontrol;
1954 int rc;
1956 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1957 return rc;
1959 if (!__sata_set_spd_needed(ap, &scontrol))
1960 return 0;
1962 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1963 return rc;
1965 return 1;
1969 * This mode timing computation functionality is ported over from
1970 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1973 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1974 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1975 * for UDMA6, which is currently supported only by Maxtor drives.
1977 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1980 static const struct ata_timing ata_timing[] = {
1982 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1983 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1984 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1985 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1987 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1988 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1989 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1990 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1991 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1993 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1995 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1996 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1997 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1999 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2000 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2001 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2003 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2004 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2005 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2006 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2008 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2009 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2010 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2012 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2014 { 0xFF }
2017 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2018 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2020 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2022 q->setup = EZ(t->setup * 1000, T);
2023 q->act8b = EZ(t->act8b * 1000, T);
2024 q->rec8b = EZ(t->rec8b * 1000, T);
2025 q->cyc8b = EZ(t->cyc8b * 1000, T);
2026 q->active = EZ(t->active * 1000, T);
2027 q->recover = EZ(t->recover * 1000, T);
2028 q->cycle = EZ(t->cycle * 1000, T);
2029 q->udma = EZ(t->udma * 1000, UT);
2032 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2033 struct ata_timing *m, unsigned int what)
2035 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2036 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2037 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2038 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2039 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2040 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2041 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2042 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2045 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2047 const struct ata_timing *t;
2049 for (t = ata_timing; t->mode != speed; t++)
2050 if (t->mode == 0xFF)
2051 return NULL;
2052 return t;
2055 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2056 struct ata_timing *t, int T, int UT)
2058 const struct ata_timing *s;
2059 struct ata_timing p;
2062 * Find the mode.
2065 if (!(s = ata_timing_find_mode(speed)))
2066 return -EINVAL;
2068 memcpy(t, s, sizeof(*s));
2071 * If the drive is an EIDE drive, it can tell us it needs extended
2072 * PIO/MW_DMA cycle timing.
2075 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2076 memset(&p, 0, sizeof(p));
2077 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2078 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2079 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2080 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2081 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2083 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2087 * Convert the timing to bus clock counts.
2090 ata_timing_quantize(t, t, T, UT);
2093 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2094 * S.M.A.R.T * and some other commands. We have to ensure that the
2095 * DMA cycle timing is slower/equal than the fastest PIO timing.
2098 if (speed > XFER_PIO_4) {
2099 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2100 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2104 * Lengthen active & recovery time so that cycle time is correct.
2107 if (t->act8b + t->rec8b < t->cyc8b) {
2108 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2109 t->rec8b = t->cyc8b - t->act8b;
2112 if (t->active + t->recover < t->cycle) {
2113 t->active += (t->cycle - (t->active + t->recover)) / 2;
2114 t->recover = t->cycle - t->active;
2117 return 0;
2121 * ata_down_xfermask_limit - adjust dev xfer masks downward
2122 * @dev: Device to adjust xfer masks
2123 * @force_pio0: Force PIO0
2125 * Adjust xfer masks of @dev downward. Note that this function
2126 * does not apply the change. Invoking ata_set_mode() afterwards
2127 * will apply the limit.
2129 * LOCKING:
2130 * Inherited from caller.
2132 * RETURNS:
2133 * 0 on success, negative errno on failure
2135 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2137 unsigned long xfer_mask;
2138 int highbit;
2140 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2141 dev->udma_mask);
2143 if (!xfer_mask)
2144 goto fail;
2145 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2146 if (xfer_mask & ATA_MASK_UDMA)
2147 xfer_mask &= ~ATA_MASK_MWDMA;
2149 highbit = fls(xfer_mask) - 1;
2150 xfer_mask &= ~(1 << highbit);
2151 if (force_pio0)
2152 xfer_mask &= 1 << ATA_SHIFT_PIO;
2153 if (!xfer_mask)
2154 goto fail;
2156 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2157 &dev->udma_mask);
2159 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2160 ata_mode_string(xfer_mask));
2162 return 0;
2164 fail:
2165 return -EINVAL;
2168 static int ata_dev_set_mode(struct ata_device *dev)
2170 struct ata_eh_context *ehc = &dev->ap->eh_context;
2171 unsigned int err_mask;
2172 int rc;
2174 dev->flags &= ~ATA_DFLAG_PIO;
2175 if (dev->xfer_shift == ATA_SHIFT_PIO)
2176 dev->flags |= ATA_DFLAG_PIO;
2178 err_mask = ata_dev_set_xfermode(dev);
2179 if (err_mask) {
2180 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2181 "(err_mask=0x%x)\n", err_mask);
2182 return -EIO;
2185 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2186 rc = ata_dev_revalidate(dev, 0);
2187 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2188 if (rc)
2189 return rc;
2191 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2192 dev->xfer_shift, (int)dev->xfer_mode);
2194 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2195 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2196 return 0;
2200 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2201 * @ap: port on which timings will be programmed
2202 * @r_failed_dev: out paramter for failed device
2204 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2205 * ata_set_mode() fails, pointer to the failing device is
2206 * returned in @r_failed_dev.
2208 * LOCKING:
2209 * PCI/etc. bus probe sem.
2211 * RETURNS:
2212 * 0 on success, negative errno otherwise
2214 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2216 struct ata_device *dev;
2217 int i, rc = 0, used_dma = 0, found = 0;
2219 /* has private set_mode? */
2220 if (ap->ops->set_mode) {
2221 /* FIXME: make ->set_mode handle no device case and
2222 * return error code and failing device on failure.
2224 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2225 if (ata_dev_ready(&ap->device[i])) {
2226 ap->ops->set_mode(ap);
2227 break;
2230 return 0;
2233 /* step 1: calculate xfer_mask */
2234 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2235 unsigned int pio_mask, dma_mask;
2237 dev = &ap->device[i];
2239 if (!ata_dev_enabled(dev))
2240 continue;
2242 ata_dev_xfermask(dev);
2244 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2245 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2246 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2247 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2249 found = 1;
2250 if (dev->dma_mode)
2251 used_dma = 1;
2253 if (!found)
2254 goto out;
2256 /* step 2: always set host PIO timings */
2257 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2258 dev = &ap->device[i];
2259 if (!ata_dev_enabled(dev))
2260 continue;
2262 if (!dev->pio_mode) {
2263 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2264 rc = -EINVAL;
2265 goto out;
2268 dev->xfer_mode = dev->pio_mode;
2269 dev->xfer_shift = ATA_SHIFT_PIO;
2270 if (ap->ops->set_piomode)
2271 ap->ops->set_piomode(ap, dev);
2274 /* step 3: set host DMA timings */
2275 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2276 dev = &ap->device[i];
2278 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2279 continue;
2281 dev->xfer_mode = dev->dma_mode;
2282 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2283 if (ap->ops->set_dmamode)
2284 ap->ops->set_dmamode(ap, dev);
2287 /* step 4: update devices' xfer mode */
2288 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2289 dev = &ap->device[i];
2291 /* don't udpate suspended devices' xfer mode */
2292 if (!ata_dev_ready(dev))
2293 continue;
2295 rc = ata_dev_set_mode(dev);
2296 if (rc)
2297 goto out;
2300 /* Record simplex status. If we selected DMA then the other
2301 * host channels are not permitted to do so.
2303 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2304 ap->host->simplex_claimed = 1;
2306 /* step5: chip specific finalisation */
2307 if (ap->ops->post_set_mode)
2308 ap->ops->post_set_mode(ap);
2310 out:
2311 if (rc)
2312 *r_failed_dev = dev;
2313 return rc;
2317 * ata_tf_to_host - issue ATA taskfile to host controller
2318 * @ap: port to which command is being issued
2319 * @tf: ATA taskfile register set
2321 * Issues ATA taskfile register set to ATA host controller,
2322 * with proper synchronization with interrupt handler and
2323 * other threads.
2325 * LOCKING:
2326 * spin_lock_irqsave(host lock)
2329 static inline void ata_tf_to_host(struct ata_port *ap,
2330 const struct ata_taskfile *tf)
2332 ap->ops->tf_load(ap, tf);
2333 ap->ops->exec_command(ap, tf);
2337 * ata_busy_sleep - sleep until BSY clears, or timeout
2338 * @ap: port containing status register to be polled
2339 * @tmout_pat: impatience timeout
2340 * @tmout: overall timeout
2342 * Sleep until ATA Status register bit BSY clears,
2343 * or a timeout occurs.
2345 * LOCKING:
2346 * Kernel thread context (may sleep).
2348 * RETURNS:
2349 * 0 on success, -errno otherwise.
2351 int ata_busy_sleep(struct ata_port *ap,
2352 unsigned long tmout_pat, unsigned long tmout)
2354 unsigned long timer_start, timeout;
2355 u8 status;
2357 status = ata_busy_wait(ap, ATA_BUSY, 300);
2358 timer_start = jiffies;
2359 timeout = timer_start + tmout_pat;
2360 while (status != 0xff && (status & ATA_BUSY) &&
2361 time_before(jiffies, timeout)) {
2362 msleep(50);
2363 status = ata_busy_wait(ap, ATA_BUSY, 3);
2366 if (status != 0xff && (status & ATA_BUSY))
2367 ata_port_printk(ap, KERN_WARNING,
2368 "port is slow to respond, please be patient "
2369 "(Status 0x%x)\n", status);
2371 timeout = timer_start + tmout;
2372 while (status != 0xff && (status & ATA_BUSY) &&
2373 time_before(jiffies, timeout)) {
2374 msleep(50);
2375 status = ata_chk_status(ap);
2378 if (status == 0xff)
2379 return -ENODEV;
2381 if (status & ATA_BUSY) {
2382 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2383 "(%lu secs, Status 0x%x)\n",
2384 tmout / HZ, status);
2385 return -EBUSY;
2388 return 0;
2391 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2393 struct ata_ioports *ioaddr = &ap->ioaddr;
2394 unsigned int dev0 = devmask & (1 << 0);
2395 unsigned int dev1 = devmask & (1 << 1);
2396 unsigned long timeout;
2398 /* if device 0 was found in ata_devchk, wait for its
2399 * BSY bit to clear
2401 if (dev0)
2402 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2404 /* if device 1 was found in ata_devchk, wait for
2405 * register access, then wait for BSY to clear
2407 timeout = jiffies + ATA_TMOUT_BOOT;
2408 while (dev1) {
2409 u8 nsect, lbal;
2411 ap->ops->dev_select(ap, 1);
2412 if (ap->flags & ATA_FLAG_MMIO) {
2413 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2414 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2415 } else {
2416 nsect = inb(ioaddr->nsect_addr);
2417 lbal = inb(ioaddr->lbal_addr);
2419 if ((nsect == 1) && (lbal == 1))
2420 break;
2421 if (time_after(jiffies, timeout)) {
2422 dev1 = 0;
2423 break;
2425 msleep(50); /* give drive a breather */
2427 if (dev1)
2428 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2430 /* is all this really necessary? */
2431 ap->ops->dev_select(ap, 0);
2432 if (dev1)
2433 ap->ops->dev_select(ap, 1);
2434 if (dev0)
2435 ap->ops->dev_select(ap, 0);
2438 static unsigned int ata_bus_softreset(struct ata_port *ap,
2439 unsigned int devmask)
2441 struct ata_ioports *ioaddr = &ap->ioaddr;
2443 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2445 /* software reset. causes dev0 to be selected */
2446 if (ap->flags & ATA_FLAG_MMIO) {
2447 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2448 udelay(20); /* FIXME: flush */
2449 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2450 udelay(20); /* FIXME: flush */
2451 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2452 } else {
2453 outb(ap->ctl, ioaddr->ctl_addr);
2454 udelay(10);
2455 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2456 udelay(10);
2457 outb(ap->ctl, ioaddr->ctl_addr);
2460 /* spec mandates ">= 2ms" before checking status.
2461 * We wait 150ms, because that was the magic delay used for
2462 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2463 * between when the ATA command register is written, and then
2464 * status is checked. Because waiting for "a while" before
2465 * checking status is fine, post SRST, we perform this magic
2466 * delay here as well.
2468 * Old drivers/ide uses the 2mS rule and then waits for ready
2470 msleep(150);
2472 /* Before we perform post reset processing we want to see if
2473 * the bus shows 0xFF because the odd clown forgets the D7
2474 * pulldown resistor.
2476 if (ata_check_status(ap) == 0xFF)
2477 return 0;
2479 ata_bus_post_reset(ap, devmask);
2481 return 0;
2485 * ata_bus_reset - reset host port and associated ATA channel
2486 * @ap: port to reset
2488 * This is typically the first time we actually start issuing
2489 * commands to the ATA channel. We wait for BSY to clear, then
2490 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2491 * result. Determine what devices, if any, are on the channel
2492 * by looking at the device 0/1 error register. Look at the signature
2493 * stored in each device's taskfile registers, to determine if
2494 * the device is ATA or ATAPI.
2496 * LOCKING:
2497 * PCI/etc. bus probe sem.
2498 * Obtains host lock.
2500 * SIDE EFFECTS:
2501 * Sets ATA_FLAG_DISABLED if bus reset fails.
2504 void ata_bus_reset(struct ata_port *ap)
2506 struct ata_ioports *ioaddr = &ap->ioaddr;
2507 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2508 u8 err;
2509 unsigned int dev0, dev1 = 0, devmask = 0;
2511 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2513 /* determine if device 0/1 are present */
2514 if (ap->flags & ATA_FLAG_SATA_RESET)
2515 dev0 = 1;
2516 else {
2517 dev0 = ata_devchk(ap, 0);
2518 if (slave_possible)
2519 dev1 = ata_devchk(ap, 1);
2522 if (dev0)
2523 devmask |= (1 << 0);
2524 if (dev1)
2525 devmask |= (1 << 1);
2527 /* select device 0 again */
2528 ap->ops->dev_select(ap, 0);
2530 /* issue bus reset */
2531 if (ap->flags & ATA_FLAG_SRST)
2532 if (ata_bus_softreset(ap, devmask))
2533 goto err_out;
2536 * determine by signature whether we have ATA or ATAPI devices
2538 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2539 if ((slave_possible) && (err != 0x81))
2540 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2542 /* re-enable interrupts */
2543 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2544 ata_irq_on(ap);
2546 /* is double-select really necessary? */
2547 if (ap->device[1].class != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 1);
2549 if (ap->device[0].class != ATA_DEV_NONE)
2550 ap->ops->dev_select(ap, 0);
2552 /* if no devices were detected, disable this port */
2553 if ((ap->device[0].class == ATA_DEV_NONE) &&
2554 (ap->device[1].class == ATA_DEV_NONE))
2555 goto err_out;
2557 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2558 /* set up device control for ATA_FLAG_SATA_RESET */
2559 if (ap->flags & ATA_FLAG_MMIO)
2560 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2561 else
2562 outb(ap->ctl, ioaddr->ctl_addr);
2565 DPRINTK("EXIT\n");
2566 return;
2568 err_out:
2569 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2570 ap->ops->port_disable(ap);
2572 DPRINTK("EXIT\n");
2576 * sata_phy_debounce - debounce SATA phy status
2577 * @ap: ATA port to debounce SATA phy status for
2578 * @params: timing parameters { interval, duratinon, timeout } in msec
2580 * Make sure SStatus of @ap reaches stable state, determined by
2581 * holding the same value where DET is not 1 for @duration polled
2582 * every @interval, before @timeout. Timeout constraints the
2583 * beginning of the stable state. Because, after hot unplugging,
2584 * DET gets stuck at 1 on some controllers, this functions waits
2585 * until timeout then returns 0 if DET is stable at 1.
2587 * LOCKING:
2588 * Kernel thread context (may sleep)
2590 * RETURNS:
2591 * 0 on success, -errno on failure.
2593 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2595 unsigned long interval_msec = params[0];
2596 unsigned long duration = params[1] * HZ / 1000;
2597 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2598 unsigned long last_jiffies;
2599 u32 last, cur;
2600 int rc;
2602 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2603 return rc;
2604 cur &= 0xf;
2606 last = cur;
2607 last_jiffies = jiffies;
2609 while (1) {
2610 msleep(interval_msec);
2611 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2612 return rc;
2613 cur &= 0xf;
2615 /* DET stable? */
2616 if (cur == last) {
2617 if (cur == 1 && time_before(jiffies, timeout))
2618 continue;
2619 if (time_after(jiffies, last_jiffies + duration))
2620 return 0;
2621 continue;
2624 /* unstable, start over */
2625 last = cur;
2626 last_jiffies = jiffies;
2628 /* check timeout */
2629 if (time_after(jiffies, timeout))
2630 return -EBUSY;
2635 * sata_phy_resume - resume SATA phy
2636 * @ap: ATA port to resume SATA phy for
2637 * @params: timing parameters { interval, duratinon, timeout } in msec
2639 * Resume SATA phy of @ap and debounce it.
2641 * LOCKING:
2642 * Kernel thread context (may sleep)
2644 * RETURNS:
2645 * 0 on success, -errno on failure.
2647 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2649 u32 scontrol;
2650 int rc;
2652 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2653 return rc;
2655 scontrol = (scontrol & 0x0f0) | 0x300;
2657 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2658 return rc;
2660 /* Some PHYs react badly if SStatus is pounded immediately
2661 * after resuming. Delay 200ms before debouncing.
2663 msleep(200);
2665 return sata_phy_debounce(ap, params);
2668 static void ata_wait_spinup(struct ata_port *ap)
2670 struct ata_eh_context *ehc = &ap->eh_context;
2671 unsigned long end, secs;
2672 int rc;
2674 /* first, debounce phy if SATA */
2675 if (ap->cbl == ATA_CBL_SATA) {
2676 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2678 /* if debounced successfully and offline, no need to wait */
2679 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2680 return;
2683 /* okay, let's give the drive time to spin up */
2684 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2685 secs = ((end - jiffies) + HZ - 1) / HZ;
2687 if (time_after(jiffies, end))
2688 return;
2690 if (secs > 5)
2691 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2692 "(%lu secs)\n", secs);
2694 schedule_timeout_uninterruptible(end - jiffies);
2698 * ata_std_prereset - prepare for reset
2699 * @ap: ATA port to be reset
2701 * @ap is about to be reset. Initialize it.
2703 * LOCKING:
2704 * Kernel thread context (may sleep)
2706 * RETURNS:
2707 * 0 on success, -errno otherwise.
2709 int ata_std_prereset(struct ata_port *ap)
2711 struct ata_eh_context *ehc = &ap->eh_context;
2712 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2713 int rc;
2715 /* handle link resume & hotplug spinup */
2716 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2717 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2718 ehc->i.action |= ATA_EH_HARDRESET;
2720 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2721 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2722 ata_wait_spinup(ap);
2724 /* if we're about to do hardreset, nothing more to do */
2725 if (ehc->i.action & ATA_EH_HARDRESET)
2726 return 0;
2728 /* if SATA, resume phy */
2729 if (ap->cbl == ATA_CBL_SATA) {
2730 rc = sata_phy_resume(ap, timing);
2731 if (rc && rc != -EOPNOTSUPP) {
2732 /* phy resume failed */
2733 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2734 "link for reset (errno=%d)\n", rc);
2735 return rc;
2739 /* Wait for !BSY if the controller can wait for the first D2H
2740 * Reg FIS and we don't know that no device is attached.
2742 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2743 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2745 return 0;
2749 * ata_std_softreset - reset host port via ATA SRST
2750 * @ap: port to reset
2751 * @classes: resulting classes of attached devices
2753 * Reset host port using ATA SRST.
2755 * LOCKING:
2756 * Kernel thread context (may sleep)
2758 * RETURNS:
2759 * 0 on success, -errno otherwise.
2761 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2763 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2764 unsigned int devmask = 0, err_mask;
2765 u8 err;
2767 DPRINTK("ENTER\n");
2769 if (ata_port_offline(ap)) {
2770 classes[0] = ATA_DEV_NONE;
2771 goto out;
2774 /* determine if device 0/1 are present */
2775 if (ata_devchk(ap, 0))
2776 devmask |= (1 << 0);
2777 if (slave_possible && ata_devchk(ap, 1))
2778 devmask |= (1 << 1);
2780 /* select device 0 again */
2781 ap->ops->dev_select(ap, 0);
2783 /* issue bus reset */
2784 DPRINTK("about to softreset, devmask=%x\n", devmask);
2785 err_mask = ata_bus_softreset(ap, devmask);
2786 if (err_mask) {
2787 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2788 err_mask);
2789 return -EIO;
2792 /* determine by signature whether we have ATA or ATAPI devices */
2793 classes[0] = ata_dev_try_classify(ap, 0, &err);
2794 if (slave_possible && err != 0x81)
2795 classes[1] = ata_dev_try_classify(ap, 1, &err);
2797 out:
2798 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2799 return 0;
2803 * sata_port_hardreset - reset port via SATA phy reset
2804 * @ap: port to reset
2805 * @timing: timing parameters { interval, duratinon, timeout } in msec
2807 * SATA phy-reset host port using DET bits of SControl register.
2809 * LOCKING:
2810 * Kernel thread context (may sleep)
2812 * RETURNS:
2813 * 0 on success, -errno otherwise.
2815 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
2817 u32 scontrol;
2818 int rc;
2820 DPRINTK("ENTER\n");
2822 if (sata_set_spd_needed(ap)) {
2823 /* SATA spec says nothing about how to reconfigure
2824 * spd. To be on the safe side, turn off phy during
2825 * reconfiguration. This works for at least ICH7 AHCI
2826 * and Sil3124.
2828 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2829 goto out;
2831 scontrol = (scontrol & 0x0f0) | 0x304;
2833 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2834 goto out;
2836 sata_set_spd(ap);
2839 /* issue phy wake/reset */
2840 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2841 goto out;
2843 scontrol = (scontrol & 0x0f0) | 0x301;
2845 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2846 goto out;
2848 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2849 * 10.4.2 says at least 1 ms.
2851 msleep(1);
2853 /* bring phy back */
2854 rc = sata_phy_resume(ap, timing);
2855 out:
2856 DPRINTK("EXIT, rc=%d\n", rc);
2857 return rc;
2861 * sata_std_hardreset - reset host port via SATA phy reset
2862 * @ap: port to reset
2863 * @class: resulting class of attached device
2865 * SATA phy-reset host port using DET bits of SControl register,
2866 * wait for !BSY and classify the attached device.
2868 * LOCKING:
2869 * Kernel thread context (may sleep)
2871 * RETURNS:
2872 * 0 on success, -errno otherwise.
2874 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2876 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2877 int rc;
2879 DPRINTK("ENTER\n");
2881 /* do hardreset */
2882 rc = sata_port_hardreset(ap, timing);
2883 if (rc) {
2884 ata_port_printk(ap, KERN_ERR,
2885 "COMRESET failed (errno=%d)\n", rc);
2886 return rc;
2889 /* TODO: phy layer with polling, timeouts, etc. */
2890 if (ata_port_offline(ap)) {
2891 *class = ATA_DEV_NONE;
2892 DPRINTK("EXIT, link offline\n");
2893 return 0;
2896 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2897 ata_port_printk(ap, KERN_ERR,
2898 "COMRESET failed (device not ready)\n");
2899 return -EIO;
2902 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2904 *class = ata_dev_try_classify(ap, 0, NULL);
2906 DPRINTK("EXIT, class=%u\n", *class);
2907 return 0;
2911 * ata_std_postreset - standard postreset callback
2912 * @ap: the target ata_port
2913 * @classes: classes of attached devices
2915 * This function is invoked after a successful reset. Note that
2916 * the device might have been reset more than once using
2917 * different reset methods before postreset is invoked.
2919 * LOCKING:
2920 * Kernel thread context (may sleep)
2922 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2924 u32 serror;
2926 DPRINTK("ENTER\n");
2928 /* print link status */
2929 sata_print_link_status(ap);
2931 /* clear SError */
2932 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2933 sata_scr_write(ap, SCR_ERROR, serror);
2935 /* re-enable interrupts */
2936 if (!ap->ops->error_handler) {
2937 /* FIXME: hack. create a hook instead */
2938 if (ap->ioaddr.ctl_addr)
2939 ata_irq_on(ap);
2942 /* is double-select really necessary? */
2943 if (classes[0] != ATA_DEV_NONE)
2944 ap->ops->dev_select(ap, 1);
2945 if (classes[1] != ATA_DEV_NONE)
2946 ap->ops->dev_select(ap, 0);
2948 /* bail out if no device is present */
2949 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2950 DPRINTK("EXIT, no device\n");
2951 return;
2954 /* set up device control */
2955 if (ap->ioaddr.ctl_addr) {
2956 if (ap->flags & ATA_FLAG_MMIO)
2957 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2958 else
2959 outb(ap->ctl, ap->ioaddr.ctl_addr);
2962 DPRINTK("EXIT\n");
2966 * ata_dev_same_device - Determine whether new ID matches configured device
2967 * @dev: device to compare against
2968 * @new_class: class of the new device
2969 * @new_id: IDENTIFY page of the new device
2971 * Compare @new_class and @new_id against @dev and determine
2972 * whether @dev is the device indicated by @new_class and
2973 * @new_id.
2975 * LOCKING:
2976 * None.
2978 * RETURNS:
2979 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2981 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2982 const u16 *new_id)
2984 const u16 *old_id = dev->id;
2985 unsigned char model[2][41], serial[2][21];
2986 u64 new_n_sectors;
2988 if (dev->class != new_class) {
2989 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2990 dev->class, new_class);
2991 return 0;
2994 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2995 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2996 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2997 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2998 new_n_sectors = ata_id_n_sectors(new_id);
3000 if (strcmp(model[0], model[1])) {
3001 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3002 "'%s' != '%s'\n", model[0], model[1]);
3003 return 0;
3006 if (strcmp(serial[0], serial[1])) {
3007 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3008 "'%s' != '%s'\n", serial[0], serial[1]);
3009 return 0;
3012 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3013 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3014 "%llu != %llu\n",
3015 (unsigned long long)dev->n_sectors,
3016 (unsigned long long)new_n_sectors);
3017 return 0;
3020 return 1;
3024 * ata_dev_revalidate - Revalidate ATA device
3025 * @dev: device to revalidate
3026 * @post_reset: is this revalidation after reset?
3028 * Re-read IDENTIFY page and make sure @dev is still attached to
3029 * the port.
3031 * LOCKING:
3032 * Kernel thread context (may sleep)
3034 * RETURNS:
3035 * 0 on success, negative errno otherwise
3037 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
3039 unsigned int class = dev->class;
3040 u16 *id = (void *)dev->ap->sector_buf;
3041 int rc;
3043 if (!ata_dev_enabled(dev)) {
3044 rc = -ENODEV;
3045 goto fail;
3048 /* read ID data */
3049 rc = ata_dev_read_id(dev, &class, post_reset, id);
3050 if (rc)
3051 goto fail;
3053 /* is the device still there? */
3054 if (!ata_dev_same_device(dev, class, id)) {
3055 rc = -ENODEV;
3056 goto fail;
3059 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3061 /* configure device according to the new ID */
3062 rc = ata_dev_configure(dev);
3063 if (rc == 0)
3064 return 0;
3066 fail:
3067 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3068 return rc;
3071 struct ata_blacklist_entry {
3072 const char *model_num;
3073 const char *model_rev;
3074 unsigned long horkage;
3077 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3078 /* Devices with DMA related problems under Linux */
3079 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3080 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3081 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3082 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3083 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3084 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3085 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3086 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3087 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3088 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3089 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3090 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3091 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3092 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3093 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3094 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3095 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3096 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3097 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3098 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3099 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3100 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3101 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3102 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3103 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3104 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3105 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3106 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3107 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3108 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3110 /* Devices we expect to fail diagnostics */
3112 /* Devices where NCQ should be avoided */
3113 /* NCQ is slow */
3114 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3116 /* Devices with NCQ limits */
3118 /* End Marker */
3122 static int ata_strim(char *s, size_t len)
3124 len = strnlen(s, len);
3126 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3127 while ((len > 0) && (s[len - 1] == ' ')) {
3128 len--;
3129 s[len] = 0;
3131 return len;
3134 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3136 unsigned char model_num[40];
3137 unsigned char model_rev[16];
3138 unsigned int nlen, rlen;
3139 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3141 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3142 sizeof(model_num));
3143 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3144 sizeof(model_rev));
3145 nlen = ata_strim(model_num, sizeof(model_num));
3146 rlen = ata_strim(model_rev, sizeof(model_rev));
3148 while (ad->model_num) {
3149 if (!strncmp(ad->model_num, model_num, nlen)) {
3150 if (ad->model_rev == NULL)
3151 return ad->horkage;
3152 if (!strncmp(ad->model_rev, model_rev, rlen))
3153 return ad->horkage;
3155 ad++;
3157 return 0;
3160 static int ata_dma_blacklisted(const struct ata_device *dev)
3162 /* We don't support polling DMA.
3163 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3164 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3166 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3167 (dev->flags & ATA_DFLAG_CDB_INTR))
3168 return 1;
3169 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3173 * ata_dev_xfermask - Compute supported xfermask of the given device
3174 * @dev: Device to compute xfermask for
3176 * Compute supported xfermask of @dev and store it in
3177 * dev->*_mask. This function is responsible for applying all
3178 * known limits including host controller limits, device
3179 * blacklist, etc...
3181 * LOCKING:
3182 * None.
3184 static void ata_dev_xfermask(struct ata_device *dev)
3186 struct ata_port *ap = dev->ap;
3187 struct ata_host *host = ap->host;
3188 unsigned long xfer_mask;
3190 /* controller modes available */
3191 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3192 ap->mwdma_mask, ap->udma_mask);
3194 /* Apply cable rule here. Don't apply it early because when
3195 * we handle hot plug the cable type can itself change.
3197 if (ap->cbl == ATA_CBL_PATA40)
3198 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3199 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3200 * host side are checked drive side as well. Cases where we know a
3201 * 40wire cable is used safely for 80 are not checked here.
3203 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3204 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3207 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3208 dev->mwdma_mask, dev->udma_mask);
3209 xfer_mask &= ata_id_xfermask(dev->id);
3212 * CFA Advanced TrueIDE timings are not allowed on a shared
3213 * cable
3215 if (ata_dev_pair(dev)) {
3216 /* No PIO5 or PIO6 */
3217 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3218 /* No MWDMA3 or MWDMA 4 */
3219 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3222 if (ata_dma_blacklisted(dev)) {
3223 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3224 ata_dev_printk(dev, KERN_WARNING,
3225 "device is on DMA blacklist, disabling DMA\n");
3228 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3229 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3230 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3231 "other device, disabling DMA\n");
3234 if (ap->ops->mode_filter)
3235 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3237 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3238 &dev->mwdma_mask, &dev->udma_mask);
3242 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3243 * @dev: Device to which command will be sent
3245 * Issue SET FEATURES - XFER MODE command to device @dev
3246 * on port @ap.
3248 * LOCKING:
3249 * PCI/etc. bus probe sem.
3251 * RETURNS:
3252 * 0 on success, AC_ERR_* mask otherwise.
3255 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3257 struct ata_taskfile tf;
3258 unsigned int err_mask;
3260 /* set up set-features taskfile */
3261 DPRINTK("set features - xfer mode\n");
3263 ata_tf_init(dev, &tf);
3264 tf.command = ATA_CMD_SET_FEATURES;
3265 tf.feature = SETFEATURES_XFER;
3266 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3267 tf.protocol = ATA_PROT_NODATA;
3268 tf.nsect = dev->xfer_mode;
3270 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3272 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3273 return err_mask;
3277 * ata_dev_init_params - Issue INIT DEV PARAMS command
3278 * @dev: Device to which command will be sent
3279 * @heads: Number of heads (taskfile parameter)
3280 * @sectors: Number of sectors (taskfile parameter)
3282 * LOCKING:
3283 * Kernel thread context (may sleep)
3285 * RETURNS:
3286 * 0 on success, AC_ERR_* mask otherwise.
3288 static unsigned int ata_dev_init_params(struct ata_device *dev,
3289 u16 heads, u16 sectors)
3291 struct ata_taskfile tf;
3292 unsigned int err_mask;
3294 /* Number of sectors per track 1-255. Number of heads 1-16 */
3295 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3296 return AC_ERR_INVALID;
3298 /* set up init dev params taskfile */
3299 DPRINTK("init dev params \n");
3301 ata_tf_init(dev, &tf);
3302 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3303 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3304 tf.protocol = ATA_PROT_NODATA;
3305 tf.nsect = sectors;
3306 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3308 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3310 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3311 return err_mask;
3315 * ata_sg_clean - Unmap DMA memory associated with command
3316 * @qc: Command containing DMA memory to be released
3318 * Unmap all mapped DMA memory associated with this command.
3320 * LOCKING:
3321 * spin_lock_irqsave(host lock)
3324 static void ata_sg_clean(struct ata_queued_cmd *qc)
3326 struct ata_port *ap = qc->ap;
3327 struct scatterlist *sg = qc->__sg;
3328 int dir = qc->dma_dir;
3329 void *pad_buf = NULL;
3331 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3332 WARN_ON(sg == NULL);
3334 if (qc->flags & ATA_QCFLAG_SINGLE)
3335 WARN_ON(qc->n_elem > 1);
3337 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3339 /* if we padded the buffer out to 32-bit bound, and data
3340 * xfer direction is from-device, we must copy from the
3341 * pad buffer back into the supplied buffer
3343 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3344 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3346 if (qc->flags & ATA_QCFLAG_SG) {
3347 if (qc->n_elem)
3348 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3349 /* restore last sg */
3350 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3351 if (pad_buf) {
3352 struct scatterlist *psg = &qc->pad_sgent;
3353 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3354 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3355 kunmap_atomic(addr, KM_IRQ0);
3357 } else {
3358 if (qc->n_elem)
3359 dma_unmap_single(ap->dev,
3360 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3361 dir);
3362 /* restore sg */
3363 sg->length += qc->pad_len;
3364 if (pad_buf)
3365 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3366 pad_buf, qc->pad_len);
3369 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3370 qc->__sg = NULL;
3374 * ata_fill_sg - Fill PCI IDE PRD table
3375 * @qc: Metadata associated with taskfile to be transferred
3377 * Fill PCI IDE PRD (scatter-gather) table with segments
3378 * associated with the current disk command.
3380 * LOCKING:
3381 * spin_lock_irqsave(host lock)
3384 static void ata_fill_sg(struct ata_queued_cmd *qc)
3386 struct ata_port *ap = qc->ap;
3387 struct scatterlist *sg;
3388 unsigned int idx;
3390 WARN_ON(qc->__sg == NULL);
3391 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3393 idx = 0;
3394 ata_for_each_sg(sg, qc) {
3395 u32 addr, offset;
3396 u32 sg_len, len;
3398 /* determine if physical DMA addr spans 64K boundary.
3399 * Note h/w doesn't support 64-bit, so we unconditionally
3400 * truncate dma_addr_t to u32.
3402 addr = (u32) sg_dma_address(sg);
3403 sg_len = sg_dma_len(sg);
3405 while (sg_len) {
3406 offset = addr & 0xffff;
3407 len = sg_len;
3408 if ((offset + sg_len) > 0x10000)
3409 len = 0x10000 - offset;
3411 ap->prd[idx].addr = cpu_to_le32(addr);
3412 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3413 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3415 idx++;
3416 sg_len -= len;
3417 addr += len;
3421 if (idx)
3422 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3425 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3426 * @qc: Metadata associated with taskfile to check
3428 * Allow low-level driver to filter ATA PACKET commands, returning
3429 * a status indicating whether or not it is OK to use DMA for the
3430 * supplied PACKET command.
3432 * LOCKING:
3433 * spin_lock_irqsave(host lock)
3435 * RETURNS: 0 when ATAPI DMA can be used
3436 * nonzero otherwise
3438 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3440 struct ata_port *ap = qc->ap;
3441 int rc = 0; /* Assume ATAPI DMA is OK by default */
3443 if (ap->ops->check_atapi_dma)
3444 rc = ap->ops->check_atapi_dma(qc);
3446 return rc;
3449 * ata_qc_prep - Prepare taskfile for submission
3450 * @qc: Metadata associated with taskfile to be prepared
3452 * Prepare ATA taskfile for submission.
3454 * LOCKING:
3455 * spin_lock_irqsave(host lock)
3457 void ata_qc_prep(struct ata_queued_cmd *qc)
3459 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3460 return;
3462 ata_fill_sg(qc);
3465 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3468 * ata_sg_init_one - Associate command with memory buffer
3469 * @qc: Command to be associated
3470 * @buf: Memory buffer
3471 * @buflen: Length of memory buffer, in bytes.
3473 * Initialize the data-related elements of queued_cmd @qc
3474 * to point to a single memory buffer, @buf of byte length @buflen.
3476 * LOCKING:
3477 * spin_lock_irqsave(host lock)
3480 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3482 struct scatterlist *sg;
3484 qc->flags |= ATA_QCFLAG_SINGLE;
3486 memset(&qc->sgent, 0, sizeof(qc->sgent));
3487 qc->__sg = &qc->sgent;
3488 qc->n_elem = 1;
3489 qc->orig_n_elem = 1;
3490 qc->buf_virt = buf;
3491 qc->nbytes = buflen;
3493 sg = qc->__sg;
3494 sg_init_one(sg, buf, buflen);
3498 * ata_sg_init - Associate command with scatter-gather table.
3499 * @qc: Command to be associated
3500 * @sg: Scatter-gather table.
3501 * @n_elem: Number of elements in s/g table.
3503 * Initialize the data-related elements of queued_cmd @qc
3504 * to point to a scatter-gather table @sg, containing @n_elem
3505 * elements.
3507 * LOCKING:
3508 * spin_lock_irqsave(host lock)
3511 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3512 unsigned int n_elem)
3514 qc->flags |= ATA_QCFLAG_SG;
3515 qc->__sg = sg;
3516 qc->n_elem = n_elem;
3517 qc->orig_n_elem = n_elem;
3521 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3522 * @qc: Command with memory buffer to be mapped.
3524 * DMA-map the memory buffer associated with queued_cmd @qc.
3526 * LOCKING:
3527 * spin_lock_irqsave(host lock)
3529 * RETURNS:
3530 * Zero on success, negative on error.
3533 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3535 struct ata_port *ap = qc->ap;
3536 int dir = qc->dma_dir;
3537 struct scatterlist *sg = qc->__sg;
3538 dma_addr_t dma_address;
3539 int trim_sg = 0;
3541 /* we must lengthen transfers to end on a 32-bit boundary */
3542 qc->pad_len = sg->length & 3;
3543 if (qc->pad_len) {
3544 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3545 struct scatterlist *psg = &qc->pad_sgent;
3547 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3549 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3551 if (qc->tf.flags & ATA_TFLAG_WRITE)
3552 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3553 qc->pad_len);
3555 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3556 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3557 /* trim sg */
3558 sg->length -= qc->pad_len;
3559 if (sg->length == 0)
3560 trim_sg = 1;
3562 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3563 sg->length, qc->pad_len);
3566 if (trim_sg) {
3567 qc->n_elem--;
3568 goto skip_map;
3571 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3572 sg->length, dir);
3573 if (dma_mapping_error(dma_address)) {
3574 /* restore sg */
3575 sg->length += qc->pad_len;
3576 return -1;
3579 sg_dma_address(sg) = dma_address;
3580 sg_dma_len(sg) = sg->length;
3582 skip_map:
3583 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3584 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3586 return 0;
3590 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3591 * @qc: Command with scatter-gather table to be mapped.
3593 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3595 * LOCKING:
3596 * spin_lock_irqsave(host lock)
3598 * RETURNS:
3599 * Zero on success, negative on error.
3603 static int ata_sg_setup(struct ata_queued_cmd *qc)
3605 struct ata_port *ap = qc->ap;
3606 struct scatterlist *sg = qc->__sg;
3607 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3608 int n_elem, pre_n_elem, dir, trim_sg = 0;
3610 VPRINTK("ENTER, ata%u\n", ap->id);
3611 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3613 /* we must lengthen transfers to end on a 32-bit boundary */
3614 qc->pad_len = lsg->length & 3;
3615 if (qc->pad_len) {
3616 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3617 struct scatterlist *psg = &qc->pad_sgent;
3618 unsigned int offset;
3620 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3622 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3625 * psg->page/offset are used to copy to-be-written
3626 * data in this function or read data in ata_sg_clean.
3628 offset = lsg->offset + lsg->length - qc->pad_len;
3629 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3630 psg->offset = offset_in_page(offset);
3632 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3633 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3634 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3635 kunmap_atomic(addr, KM_IRQ0);
3638 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3639 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3640 /* trim last sg */
3641 lsg->length -= qc->pad_len;
3642 if (lsg->length == 0)
3643 trim_sg = 1;
3645 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3646 qc->n_elem - 1, lsg->length, qc->pad_len);
3649 pre_n_elem = qc->n_elem;
3650 if (trim_sg && pre_n_elem)
3651 pre_n_elem--;
3653 if (!pre_n_elem) {
3654 n_elem = 0;
3655 goto skip_map;
3658 dir = qc->dma_dir;
3659 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3660 if (n_elem < 1) {
3661 /* restore last sg */
3662 lsg->length += qc->pad_len;
3663 return -1;
3666 DPRINTK("%d sg elements mapped\n", n_elem);
3668 skip_map:
3669 qc->n_elem = n_elem;
3671 return 0;
3675 * swap_buf_le16 - swap halves of 16-bit words in place
3676 * @buf: Buffer to swap
3677 * @buf_words: Number of 16-bit words in buffer.
3679 * Swap halves of 16-bit words if needed to convert from
3680 * little-endian byte order to native cpu byte order, or
3681 * vice-versa.
3683 * LOCKING:
3684 * Inherited from caller.
3686 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3688 #ifdef __BIG_ENDIAN
3689 unsigned int i;
3691 for (i = 0; i < buf_words; i++)
3692 buf[i] = le16_to_cpu(buf[i]);
3693 #endif /* __BIG_ENDIAN */
3697 * ata_mmio_data_xfer - Transfer data by MMIO
3698 * @adev: device for this I/O
3699 * @buf: data buffer
3700 * @buflen: buffer length
3701 * @write_data: read/write
3703 * Transfer data from/to the device data register by MMIO.
3705 * LOCKING:
3706 * Inherited from caller.
3709 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3710 unsigned int buflen, int write_data)
3712 struct ata_port *ap = adev->ap;
3713 unsigned int i;
3714 unsigned int words = buflen >> 1;
3715 u16 *buf16 = (u16 *) buf;
3716 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3718 /* Transfer multiple of 2 bytes */
3719 if (write_data) {
3720 for (i = 0; i < words; i++)
3721 writew(le16_to_cpu(buf16[i]), mmio);
3722 } else {
3723 for (i = 0; i < words; i++)
3724 buf16[i] = cpu_to_le16(readw(mmio));
3727 /* Transfer trailing 1 byte, if any. */
3728 if (unlikely(buflen & 0x01)) {
3729 u16 align_buf[1] = { 0 };
3730 unsigned char *trailing_buf = buf + buflen - 1;
3732 if (write_data) {
3733 memcpy(align_buf, trailing_buf, 1);
3734 writew(le16_to_cpu(align_buf[0]), mmio);
3735 } else {
3736 align_buf[0] = cpu_to_le16(readw(mmio));
3737 memcpy(trailing_buf, align_buf, 1);
3743 * ata_pio_data_xfer - Transfer data by PIO
3744 * @adev: device to target
3745 * @buf: data buffer
3746 * @buflen: buffer length
3747 * @write_data: read/write
3749 * Transfer data from/to the device data register by PIO.
3751 * LOCKING:
3752 * Inherited from caller.
3755 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3756 unsigned int buflen, int write_data)
3758 struct ata_port *ap = adev->ap;
3759 unsigned int words = buflen >> 1;
3761 /* Transfer multiple of 2 bytes */
3762 if (write_data)
3763 outsw(ap->ioaddr.data_addr, buf, words);
3764 else
3765 insw(ap->ioaddr.data_addr, buf, words);
3767 /* Transfer trailing 1 byte, if any. */
3768 if (unlikely(buflen & 0x01)) {
3769 u16 align_buf[1] = { 0 };
3770 unsigned char *trailing_buf = buf + buflen - 1;
3772 if (write_data) {
3773 memcpy(align_buf, trailing_buf, 1);
3774 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3775 } else {
3776 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3777 memcpy(trailing_buf, align_buf, 1);
3783 * ata_pio_data_xfer_noirq - Transfer data by PIO
3784 * @adev: device to target
3785 * @buf: data buffer
3786 * @buflen: buffer length
3787 * @write_data: read/write
3789 * Transfer data from/to the device data register by PIO. Do the
3790 * transfer with interrupts disabled.
3792 * LOCKING:
3793 * Inherited from caller.
3796 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3797 unsigned int buflen, int write_data)
3799 unsigned long flags;
3800 local_irq_save(flags);
3801 ata_pio_data_xfer(adev, buf, buflen, write_data);
3802 local_irq_restore(flags);
3807 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3808 * @qc: Command on going
3810 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3812 * LOCKING:
3813 * Inherited from caller.
3816 static void ata_pio_sector(struct ata_queued_cmd *qc)
3818 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3819 struct scatterlist *sg = qc->__sg;
3820 struct ata_port *ap = qc->ap;
3821 struct page *page;
3822 unsigned int offset;
3823 unsigned char *buf;
3825 if (qc->cursect == (qc->nsect - 1))
3826 ap->hsm_task_state = HSM_ST_LAST;
3828 page = sg[qc->cursg].page;
3829 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3831 /* get the current page and offset */
3832 page = nth_page(page, (offset >> PAGE_SHIFT));
3833 offset %= PAGE_SIZE;
3835 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3837 if (PageHighMem(page)) {
3838 unsigned long flags;
3840 /* FIXME: use a bounce buffer */
3841 local_irq_save(flags);
3842 buf = kmap_atomic(page, KM_IRQ0);
3844 /* do the actual data transfer */
3845 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3847 kunmap_atomic(buf, KM_IRQ0);
3848 local_irq_restore(flags);
3849 } else {
3850 buf = page_address(page);
3851 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3854 qc->cursect++;
3855 qc->cursg_ofs++;
3857 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3858 qc->cursg++;
3859 qc->cursg_ofs = 0;
3864 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3865 * @qc: Command on going
3867 * Transfer one or many ATA_SECT_SIZE of data from/to the
3868 * ATA device for the DRQ request.
3870 * LOCKING:
3871 * Inherited from caller.
3874 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3876 if (is_multi_taskfile(&qc->tf)) {
3877 /* READ/WRITE MULTIPLE */
3878 unsigned int nsect;
3880 WARN_ON(qc->dev->multi_count == 0);
3882 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3883 while (nsect--)
3884 ata_pio_sector(qc);
3885 } else
3886 ata_pio_sector(qc);
3890 * atapi_send_cdb - Write CDB bytes to hardware
3891 * @ap: Port to which ATAPI device is attached.
3892 * @qc: Taskfile currently active
3894 * When device has indicated its readiness to accept
3895 * a CDB, this function is called. Send the CDB.
3897 * LOCKING:
3898 * caller.
3901 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3903 /* send SCSI cdb */
3904 DPRINTK("send cdb\n");
3905 WARN_ON(qc->dev->cdb_len < 12);
3907 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3908 ata_altstatus(ap); /* flush */
3910 switch (qc->tf.protocol) {
3911 case ATA_PROT_ATAPI:
3912 ap->hsm_task_state = HSM_ST;
3913 break;
3914 case ATA_PROT_ATAPI_NODATA:
3915 ap->hsm_task_state = HSM_ST_LAST;
3916 break;
3917 case ATA_PROT_ATAPI_DMA:
3918 ap->hsm_task_state = HSM_ST_LAST;
3919 /* initiate bmdma */
3920 ap->ops->bmdma_start(qc);
3921 break;
3926 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3927 * @qc: Command on going
3928 * @bytes: number of bytes
3930 * Transfer Transfer data from/to the ATAPI device.
3932 * LOCKING:
3933 * Inherited from caller.
3937 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3939 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3940 struct scatterlist *sg = qc->__sg;
3941 struct ata_port *ap = qc->ap;
3942 struct page *page;
3943 unsigned char *buf;
3944 unsigned int offset, count;
3946 if (qc->curbytes + bytes >= qc->nbytes)
3947 ap->hsm_task_state = HSM_ST_LAST;
3949 next_sg:
3950 if (unlikely(qc->cursg >= qc->n_elem)) {
3952 * The end of qc->sg is reached and the device expects
3953 * more data to transfer. In order not to overrun qc->sg
3954 * and fulfill length specified in the byte count register,
3955 * - for read case, discard trailing data from the device
3956 * - for write case, padding zero data to the device
3958 u16 pad_buf[1] = { 0 };
3959 unsigned int words = bytes >> 1;
3960 unsigned int i;
3962 if (words) /* warning if bytes > 1 */
3963 ata_dev_printk(qc->dev, KERN_WARNING,
3964 "%u bytes trailing data\n", bytes);
3966 for (i = 0; i < words; i++)
3967 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3969 ap->hsm_task_state = HSM_ST_LAST;
3970 return;
3973 sg = &qc->__sg[qc->cursg];
3975 page = sg->page;
3976 offset = sg->offset + qc->cursg_ofs;
3978 /* get the current page and offset */
3979 page = nth_page(page, (offset >> PAGE_SHIFT));
3980 offset %= PAGE_SIZE;
3982 /* don't overrun current sg */
3983 count = min(sg->length - qc->cursg_ofs, bytes);
3985 /* don't cross page boundaries */
3986 count = min(count, (unsigned int)PAGE_SIZE - offset);
3988 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3990 if (PageHighMem(page)) {
3991 unsigned long flags;
3993 /* FIXME: use bounce buffer */
3994 local_irq_save(flags);
3995 buf = kmap_atomic(page, KM_IRQ0);
3997 /* do the actual data transfer */
3998 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4000 kunmap_atomic(buf, KM_IRQ0);
4001 local_irq_restore(flags);
4002 } else {
4003 buf = page_address(page);
4004 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4007 bytes -= count;
4008 qc->curbytes += count;
4009 qc->cursg_ofs += count;
4011 if (qc->cursg_ofs == sg->length) {
4012 qc->cursg++;
4013 qc->cursg_ofs = 0;
4016 if (bytes)
4017 goto next_sg;
4021 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4022 * @qc: Command on going
4024 * Transfer Transfer data from/to the ATAPI device.
4026 * LOCKING:
4027 * Inherited from caller.
4030 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4032 struct ata_port *ap = qc->ap;
4033 struct ata_device *dev = qc->dev;
4034 unsigned int ireason, bc_lo, bc_hi, bytes;
4035 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4037 /* Abuse qc->result_tf for temp storage of intermediate TF
4038 * here to save some kernel stack usage.
4039 * For normal completion, qc->result_tf is not relevant. For
4040 * error, qc->result_tf is later overwritten by ata_qc_complete().
4041 * So, the correctness of qc->result_tf is not affected.
4043 ap->ops->tf_read(ap, &qc->result_tf);
4044 ireason = qc->result_tf.nsect;
4045 bc_lo = qc->result_tf.lbam;
4046 bc_hi = qc->result_tf.lbah;
4047 bytes = (bc_hi << 8) | bc_lo;
4049 /* shall be cleared to zero, indicating xfer of data */
4050 if (ireason & (1 << 0))
4051 goto err_out;
4053 /* make sure transfer direction matches expected */
4054 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4055 if (do_write != i_write)
4056 goto err_out;
4058 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4060 __atapi_pio_bytes(qc, bytes);
4062 return;
4064 err_out:
4065 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4066 qc->err_mask |= AC_ERR_HSM;
4067 ap->hsm_task_state = HSM_ST_ERR;
4071 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4072 * @ap: the target ata_port
4073 * @qc: qc on going
4075 * RETURNS:
4076 * 1 if ok in workqueue, 0 otherwise.
4079 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4081 if (qc->tf.flags & ATA_TFLAG_POLLING)
4082 return 1;
4084 if (ap->hsm_task_state == HSM_ST_FIRST) {
4085 if (qc->tf.protocol == ATA_PROT_PIO &&
4086 (qc->tf.flags & ATA_TFLAG_WRITE))
4087 return 1;
4089 if (is_atapi_taskfile(&qc->tf) &&
4090 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4091 return 1;
4094 return 0;
4098 * ata_hsm_qc_complete - finish a qc running on standard HSM
4099 * @qc: Command to complete
4100 * @in_wq: 1 if called from workqueue, 0 otherwise
4102 * Finish @qc which is running on standard HSM.
4104 * LOCKING:
4105 * If @in_wq is zero, spin_lock_irqsave(host lock).
4106 * Otherwise, none on entry and grabs host lock.
4108 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4110 struct ata_port *ap = qc->ap;
4111 unsigned long flags;
4113 if (ap->ops->error_handler) {
4114 if (in_wq) {
4115 spin_lock_irqsave(ap->lock, flags);
4117 /* EH might have kicked in while host lock is
4118 * released.
4120 qc = ata_qc_from_tag(ap, qc->tag);
4121 if (qc) {
4122 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4123 ata_irq_on(ap);
4124 ata_qc_complete(qc);
4125 } else
4126 ata_port_freeze(ap);
4129 spin_unlock_irqrestore(ap->lock, flags);
4130 } else {
4131 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4132 ata_qc_complete(qc);
4133 else
4134 ata_port_freeze(ap);
4136 } else {
4137 if (in_wq) {
4138 spin_lock_irqsave(ap->lock, flags);
4139 ata_irq_on(ap);
4140 ata_qc_complete(qc);
4141 spin_unlock_irqrestore(ap->lock, flags);
4142 } else
4143 ata_qc_complete(qc);
4146 ata_altstatus(ap); /* flush */
4150 * ata_hsm_move - move the HSM to the next state.
4151 * @ap: the target ata_port
4152 * @qc: qc on going
4153 * @status: current device status
4154 * @in_wq: 1 if called from workqueue, 0 otherwise
4156 * RETURNS:
4157 * 1 when poll next status needed, 0 otherwise.
4159 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4160 u8 status, int in_wq)
4162 unsigned long flags = 0;
4163 int poll_next;
4165 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4167 /* Make sure ata_qc_issue_prot() does not throw things
4168 * like DMA polling into the workqueue. Notice that
4169 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4171 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4173 fsm_start:
4174 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4175 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4177 switch (ap->hsm_task_state) {
4178 case HSM_ST_FIRST:
4179 /* Send first data block or PACKET CDB */
4181 /* If polling, we will stay in the work queue after
4182 * sending the data. Otherwise, interrupt handler
4183 * takes over after sending the data.
4185 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4187 /* check device status */
4188 if (unlikely((status & ATA_DRQ) == 0)) {
4189 /* handle BSY=0, DRQ=0 as error */
4190 if (likely(status & (ATA_ERR | ATA_DF)))
4191 /* device stops HSM for abort/error */
4192 qc->err_mask |= AC_ERR_DEV;
4193 else
4194 /* HSM violation. Let EH handle this */
4195 qc->err_mask |= AC_ERR_HSM;
4197 ap->hsm_task_state = HSM_ST_ERR;
4198 goto fsm_start;
4201 /* Device should not ask for data transfer (DRQ=1)
4202 * when it finds something wrong.
4203 * We ignore DRQ here and stop the HSM by
4204 * changing hsm_task_state to HSM_ST_ERR and
4205 * let the EH abort the command or reset the device.
4207 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4208 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4209 ap->id, status);
4210 qc->err_mask |= AC_ERR_HSM;
4211 ap->hsm_task_state = HSM_ST_ERR;
4212 goto fsm_start;
4215 /* Send the CDB (atapi) or the first data block (ata pio out).
4216 * During the state transition, interrupt handler shouldn't
4217 * be invoked before the data transfer is complete and
4218 * hsm_task_state is changed. Hence, the following locking.
4220 if (in_wq)
4221 spin_lock_irqsave(ap->lock, flags);
4223 if (qc->tf.protocol == ATA_PROT_PIO) {
4224 /* PIO data out protocol.
4225 * send first data block.
4228 /* ata_pio_sectors() might change the state
4229 * to HSM_ST_LAST. so, the state is changed here
4230 * before ata_pio_sectors().
4232 ap->hsm_task_state = HSM_ST;
4233 ata_pio_sectors(qc);
4234 ata_altstatus(ap); /* flush */
4235 } else
4236 /* send CDB */
4237 atapi_send_cdb(ap, qc);
4239 if (in_wq)
4240 spin_unlock_irqrestore(ap->lock, flags);
4242 /* if polling, ata_pio_task() handles the rest.
4243 * otherwise, interrupt handler takes over from here.
4245 break;
4247 case HSM_ST:
4248 /* complete command or read/write the data register */
4249 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4250 /* ATAPI PIO protocol */
4251 if ((status & ATA_DRQ) == 0) {
4252 /* No more data to transfer or device error.
4253 * Device error will be tagged in HSM_ST_LAST.
4255 ap->hsm_task_state = HSM_ST_LAST;
4256 goto fsm_start;
4259 /* Device should not ask for data transfer (DRQ=1)
4260 * when it finds something wrong.
4261 * We ignore DRQ here and stop the HSM by
4262 * changing hsm_task_state to HSM_ST_ERR and
4263 * let the EH abort the command or reset the device.
4265 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4266 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4267 ap->id, status);
4268 qc->err_mask |= AC_ERR_HSM;
4269 ap->hsm_task_state = HSM_ST_ERR;
4270 goto fsm_start;
4273 atapi_pio_bytes(qc);
4275 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4276 /* bad ireason reported by device */
4277 goto fsm_start;
4279 } else {
4280 /* ATA PIO protocol */
4281 if (unlikely((status & ATA_DRQ) == 0)) {
4282 /* handle BSY=0, DRQ=0 as error */
4283 if (likely(status & (ATA_ERR | ATA_DF)))
4284 /* device stops HSM for abort/error */
4285 qc->err_mask |= AC_ERR_DEV;
4286 else
4287 /* HSM violation. Let EH handle this */
4288 qc->err_mask |= AC_ERR_HSM;
4290 ap->hsm_task_state = HSM_ST_ERR;
4291 goto fsm_start;
4294 /* For PIO reads, some devices may ask for
4295 * data transfer (DRQ=1) alone with ERR=1.
4296 * We respect DRQ here and transfer one
4297 * block of junk data before changing the
4298 * hsm_task_state to HSM_ST_ERR.
4300 * For PIO writes, ERR=1 DRQ=1 doesn't make
4301 * sense since the data block has been
4302 * transferred to the device.
4304 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4305 /* data might be corrputed */
4306 qc->err_mask |= AC_ERR_DEV;
4308 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4309 ata_pio_sectors(qc);
4310 ata_altstatus(ap);
4311 status = ata_wait_idle(ap);
4314 if (status & (ATA_BUSY | ATA_DRQ))
4315 qc->err_mask |= AC_ERR_HSM;
4317 /* ata_pio_sectors() might change the
4318 * state to HSM_ST_LAST. so, the state
4319 * is changed after ata_pio_sectors().
4321 ap->hsm_task_state = HSM_ST_ERR;
4322 goto fsm_start;
4325 ata_pio_sectors(qc);
4327 if (ap->hsm_task_state == HSM_ST_LAST &&
4328 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4329 /* all data read */
4330 ata_altstatus(ap);
4331 status = ata_wait_idle(ap);
4332 goto fsm_start;
4336 ata_altstatus(ap); /* flush */
4337 poll_next = 1;
4338 break;
4340 case HSM_ST_LAST:
4341 if (unlikely(!ata_ok(status))) {
4342 qc->err_mask |= __ac_err_mask(status);
4343 ap->hsm_task_state = HSM_ST_ERR;
4344 goto fsm_start;
4347 /* no more data to transfer */
4348 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4349 ap->id, qc->dev->devno, status);
4351 WARN_ON(qc->err_mask);
4353 ap->hsm_task_state = HSM_ST_IDLE;
4355 /* complete taskfile transaction */
4356 ata_hsm_qc_complete(qc, in_wq);
4358 poll_next = 0;
4359 break;
4361 case HSM_ST_ERR:
4362 /* make sure qc->err_mask is available to
4363 * know what's wrong and recover
4365 WARN_ON(qc->err_mask == 0);
4367 ap->hsm_task_state = HSM_ST_IDLE;
4369 /* complete taskfile transaction */
4370 ata_hsm_qc_complete(qc, in_wq);
4372 poll_next = 0;
4373 break;
4374 default:
4375 poll_next = 0;
4376 BUG();
4379 return poll_next;
4382 static void ata_pio_task(void *_data)
4384 struct ata_queued_cmd *qc = _data;
4385 struct ata_port *ap = qc->ap;
4386 u8 status;
4387 int poll_next;
4389 fsm_start:
4390 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4393 * This is purely heuristic. This is a fast path.
4394 * Sometimes when we enter, BSY will be cleared in
4395 * a chk-status or two. If not, the drive is probably seeking
4396 * or something. Snooze for a couple msecs, then
4397 * chk-status again. If still busy, queue delayed work.
4399 status = ata_busy_wait(ap, ATA_BUSY, 5);
4400 if (status & ATA_BUSY) {
4401 msleep(2);
4402 status = ata_busy_wait(ap, ATA_BUSY, 10);
4403 if (status & ATA_BUSY) {
4404 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4405 return;
4409 /* move the HSM */
4410 poll_next = ata_hsm_move(ap, qc, status, 1);
4412 /* another command or interrupt handler
4413 * may be running at this point.
4415 if (poll_next)
4416 goto fsm_start;
4420 * ata_qc_new - Request an available ATA command, for queueing
4421 * @ap: Port associated with device @dev
4422 * @dev: Device from whom we request an available command structure
4424 * LOCKING:
4425 * None.
4428 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4430 struct ata_queued_cmd *qc = NULL;
4431 unsigned int i;
4433 /* no command while frozen */
4434 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4435 return NULL;
4437 /* the last tag is reserved for internal command. */
4438 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4439 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4440 qc = __ata_qc_from_tag(ap, i);
4441 break;
4444 if (qc)
4445 qc->tag = i;
4447 return qc;
4451 * ata_qc_new_init - Request an available ATA command, and initialize it
4452 * @dev: Device from whom we request an available command structure
4454 * LOCKING:
4455 * None.
4458 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4460 struct ata_port *ap = dev->ap;
4461 struct ata_queued_cmd *qc;
4463 qc = ata_qc_new(ap);
4464 if (qc) {
4465 qc->scsicmd = NULL;
4466 qc->ap = ap;
4467 qc->dev = dev;
4469 ata_qc_reinit(qc);
4472 return qc;
4476 * ata_qc_free - free unused ata_queued_cmd
4477 * @qc: Command to complete
4479 * Designed to free unused ata_queued_cmd object
4480 * in case something prevents using it.
4482 * LOCKING:
4483 * spin_lock_irqsave(host lock)
4485 void ata_qc_free(struct ata_queued_cmd *qc)
4487 struct ata_port *ap = qc->ap;
4488 unsigned int tag;
4490 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4492 qc->flags = 0;
4493 tag = qc->tag;
4494 if (likely(ata_tag_valid(tag))) {
4495 qc->tag = ATA_TAG_POISON;
4496 clear_bit(tag, &ap->qc_allocated);
4500 void __ata_qc_complete(struct ata_queued_cmd *qc)
4502 struct ata_port *ap = qc->ap;
4504 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4505 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4507 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4508 ata_sg_clean(qc);
4510 /* command should be marked inactive atomically with qc completion */
4511 if (qc->tf.protocol == ATA_PROT_NCQ)
4512 ap->sactive &= ~(1 << qc->tag);
4513 else
4514 ap->active_tag = ATA_TAG_POISON;
4516 /* atapi: mark qc as inactive to prevent the interrupt handler
4517 * from completing the command twice later, before the error handler
4518 * is called. (when rc != 0 and atapi request sense is needed)
4520 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4521 ap->qc_active &= ~(1 << qc->tag);
4523 /* call completion callback */
4524 qc->complete_fn(qc);
4528 * ata_qc_complete - Complete an active ATA command
4529 * @qc: Command to complete
4530 * @err_mask: ATA Status register contents
4532 * Indicate to the mid and upper layers that an ATA
4533 * command has completed, with either an ok or not-ok status.
4535 * LOCKING:
4536 * spin_lock_irqsave(host lock)
4538 void ata_qc_complete(struct ata_queued_cmd *qc)
4540 struct ata_port *ap = qc->ap;
4542 /* XXX: New EH and old EH use different mechanisms to
4543 * synchronize EH with regular execution path.
4545 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4546 * Normal execution path is responsible for not accessing a
4547 * failed qc. libata core enforces the rule by returning NULL
4548 * from ata_qc_from_tag() for failed qcs.
4550 * Old EH depends on ata_qc_complete() nullifying completion
4551 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4552 * not synchronize with interrupt handler. Only PIO task is
4553 * taken care of.
4555 if (ap->ops->error_handler) {
4556 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4558 if (unlikely(qc->err_mask))
4559 qc->flags |= ATA_QCFLAG_FAILED;
4561 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4562 if (!ata_tag_internal(qc->tag)) {
4563 /* always fill result TF for failed qc */
4564 ap->ops->tf_read(ap, &qc->result_tf);
4565 ata_qc_schedule_eh(qc);
4566 return;
4570 /* read result TF if requested */
4571 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4572 ap->ops->tf_read(ap, &qc->result_tf);
4574 __ata_qc_complete(qc);
4575 } else {
4576 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4577 return;
4579 /* read result TF if failed or requested */
4580 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4581 ap->ops->tf_read(ap, &qc->result_tf);
4583 __ata_qc_complete(qc);
4588 * ata_qc_complete_multiple - Complete multiple qcs successfully
4589 * @ap: port in question
4590 * @qc_active: new qc_active mask
4591 * @finish_qc: LLDD callback invoked before completing a qc
4593 * Complete in-flight commands. This functions is meant to be
4594 * called from low-level driver's interrupt routine to complete
4595 * requests normally. ap->qc_active and @qc_active is compared
4596 * and commands are completed accordingly.
4598 * LOCKING:
4599 * spin_lock_irqsave(host lock)
4601 * RETURNS:
4602 * Number of completed commands on success, -errno otherwise.
4604 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4605 void (*finish_qc)(struct ata_queued_cmd *))
4607 int nr_done = 0;
4608 u32 done_mask;
4609 int i;
4611 done_mask = ap->qc_active ^ qc_active;
4613 if (unlikely(done_mask & qc_active)) {
4614 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4615 "(%08x->%08x)\n", ap->qc_active, qc_active);
4616 return -EINVAL;
4619 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4620 struct ata_queued_cmd *qc;
4622 if (!(done_mask & (1 << i)))
4623 continue;
4625 if ((qc = ata_qc_from_tag(ap, i))) {
4626 if (finish_qc)
4627 finish_qc(qc);
4628 ata_qc_complete(qc);
4629 nr_done++;
4633 return nr_done;
4636 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4638 struct ata_port *ap = qc->ap;
4640 switch (qc->tf.protocol) {
4641 case ATA_PROT_NCQ:
4642 case ATA_PROT_DMA:
4643 case ATA_PROT_ATAPI_DMA:
4644 return 1;
4646 case ATA_PROT_ATAPI:
4647 case ATA_PROT_PIO:
4648 if (ap->flags & ATA_FLAG_PIO_DMA)
4649 return 1;
4651 /* fall through */
4653 default:
4654 return 0;
4657 /* never reached */
4661 * ata_qc_issue - issue taskfile to device
4662 * @qc: command to issue to device
4664 * Prepare an ATA command to submission to device.
4665 * This includes mapping the data into a DMA-able
4666 * area, filling in the S/G table, and finally
4667 * writing the taskfile to hardware, starting the command.
4669 * LOCKING:
4670 * spin_lock_irqsave(host lock)
4672 void ata_qc_issue(struct ata_queued_cmd *qc)
4674 struct ata_port *ap = qc->ap;
4676 /* Make sure only one non-NCQ command is outstanding. The
4677 * check is skipped for old EH because it reuses active qc to
4678 * request ATAPI sense.
4680 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4682 if (qc->tf.protocol == ATA_PROT_NCQ) {
4683 WARN_ON(ap->sactive & (1 << qc->tag));
4684 ap->sactive |= 1 << qc->tag;
4685 } else {
4686 WARN_ON(ap->sactive);
4687 ap->active_tag = qc->tag;
4690 qc->flags |= ATA_QCFLAG_ACTIVE;
4691 ap->qc_active |= 1 << qc->tag;
4693 if (ata_should_dma_map(qc)) {
4694 if (qc->flags & ATA_QCFLAG_SG) {
4695 if (ata_sg_setup(qc))
4696 goto sg_err;
4697 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4698 if (ata_sg_setup_one(qc))
4699 goto sg_err;
4701 } else {
4702 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4705 ap->ops->qc_prep(qc);
4707 qc->err_mask |= ap->ops->qc_issue(qc);
4708 if (unlikely(qc->err_mask))
4709 goto err;
4710 return;
4712 sg_err:
4713 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4714 qc->err_mask |= AC_ERR_SYSTEM;
4715 err:
4716 ata_qc_complete(qc);
4720 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4721 * @qc: command to issue to device
4723 * Using various libata functions and hooks, this function
4724 * starts an ATA command. ATA commands are grouped into
4725 * classes called "protocols", and issuing each type of protocol
4726 * is slightly different.
4728 * May be used as the qc_issue() entry in ata_port_operations.
4730 * LOCKING:
4731 * spin_lock_irqsave(host lock)
4733 * RETURNS:
4734 * Zero on success, AC_ERR_* mask on failure
4737 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4739 struct ata_port *ap = qc->ap;
4741 /* Use polling pio if the LLD doesn't handle
4742 * interrupt driven pio and atapi CDB interrupt.
4744 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4745 switch (qc->tf.protocol) {
4746 case ATA_PROT_PIO:
4747 case ATA_PROT_ATAPI:
4748 case ATA_PROT_ATAPI_NODATA:
4749 qc->tf.flags |= ATA_TFLAG_POLLING;
4750 break;
4751 case ATA_PROT_ATAPI_DMA:
4752 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4753 /* see ata_dma_blacklisted() */
4754 BUG();
4755 break;
4756 default:
4757 break;
4761 /* select the device */
4762 ata_dev_select(ap, qc->dev->devno, 1, 0);
4764 /* start the command */
4765 switch (qc->tf.protocol) {
4766 case ATA_PROT_NODATA:
4767 if (qc->tf.flags & ATA_TFLAG_POLLING)
4768 ata_qc_set_polling(qc);
4770 ata_tf_to_host(ap, &qc->tf);
4771 ap->hsm_task_state = HSM_ST_LAST;
4773 if (qc->tf.flags & ATA_TFLAG_POLLING)
4774 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4776 break;
4778 case ATA_PROT_DMA:
4779 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4781 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4782 ap->ops->bmdma_setup(qc); /* set up bmdma */
4783 ap->ops->bmdma_start(qc); /* initiate bmdma */
4784 ap->hsm_task_state = HSM_ST_LAST;
4785 break;
4787 case ATA_PROT_PIO:
4788 if (qc->tf.flags & ATA_TFLAG_POLLING)
4789 ata_qc_set_polling(qc);
4791 ata_tf_to_host(ap, &qc->tf);
4793 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4794 /* PIO data out protocol */
4795 ap->hsm_task_state = HSM_ST_FIRST;
4796 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4798 /* always send first data block using
4799 * the ata_pio_task() codepath.
4801 } else {
4802 /* PIO data in protocol */
4803 ap->hsm_task_state = HSM_ST;
4805 if (qc->tf.flags & ATA_TFLAG_POLLING)
4806 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4808 /* if polling, ata_pio_task() handles the rest.
4809 * otherwise, interrupt handler takes over from here.
4813 break;
4815 case ATA_PROT_ATAPI:
4816 case ATA_PROT_ATAPI_NODATA:
4817 if (qc->tf.flags & ATA_TFLAG_POLLING)
4818 ata_qc_set_polling(qc);
4820 ata_tf_to_host(ap, &qc->tf);
4822 ap->hsm_task_state = HSM_ST_FIRST;
4824 /* send cdb by polling if no cdb interrupt */
4825 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4826 (qc->tf.flags & ATA_TFLAG_POLLING))
4827 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4828 break;
4830 case ATA_PROT_ATAPI_DMA:
4831 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4833 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4834 ap->ops->bmdma_setup(qc); /* set up bmdma */
4835 ap->hsm_task_state = HSM_ST_FIRST;
4837 /* send cdb by polling if no cdb interrupt */
4838 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4839 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4840 break;
4842 default:
4843 WARN_ON(1);
4844 return AC_ERR_SYSTEM;
4847 return 0;
4851 * ata_host_intr - Handle host interrupt for given (port, task)
4852 * @ap: Port on which interrupt arrived (possibly...)
4853 * @qc: Taskfile currently active in engine
4855 * Handle host interrupt for given queued command. Currently,
4856 * only DMA interrupts are handled. All other commands are
4857 * handled via polling with interrupts disabled (nIEN bit).
4859 * LOCKING:
4860 * spin_lock_irqsave(host lock)
4862 * RETURNS:
4863 * One if interrupt was handled, zero if not (shared irq).
4866 inline unsigned int ata_host_intr (struct ata_port *ap,
4867 struct ata_queued_cmd *qc)
4869 u8 status, host_stat = 0;
4871 VPRINTK("ata%u: protocol %d task_state %d\n",
4872 ap->id, qc->tf.protocol, ap->hsm_task_state);
4874 /* Check whether we are expecting interrupt in this state */
4875 switch (ap->hsm_task_state) {
4876 case HSM_ST_FIRST:
4877 /* Some pre-ATAPI-4 devices assert INTRQ
4878 * at this state when ready to receive CDB.
4881 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4882 * The flag was turned on only for atapi devices.
4883 * No need to check is_atapi_taskfile(&qc->tf) again.
4885 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4886 goto idle_irq;
4887 break;
4888 case HSM_ST_LAST:
4889 if (qc->tf.protocol == ATA_PROT_DMA ||
4890 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4891 /* check status of DMA engine */
4892 host_stat = ap->ops->bmdma_status(ap);
4893 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4895 /* if it's not our irq... */
4896 if (!(host_stat & ATA_DMA_INTR))
4897 goto idle_irq;
4899 /* before we do anything else, clear DMA-Start bit */
4900 ap->ops->bmdma_stop(qc);
4902 if (unlikely(host_stat & ATA_DMA_ERR)) {
4903 /* error when transfering data to/from memory */
4904 qc->err_mask |= AC_ERR_HOST_BUS;
4905 ap->hsm_task_state = HSM_ST_ERR;
4908 break;
4909 case HSM_ST:
4910 break;
4911 default:
4912 goto idle_irq;
4915 /* check altstatus */
4916 status = ata_altstatus(ap);
4917 if (status & ATA_BUSY)
4918 goto idle_irq;
4920 /* check main status, clearing INTRQ */
4921 status = ata_chk_status(ap);
4922 if (unlikely(status & ATA_BUSY))
4923 goto idle_irq;
4925 /* ack bmdma irq events */
4926 ap->ops->irq_clear(ap);
4928 ata_hsm_move(ap, qc, status, 0);
4929 return 1; /* irq handled */
4931 idle_irq:
4932 ap->stats.idle_irq++;
4934 #ifdef ATA_IRQ_TRAP
4935 if ((ap->stats.idle_irq % 1000) == 0) {
4936 ata_irq_ack(ap, 0); /* debug trap */
4937 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4938 return 1;
4940 #endif
4941 return 0; /* irq not handled */
4945 * ata_interrupt - Default ATA host interrupt handler
4946 * @irq: irq line (unused)
4947 * @dev_instance: pointer to our ata_host information structure
4949 * Default interrupt handler for PCI IDE devices. Calls
4950 * ata_host_intr() for each port that is not disabled.
4952 * LOCKING:
4953 * Obtains host lock during operation.
4955 * RETURNS:
4956 * IRQ_NONE or IRQ_HANDLED.
4959 irqreturn_t ata_interrupt (int irq, void *dev_instance)
4961 struct ata_host *host = dev_instance;
4962 unsigned int i;
4963 unsigned int handled = 0;
4964 unsigned long flags;
4966 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4967 spin_lock_irqsave(&host->lock, flags);
4969 for (i = 0; i < host->n_ports; i++) {
4970 struct ata_port *ap;
4972 ap = host->ports[i];
4973 if (ap &&
4974 !(ap->flags & ATA_FLAG_DISABLED)) {
4975 struct ata_queued_cmd *qc;
4977 qc = ata_qc_from_tag(ap, ap->active_tag);
4978 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4979 (qc->flags & ATA_QCFLAG_ACTIVE))
4980 handled |= ata_host_intr(ap, qc);
4984 spin_unlock_irqrestore(&host->lock, flags);
4986 return IRQ_RETVAL(handled);
4990 * sata_scr_valid - test whether SCRs are accessible
4991 * @ap: ATA port to test SCR accessibility for
4993 * Test whether SCRs are accessible for @ap.
4995 * LOCKING:
4996 * None.
4998 * RETURNS:
4999 * 1 if SCRs are accessible, 0 otherwise.
5001 int sata_scr_valid(struct ata_port *ap)
5003 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5007 * sata_scr_read - read SCR register of the specified port
5008 * @ap: ATA port to read SCR for
5009 * @reg: SCR to read
5010 * @val: Place to store read value
5012 * Read SCR register @reg of @ap into *@val. This function is
5013 * guaranteed to succeed if the cable type of the port is SATA
5014 * and the port implements ->scr_read.
5016 * LOCKING:
5017 * None.
5019 * RETURNS:
5020 * 0 on success, negative errno on failure.
5022 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5024 if (sata_scr_valid(ap)) {
5025 *val = ap->ops->scr_read(ap, reg);
5026 return 0;
5028 return -EOPNOTSUPP;
5032 * sata_scr_write - write SCR register of the specified port
5033 * @ap: ATA port to write SCR for
5034 * @reg: SCR to write
5035 * @val: value to write
5037 * Write @val to SCR register @reg of @ap. This function is
5038 * guaranteed to succeed if the cable type of the port is SATA
5039 * and the port implements ->scr_read.
5041 * LOCKING:
5042 * None.
5044 * RETURNS:
5045 * 0 on success, negative errno on failure.
5047 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5049 if (sata_scr_valid(ap)) {
5050 ap->ops->scr_write(ap, reg, val);
5051 return 0;
5053 return -EOPNOTSUPP;
5057 * sata_scr_write_flush - write SCR register of the specified port and flush
5058 * @ap: ATA port to write SCR for
5059 * @reg: SCR to write
5060 * @val: value to write
5062 * This function is identical to sata_scr_write() except that this
5063 * function performs flush after writing to the register.
5065 * LOCKING:
5066 * None.
5068 * RETURNS:
5069 * 0 on success, negative errno on failure.
5071 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5073 if (sata_scr_valid(ap)) {
5074 ap->ops->scr_write(ap, reg, val);
5075 ap->ops->scr_read(ap, reg);
5076 return 0;
5078 return -EOPNOTSUPP;
5082 * ata_port_online - test whether the given port is online
5083 * @ap: ATA port to test
5085 * Test whether @ap is online. Note that this function returns 0
5086 * if online status of @ap cannot be obtained, so
5087 * ata_port_online(ap) != !ata_port_offline(ap).
5089 * LOCKING:
5090 * None.
5092 * RETURNS:
5093 * 1 if the port online status is available and online.
5095 int ata_port_online(struct ata_port *ap)
5097 u32 sstatus;
5099 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5100 return 1;
5101 return 0;
5105 * ata_port_offline - test whether the given port is offline
5106 * @ap: ATA port to test
5108 * Test whether @ap is offline. Note that this function returns
5109 * 0 if offline status of @ap cannot be obtained, so
5110 * ata_port_online(ap) != !ata_port_offline(ap).
5112 * LOCKING:
5113 * None.
5115 * RETURNS:
5116 * 1 if the port offline status is available and offline.
5118 int ata_port_offline(struct ata_port *ap)
5120 u32 sstatus;
5122 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5123 return 1;
5124 return 0;
5127 int ata_flush_cache(struct ata_device *dev)
5129 unsigned int err_mask;
5130 u8 cmd;
5132 if (!ata_try_flush_cache(dev))
5133 return 0;
5135 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5136 cmd = ATA_CMD_FLUSH_EXT;
5137 else
5138 cmd = ATA_CMD_FLUSH;
5140 err_mask = ata_do_simple_cmd(dev, cmd);
5141 if (err_mask) {
5142 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5143 return -EIO;
5146 return 0;
5149 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5150 unsigned int action, unsigned int ehi_flags,
5151 int wait)
5153 unsigned long flags;
5154 int i, rc;
5156 for (i = 0; i < host->n_ports; i++) {
5157 struct ata_port *ap = host->ports[i];
5159 /* Previous resume operation might still be in
5160 * progress. Wait for PM_PENDING to clear.
5162 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5163 ata_port_wait_eh(ap);
5164 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5167 /* request PM ops to EH */
5168 spin_lock_irqsave(ap->lock, flags);
5170 ap->pm_mesg = mesg;
5171 if (wait) {
5172 rc = 0;
5173 ap->pm_result = &rc;
5176 ap->pflags |= ATA_PFLAG_PM_PENDING;
5177 ap->eh_info.action |= action;
5178 ap->eh_info.flags |= ehi_flags;
5180 ata_port_schedule_eh(ap);
5182 spin_unlock_irqrestore(ap->lock, flags);
5184 /* wait and check result */
5185 if (wait) {
5186 ata_port_wait_eh(ap);
5187 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5188 if (rc)
5189 return rc;
5193 return 0;
5197 * ata_host_suspend - suspend host
5198 * @host: host to suspend
5199 * @mesg: PM message
5201 * Suspend @host. Actual operation is performed by EH. This
5202 * function requests EH to perform PM operations and waits for EH
5203 * to finish.
5205 * LOCKING:
5206 * Kernel thread context (may sleep).
5208 * RETURNS:
5209 * 0 on success, -errno on failure.
5211 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5213 int i, j, rc;
5215 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5216 if (rc)
5217 goto fail;
5219 /* EH is quiescent now. Fail if we have any ready device.
5220 * This happens if hotplug occurs between completion of device
5221 * suspension and here.
5223 for (i = 0; i < host->n_ports; i++) {
5224 struct ata_port *ap = host->ports[i];
5226 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5227 struct ata_device *dev = &ap->device[j];
5229 if (ata_dev_ready(dev)) {
5230 ata_port_printk(ap, KERN_WARNING,
5231 "suspend failed, device %d "
5232 "still active\n", dev->devno);
5233 rc = -EBUSY;
5234 goto fail;
5239 host->dev->power.power_state = mesg;
5240 return 0;
5242 fail:
5243 ata_host_resume(host);
5244 return rc;
5248 * ata_host_resume - resume host
5249 * @host: host to resume
5251 * Resume @host. Actual operation is performed by EH. This
5252 * function requests EH to perform PM operations and returns.
5253 * Note that all resume operations are performed parallely.
5255 * LOCKING:
5256 * Kernel thread context (may sleep).
5258 void ata_host_resume(struct ata_host *host)
5260 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5261 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5262 host->dev->power.power_state = PMSG_ON;
5266 * ata_port_start - Set port up for dma.
5267 * @ap: Port to initialize
5269 * Called just after data structures for each port are
5270 * initialized. Allocates space for PRD table.
5272 * May be used as the port_start() entry in ata_port_operations.
5274 * LOCKING:
5275 * Inherited from caller.
5278 int ata_port_start (struct ata_port *ap)
5280 struct device *dev = ap->dev;
5281 int rc;
5283 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5284 if (!ap->prd)
5285 return -ENOMEM;
5287 rc = ata_pad_alloc(ap, dev);
5288 if (rc) {
5289 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5290 return rc;
5293 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5295 return 0;
5300 * ata_port_stop - Undo ata_port_start()
5301 * @ap: Port to shut down
5303 * Frees the PRD table.
5305 * May be used as the port_stop() entry in ata_port_operations.
5307 * LOCKING:
5308 * Inherited from caller.
5311 void ata_port_stop (struct ata_port *ap)
5313 struct device *dev = ap->dev;
5315 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5316 ata_pad_free(ap, dev);
5319 void ata_host_stop (struct ata_host *host)
5321 if (host->mmio_base)
5322 iounmap(host->mmio_base);
5326 * ata_dev_init - Initialize an ata_device structure
5327 * @dev: Device structure to initialize
5329 * Initialize @dev in preparation for probing.
5331 * LOCKING:
5332 * Inherited from caller.
5334 void ata_dev_init(struct ata_device *dev)
5336 struct ata_port *ap = dev->ap;
5337 unsigned long flags;
5339 /* SATA spd limit is bound to the first device */
5340 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5342 /* High bits of dev->flags are used to record warm plug
5343 * requests which occur asynchronously. Synchronize using
5344 * host lock.
5346 spin_lock_irqsave(ap->lock, flags);
5347 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5348 spin_unlock_irqrestore(ap->lock, flags);
5350 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5351 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5352 dev->pio_mask = UINT_MAX;
5353 dev->mwdma_mask = UINT_MAX;
5354 dev->udma_mask = UINT_MAX;
5358 * ata_port_init - Initialize an ata_port structure
5359 * @ap: Structure to initialize
5360 * @host: Collection of hosts to which @ap belongs
5361 * @ent: Probe information provided by low-level driver
5362 * @port_no: Port number associated with this ata_port
5364 * Initialize a new ata_port structure.
5366 * LOCKING:
5367 * Inherited from caller.
5369 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5370 const struct ata_probe_ent *ent, unsigned int port_no)
5372 unsigned int i;
5374 ap->lock = &host->lock;
5375 ap->flags = ATA_FLAG_DISABLED;
5376 ap->id = ata_unique_id++;
5377 ap->ctl = ATA_DEVCTL_OBS;
5378 ap->host = host;
5379 ap->dev = ent->dev;
5380 ap->port_no = port_no;
5381 if (port_no == 1 && ent->pinfo2) {
5382 ap->pio_mask = ent->pinfo2->pio_mask;
5383 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5384 ap->udma_mask = ent->pinfo2->udma_mask;
5385 ap->flags |= ent->pinfo2->flags;
5386 ap->ops = ent->pinfo2->port_ops;
5387 } else {
5388 ap->pio_mask = ent->pio_mask;
5389 ap->mwdma_mask = ent->mwdma_mask;
5390 ap->udma_mask = ent->udma_mask;
5391 ap->flags |= ent->port_flags;
5392 ap->ops = ent->port_ops;
5394 ap->hw_sata_spd_limit = UINT_MAX;
5395 ap->active_tag = ATA_TAG_POISON;
5396 ap->last_ctl = 0xFF;
5398 #if defined(ATA_VERBOSE_DEBUG)
5399 /* turn on all debugging levels */
5400 ap->msg_enable = 0x00FF;
5401 #elif defined(ATA_DEBUG)
5402 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5403 #else
5404 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5405 #endif
5407 INIT_WORK(&ap->port_task, NULL, NULL);
5408 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5409 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5410 INIT_LIST_HEAD(&ap->eh_done_q);
5411 init_waitqueue_head(&ap->eh_wait_q);
5413 /* set cable type */
5414 ap->cbl = ATA_CBL_NONE;
5415 if (ap->flags & ATA_FLAG_SATA)
5416 ap->cbl = ATA_CBL_SATA;
5418 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5419 struct ata_device *dev = &ap->device[i];
5420 dev->ap = ap;
5421 dev->devno = i;
5422 ata_dev_init(dev);
5425 #ifdef ATA_IRQ_TRAP
5426 ap->stats.unhandled_irq = 1;
5427 ap->stats.idle_irq = 1;
5428 #endif
5430 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5434 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5435 * @ap: ATA port to initialize SCSI host for
5436 * @shost: SCSI host associated with @ap
5438 * Initialize SCSI host @shost associated with ATA port @ap.
5440 * LOCKING:
5441 * Inherited from caller.
5443 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5445 ap->scsi_host = shost;
5447 shost->unique_id = ap->id;
5448 shost->max_id = 16;
5449 shost->max_lun = 1;
5450 shost->max_channel = 1;
5451 shost->max_cmd_len = 12;
5455 * ata_port_add - Attach low-level ATA driver to system
5456 * @ent: Information provided by low-level driver
5457 * @host: Collections of ports to which we add
5458 * @port_no: Port number associated with this host
5460 * Attach low-level ATA driver to system.
5462 * LOCKING:
5463 * PCI/etc. bus probe sem.
5465 * RETURNS:
5466 * New ata_port on success, for NULL on error.
5468 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5469 struct ata_host *host,
5470 unsigned int port_no)
5472 struct Scsi_Host *shost;
5473 struct ata_port *ap;
5475 DPRINTK("ENTER\n");
5477 if (!ent->port_ops->error_handler &&
5478 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5479 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5480 port_no);
5481 return NULL;
5484 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5485 if (!shost)
5486 return NULL;
5488 shost->transportt = &ata_scsi_transport_template;
5490 ap = ata_shost_to_port(shost);
5492 ata_port_init(ap, host, ent, port_no);
5493 ata_port_init_shost(ap, shost);
5495 return ap;
5499 * ata_sas_host_init - Initialize a host struct
5500 * @host: host to initialize
5501 * @dev: device host is attached to
5502 * @flags: host flags
5503 * @ops: port_ops
5505 * LOCKING:
5506 * PCI/etc. bus probe sem.
5510 void ata_host_init(struct ata_host *host, struct device *dev,
5511 unsigned long flags, const struct ata_port_operations *ops)
5513 spin_lock_init(&host->lock);
5514 host->dev = dev;
5515 host->flags = flags;
5516 host->ops = ops;
5520 * ata_device_add - Register hardware device with ATA and SCSI layers
5521 * @ent: Probe information describing hardware device to be registered
5523 * This function processes the information provided in the probe
5524 * information struct @ent, allocates the necessary ATA and SCSI
5525 * host information structures, initializes them, and registers
5526 * everything with requisite kernel subsystems.
5528 * This function requests irqs, probes the ATA bus, and probes
5529 * the SCSI bus.
5531 * LOCKING:
5532 * PCI/etc. bus probe sem.
5534 * RETURNS:
5535 * Number of ports registered. Zero on error (no ports registered).
5537 int ata_device_add(const struct ata_probe_ent *ent)
5539 unsigned int i;
5540 struct device *dev = ent->dev;
5541 struct ata_host *host;
5542 int rc;
5544 DPRINTK("ENTER\n");
5546 if (ent->irq == 0) {
5547 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5548 return 0;
5550 /* alloc a container for our list of ATA ports (buses) */
5551 host = kzalloc(sizeof(struct ata_host) +
5552 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5553 if (!host)
5554 return 0;
5556 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5557 host->n_ports = ent->n_ports;
5558 host->irq = ent->irq;
5559 host->irq2 = ent->irq2;
5560 host->mmio_base = ent->mmio_base;
5561 host->private_data = ent->private_data;
5563 /* register each port bound to this device */
5564 for (i = 0; i < host->n_ports; i++) {
5565 struct ata_port *ap;
5566 unsigned long xfer_mode_mask;
5567 int irq_line = ent->irq;
5569 ap = ata_port_add(ent, host, i);
5570 host->ports[i] = ap;
5571 if (!ap)
5572 goto err_out;
5574 /* dummy? */
5575 if (ent->dummy_port_mask & (1 << i)) {
5576 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5577 ap->ops = &ata_dummy_port_ops;
5578 continue;
5581 /* start port */
5582 rc = ap->ops->port_start(ap);
5583 if (rc) {
5584 host->ports[i] = NULL;
5585 scsi_host_put(ap->scsi_host);
5586 goto err_out;
5589 /* Report the secondary IRQ for second channel legacy */
5590 if (i == 1 && ent->irq2)
5591 irq_line = ent->irq2;
5593 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5594 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5595 (ap->pio_mask << ATA_SHIFT_PIO);
5597 /* print per-port info to dmesg */
5598 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5599 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5600 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5601 ata_mode_string(xfer_mode_mask),
5602 ap->ioaddr.cmd_addr,
5603 ap->ioaddr.ctl_addr,
5604 ap->ioaddr.bmdma_addr,
5605 irq_line);
5607 ata_chk_status(ap);
5608 host->ops->irq_clear(ap);
5609 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5612 /* obtain irq, that may be shared between channels */
5613 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5614 DRV_NAME, host);
5615 if (rc) {
5616 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5617 ent->irq, rc);
5618 goto err_out;
5621 /* do we have a second IRQ for the other channel, eg legacy mode */
5622 if (ent->irq2) {
5623 /* We will get weird core code crashes later if this is true
5624 so trap it now */
5625 BUG_ON(ent->irq == ent->irq2);
5627 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5628 DRV_NAME, host);
5629 if (rc) {
5630 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5631 ent->irq2, rc);
5632 goto err_out_free_irq;
5636 /* perform each probe synchronously */
5637 DPRINTK("probe begin\n");
5638 for (i = 0; i < host->n_ports; i++) {
5639 struct ata_port *ap = host->ports[i];
5640 u32 scontrol;
5641 int rc;
5643 /* init sata_spd_limit to the current value */
5644 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5645 int spd = (scontrol >> 4) & 0xf;
5646 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5648 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5650 rc = scsi_add_host(ap->scsi_host, dev);
5651 if (rc) {
5652 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5653 /* FIXME: do something useful here */
5654 /* FIXME: handle unconditional calls to
5655 * scsi_scan_host and ata_host_remove, below,
5656 * at the very least
5660 if (ap->ops->error_handler) {
5661 struct ata_eh_info *ehi = &ap->eh_info;
5662 unsigned long flags;
5664 ata_port_probe(ap);
5666 /* kick EH for boot probing */
5667 spin_lock_irqsave(ap->lock, flags);
5669 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5670 ehi->action |= ATA_EH_SOFTRESET;
5671 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5673 ap->pflags |= ATA_PFLAG_LOADING;
5674 ata_port_schedule_eh(ap);
5676 spin_unlock_irqrestore(ap->lock, flags);
5678 /* wait for EH to finish */
5679 ata_port_wait_eh(ap);
5680 } else {
5681 DPRINTK("ata%u: bus probe begin\n", ap->id);
5682 rc = ata_bus_probe(ap);
5683 DPRINTK("ata%u: bus probe end\n", ap->id);
5685 if (rc) {
5686 /* FIXME: do something useful here?
5687 * Current libata behavior will
5688 * tear down everything when
5689 * the module is removed
5690 * or the h/w is unplugged.
5696 /* probes are done, now scan each port's disk(s) */
5697 DPRINTK("host probe begin\n");
5698 for (i = 0; i < host->n_ports; i++) {
5699 struct ata_port *ap = host->ports[i];
5701 ata_scsi_scan_host(ap);
5704 dev_set_drvdata(dev, host);
5706 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5707 return ent->n_ports; /* success */
5709 err_out_free_irq:
5710 free_irq(ent->irq, host);
5711 err_out:
5712 for (i = 0; i < host->n_ports; i++) {
5713 struct ata_port *ap = host->ports[i];
5714 if (ap) {
5715 ap->ops->port_stop(ap);
5716 scsi_host_put(ap->scsi_host);
5720 kfree(host);
5721 VPRINTK("EXIT, returning 0\n");
5722 return 0;
5726 * ata_port_detach - Detach ATA port in prepration of device removal
5727 * @ap: ATA port to be detached
5729 * Detach all ATA devices and the associated SCSI devices of @ap;
5730 * then, remove the associated SCSI host. @ap is guaranteed to
5731 * be quiescent on return from this function.
5733 * LOCKING:
5734 * Kernel thread context (may sleep).
5736 void ata_port_detach(struct ata_port *ap)
5738 unsigned long flags;
5739 int i;
5741 if (!ap->ops->error_handler)
5742 goto skip_eh;
5744 /* tell EH we're leaving & flush EH */
5745 spin_lock_irqsave(ap->lock, flags);
5746 ap->pflags |= ATA_PFLAG_UNLOADING;
5747 spin_unlock_irqrestore(ap->lock, flags);
5749 ata_port_wait_eh(ap);
5751 /* EH is now guaranteed to see UNLOADING, so no new device
5752 * will be attached. Disable all existing devices.
5754 spin_lock_irqsave(ap->lock, flags);
5756 for (i = 0; i < ATA_MAX_DEVICES; i++)
5757 ata_dev_disable(&ap->device[i]);
5759 spin_unlock_irqrestore(ap->lock, flags);
5761 /* Final freeze & EH. All in-flight commands are aborted. EH
5762 * will be skipped and retrials will be terminated with bad
5763 * target.
5765 spin_lock_irqsave(ap->lock, flags);
5766 ata_port_freeze(ap); /* won't be thawed */
5767 spin_unlock_irqrestore(ap->lock, flags);
5769 ata_port_wait_eh(ap);
5771 /* Flush hotplug task. The sequence is similar to
5772 * ata_port_flush_task().
5774 flush_workqueue(ata_aux_wq);
5775 cancel_delayed_work(&ap->hotplug_task);
5776 flush_workqueue(ata_aux_wq);
5778 skip_eh:
5779 /* remove the associated SCSI host */
5780 scsi_remove_host(ap->scsi_host);
5784 * ata_host_remove - PCI layer callback for device removal
5785 * @host: ATA host set that was removed
5787 * Unregister all objects associated with this host set. Free those
5788 * objects.
5790 * LOCKING:
5791 * Inherited from calling layer (may sleep).
5794 void ata_host_remove(struct ata_host *host)
5796 unsigned int i;
5798 for (i = 0; i < host->n_ports; i++)
5799 ata_port_detach(host->ports[i]);
5801 free_irq(host->irq, host);
5802 if (host->irq2)
5803 free_irq(host->irq2, host);
5805 for (i = 0; i < host->n_ports; i++) {
5806 struct ata_port *ap = host->ports[i];
5808 ata_scsi_release(ap->scsi_host);
5810 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5811 struct ata_ioports *ioaddr = &ap->ioaddr;
5813 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5814 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5815 release_region(ATA_PRIMARY_CMD, 8);
5816 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5817 release_region(ATA_SECONDARY_CMD, 8);
5820 scsi_host_put(ap->scsi_host);
5823 if (host->ops->host_stop)
5824 host->ops->host_stop(host);
5826 kfree(host);
5830 * ata_scsi_release - SCSI layer callback hook for host unload
5831 * @shost: libata host to be unloaded
5833 * Performs all duties necessary to shut down a libata port...
5834 * Kill port kthread, disable port, and release resources.
5836 * LOCKING:
5837 * Inherited from SCSI layer.
5839 * RETURNS:
5840 * One.
5843 int ata_scsi_release(struct Scsi_Host *shost)
5845 struct ata_port *ap = ata_shost_to_port(shost);
5847 DPRINTK("ENTER\n");
5849 ap->ops->port_disable(ap);
5850 ap->ops->port_stop(ap);
5852 DPRINTK("EXIT\n");
5853 return 1;
5856 struct ata_probe_ent *
5857 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5859 struct ata_probe_ent *probe_ent;
5861 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5862 if (!probe_ent) {
5863 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5864 kobject_name(&(dev->kobj)));
5865 return NULL;
5868 INIT_LIST_HEAD(&probe_ent->node);
5869 probe_ent->dev = dev;
5871 probe_ent->sht = port->sht;
5872 probe_ent->port_flags = port->flags;
5873 probe_ent->pio_mask = port->pio_mask;
5874 probe_ent->mwdma_mask = port->mwdma_mask;
5875 probe_ent->udma_mask = port->udma_mask;
5876 probe_ent->port_ops = port->port_ops;
5877 probe_ent->private_data = port->private_data;
5879 return probe_ent;
5883 * ata_std_ports - initialize ioaddr with standard port offsets.
5884 * @ioaddr: IO address structure to be initialized
5886 * Utility function which initializes data_addr, error_addr,
5887 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5888 * device_addr, status_addr, and command_addr to standard offsets
5889 * relative to cmd_addr.
5891 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5894 void ata_std_ports(struct ata_ioports *ioaddr)
5896 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5897 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5898 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5899 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5900 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5901 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5902 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5903 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5904 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5905 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5909 #ifdef CONFIG_PCI
5911 void ata_pci_host_stop (struct ata_host *host)
5913 struct pci_dev *pdev = to_pci_dev(host->dev);
5915 pci_iounmap(pdev, host->mmio_base);
5919 * ata_pci_remove_one - PCI layer callback for device removal
5920 * @pdev: PCI device that was removed
5922 * PCI layer indicates to libata via this hook that
5923 * hot-unplug or module unload event has occurred.
5924 * Handle this by unregistering all objects associated
5925 * with this PCI device. Free those objects. Then finally
5926 * release PCI resources and disable device.
5928 * LOCKING:
5929 * Inherited from PCI layer (may sleep).
5932 void ata_pci_remove_one (struct pci_dev *pdev)
5934 struct device *dev = pci_dev_to_dev(pdev);
5935 struct ata_host *host = dev_get_drvdata(dev);
5937 ata_host_remove(host);
5939 pci_release_regions(pdev);
5940 pci_disable_device(pdev);
5941 dev_set_drvdata(dev, NULL);
5944 /* move to PCI subsystem */
5945 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5947 unsigned long tmp = 0;
5949 switch (bits->width) {
5950 case 1: {
5951 u8 tmp8 = 0;
5952 pci_read_config_byte(pdev, bits->reg, &tmp8);
5953 tmp = tmp8;
5954 break;
5956 case 2: {
5957 u16 tmp16 = 0;
5958 pci_read_config_word(pdev, bits->reg, &tmp16);
5959 tmp = tmp16;
5960 break;
5962 case 4: {
5963 u32 tmp32 = 0;
5964 pci_read_config_dword(pdev, bits->reg, &tmp32);
5965 tmp = tmp32;
5966 break;
5969 default:
5970 return -EINVAL;
5973 tmp &= bits->mask;
5975 return (tmp == bits->val) ? 1 : 0;
5978 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5980 pci_save_state(pdev);
5982 if (mesg.event == PM_EVENT_SUSPEND) {
5983 pci_disable_device(pdev);
5984 pci_set_power_state(pdev, PCI_D3hot);
5988 void ata_pci_device_do_resume(struct pci_dev *pdev)
5990 pci_set_power_state(pdev, PCI_D0);
5991 pci_restore_state(pdev);
5992 pci_enable_device(pdev);
5993 pci_set_master(pdev);
5996 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5998 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5999 int rc = 0;
6001 rc = ata_host_suspend(host, mesg);
6002 if (rc)
6003 return rc;
6005 ata_pci_device_do_suspend(pdev, mesg);
6007 return 0;
6010 int ata_pci_device_resume(struct pci_dev *pdev)
6012 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6014 ata_pci_device_do_resume(pdev);
6015 ata_host_resume(host);
6016 return 0;
6018 #endif /* CONFIG_PCI */
6021 static int __init ata_init(void)
6023 ata_probe_timeout *= HZ;
6024 ata_wq = create_workqueue("ata");
6025 if (!ata_wq)
6026 return -ENOMEM;
6028 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6029 if (!ata_aux_wq) {
6030 destroy_workqueue(ata_wq);
6031 return -ENOMEM;
6034 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6035 return 0;
6038 static void __exit ata_exit(void)
6040 destroy_workqueue(ata_wq);
6041 destroy_workqueue(ata_aux_wq);
6044 subsys_initcall(ata_init);
6045 module_exit(ata_exit);
6047 static unsigned long ratelimit_time;
6048 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6050 int ata_ratelimit(void)
6052 int rc;
6053 unsigned long flags;
6055 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6057 if (time_after(jiffies, ratelimit_time)) {
6058 rc = 1;
6059 ratelimit_time = jiffies + (HZ/5);
6060 } else
6061 rc = 0;
6063 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6065 return rc;
6069 * ata_wait_register - wait until register value changes
6070 * @reg: IO-mapped register
6071 * @mask: Mask to apply to read register value
6072 * @val: Wait condition
6073 * @interval_msec: polling interval in milliseconds
6074 * @timeout_msec: timeout in milliseconds
6076 * Waiting for some bits of register to change is a common
6077 * operation for ATA controllers. This function reads 32bit LE
6078 * IO-mapped register @reg and tests for the following condition.
6080 * (*@reg & mask) != val
6082 * If the condition is met, it returns; otherwise, the process is
6083 * repeated after @interval_msec until timeout.
6085 * LOCKING:
6086 * Kernel thread context (may sleep)
6088 * RETURNS:
6089 * The final register value.
6091 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6092 unsigned long interval_msec,
6093 unsigned long timeout_msec)
6095 unsigned long timeout;
6096 u32 tmp;
6098 tmp = ioread32(reg);
6100 /* Calculate timeout _after_ the first read to make sure
6101 * preceding writes reach the controller before starting to
6102 * eat away the timeout.
6104 timeout = jiffies + (timeout_msec * HZ) / 1000;
6106 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6107 msleep(interval_msec);
6108 tmp = ioread32(reg);
6111 return tmp;
6115 * Dummy port_ops
6117 static void ata_dummy_noret(struct ata_port *ap) { }
6118 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6119 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6121 static u8 ata_dummy_check_status(struct ata_port *ap)
6123 return ATA_DRDY;
6126 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6128 return AC_ERR_SYSTEM;
6131 const struct ata_port_operations ata_dummy_port_ops = {
6132 .port_disable = ata_port_disable,
6133 .check_status = ata_dummy_check_status,
6134 .check_altstatus = ata_dummy_check_status,
6135 .dev_select = ata_noop_dev_select,
6136 .qc_prep = ata_noop_qc_prep,
6137 .qc_issue = ata_dummy_qc_issue,
6138 .freeze = ata_dummy_noret,
6139 .thaw = ata_dummy_noret,
6140 .error_handler = ata_dummy_noret,
6141 .post_internal_cmd = ata_dummy_qc_noret,
6142 .irq_clear = ata_dummy_noret,
6143 .port_start = ata_dummy_ret0,
6144 .port_stop = ata_dummy_noret,
6148 * libata is essentially a library of internal helper functions for
6149 * low-level ATA host controller drivers. As such, the API/ABI is
6150 * likely to change as new drivers are added and updated.
6151 * Do not depend on ABI/API stability.
6154 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6155 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6156 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6157 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6158 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6159 EXPORT_SYMBOL_GPL(ata_std_ports);
6160 EXPORT_SYMBOL_GPL(ata_host_init);
6161 EXPORT_SYMBOL_GPL(ata_device_add);
6162 EXPORT_SYMBOL_GPL(ata_port_detach);
6163 EXPORT_SYMBOL_GPL(ata_host_remove);
6164 EXPORT_SYMBOL_GPL(ata_sg_init);
6165 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6166 EXPORT_SYMBOL_GPL(ata_hsm_move);
6167 EXPORT_SYMBOL_GPL(ata_qc_complete);
6168 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6169 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6170 EXPORT_SYMBOL_GPL(ata_tf_load);
6171 EXPORT_SYMBOL_GPL(ata_tf_read);
6172 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6173 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6174 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6175 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6176 EXPORT_SYMBOL_GPL(ata_check_status);
6177 EXPORT_SYMBOL_GPL(ata_altstatus);
6178 EXPORT_SYMBOL_GPL(ata_exec_command);
6179 EXPORT_SYMBOL_GPL(ata_port_start);
6180 EXPORT_SYMBOL_GPL(ata_port_stop);
6181 EXPORT_SYMBOL_GPL(ata_host_stop);
6182 EXPORT_SYMBOL_GPL(ata_interrupt);
6183 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6184 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6185 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6186 EXPORT_SYMBOL_GPL(ata_qc_prep);
6187 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6188 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6189 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6190 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6191 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6192 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6193 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6194 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6195 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6196 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6197 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6198 EXPORT_SYMBOL_GPL(ata_port_probe);
6199 EXPORT_SYMBOL_GPL(sata_set_spd);
6200 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6201 EXPORT_SYMBOL_GPL(sata_phy_resume);
6202 EXPORT_SYMBOL_GPL(sata_phy_reset);
6203 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6204 EXPORT_SYMBOL_GPL(ata_bus_reset);
6205 EXPORT_SYMBOL_GPL(ata_std_prereset);
6206 EXPORT_SYMBOL_GPL(ata_std_softreset);
6207 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6208 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6209 EXPORT_SYMBOL_GPL(ata_std_postreset);
6210 EXPORT_SYMBOL_GPL(ata_dev_classify);
6211 EXPORT_SYMBOL_GPL(ata_dev_pair);
6212 EXPORT_SYMBOL_GPL(ata_port_disable);
6213 EXPORT_SYMBOL_GPL(ata_ratelimit);
6214 EXPORT_SYMBOL_GPL(ata_wait_register);
6215 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6216 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6217 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6218 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6219 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6220 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6221 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6222 EXPORT_SYMBOL_GPL(ata_scsi_release);
6223 EXPORT_SYMBOL_GPL(ata_host_intr);
6224 EXPORT_SYMBOL_GPL(sata_scr_valid);
6225 EXPORT_SYMBOL_GPL(sata_scr_read);
6226 EXPORT_SYMBOL_GPL(sata_scr_write);
6227 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6228 EXPORT_SYMBOL_GPL(ata_port_online);
6229 EXPORT_SYMBOL_GPL(ata_port_offline);
6230 EXPORT_SYMBOL_GPL(ata_host_suspend);
6231 EXPORT_SYMBOL_GPL(ata_host_resume);
6232 EXPORT_SYMBOL_GPL(ata_id_string);
6233 EXPORT_SYMBOL_GPL(ata_id_c_string);
6234 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6235 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6237 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6238 EXPORT_SYMBOL_GPL(ata_timing_compute);
6239 EXPORT_SYMBOL_GPL(ata_timing_merge);
6241 #ifdef CONFIG_PCI
6242 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6243 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6244 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6245 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6246 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6247 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6248 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6249 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6250 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6251 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6252 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6253 #endif /* CONFIG_PCI */
6255 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6256 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6258 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6259 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6260 EXPORT_SYMBOL_GPL(ata_port_abort);
6261 EXPORT_SYMBOL_GPL(ata_port_freeze);
6262 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6263 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6264 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6265 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6266 EXPORT_SYMBOL_GPL(ata_do_eh);