[SCSI] Get rid of scsi_cmnd->done
[linux-2.6/linux-loongson.git] / drivers / scsi / scsi_lib.c
blobfac34293bef73a9eff4eed2696aa75af207eb4b6
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 2
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 struct kmem_cache *slab;
40 mempool_t *pool;
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
79 * Returns: Nothing.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
101 * Returns: Nothing.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
159 scsi_run_queue(q);
161 return 0;
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
207 ret = req->errors;
208 out:
209 blk_put_request(req);
211 return ret;
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
220 char *sense = NULL;
221 int result;
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
233 kfree(sense);
234 return result;
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static struct kmem_cache *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
266 if (!rq->bio)
267 blk_rq_bio_prep(q, rq, bio);
268 else if (!ll_back_merge_fn(q, rq, bio))
269 return -EINVAL;
270 else {
271 rq->biotail->bi_next = bio;
272 rq->biotail = bio;
275 return 0;
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280 if (bio->bi_size)
281 return 1;
283 bio_put(bio);
284 return 0;
288 * scsi_req_map_sg - map a scatterlist into a request
289 * @rq: request to fill
290 * @sg: scatterlist
291 * @nsegs: number of elements
292 * @bufflen: len of buffer
293 * @gfp: memory allocation flags
295 * scsi_req_map_sg maps a scatterlist into a request so that the
296 * request can be sent to the block layer. We do not trust the scatterlist
297 * sent to use, as some ULDs use that struct to only organize the pages.
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300 int nsegs, unsigned bufflen, gfp_t gfp)
302 struct request_queue *q = rq->q;
303 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304 unsigned int data_len = bufflen, len, bytes, off;
305 struct page *page;
306 struct bio *bio = NULL;
307 int i, err, nr_vecs = 0;
309 for (i = 0; i < nsegs; i++) {
310 page = sgl[i].page;
311 off = sgl[i].offset;
312 len = sgl[i].length;
314 while (len > 0 && data_len > 0) {
316 * sg sends a scatterlist that is larger than
317 * the data_len it wants transferred for certain
318 * IO sizes
320 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
321 bytes = min(bytes, data_len);
323 if (!bio) {
324 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
325 nr_pages -= nr_vecs;
327 bio = bio_alloc(gfp, nr_vecs);
328 if (!bio) {
329 err = -ENOMEM;
330 goto free_bios;
332 bio->bi_end_io = scsi_bi_endio;
335 if (bio_add_pc_page(q, bio, page, bytes, off) !=
336 bytes) {
337 bio_put(bio);
338 err = -EINVAL;
339 goto free_bios;
342 if (bio->bi_vcnt >= nr_vecs) {
343 err = scsi_merge_bio(rq, bio);
344 if (err) {
345 bio_endio(bio, bio->bi_size, 0);
346 goto free_bios;
348 bio = NULL;
351 page++;
352 len -= bytes;
353 data_len -=bytes;
354 off = 0;
358 rq->buffer = rq->data = NULL;
359 rq->data_len = bufflen;
360 return 0;
362 free_bios:
363 while ((bio = rq->bio) != NULL) {
364 rq->bio = bio->bi_next;
366 * call endio instead of bio_put incase it was bounced
368 bio_endio(bio, bio->bi_size, 0);
371 return err;
375 * scsi_execute_async - insert request
376 * @sdev: scsi device
377 * @cmd: scsi command
378 * @cmd_len: length of scsi cdb
379 * @data_direction: data direction
380 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
381 * @bufflen: len of buffer
382 * @use_sg: if buffer is a scatterlist this is the number of elements
383 * @timeout: request timeout in seconds
384 * @retries: number of times to retry request
385 * @flags: or into request flags
387 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
388 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
389 int use_sg, int timeout, int retries, void *privdata,
390 void (*done)(void *, char *, int, int), gfp_t gfp)
392 struct request *req;
393 struct scsi_io_context *sioc;
394 int err = 0;
395 int write = (data_direction == DMA_TO_DEVICE);
397 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
398 if (!sioc)
399 return DRIVER_ERROR << 24;
401 req = blk_get_request(sdev->request_queue, write, gfp);
402 if (!req)
403 goto free_sense;
404 req->cmd_type = REQ_TYPE_BLOCK_PC;
405 req->cmd_flags |= REQ_QUIET;
407 if (use_sg)
408 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
409 else if (bufflen)
410 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
412 if (err)
413 goto free_req;
415 req->cmd_len = cmd_len;
416 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
417 memcpy(req->cmd, cmd, req->cmd_len);
418 req->sense = sioc->sense;
419 req->sense_len = 0;
420 req->timeout = timeout;
421 req->retries = retries;
422 req->end_io_data = sioc;
424 sioc->data = privdata;
425 sioc->done = done;
427 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
428 return 0;
430 free_req:
431 blk_put_request(req);
432 free_sense:
433 kmem_cache_free(scsi_io_context_cache, sioc);
434 return DRIVER_ERROR << 24;
436 EXPORT_SYMBOL_GPL(scsi_execute_async);
439 * Function: scsi_init_cmd_errh()
441 * Purpose: Initialize cmd fields related to error handling.
443 * Arguments: cmd - command that is ready to be queued.
445 * Notes: This function has the job of initializing a number of
446 * fields related to error handling. Typically this will
447 * be called once for each command, as required.
449 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
451 cmd->serial_number = 0;
452 cmd->resid = 0;
453 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
454 if (cmd->cmd_len == 0)
455 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
458 void scsi_device_unbusy(struct scsi_device *sdev)
460 struct Scsi_Host *shost = sdev->host;
461 unsigned long flags;
463 spin_lock_irqsave(shost->host_lock, flags);
464 shost->host_busy--;
465 if (unlikely(scsi_host_in_recovery(shost) &&
466 (shost->host_failed || shost->host_eh_scheduled)))
467 scsi_eh_wakeup(shost);
468 spin_unlock(shost->host_lock);
469 spin_lock(sdev->request_queue->queue_lock);
470 sdev->device_busy--;
471 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
475 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
476 * and call blk_run_queue for all the scsi_devices on the target -
477 * including current_sdev first.
479 * Called with *no* scsi locks held.
481 static void scsi_single_lun_run(struct scsi_device *current_sdev)
483 struct Scsi_Host *shost = current_sdev->host;
484 struct scsi_device *sdev, *tmp;
485 struct scsi_target *starget = scsi_target(current_sdev);
486 unsigned long flags;
488 spin_lock_irqsave(shost->host_lock, flags);
489 starget->starget_sdev_user = NULL;
490 spin_unlock_irqrestore(shost->host_lock, flags);
493 * Call blk_run_queue for all LUNs on the target, starting with
494 * current_sdev. We race with others (to set starget_sdev_user),
495 * but in most cases, we will be first. Ideally, each LU on the
496 * target would get some limited time or requests on the target.
498 blk_run_queue(current_sdev->request_queue);
500 spin_lock_irqsave(shost->host_lock, flags);
501 if (starget->starget_sdev_user)
502 goto out;
503 list_for_each_entry_safe(sdev, tmp, &starget->devices,
504 same_target_siblings) {
505 if (sdev == current_sdev)
506 continue;
507 if (scsi_device_get(sdev))
508 continue;
510 spin_unlock_irqrestore(shost->host_lock, flags);
511 blk_run_queue(sdev->request_queue);
512 spin_lock_irqsave(shost->host_lock, flags);
514 scsi_device_put(sdev);
516 out:
517 spin_unlock_irqrestore(shost->host_lock, flags);
521 * Function: scsi_run_queue()
523 * Purpose: Select a proper request queue to serve next
525 * Arguments: q - last request's queue
527 * Returns: Nothing
529 * Notes: The previous command was completely finished, start
530 * a new one if possible.
532 static void scsi_run_queue(struct request_queue *q)
534 struct scsi_device *sdev = q->queuedata;
535 struct Scsi_Host *shost = sdev->host;
536 unsigned long flags;
538 if (sdev->single_lun)
539 scsi_single_lun_run(sdev);
541 spin_lock_irqsave(shost->host_lock, flags);
542 while (!list_empty(&shost->starved_list) &&
543 !shost->host_blocked && !shost->host_self_blocked &&
544 !((shost->can_queue > 0) &&
545 (shost->host_busy >= shost->can_queue))) {
547 * As long as shost is accepting commands and we have
548 * starved queues, call blk_run_queue. scsi_request_fn
549 * drops the queue_lock and can add us back to the
550 * starved_list.
552 * host_lock protects the starved_list and starved_entry.
553 * scsi_request_fn must get the host_lock before checking
554 * or modifying starved_list or starved_entry.
556 sdev = list_entry(shost->starved_list.next,
557 struct scsi_device, starved_entry);
558 list_del_init(&sdev->starved_entry);
559 spin_unlock_irqrestore(shost->host_lock, flags);
562 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
563 !test_and_set_bit(QUEUE_FLAG_REENTER,
564 &sdev->request_queue->queue_flags)) {
565 blk_run_queue(sdev->request_queue);
566 clear_bit(QUEUE_FLAG_REENTER,
567 &sdev->request_queue->queue_flags);
568 } else
569 blk_run_queue(sdev->request_queue);
571 spin_lock_irqsave(shost->host_lock, flags);
572 if (unlikely(!list_empty(&sdev->starved_entry)))
574 * sdev lost a race, and was put back on the
575 * starved list. This is unlikely but without this
576 * in theory we could loop forever.
578 break;
580 spin_unlock_irqrestore(shost->host_lock, flags);
582 blk_run_queue(q);
586 * Function: scsi_requeue_command()
588 * Purpose: Handle post-processing of completed commands.
590 * Arguments: q - queue to operate on
591 * cmd - command that may need to be requeued.
593 * Returns: Nothing
595 * Notes: After command completion, there may be blocks left
596 * over which weren't finished by the previous command
597 * this can be for a number of reasons - the main one is
598 * I/O errors in the middle of the request, in which case
599 * we need to request the blocks that come after the bad
600 * sector.
601 * Notes: Upon return, cmd is a stale pointer.
603 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
605 struct request *req = cmd->request;
606 unsigned long flags;
608 scsi_unprep_request(req);
609 spin_lock_irqsave(q->queue_lock, flags);
610 blk_requeue_request(q, req);
611 spin_unlock_irqrestore(q->queue_lock, flags);
613 scsi_run_queue(q);
616 void scsi_next_command(struct scsi_cmnd *cmd)
618 struct scsi_device *sdev = cmd->device;
619 struct request_queue *q = sdev->request_queue;
621 /* need to hold a reference on the device before we let go of the cmd */
622 get_device(&sdev->sdev_gendev);
624 scsi_put_command(cmd);
625 scsi_run_queue(q);
627 /* ok to remove device now */
628 put_device(&sdev->sdev_gendev);
631 void scsi_run_host_queues(struct Scsi_Host *shost)
633 struct scsi_device *sdev;
635 shost_for_each_device(sdev, shost)
636 scsi_run_queue(sdev->request_queue);
640 * Function: scsi_end_request()
642 * Purpose: Post-processing of completed commands (usually invoked at end
643 * of upper level post-processing and scsi_io_completion).
645 * Arguments: cmd - command that is complete.
646 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
647 * bytes - number of bytes of completed I/O
648 * requeue - indicates whether we should requeue leftovers.
650 * Lock status: Assumed that lock is not held upon entry.
652 * Returns: cmd if requeue required, NULL otherwise.
654 * Notes: This is called for block device requests in order to
655 * mark some number of sectors as complete.
657 * We are guaranteeing that the request queue will be goosed
658 * at some point during this call.
659 * Notes: If cmd was requeued, upon return it will be a stale pointer.
661 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
662 int bytes, int requeue)
664 struct request_queue *q = cmd->device->request_queue;
665 struct request *req = cmd->request;
666 unsigned long flags;
669 * If there are blocks left over at the end, set up the command
670 * to queue the remainder of them.
672 if (end_that_request_chunk(req, uptodate, bytes)) {
673 int leftover = (req->hard_nr_sectors << 9);
675 if (blk_pc_request(req))
676 leftover = req->data_len;
678 /* kill remainder if no retrys */
679 if (!uptodate && blk_noretry_request(req))
680 end_that_request_chunk(req, 0, leftover);
681 else {
682 if (requeue) {
684 * Bleah. Leftovers again. Stick the
685 * leftovers in the front of the
686 * queue, and goose the queue again.
688 scsi_requeue_command(q, cmd);
689 cmd = NULL;
691 return cmd;
695 add_disk_randomness(req->rq_disk);
697 spin_lock_irqsave(q->queue_lock, flags);
698 if (blk_rq_tagged(req))
699 blk_queue_end_tag(q, req);
700 end_that_request_last(req, uptodate);
701 spin_unlock_irqrestore(q->queue_lock, flags);
704 * This will goose the queue request function at the end, so we don't
705 * need to worry about launching another command.
707 scsi_next_command(cmd);
708 return NULL;
711 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
713 struct scsi_host_sg_pool *sgp;
714 struct scatterlist *sgl;
716 BUG_ON(!cmd->use_sg);
718 switch (cmd->use_sg) {
719 case 1 ... 8:
720 cmd->sglist_len = 0;
721 break;
722 case 9 ... 16:
723 cmd->sglist_len = 1;
724 break;
725 case 17 ... 32:
726 cmd->sglist_len = 2;
727 break;
728 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
729 case 33 ... 64:
730 cmd->sglist_len = 3;
731 break;
732 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
733 case 65 ... 128:
734 cmd->sglist_len = 4;
735 break;
736 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
737 case 129 ... 256:
738 cmd->sglist_len = 5;
739 break;
740 #endif
741 #endif
742 #endif
743 default:
744 return NULL;
747 sgp = scsi_sg_pools + cmd->sglist_len;
748 sgl = mempool_alloc(sgp->pool, gfp_mask);
749 return sgl;
752 EXPORT_SYMBOL(scsi_alloc_sgtable);
754 void scsi_free_sgtable(struct scatterlist *sgl, int index)
756 struct scsi_host_sg_pool *sgp;
758 BUG_ON(index >= SG_MEMPOOL_NR);
760 sgp = scsi_sg_pools + index;
761 mempool_free(sgl, sgp->pool);
764 EXPORT_SYMBOL(scsi_free_sgtable);
767 * Function: scsi_release_buffers()
769 * Purpose: Completion processing for block device I/O requests.
771 * Arguments: cmd - command that we are bailing.
773 * Lock status: Assumed that no lock is held upon entry.
775 * Returns: Nothing
777 * Notes: In the event that an upper level driver rejects a
778 * command, we must release resources allocated during
779 * the __init_io() function. Primarily this would involve
780 * the scatter-gather table, and potentially any bounce
781 * buffers.
783 static void scsi_release_buffers(struct scsi_cmnd *cmd)
785 if (cmd->use_sg)
786 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
789 * Zero these out. They now point to freed memory, and it is
790 * dangerous to hang onto the pointers.
792 cmd->request_buffer = NULL;
793 cmd->request_bufflen = 0;
797 * Function: scsi_io_completion()
799 * Purpose: Completion processing for block device I/O requests.
801 * Arguments: cmd - command that is finished.
803 * Lock status: Assumed that no lock is held upon entry.
805 * Returns: Nothing
807 * Notes: This function is matched in terms of capabilities to
808 * the function that created the scatter-gather list.
809 * In other words, if there are no bounce buffers
810 * (the normal case for most drivers), we don't need
811 * the logic to deal with cleaning up afterwards.
813 * We must do one of several things here:
815 * a) Call scsi_end_request. This will finish off the
816 * specified number of sectors. If we are done, the
817 * command block will be released, and the queue
818 * function will be goosed. If we are not done, then
819 * scsi_end_request will directly goose the queue.
821 * b) We can just use scsi_requeue_command() here. This would
822 * be used if we just wanted to retry, for example.
824 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
826 int result = cmd->result;
827 int this_count = cmd->request_bufflen;
828 struct request_queue *q = cmd->device->request_queue;
829 struct request *req = cmd->request;
830 int clear_errors = 1;
831 struct scsi_sense_hdr sshdr;
832 int sense_valid = 0;
833 int sense_deferred = 0;
835 scsi_release_buffers(cmd);
837 if (result) {
838 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
839 if (sense_valid)
840 sense_deferred = scsi_sense_is_deferred(&sshdr);
843 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
844 req->errors = result;
845 if (result) {
846 clear_errors = 0;
847 if (sense_valid && req->sense) {
849 * SG_IO wants current and deferred errors
851 int len = 8 + cmd->sense_buffer[7];
853 if (len > SCSI_SENSE_BUFFERSIZE)
854 len = SCSI_SENSE_BUFFERSIZE;
855 memcpy(req->sense, cmd->sense_buffer, len);
856 req->sense_len = len;
859 req->data_len = cmd->resid;
863 * Next deal with any sectors which we were able to correctly
864 * handle.
866 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
867 "%d bytes done.\n",
868 req->nr_sectors, good_bytes));
869 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
871 if (clear_errors)
872 req->errors = 0;
874 /* A number of bytes were successfully read. If there
875 * are leftovers and there is some kind of error
876 * (result != 0), retry the rest.
878 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
879 return;
881 /* good_bytes = 0, or (inclusive) there were leftovers and
882 * result = 0, so scsi_end_request couldn't retry.
884 if (sense_valid && !sense_deferred) {
885 switch (sshdr.sense_key) {
886 case UNIT_ATTENTION:
887 if (cmd->device->removable) {
888 /* Detected disc change. Set a bit
889 * and quietly refuse further access.
891 cmd->device->changed = 1;
892 scsi_end_request(cmd, 0, this_count, 1);
893 return;
894 } else {
895 /* Must have been a power glitch, or a
896 * bus reset. Could not have been a
897 * media change, so we just retry the
898 * request and see what happens.
900 scsi_requeue_command(q, cmd);
901 return;
903 break;
904 case ILLEGAL_REQUEST:
905 /* If we had an ILLEGAL REQUEST returned, then
906 * we may have performed an unsupported
907 * command. The only thing this should be
908 * would be a ten byte read where only a six
909 * byte read was supported. Also, on a system
910 * where READ CAPACITY failed, we may have
911 * read past the end of the disk.
913 if ((cmd->device->use_10_for_rw &&
914 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
915 (cmd->cmnd[0] == READ_10 ||
916 cmd->cmnd[0] == WRITE_10)) {
917 cmd->device->use_10_for_rw = 0;
918 /* This will cause a retry with a
919 * 6-byte command.
921 scsi_requeue_command(q, cmd);
922 return;
923 } else {
924 scsi_end_request(cmd, 0, this_count, 1);
925 return;
927 break;
928 case NOT_READY:
929 /* If the device is in the process of becoming
930 * ready, or has a temporary blockage, retry.
932 if (sshdr.asc == 0x04) {
933 switch (sshdr.ascq) {
934 case 0x01: /* becoming ready */
935 case 0x04: /* format in progress */
936 case 0x05: /* rebuild in progress */
937 case 0x06: /* recalculation in progress */
938 case 0x07: /* operation in progress */
939 case 0x08: /* Long write in progress */
940 case 0x09: /* self test in progress */
941 scsi_requeue_command(q, cmd);
942 return;
943 default:
944 break;
947 if (!(req->cmd_flags & REQ_QUIET))
948 scsi_cmd_print_sense_hdr(cmd,
949 "Device not ready",
950 &sshdr);
952 scsi_end_request(cmd, 0, this_count, 1);
953 return;
954 case VOLUME_OVERFLOW:
955 if (!(req->cmd_flags & REQ_QUIET)) {
956 scmd_printk(KERN_INFO, cmd,
957 "Volume overflow, CDB: ");
958 __scsi_print_command(cmd->cmnd);
959 scsi_print_sense("", cmd);
961 /* See SSC3rXX or current. */
962 scsi_end_request(cmd, 0, this_count, 1);
963 return;
964 default:
965 break;
968 if (host_byte(result) == DID_RESET) {
969 /* Third party bus reset or reset for error recovery
970 * reasons. Just retry the request and see what
971 * happens.
973 scsi_requeue_command(q, cmd);
974 return;
976 if (result) {
977 if (!(req->cmd_flags & REQ_QUIET)) {
978 scsi_print_result(cmd);
979 if (driver_byte(result) & DRIVER_SENSE)
980 scsi_print_sense("", cmd);
983 scsi_end_request(cmd, 0, this_count, !result);
987 * Function: scsi_init_io()
989 * Purpose: SCSI I/O initialize function.
991 * Arguments: cmd - Command descriptor we wish to initialize
993 * Returns: 0 on success
994 * BLKPREP_DEFER if the failure is retryable
995 * BLKPREP_KILL if the failure is fatal
997 static int scsi_init_io(struct scsi_cmnd *cmd)
999 struct request *req = cmd->request;
1000 struct scatterlist *sgpnt;
1001 int count;
1004 * We used to not use scatter-gather for single segment request,
1005 * but now we do (it makes highmem I/O easier to support without
1006 * kmapping pages)
1008 cmd->use_sg = req->nr_phys_segments;
1011 * If sg table allocation fails, requeue request later.
1013 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1014 if (unlikely(!sgpnt)) {
1015 scsi_unprep_request(req);
1016 return BLKPREP_DEFER;
1019 req->buffer = NULL;
1020 cmd->request_buffer = (char *) sgpnt;
1021 if (blk_pc_request(req))
1022 cmd->request_bufflen = req->data_len;
1023 else
1024 cmd->request_bufflen = req->nr_sectors << 9;
1027 * Next, walk the list, and fill in the addresses and sizes of
1028 * each segment.
1030 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1031 if (likely(count <= cmd->use_sg)) {
1032 cmd->use_sg = count;
1033 return BLKPREP_OK;
1036 printk(KERN_ERR "Incorrect number of segments after building list\n");
1037 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1038 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1039 req->current_nr_sectors);
1041 return BLKPREP_KILL;
1044 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1045 struct request *req)
1047 struct scsi_cmnd *cmd;
1049 if (!req->special) {
1050 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1051 if (unlikely(!cmd))
1052 return NULL;
1053 req->special = cmd;
1054 } else {
1055 cmd = req->special;
1058 /* pull a tag out of the request if we have one */
1059 cmd->tag = req->tag;
1060 cmd->request = req;
1062 return cmd;
1065 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1067 struct scsi_cmnd *cmd;
1068 int ret = scsi_prep_state_check(sdev, req);
1070 if (ret != BLKPREP_OK)
1071 return ret;
1073 cmd = scsi_get_cmd_from_req(sdev, req);
1074 if (unlikely(!cmd))
1075 return BLKPREP_DEFER;
1078 * BLOCK_PC requests may transfer data, in which case they must
1079 * a bio attached to them. Or they might contain a SCSI command
1080 * that does not transfer data, in which case they may optionally
1081 * submit a request without an attached bio.
1083 if (req->bio) {
1084 int ret;
1086 BUG_ON(!req->nr_phys_segments);
1088 ret = scsi_init_io(cmd);
1089 if (unlikely(ret))
1090 return ret;
1091 } else {
1092 BUG_ON(req->data_len);
1093 BUG_ON(req->data);
1095 cmd->request_bufflen = 0;
1096 cmd->request_buffer = NULL;
1097 cmd->use_sg = 0;
1098 req->buffer = NULL;
1101 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1102 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1103 cmd->cmd_len = req->cmd_len;
1104 if (!req->data_len)
1105 cmd->sc_data_direction = DMA_NONE;
1106 else if (rq_data_dir(req) == WRITE)
1107 cmd->sc_data_direction = DMA_TO_DEVICE;
1108 else
1109 cmd->sc_data_direction = DMA_FROM_DEVICE;
1111 cmd->transfersize = req->data_len;
1112 cmd->allowed = req->retries;
1113 cmd->timeout_per_command = req->timeout;
1114 return BLKPREP_OK;
1116 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1119 * Setup a REQ_TYPE_FS command. These are simple read/write request
1120 * from filesystems that still need to be translated to SCSI CDBs from
1121 * the ULD.
1123 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1125 struct scsi_cmnd *cmd;
1126 int ret = scsi_prep_state_check(sdev, req);
1128 if (ret != BLKPREP_OK)
1129 return ret;
1131 * Filesystem requests must transfer data.
1133 BUG_ON(!req->nr_phys_segments);
1135 cmd = scsi_get_cmd_from_req(sdev, req);
1136 if (unlikely(!cmd))
1137 return BLKPREP_DEFER;
1139 return scsi_init_io(cmd);
1141 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1143 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1145 int ret = BLKPREP_OK;
1148 * If the device is not in running state we will reject some
1149 * or all commands.
1151 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1152 switch (sdev->sdev_state) {
1153 case SDEV_OFFLINE:
1155 * If the device is offline we refuse to process any
1156 * commands. The device must be brought online
1157 * before trying any recovery commands.
1159 sdev_printk(KERN_ERR, sdev,
1160 "rejecting I/O to offline device\n");
1161 ret = BLKPREP_KILL;
1162 break;
1163 case SDEV_DEL:
1165 * If the device is fully deleted, we refuse to
1166 * process any commands as well.
1168 sdev_printk(KERN_ERR, sdev,
1169 "rejecting I/O to dead device\n");
1170 ret = BLKPREP_KILL;
1171 break;
1172 case SDEV_QUIESCE:
1173 case SDEV_BLOCK:
1175 * If the devices is blocked we defer normal commands.
1177 if (!(req->cmd_flags & REQ_PREEMPT))
1178 ret = BLKPREP_DEFER;
1179 break;
1180 default:
1182 * For any other not fully online state we only allow
1183 * special commands. In particular any user initiated
1184 * command is not allowed.
1186 if (!(req->cmd_flags & REQ_PREEMPT))
1187 ret = BLKPREP_KILL;
1188 break;
1191 return ret;
1193 EXPORT_SYMBOL(scsi_prep_state_check);
1195 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1197 struct scsi_device *sdev = q->queuedata;
1199 switch (ret) {
1200 case BLKPREP_KILL:
1201 req->errors = DID_NO_CONNECT << 16;
1202 /* release the command and kill it */
1203 if (req->special) {
1204 struct scsi_cmnd *cmd = req->special;
1205 scsi_release_buffers(cmd);
1206 scsi_put_command(cmd);
1207 req->special = NULL;
1209 break;
1210 case BLKPREP_DEFER:
1212 * If we defer, the elv_next_request() returns NULL, but the
1213 * queue must be restarted, so we plug here if no returning
1214 * command will automatically do that.
1216 if (sdev->device_busy == 0)
1217 blk_plug_device(q);
1218 break;
1219 default:
1220 req->cmd_flags |= REQ_DONTPREP;
1223 return ret;
1225 EXPORT_SYMBOL(scsi_prep_return);
1227 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1229 struct scsi_device *sdev = q->queuedata;
1230 int ret = BLKPREP_KILL;
1232 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1233 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1234 return scsi_prep_return(q, req, ret);
1238 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1239 * return 0.
1241 * Called with the queue_lock held.
1243 static inline int scsi_dev_queue_ready(struct request_queue *q,
1244 struct scsi_device *sdev)
1246 if (sdev->device_busy >= sdev->queue_depth)
1247 return 0;
1248 if (sdev->device_busy == 0 && sdev->device_blocked) {
1250 * unblock after device_blocked iterates to zero
1252 if (--sdev->device_blocked == 0) {
1253 SCSI_LOG_MLQUEUE(3,
1254 sdev_printk(KERN_INFO, sdev,
1255 "unblocking device at zero depth\n"));
1256 } else {
1257 blk_plug_device(q);
1258 return 0;
1261 if (sdev->device_blocked)
1262 return 0;
1264 return 1;
1268 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1269 * return 0. We must end up running the queue again whenever 0 is
1270 * returned, else IO can hang.
1272 * Called with host_lock held.
1274 static inline int scsi_host_queue_ready(struct request_queue *q,
1275 struct Scsi_Host *shost,
1276 struct scsi_device *sdev)
1278 if (scsi_host_in_recovery(shost))
1279 return 0;
1280 if (shost->host_busy == 0 && shost->host_blocked) {
1282 * unblock after host_blocked iterates to zero
1284 if (--shost->host_blocked == 0) {
1285 SCSI_LOG_MLQUEUE(3,
1286 printk("scsi%d unblocking host at zero depth\n",
1287 shost->host_no));
1288 } else {
1289 blk_plug_device(q);
1290 return 0;
1293 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1294 shost->host_blocked || shost->host_self_blocked) {
1295 if (list_empty(&sdev->starved_entry))
1296 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1297 return 0;
1300 /* We're OK to process the command, so we can't be starved */
1301 if (!list_empty(&sdev->starved_entry))
1302 list_del_init(&sdev->starved_entry);
1304 return 1;
1308 * Kill a request for a dead device
1310 static void scsi_kill_request(struct request *req, struct request_queue *q)
1312 struct scsi_cmnd *cmd = req->special;
1313 struct scsi_device *sdev = cmd->device;
1314 struct Scsi_Host *shost = sdev->host;
1316 blkdev_dequeue_request(req);
1318 if (unlikely(cmd == NULL)) {
1319 printk(KERN_CRIT "impossible request in %s.\n",
1320 __FUNCTION__);
1321 BUG();
1324 scsi_init_cmd_errh(cmd);
1325 cmd->result = DID_NO_CONNECT << 16;
1326 atomic_inc(&cmd->device->iorequest_cnt);
1329 * SCSI request completion path will do scsi_device_unbusy(),
1330 * bump busy counts. To bump the counters, we need to dance
1331 * with the locks as normal issue path does.
1333 sdev->device_busy++;
1334 spin_unlock(sdev->request_queue->queue_lock);
1335 spin_lock(shost->host_lock);
1336 shost->host_busy++;
1337 spin_unlock(shost->host_lock);
1338 spin_lock(sdev->request_queue->queue_lock);
1340 __scsi_done(cmd);
1343 static void scsi_softirq_done(struct request *rq)
1345 struct scsi_cmnd *cmd = rq->completion_data;
1346 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1347 int disposition;
1349 INIT_LIST_HEAD(&cmd->eh_entry);
1351 disposition = scsi_decide_disposition(cmd);
1352 if (disposition != SUCCESS &&
1353 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1354 sdev_printk(KERN_ERR, cmd->device,
1355 "timing out command, waited %lus\n",
1356 wait_for/HZ);
1357 disposition = SUCCESS;
1360 scsi_log_completion(cmd, disposition);
1362 switch (disposition) {
1363 case SUCCESS:
1364 scsi_finish_command(cmd);
1365 break;
1366 case NEEDS_RETRY:
1367 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1368 break;
1369 case ADD_TO_MLQUEUE:
1370 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1371 break;
1372 default:
1373 if (!scsi_eh_scmd_add(cmd, 0))
1374 scsi_finish_command(cmd);
1379 * Function: scsi_request_fn()
1381 * Purpose: Main strategy routine for SCSI.
1383 * Arguments: q - Pointer to actual queue.
1385 * Returns: Nothing
1387 * Lock status: IO request lock assumed to be held when called.
1389 static void scsi_request_fn(struct request_queue *q)
1391 struct scsi_device *sdev = q->queuedata;
1392 struct Scsi_Host *shost;
1393 struct scsi_cmnd *cmd;
1394 struct request *req;
1396 if (!sdev) {
1397 printk("scsi: killing requests for dead queue\n");
1398 while ((req = elv_next_request(q)) != NULL)
1399 scsi_kill_request(req, q);
1400 return;
1403 if(!get_device(&sdev->sdev_gendev))
1404 /* We must be tearing the block queue down already */
1405 return;
1408 * To start with, we keep looping until the queue is empty, or until
1409 * the host is no longer able to accept any more requests.
1411 shost = sdev->host;
1412 while (!blk_queue_plugged(q)) {
1413 int rtn;
1415 * get next queueable request. We do this early to make sure
1416 * that the request is fully prepared even if we cannot
1417 * accept it.
1419 req = elv_next_request(q);
1420 if (!req || !scsi_dev_queue_ready(q, sdev))
1421 break;
1423 if (unlikely(!scsi_device_online(sdev))) {
1424 sdev_printk(KERN_ERR, sdev,
1425 "rejecting I/O to offline device\n");
1426 scsi_kill_request(req, q);
1427 continue;
1432 * Remove the request from the request list.
1434 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1435 blkdev_dequeue_request(req);
1436 sdev->device_busy++;
1438 spin_unlock(q->queue_lock);
1439 cmd = req->special;
1440 if (unlikely(cmd == NULL)) {
1441 printk(KERN_CRIT "impossible request in %s.\n"
1442 "please mail a stack trace to "
1443 "linux-scsi@vger.kernel.org\n",
1444 __FUNCTION__);
1445 blk_dump_rq_flags(req, "foo");
1446 BUG();
1448 spin_lock(shost->host_lock);
1450 if (!scsi_host_queue_ready(q, shost, sdev))
1451 goto not_ready;
1452 if (sdev->single_lun) {
1453 if (scsi_target(sdev)->starget_sdev_user &&
1454 scsi_target(sdev)->starget_sdev_user != sdev)
1455 goto not_ready;
1456 scsi_target(sdev)->starget_sdev_user = sdev;
1458 shost->host_busy++;
1461 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1462 * take the lock again.
1464 spin_unlock_irq(shost->host_lock);
1467 * Finally, initialize any error handling parameters, and set up
1468 * the timers for timeouts.
1470 scsi_init_cmd_errh(cmd);
1473 * Dispatch the command to the low-level driver.
1475 rtn = scsi_dispatch_cmd(cmd);
1476 spin_lock_irq(q->queue_lock);
1477 if(rtn) {
1478 /* we're refusing the command; because of
1479 * the way locks get dropped, we need to
1480 * check here if plugging is required */
1481 if(sdev->device_busy == 0)
1482 blk_plug_device(q);
1484 break;
1488 goto out;
1490 not_ready:
1491 spin_unlock_irq(shost->host_lock);
1494 * lock q, handle tag, requeue req, and decrement device_busy. We
1495 * must return with queue_lock held.
1497 * Decrementing device_busy without checking it is OK, as all such
1498 * cases (host limits or settings) should run the queue at some
1499 * later time.
1501 spin_lock_irq(q->queue_lock);
1502 blk_requeue_request(q, req);
1503 sdev->device_busy--;
1504 if(sdev->device_busy == 0)
1505 blk_plug_device(q);
1506 out:
1507 /* must be careful here...if we trigger the ->remove() function
1508 * we cannot be holding the q lock */
1509 spin_unlock_irq(q->queue_lock);
1510 put_device(&sdev->sdev_gendev);
1511 spin_lock_irq(q->queue_lock);
1514 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1516 struct device *host_dev;
1517 u64 bounce_limit = 0xffffffff;
1519 if (shost->unchecked_isa_dma)
1520 return BLK_BOUNCE_ISA;
1522 * Platforms with virtual-DMA translation
1523 * hardware have no practical limit.
1525 if (!PCI_DMA_BUS_IS_PHYS)
1526 return BLK_BOUNCE_ANY;
1528 host_dev = scsi_get_device(shost);
1529 if (host_dev && host_dev->dma_mask)
1530 bounce_limit = *host_dev->dma_mask;
1532 return bounce_limit;
1534 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1536 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1537 request_fn_proc *request_fn)
1539 struct request_queue *q;
1541 q = blk_init_queue(request_fn, NULL);
1542 if (!q)
1543 return NULL;
1545 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1546 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1547 blk_queue_max_sectors(q, shost->max_sectors);
1548 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1549 blk_queue_segment_boundary(q, shost->dma_boundary);
1551 if (!shost->use_clustering)
1552 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1553 return q;
1555 EXPORT_SYMBOL(__scsi_alloc_queue);
1557 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1559 struct request_queue *q;
1561 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1562 if (!q)
1563 return NULL;
1565 blk_queue_prep_rq(q, scsi_prep_fn);
1566 blk_queue_softirq_done(q, scsi_softirq_done);
1567 return q;
1570 void scsi_free_queue(struct request_queue *q)
1572 blk_cleanup_queue(q);
1576 * Function: scsi_block_requests()
1578 * Purpose: Utility function used by low-level drivers to prevent further
1579 * commands from being queued to the device.
1581 * Arguments: shost - Host in question
1583 * Returns: Nothing
1585 * Lock status: No locks are assumed held.
1587 * Notes: There is no timer nor any other means by which the requests
1588 * get unblocked other than the low-level driver calling
1589 * scsi_unblock_requests().
1591 void scsi_block_requests(struct Scsi_Host *shost)
1593 shost->host_self_blocked = 1;
1595 EXPORT_SYMBOL(scsi_block_requests);
1598 * Function: scsi_unblock_requests()
1600 * Purpose: Utility function used by low-level drivers to allow further
1601 * commands from being queued to the device.
1603 * Arguments: shost - Host in question
1605 * Returns: Nothing
1607 * Lock status: No locks are assumed held.
1609 * Notes: There is no timer nor any other means by which the requests
1610 * get unblocked other than the low-level driver calling
1611 * scsi_unblock_requests().
1613 * This is done as an API function so that changes to the
1614 * internals of the scsi mid-layer won't require wholesale
1615 * changes to drivers that use this feature.
1617 void scsi_unblock_requests(struct Scsi_Host *shost)
1619 shost->host_self_blocked = 0;
1620 scsi_run_host_queues(shost);
1622 EXPORT_SYMBOL(scsi_unblock_requests);
1624 int __init scsi_init_queue(void)
1626 int i;
1628 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1629 sizeof(struct scsi_io_context),
1630 0, 0, NULL);
1631 if (!scsi_io_context_cache) {
1632 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1633 return -ENOMEM;
1636 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1637 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1638 int size = sgp->size * sizeof(struct scatterlist);
1640 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1641 SLAB_HWCACHE_ALIGN, NULL);
1642 if (!sgp->slab) {
1643 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1644 sgp->name);
1647 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1648 sgp->slab);
1649 if (!sgp->pool) {
1650 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1651 sgp->name);
1655 return 0;
1658 void scsi_exit_queue(void)
1660 int i;
1662 kmem_cache_destroy(scsi_io_context_cache);
1664 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1665 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1666 mempool_destroy(sgp->pool);
1667 kmem_cache_destroy(sgp->slab);
1672 * scsi_mode_select - issue a mode select
1673 * @sdev: SCSI device to be queried
1674 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1675 * @sp: Save page bit (0 == don't save, 1 == save)
1676 * @modepage: mode page being requested
1677 * @buffer: request buffer (may not be smaller than eight bytes)
1678 * @len: length of request buffer.
1679 * @timeout: command timeout
1680 * @retries: number of retries before failing
1681 * @data: returns a structure abstracting the mode header data
1682 * @sense: place to put sense data (or NULL if no sense to be collected).
1683 * must be SCSI_SENSE_BUFFERSIZE big.
1685 * Returns zero if successful; negative error number or scsi
1686 * status on error
1690 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1691 unsigned char *buffer, int len, int timeout, int retries,
1692 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1694 unsigned char cmd[10];
1695 unsigned char *real_buffer;
1696 int ret;
1698 memset(cmd, 0, sizeof(cmd));
1699 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1701 if (sdev->use_10_for_ms) {
1702 if (len > 65535)
1703 return -EINVAL;
1704 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1705 if (!real_buffer)
1706 return -ENOMEM;
1707 memcpy(real_buffer + 8, buffer, len);
1708 len += 8;
1709 real_buffer[0] = 0;
1710 real_buffer[1] = 0;
1711 real_buffer[2] = data->medium_type;
1712 real_buffer[3] = data->device_specific;
1713 real_buffer[4] = data->longlba ? 0x01 : 0;
1714 real_buffer[5] = 0;
1715 real_buffer[6] = data->block_descriptor_length >> 8;
1716 real_buffer[7] = data->block_descriptor_length;
1718 cmd[0] = MODE_SELECT_10;
1719 cmd[7] = len >> 8;
1720 cmd[8] = len;
1721 } else {
1722 if (len > 255 || data->block_descriptor_length > 255 ||
1723 data->longlba)
1724 return -EINVAL;
1726 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1727 if (!real_buffer)
1728 return -ENOMEM;
1729 memcpy(real_buffer + 4, buffer, len);
1730 len += 4;
1731 real_buffer[0] = 0;
1732 real_buffer[1] = data->medium_type;
1733 real_buffer[2] = data->device_specific;
1734 real_buffer[3] = data->block_descriptor_length;
1737 cmd[0] = MODE_SELECT;
1738 cmd[4] = len;
1741 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1742 sshdr, timeout, retries);
1743 kfree(real_buffer);
1744 return ret;
1746 EXPORT_SYMBOL_GPL(scsi_mode_select);
1749 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1750 * six bytes if necessary.
1751 * @sdev: SCSI device to be queried
1752 * @dbd: set if mode sense will allow block descriptors to be returned
1753 * @modepage: mode page being requested
1754 * @buffer: request buffer (may not be smaller than eight bytes)
1755 * @len: length of request buffer.
1756 * @timeout: command timeout
1757 * @retries: number of retries before failing
1758 * @data: returns a structure abstracting the mode header data
1759 * @sense: place to put sense data (or NULL if no sense to be collected).
1760 * must be SCSI_SENSE_BUFFERSIZE big.
1762 * Returns zero if unsuccessful, or the header offset (either 4
1763 * or 8 depending on whether a six or ten byte command was
1764 * issued) if successful.
1767 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1768 unsigned char *buffer, int len, int timeout, int retries,
1769 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1771 unsigned char cmd[12];
1772 int use_10_for_ms;
1773 int header_length;
1774 int result;
1775 struct scsi_sense_hdr my_sshdr;
1777 memset(data, 0, sizeof(*data));
1778 memset(&cmd[0], 0, 12);
1779 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1780 cmd[2] = modepage;
1782 /* caller might not be interested in sense, but we need it */
1783 if (!sshdr)
1784 sshdr = &my_sshdr;
1786 retry:
1787 use_10_for_ms = sdev->use_10_for_ms;
1789 if (use_10_for_ms) {
1790 if (len < 8)
1791 len = 8;
1793 cmd[0] = MODE_SENSE_10;
1794 cmd[8] = len;
1795 header_length = 8;
1796 } else {
1797 if (len < 4)
1798 len = 4;
1800 cmd[0] = MODE_SENSE;
1801 cmd[4] = len;
1802 header_length = 4;
1805 memset(buffer, 0, len);
1807 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1808 sshdr, timeout, retries);
1810 /* This code looks awful: what it's doing is making sure an
1811 * ILLEGAL REQUEST sense return identifies the actual command
1812 * byte as the problem. MODE_SENSE commands can return
1813 * ILLEGAL REQUEST if the code page isn't supported */
1815 if (use_10_for_ms && !scsi_status_is_good(result) &&
1816 (driver_byte(result) & DRIVER_SENSE)) {
1817 if (scsi_sense_valid(sshdr)) {
1818 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1819 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1821 * Invalid command operation code
1823 sdev->use_10_for_ms = 0;
1824 goto retry;
1829 if(scsi_status_is_good(result)) {
1830 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1831 (modepage == 6 || modepage == 8))) {
1832 /* Initio breakage? */
1833 header_length = 0;
1834 data->length = 13;
1835 data->medium_type = 0;
1836 data->device_specific = 0;
1837 data->longlba = 0;
1838 data->block_descriptor_length = 0;
1839 } else if(use_10_for_ms) {
1840 data->length = buffer[0]*256 + buffer[1] + 2;
1841 data->medium_type = buffer[2];
1842 data->device_specific = buffer[3];
1843 data->longlba = buffer[4] & 0x01;
1844 data->block_descriptor_length = buffer[6]*256
1845 + buffer[7];
1846 } else {
1847 data->length = buffer[0] + 1;
1848 data->medium_type = buffer[1];
1849 data->device_specific = buffer[2];
1850 data->block_descriptor_length = buffer[3];
1852 data->header_length = header_length;
1855 return result;
1857 EXPORT_SYMBOL(scsi_mode_sense);
1860 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1862 char cmd[] = {
1863 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1865 struct scsi_sense_hdr sshdr;
1866 int result;
1868 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1869 timeout, retries);
1871 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1873 if ((scsi_sense_valid(&sshdr)) &&
1874 ((sshdr.sense_key == UNIT_ATTENTION) ||
1875 (sshdr.sense_key == NOT_READY))) {
1876 sdev->changed = 1;
1877 result = 0;
1880 return result;
1882 EXPORT_SYMBOL(scsi_test_unit_ready);
1885 * scsi_device_set_state - Take the given device through the device
1886 * state model.
1887 * @sdev: scsi device to change the state of.
1888 * @state: state to change to.
1890 * Returns zero if unsuccessful or an error if the requested
1891 * transition is illegal.
1894 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1896 enum scsi_device_state oldstate = sdev->sdev_state;
1898 if (state == oldstate)
1899 return 0;
1901 switch (state) {
1902 case SDEV_CREATED:
1903 /* There are no legal states that come back to
1904 * created. This is the manually initialised start
1905 * state */
1906 goto illegal;
1908 case SDEV_RUNNING:
1909 switch (oldstate) {
1910 case SDEV_CREATED:
1911 case SDEV_OFFLINE:
1912 case SDEV_QUIESCE:
1913 case SDEV_BLOCK:
1914 break;
1915 default:
1916 goto illegal;
1918 break;
1920 case SDEV_QUIESCE:
1921 switch (oldstate) {
1922 case SDEV_RUNNING:
1923 case SDEV_OFFLINE:
1924 break;
1925 default:
1926 goto illegal;
1928 break;
1930 case SDEV_OFFLINE:
1931 switch (oldstate) {
1932 case SDEV_CREATED:
1933 case SDEV_RUNNING:
1934 case SDEV_QUIESCE:
1935 case SDEV_BLOCK:
1936 break;
1937 default:
1938 goto illegal;
1940 break;
1942 case SDEV_BLOCK:
1943 switch (oldstate) {
1944 case SDEV_CREATED:
1945 case SDEV_RUNNING:
1946 break;
1947 default:
1948 goto illegal;
1950 break;
1952 case SDEV_CANCEL:
1953 switch (oldstate) {
1954 case SDEV_CREATED:
1955 case SDEV_RUNNING:
1956 case SDEV_QUIESCE:
1957 case SDEV_OFFLINE:
1958 case SDEV_BLOCK:
1959 break;
1960 default:
1961 goto illegal;
1963 break;
1965 case SDEV_DEL:
1966 switch (oldstate) {
1967 case SDEV_CREATED:
1968 case SDEV_RUNNING:
1969 case SDEV_OFFLINE:
1970 case SDEV_CANCEL:
1971 break;
1972 default:
1973 goto illegal;
1975 break;
1978 sdev->sdev_state = state;
1979 return 0;
1981 illegal:
1982 SCSI_LOG_ERROR_RECOVERY(1,
1983 sdev_printk(KERN_ERR, sdev,
1984 "Illegal state transition %s->%s\n",
1985 scsi_device_state_name(oldstate),
1986 scsi_device_state_name(state))
1988 return -EINVAL;
1990 EXPORT_SYMBOL(scsi_device_set_state);
1993 * scsi_device_quiesce - Block user issued commands.
1994 * @sdev: scsi device to quiesce.
1996 * This works by trying to transition to the SDEV_QUIESCE state
1997 * (which must be a legal transition). When the device is in this
1998 * state, only special requests will be accepted, all others will
1999 * be deferred. Since special requests may also be requeued requests,
2000 * a successful return doesn't guarantee the device will be
2001 * totally quiescent.
2003 * Must be called with user context, may sleep.
2005 * Returns zero if unsuccessful or an error if not.
2008 scsi_device_quiesce(struct scsi_device *sdev)
2010 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2011 if (err)
2012 return err;
2014 scsi_run_queue(sdev->request_queue);
2015 while (sdev->device_busy) {
2016 msleep_interruptible(200);
2017 scsi_run_queue(sdev->request_queue);
2019 return 0;
2021 EXPORT_SYMBOL(scsi_device_quiesce);
2024 * scsi_device_resume - Restart user issued commands to a quiesced device.
2025 * @sdev: scsi device to resume.
2027 * Moves the device from quiesced back to running and restarts the
2028 * queues.
2030 * Must be called with user context, may sleep.
2032 void
2033 scsi_device_resume(struct scsi_device *sdev)
2035 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2036 return;
2037 scsi_run_queue(sdev->request_queue);
2039 EXPORT_SYMBOL(scsi_device_resume);
2041 static void
2042 device_quiesce_fn(struct scsi_device *sdev, void *data)
2044 scsi_device_quiesce(sdev);
2047 void
2048 scsi_target_quiesce(struct scsi_target *starget)
2050 starget_for_each_device(starget, NULL, device_quiesce_fn);
2052 EXPORT_SYMBOL(scsi_target_quiesce);
2054 static void
2055 device_resume_fn(struct scsi_device *sdev, void *data)
2057 scsi_device_resume(sdev);
2060 void
2061 scsi_target_resume(struct scsi_target *starget)
2063 starget_for_each_device(starget, NULL, device_resume_fn);
2065 EXPORT_SYMBOL(scsi_target_resume);
2068 * scsi_internal_device_block - internal function to put a device
2069 * temporarily into the SDEV_BLOCK state
2070 * @sdev: device to block
2072 * Block request made by scsi lld's to temporarily stop all
2073 * scsi commands on the specified device. Called from interrupt
2074 * or normal process context.
2076 * Returns zero if successful or error if not
2078 * Notes:
2079 * This routine transitions the device to the SDEV_BLOCK state
2080 * (which must be a legal transition). When the device is in this
2081 * state, all commands are deferred until the scsi lld reenables
2082 * the device with scsi_device_unblock or device_block_tmo fires.
2083 * This routine assumes the host_lock is held on entry.
2086 scsi_internal_device_block(struct scsi_device *sdev)
2088 struct request_queue *q = sdev->request_queue;
2089 unsigned long flags;
2090 int err = 0;
2092 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2093 if (err)
2094 return err;
2097 * The device has transitioned to SDEV_BLOCK. Stop the
2098 * block layer from calling the midlayer with this device's
2099 * request queue.
2101 spin_lock_irqsave(q->queue_lock, flags);
2102 blk_stop_queue(q);
2103 spin_unlock_irqrestore(q->queue_lock, flags);
2105 return 0;
2107 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2110 * scsi_internal_device_unblock - resume a device after a block request
2111 * @sdev: device to resume
2113 * Called by scsi lld's or the midlayer to restart the device queue
2114 * for the previously suspended scsi device. Called from interrupt or
2115 * normal process context.
2117 * Returns zero if successful or error if not.
2119 * Notes:
2120 * This routine transitions the device to the SDEV_RUNNING state
2121 * (which must be a legal transition) allowing the midlayer to
2122 * goose the queue for this device. This routine assumes the
2123 * host_lock is held upon entry.
2126 scsi_internal_device_unblock(struct scsi_device *sdev)
2128 struct request_queue *q = sdev->request_queue;
2129 int err;
2130 unsigned long flags;
2133 * Try to transition the scsi device to SDEV_RUNNING
2134 * and goose the device queue if successful.
2136 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2137 if (err)
2138 return err;
2140 spin_lock_irqsave(q->queue_lock, flags);
2141 blk_start_queue(q);
2142 spin_unlock_irqrestore(q->queue_lock, flags);
2144 return 0;
2146 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2148 static void
2149 device_block(struct scsi_device *sdev, void *data)
2151 scsi_internal_device_block(sdev);
2154 static int
2155 target_block(struct device *dev, void *data)
2157 if (scsi_is_target_device(dev))
2158 starget_for_each_device(to_scsi_target(dev), NULL,
2159 device_block);
2160 return 0;
2163 void
2164 scsi_target_block(struct device *dev)
2166 if (scsi_is_target_device(dev))
2167 starget_for_each_device(to_scsi_target(dev), NULL,
2168 device_block);
2169 else
2170 device_for_each_child(dev, NULL, target_block);
2172 EXPORT_SYMBOL_GPL(scsi_target_block);
2174 static void
2175 device_unblock(struct scsi_device *sdev, void *data)
2177 scsi_internal_device_unblock(sdev);
2180 static int
2181 target_unblock(struct device *dev, void *data)
2183 if (scsi_is_target_device(dev))
2184 starget_for_each_device(to_scsi_target(dev), NULL,
2185 device_unblock);
2186 return 0;
2189 void
2190 scsi_target_unblock(struct device *dev)
2192 if (scsi_is_target_device(dev))
2193 starget_for_each_device(to_scsi_target(dev), NULL,
2194 device_unblock);
2195 else
2196 device_for_each_child(dev, NULL, target_unblock);
2198 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2201 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2202 * @sg: scatter-gather list
2203 * @sg_count: number of segments in sg
2204 * @offset: offset in bytes into sg, on return offset into the mapped area
2205 * @len: bytes to map, on return number of bytes mapped
2207 * Returns virtual address of the start of the mapped page
2209 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2210 size_t *offset, size_t *len)
2212 int i;
2213 size_t sg_len = 0, len_complete = 0;
2214 struct page *page;
2216 WARN_ON(!irqs_disabled());
2218 for (i = 0; i < sg_count; i++) {
2219 len_complete = sg_len; /* Complete sg-entries */
2220 sg_len += sg[i].length;
2221 if (sg_len > *offset)
2222 break;
2225 if (unlikely(i == sg_count)) {
2226 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2227 "elements %d\n",
2228 __FUNCTION__, sg_len, *offset, sg_count);
2229 WARN_ON(1);
2230 return NULL;
2233 /* Offset starting from the beginning of first page in this sg-entry */
2234 *offset = *offset - len_complete + sg[i].offset;
2236 /* Assumption: contiguous pages can be accessed as "page + i" */
2237 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2238 *offset &= ~PAGE_MASK;
2240 /* Bytes in this sg-entry from *offset to the end of the page */
2241 sg_len = PAGE_SIZE - *offset;
2242 if (*len > sg_len)
2243 *len = sg_len;
2245 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2247 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2250 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2251 * mapped with scsi_kmap_atomic_sg
2252 * @virt: virtual address to be unmapped
2254 void scsi_kunmap_atomic_sg(void *virt)
2256 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2258 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);